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1 Introduction

The successful interpretation of particle collider data demands high-precision theoretical
predictions for Standard Model cross sections. Quantum Chromodynamics (QCD) effects
dominate scattering events at particle colliders and need to be described accurately to reach
the desired precision. Computations in QCD for high-energy collisions are performed by
power series expansion in the strong coupling constant αs. According to how many terms are
computed in this expansion, one obtains increasingly more accurate predictions, denominated
Leading-Order (LO), Next-to-Leading-Order (NLO), Next-to-Next-to-Leading-Order (NNLO),
and so forth. The complexity grows with the accuracy: the emergence of infrared divergences
in theoretical calculations poses an obstacle to the computation of higher-order terms in
the αs expansion.
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LO predictions only provide a naive estimate and are not accurate enough for precision
experiments. More precise calculations at NLO are required for any precision analysis.
For more than two decades, fully general techniques to reach NLO accuracy have been
available [1, 2], as well as public multi-purpose computational frameworks for cross-section
calculations [3–6]. However, for some observables NLO predictions are still not precise enough
and NNLO calculations are needed to approach the percent-level accuracy goal. Several
methods have been proposed to compute NNLO corrections [7–18] and NNLO-accurate
predictions for essentially all 2 → 2 processes at hadron colliders are nowadays available.
From 2020 onwards, NNLO calculations for 2 → 3 processes have started to appear [19–29],
thanks to the calculation of two-loop five-point amplitudes [30–38]. These results represent
the current state-of-the-art for NNLO QCD corrections for LHC processes.

The currently available results at NNLO have been obtained proceeding on a case-
by-case basis, usually demanding a considerable amount of work to extend the existing
formalisms to new classes of processes. At NLO, the development of process-independent and
automatable techniques led to the industrialization of NLO-accurate predictions. Nowadays,
NLO computations are systematically performed using public codes for any precision analysis
at the LHC, thereby raising the standards of particle phenomenology. It is foreseeable
that a similar revolution could occur at NNLO if general frameworks and tools for NNLO
calculations become available.

In this paper we formulate a process-independent approach to perform NNLO calculations
in QCD: the colourful antenna subtraction method, which was originally presented in [23] for
gluon scattering. The traditional antenna subtraction method [7, 8] makes use of antenna
functions [39–41] to assemble suitable counterterms to deal with infrared divergences up to
NNLO. These antenna functions are based on colour-ordered matrix elements describing
radiation from processes with two coloured particles: γ∗ → qq̄, χ̃ → g̃g and H → gg, covering
the cases where the coloured particles are massless quarks and gluons. It has been successfully
applied to compute the NNLO correction to a series of phenomenologically relevant processes
at electron-positron, electron-proton and hadron colliders [23, 42–56]. However, it has been
gradually extended throughout the past fifteen years to deal with new processes, demanding
a substantial amount of time and manpower for each new process. Despite being quite
flexible, it presents some intrinsic limitations. In particular, as many of the proposed NNLO
subtraction schemes, it scales poorly with the number of coloured particles involved in the
process and much of its simplicity is lost when dealing with contributions beyond the so-called
leading-colour approximation [8] where one cannot directly rely on colour connections of
squared amplitudes as the guiding principle for the construction of the subtraction terms,
especially at high multiplicities.

The colourful antenna subtraction method derived here is a reformulation of the antenna
subtraction approach designed to systematise the construction of the real-emission subtraction
term. The main idea behind it is to exploit the predictability of the singularity structure
of virtual amplitudes in colour space to straightforwardly construct the virtual subtraction
terms in a completely general way. This helps overcome the aforementioned limitations of the
traditional antenna subtraction scheme in two ways. First, the complete structure of colour
correlations among external QCD particles is retained by working in colour-space, making
the construction of subtraction terms for all colour layers straightforward. This improves
on the traditional approach using colour-decomposed antenna functions, which works best

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

only for the leading-colour contribution. Secondly, we exploit the correspondence between
integrated and unintegrated antenna functions and the known infrared structure of the virtual
subtraction terms to infer the subtraction terms for the real emission corrections. This
strategy goes in the opposite direction with respect to the typical procedure implemented in
infrared subtraction schemes, in which the real emission subtraction term is constructed first,
and then analytically integrated to yield the virtual subtraction term. Nonetheless it is firmly
supported by the same principle: the cancellation of infrared singularities between real and
virtual corrections. The construction of local subtraction terms for real radiation starting from
the infrared factorization properties of virtual amplitudes has also been investigated in [57].

The colourful antenna approach is fully compatible with other (parallel) attempts to
refine the antenna subtraction scheme by building the antenna functions directly from a list
of desired infrared limits [58–60]. This so-called designer antenna approach avoids the need
to decompose the antenna functions into sub-antennae, it streamlines (and reduces the size
of) the subtraction terms by avoiding the introduction of spurious limits that are inevitably
present in the matrix-element based antennae when applied to processes with multiple coloured
particles. So far, designer antenna functions and their integrated counterparts have been
derived for use in electron-positron annihilation, electron-hadron and hadron-hadron collisions
at NLO [58, 60], and at NNLO for electron-positron annihilation [58, 59]. In the future,
one can imagine an optimal approach in which the colourful antenna subtraction method
proposed here is supplemented by the use of designer antenna functions, and vice versa.

The outline of the paper is as follows. In section 2 we give a brief overview of the
basic ingredients and structures of the traditional antenna subtraction method. Section 3,
after reviewing the colour space formalism and the infrared singularity structure of QCD
virtual amplitudes, introduces integrated dipoles as operators in colour space, which play a
fundamental role in the formalism we propose. In sections 4 and 5 we present the colourful
antenna subtraction method, respectively at NLO and NNLO, supplemented by the appendices.
The application of the new colourful formalism for the construction of NNLO subtraction
terms for three-jet production at hadron colliders is then discussed in section 6. Concluding
remarks and an outlook are presented in section 7.

2 Basics of antenna subtraction

The antenna subtraction method has been developed in detail in [7, 8, 42]. We summarize
its essential features in the following.

The core ingredients of the antenna subtraction method are the antenna functions. These
objects capture the singular behaviour of matrix elements in the presence of unresolved
emissions and are directly extracted from colour-ordered squared matrix elements for simple
processes involving the radiation of QCD particles between a pair of hard radiators [39–41].
According to the partonic species of the hard radiators, antenna functions are classified as
quark-antiquark, quark-gluon and gluon-gluon antenna functions.

An unintegrated ℓ-loop antenna function is a function of n partonic momenta, a subset
I of which are in the initial state, generically indicated as:

Xℓ
n,{i}i∈I

(j1, . . . , jn). (2.1)
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Configurations with zero, one or two partons in the initial state are respectively denoted by
final-final (FF), initial-final (IF) and initial-initial (II) antenna functions. Different partonic
arrangements are described by different antenna functions, characterized with a specific
upper-case letter replacing the generic X. At one loop, ℓ = 1, antenna functions containing a
closed fermion loop are indicated by a hat ( ̂ ), and antenna functions corresponding to the
subleading-colour virtual configurations are indicated with a tilde ( ˜ ). Some of the antenna
functions are further split into so-called sub-antennae. This is done for several reasons such as
the identification of two hard radiators, the separation of different reduced matrix elements
or the separation of different momentum mappings. Typically sub-antennae have a more
complicated structure than the full result. Sub-antennae are denoted with the same notation
as full ones, but with lower-case letters or with a dedicated subscript.

Exploiting the exact factorization of the phase space [40, 61–64], antenna functions can be
analytically integrated in dimensional regularization to obtain their integrated counterparts.
Integrated antenna functions are denoted as:

X ℓ
n,{i}i∈I

(sj1...jn), (2.2)

where sjq ...jn is the invariant mass of the considered partonic system:

sj1...jn =

 n∑
j=1

λjpj

2

, (2.3)

with λj = +1 for final-state partons and λj = −1 for initial-state ones.
All the integrated and unintegrated antenna functions and sub-antennae used in this

paper were derived in [7, 42, 61–66].

2.1 Structure of antenna subtraction

In the following we review the infrastructure of the antenna subtraction method and of
the subtraction counterterms which are constructed to remove the infrared singularities in
different layers of a calculation. The detailed construction of the subtraction counterterms
is described in section 4 and 5.

2.1.1 Subtraction at NLO

The NLO QCD correction to an n-jet partonic cross section with parton species a and b

in the initial state is given by:

dσ̂ab,NLO =
∫

n

(
dσ̂V

ab,NLO + dσ̂MF
ab,NLO

)
+
∫

n+1
dσ̂R

ab,NLO, (2.4)

where dσ̂V
ab,NLO and dσ̂R

ab,NLO respectively represent the virtual and real corrections, while
dσ̂MF

ab,NLO is the NLO mass factorization counterterm. The symbol
∫

n indicates an integration
over a n-particle phase space. The NLO cross section in (2.4), despite being well defined
and finite, is not suitable for numerical integration in this form, due to the emergence of
infrared singularities. These cancel in the final result, but a proper subtraction procedure is
needed to separately remove the singularities in the real and virtual corrections and make
both integrals in (2.4) computable with numerical methods.
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In the context of antenna subtraction, this is achieved constructing a real subtraction
term dσ̂S

ab,NLO [8], which locally removes the singular behaviour of dσ̂R
ab,NLO in the infrared

(IR) limits and can be analytically integrated over the phase space of the unresolved radiation.
For the regularization of the IR singularities, we rely on dimensional regularization with
the customary choice d = 4 − 2ϵ. After this integration, dσ̂S

ab,NLO serves as ingredient
to the virtual subtraction term dσ̂T

ab,NLO, which cancels the explicit ϵ-poles of the virtual
correction and contains the mass factorization contribution. The NLO cross section can
then be reformulated as [8]:

dσ̂ab,NLO =
∫

n

[
dσ̂V

ab,NLO − dσ̂T
ab,NLO

]
+
∫

n+1

[
dσ̂R

ab,NLO − dσ̂S
ab,NLO

]
, (2.5)

with
dσ̂T

ab,NLO = −
∫

1
dσ̂S

ab,NLO − dσ̂MF
ab,NLO. (2.6)

At NLO the mass factorization counterterm is given by:

dσ̂MF
ab,NLO = −

(
αsC(ϵ)
2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd(x1, x2) dσ̂cd,LO, (2.7)

where x1 and x2 represent the momentum fractions transferred to the hard process, while
Γ(1)

ab;cd (x1, x2) denotes the NLO mass factorization kernel:

Γ(1)
ab;cd (x1, x2) = Γ(1)

ca,full (x1) δdbδ(1− x2) + Γ(1)
db,full (x1) δcaδ(1− x1), (2.8)

which can be organized into different terms corresponding to different colour factors:

Γ(1)
qq,full (x) =

(
N2

c − 1
Nc

)
Γ(1)

qq (x) , (2.9)

Γ(1)
gq,full (x) =

(
N2

c − 1
Nc

)
Γ(1)

gq (x) , (2.10)

Γ(1)
qg,full (x) = Γ(1)

qg (x) , (2.11)

Γ(1)
gg,full (x) = NcΓ(1)

gg (x) + Nf Γ̂(1)
gg (x) . (2.12)

The NLO mass factorization terms are directly related to regularized LO Altarelli-Parisi
splitting kernels [67]:

Γ(1)
ab,full (x) = −1

ϵ
P 0

ab(x), (2.13)

where

P 0
qq(x) =

(
N2

c − 1
Nc

)
p0

qq(x), (2.14)

P 0
gq(x) =

(
N2

c − 1
Nc

)
p0

gq(x), (2.15)

P 0
qg(x) = p0

qg(x), (2.16)

P 0
gg(x) = Ncp

0
gg(x) + Nf p̂0

gg(x). (2.17)
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2.1.2 Subtraction at NNLO

The NNLO QCD correction to an n-jet cross section is given by:

dσ̂ab,NNLO =
∫

n

(
dσ̂V V

ab,NNLO + dσ̂MF,2
ab,NNLO

)
+
∫

n+1

(
dσ̂RV

ab,NNLO + dσ̂MF,1
ab,NNLO

)
+
∫

n+2
dσ̂RR

ab,NNLO, (2.18)

where dσ̂V V
ab,NNLO represents the double-virtual correction, dσ̂RV

ab,NNLO the real-virtual correction
and dσ̂RR

ab,NNLO the double-real correction. The mass factorization counterterm at this
perturbative order is split into two terms associated with n- and (n + 1)-particle final
states, respectively dσ̂MF,2

ab,NNLO and dσ̂MF,1
ab,NNLO.

As in the NLO case, the quantity in (2.18) cannot be computed directly with numerical
methods. The singular behaviour of both the double-real and real-virtual corrections in
infrared limits has to be subtracted and the explicit poles in the double-virtual and real-virtual
matrix elements need to be removed properly. To achieve this, the NNLO cross section is
rewritten in the context of antenna subtraction as [8]:

dσ̂ab,NNLO =
∫

n

[
dσ̂V V

ab,NNLO − dσ̂U
ab,NNLO

]
+
∫

n+1

[
dσ̂RV

ab,NNLO − dσ̂T
ab,NNLO

]
+
∫

n+2

[
dσ̂RR

ab,NNLO − dσ̂S
ab,NNLO

]
, (2.19)

where the subtracted quantities are the double-virtual, the real-virtual and the double-real
subtraction term. These contributions have the following form [8]:

dσ̂S
ab,NNLO = dσ̂S,1

ab,NNLO + dσ̂S,2
ab,NNLO ,

dσ̂T
ab,NNLO = dσ̂V S

ab,NNLO −
∫

1
dσ̂S,1

ab,NNLO − dσ̂MF,1
ab,NNLO ,

dσ̂U
ab,NNLO = −

∫
1

dσ̂V S
ab,NNLO −

∫
2

dσ̂S,2
ab,NNLO − dσ̂MF,2

ab,NNLO . (2.20)

The double-real subtraction term has been decomposed into two contributions which contain
single and double unresolved IR limits: dσ̂S,1

ab,NNLO and dσ̂S,2
ab,NNLO. In the real-virtual sub-

traction term, dσ̂V S
ab,NNLO cancels the implicit singular behaviour of the real-virtual correction

in single unresolved limits. The remaining terms in dσ̂T
ab,NNLO and dσ̂U

ab,NNLO, which are not
mass factorization counterterms, are obtained via analytical integration of the aforementioned
contributions, over the phase space of a single or double unresolved emission. These terms
cancel explicit ϵ-poles in the virtual corrections.

Within the traditional antenna subtraction approach [7, 68], the infrastructure above is
constructed starting from dσ̂S,1

ab,NNLO, dσ̂S,2
ab,NNLO and dσ̂V S

ab,NNLO, which are obtained by study-
ing the infrared behaviour of the double-real and real-virtual matrix elements. Afterwards,
analytical integrations are performed to complete the subtraction. Several adjustments are
needed during this process to ensure the removal of spurious divergences and prevent the
oversubtraction of singular behaviour. Examples of the typical structures appearing in each
layer can be found in [7, 8, 42, 65, 69, 70].
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At NNLO, we have two different contributions to the mass factorization counterterm:
the double-virtual and the real-virtual mass factorization terms. The real-virtual mass
factorization counterterm is given by [8]:

dσ̂MF,1
ab,NNLO = −

(
αsC(ϵ)
2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2)

(
dσ̂R

cd,NLO − dσ̂S
cd,NLO

)
, (2.21)

where the required mass factorization kernels are the ones used at NLO.
The double-virtual mass factorization counterterm reads [8]:

dσ̂MF,2
ab,NNLO = −

∫ dx1
x1

dx2
x2

∑
c,d

{(
αsC(ϵ)
2π

)[
Γ(1)

ab;cd (x1, x2)
(
dσ̂V

cd,NLO − dσ̂T
cd,NLO

)]

+
(

αsC(ϵ)
2π

)2 [
Γ(2)

ab;cd (x1, x2)−
β0
ϵ
Γ(1)

ab;cd (x1, x2)

+ 1
2
∑
α,β

[
Γ(1)

ab;αβ ⊗ Γ(1)
αβ;cd

]
(x1, x2)

]
dσ̂cd,LO

}
. (2.22)

The reduced two-loop mass factorization kernel is defined as [8]:

Γ(2)
ab;cd (x1, x2) = Γ(2)

ca,full (x1) δdbδ(1− x2) + Γ(2)
db,full (x2) δcaδ(1− x1), (2.23)

where Γ(2)
ca,full (xi) are directly related to the LO and NLO Altarelli-Parisi spitting ker-

nels [67, 71, 72]:

Γ(2)
ab,full (x) = − 1

2ϵ

(
P 1

ab(x) +
β0
ϵ

P 0
ab(x)

)
, (2.24)

and can be decomposed into colour layers as [8]:

Γ(2)
qq,full(x) =

(
N2

c − 1
Nc

)[
NcΓ

(2)
qq (x) + Γ̃

(2)
qq (x) +

1
Nc

˜̃
Γ

(2)

qq (x) + Nf Γ̂
(2)
qq (x)

]
, (2.25)

Γ(2)
qq̄,full(x) =

(
N2

c − 1
Nc

)[
Γ(2)

qq̄ (x) +
1

Nc
Γ̃

(2)
qq̄ (x)

]
, (2.26)

Γ(2)
qq′,full(x) =

(
N2

c − 1
Nc

)
Γ(2)

qq′(x), (2.27)

Γ(2)
qq̄′,full(x) =

(
N2

c − 1
Nc

)
Γ(2)

qq̄′(x), (2.28)

Γ(2)
gq,full(x) =

(
N2

c − 1
Nc

)[
NcΓ

(2)
gq (x) +

1
Nc

Γ̃
(2)
gq (x) + Nf Γ̂

(2)
gq (x)

]
, (2.29)

Γ(2)
qg,full(x) = NcΓ

(2)
qg (x) +

1
Nc

Γ̃
(2)
qg (x) + Nf Γ̂

(2)
qg (x), (2.30)

Γ(2)
gg,full(x) = N2

c Γ
(2)
gg (x) + NcNf Γ̂

(2)
gg (x) +

Nf

Nc

̂̃
Γ

(2)

gg (x) + N2
f

̂̂
Γ

(2)

gg,(x). (2.31)

The expressions for the two-loop mass factorization kernels are rather lengthy and
therefore we do not report them here. Their expressions as well as detailed explanations
about how they are extracted from the associated LO and NLO splitting kernels [72] can
be found in appendix A.2 of [8].
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3 Integrated dipoles in colour space

In this section we introduce key ingredients for the colourful antenna subtraction approach:
integrated dipoles [8, 23, 68, 73]. Such objects conveniently collect integrated antenna functions
and mass factorization kernels and are cast as insertion operators in colour space. Integrated
dipoles allow to systematically describe the infrared singularity structure of one- and two-loop
matrix elements in terms of integrated antenna functions. This is a pivotal prerequisite for
the formulation of the colourful antenna subtraction method.

Before illustrating the integrated dipoles, we provide a brief overview of the colour space
formalism and of the infrared singularities of virtual amplitudes.

3.1 Colour space formalism

The treatment of QCD amplitudes in colour space provides a universal description of the
infrared singularity structure, in the presence of both virtual and real corrections [1, 74–79].

In colour space, an ℓ-loop amplitude with n external partons is represented by an abstract
vector |Aℓ

n({p}n)⟩, whose components carry the colour indices of the external partons in a
suitable representation of SU(Nc). If a set of generating vectors

{
|Cℓ

n,c⟩
}

is defined, which
span the n-parton colour space, any amplitude can be decomposed as:

|Aℓ
n({p}n)⟩ =

∑
c∈Iℓ

Aℓ
n,c({p}n) |C

ℓ
n,c⟩ , (3.1)

where Iℓ indicates a suitable subset of generating vectors. The scalar quantities Aℓ
n,c({p}n)

are colour-ordered partial amplitudes. In equation (3.1), the dependence on the helicities
of the external partons is implicit and in the following a sum over helicity configurations
is always assumed when squared quantities are considered. For ℓ ≥ 1, the dependence on
the renormalization scale µr is understood.

An arbitrary number of colourless particles, such as photons, weak bosons or Higgs
bosons, could be involved in the considered scattering process, however this does not modify
the structure of the amplitude in colour space or the construction of the subtraction terms
for infrared singularities in QCD. The presence of colourless emissions only affects the
colour-ordered partial amplitudes, which clearly change for different processes. For this
reason, in the following we restrict the discussion and the notation to n-parton amplitudes,
modulo additional colourless particles.

Our convention is to strip the partial amplitudes of overall coefficients such as couplings
and incoming particles average factors, which are inserted later at the cross section level. In
particular, we strip an ℓ-loop amplitude of an overall factor

(
αsC̄(ϵ)

2π

)ℓ
with respect to the

corresponding tree-level amplitude, where C(ϵ) = (4π)ϵe−ϵγE .
The description of infrared singularities of QCD amplitudes can be achieved through

the evaluation of infrared insertion operators in colour space [1, 9, 75, 77]. The action of
an operator O in colour space can be generically computed as

⟨Aℓ1
n ({p}n)|O|Aℓ2

n ({p}n)⟩ . (3.2)

– 8 –
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In particular, the coherent emission of a gluon between a dipole formed by parton i and
parton j is described in colour space by the colour charge dipole operator:

Ti · Tj , (3.3)

where we use bold symbols to emphasize that Ti = (Ti)a
bc is a vector of a SU(Nc) generators

in the appropriate representation, with a indicating the colour index of the emitted gluon.
In general, in the remainder of the paper, bold symbols are used to denote operators in
colour space, while Roman symbols indicate scalars in colour space. For different partonic
species we have:

(Ti)a
bc =


ifbac for i= gluon

ta
bc for i= final-state quark or initial-state antiquark

(ta
bc)†=−ta

cb for i= final-state antiquark or initial state quark

(3.4)

where fabc and ta
bc are the colour-charge matrices in the adjoint and fundamental represen-

tations of SU(Nc). The following properties hold:

Ti · Tj = Tj · Ti, (3.5)
Ti · Ti = T 2

i = Ci Id, (3.6)

where Id represents the identity operator in colour space and Ci indicates the Casimir
coefficient for the SU(Nc) representation associated to parton i: Cg = CA = Nc and
Cq = Cq̄ = CF = (N2

c − 1)/(2Nc).
Each state |Aℓ

n({p}n)⟩ is a colour singlet and colour conservation implies:
n∑

i=1
Ti |Aℓ

n({p}n)⟩ = 0. (3.7)

Since in what follows we always consider colour singlet states, we can employ the previous
identity as ∑j ̸=i Tj = −Ti.

The explicit evaluation of squared matrix elements or colour operator insertions depends
on the form of the generating vectors

{
|Cℓ

n,i⟩
}

, and, in general, produces numerous terms and
non-trivial structures, especially for high-multiplicity processes. Nevertheless one can observe
that the result of such calculations is given by real functions of the external momenta and
possibly the renormalization scale. At tree-level, the general form of such a function is:

f0 ({ p }n) =
∑

c,c′∈I0

C0
n(c, c′) a0

n(c, c′; {p}n), (3.8)

where we generically assume that the indices c and c′ here run over the set of possible colour
orderings, along with the possible colour structures. The coefficients C0

n(c, c′) are colour
factors which depend on Nc and the number of partons (possibly depending on flavour) and

a0
n(c, c′; {p}n) =


∣∣∣A0

n,c({p}n)
∣∣∣2 if c = c′,

2Re
[
A0

n,c({p}n)†A0
n,c′({p}n)

]
if c ̸= c′.

(3.9)
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This quantity represents the squared interference of two colour-ordered partial amplitudes,
with generic colour structures dictated by the indices c and c′. When c = c′, we have squared
coherent partial amplitudes, while we refer to the case c ̸= c′ as incoherent interference.
In general, A0

n,c({p}n)†A0
n,c′({p}n) is not real. However, in the calculation of any quantity

like (3.2), its complex conjugate (obtained by swapping c and c′) always appears with the
same prefactor, hence only the real part matters. Analogously, at one loop we have:

f1 ({ p }n) =
∑

c∈I0,c′∈I1

C1
n(c, c′) a1

n(c, c′; {p}n), (3.10)

where
a1

n(c, c′; {p}n) = 2Re
[
A0

n,c({p}n)
†A1

n,c′({p}n)
]

, (3.11)

which is manifestly a real quantity.

3.2 Infrared singularity structure of QCD loop amplitudes

We review here how the infrared singularities of virtual corrections amplitudes in QCD can
be predicted in a general way by means of infrared operators in colour space [75, 77–79].

3.2.1 Infrared singularity structure at one loop

The singularity structure of renormalized (n + 2)-parton one-loop amplitudes in QCD can
be described in colour space with [75]:

|A1
n+2⟩ = I(1)

(
ϵ, µ2

r

)
|A0

n+2⟩+ |A1,fin
n+2(µ2

r)⟩ , (3.12)

where µr is the renormalization scale, |A1,fin
n+2(µ2

r)⟩ is a finite remainder and I(1) (ϵ, µ2
r

)
is

Catani’s infrared insertion operator given by [75]:

I(1)
(
ϵ, µ2

r

)
= 1

2
eϵγE

Γ(1− ϵ)

n+2∑
i=1

1
T 2

i

Vi(ϵ)
∑
j ̸=i

(Ti · Tj)
(−sij

µ2
r

)−ϵ

. (3.13)

The singular functions Vi(ϵ) contain double and single ϵ-poles:

Vi(ϵ) = T 2
i

1
ϵ2 + γi

1
ϵ

, (3.14)

with
T 2

q = T 2
q̄ = CF , T 2

g = CA, γq = γq̄ = 3
2CF , γg = 11

6 CA − 1
3Nf . (3.15)

Equation (3.13) can be rewritten as

I(1)
(
ϵ, µ2

r

)
= 1

2

n+2∑
i=1

∑
j ̸=i

(Ti · Tj) I(1)
ij

(
ϵ, µ2

r

)
=
∑
(i,j)

(Ti · Tj) I(1)
ij

(
ϵ, µ2

r

)
, (3.16)
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where in the last line the sum runs over unordered pairs of partons and:

I(1)
igjg

(
ϵ, µ2

r

)
= eϵγE

Γ(1− ϵ)

[ 1
ϵ2 + 1

ϵ

(11
6 − 1

3
Nf

Nc

)](−sij

µ2
r

)−ϵ

, (3.17)

I(1)
igjq

(
ϵ, µ2

r

)
= I(1)

iqjg

(
ϵ, µ2

r

)
= eϵγE

Γ(1− ϵ)

[ 1
ϵ2 + 1

ϵ

(5
3 − 1

6
Nf

Nc

)](−sij

µ2
r

)−ϵ

, (3.18)

I(1)
iqjq′

(
ϵ, µ2

r

)
= eϵγE

Γ(1− ϵ)

[ 1
ϵ2 + 3

2ϵ

](−sij

µ2
r

)−ϵ

, (3.19)

independently from the flavour of q and q′. Nf indicates the number of light quark flavours.
Using (3.12) it is possible to extract the poles of one-loop matrix elements in the

following way:

Poles
(
M1

n+2

)
= Poles

(
⟨A0

n+2|A1
n+2⟩+ ⟨A1

n+2|A0
n+2⟩

)
= Poles(⟨A0

n+2|I(1) (ϵ) + I(1),† (ϵ) |A0
n+2⟩) . (3.20)

The appearance of the sum I(1) (ϵ)+I(1),† (ϵ) indicates that only the real part of the insertion
operator affects the description of the poles at the matrix element level, as expected. We
can then write

Poles
(
M1

n+2

)
= Poles

∑
(i,j)

⟨A0
n+2|Ti · Tj |A0

n+2⟩ 2Re
(
I(1)

ij

(
ϵ, µ2

r

)) , (3.21)

where we considered that the colour charge evaluation on the tree-level amplitude gives a
real quantity, as argued in section 3. At the cross section level we have

Poles
(
σ̂V

NLO

)
= N V

NLO

∫
dΦn(p3, . . . , pn+2; p1, p2) J (n)

n ({p}n)

× Poles

∑
(i,j)

⟨A0
n+2|Ti · Tj |A0

n+2⟩ 2Re
(
I(1)

ij

(
ϵ, µ2

r

)) , (3.22)

where J
(m)
n ({p}m) represents the jet algorithm, which reconstructs n resolved jets from m

final-state partons with momenta {p}m (here m = n). The factor N V
NLO is given by

N V
NLO =

(
αsC(ϵ)
2π

)
NLO, (3.23)

where NLO contains the overall factors appropriate for the LO process, such as the strong
coupling, symmetry factors and the spin- and colour-average over the initial-state partons.

3.2.2 Infrared singularity structure at two loops

The singularity structure of renormalized two-loop amplitudes in QCD can be described
in colour space by [75, 77–79]:

|A2
n+2⟩ = I(1)

(
ϵ, µ2

r

)
|A1

n+2⟩+ I(2)
(
ϵ, µ2

r

)
|A0

n+2⟩+ |A2,fin
n+2(µ2

r)⟩ , (3.24)
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where, as before, |A2,fin
n+2(µ2

r)⟩ is a finite remainder. The two-loop infrared insertion operator
has the following expression [75]:

I(2)
(
ϵ, µ2

r

)
= − β0

ϵ
I(1)

(
ϵ, µ2

r ; {p}n

)
− 1

2I(1)
(
ϵ, µ2

r

)
I(1)

(
ϵ, µ2

r

)
+ e−ϵγE

Γ(1− 2ϵ)
Γ(1− ϵ)

(
β0
ϵ

+ K

)
I(1)

(
2ϵ, µ2

r

)
+ H(2)

(
ϵ, µ2

r

)
, (3.25)

where

β0 = 11
6 Nc −

1
3Nf , (3.26)

K =
(
67
18 − π2

6

)
Nc −

5
9Nf . (3.27)

The colour structure of (3.25) is more involved than the colour charge dipole structure
of (3.13), with products of two colour charge dipoles appearing. The last line of (3.25)
contains the hard radiation function H(2) (ϵ, µ2

r

)
[75, 77, 80], which can be decomposed in

the following manner:

H(2)
(
ϵ, µ2

r

)
=
∑

i

CiH(2)
i (ϵ) Id+ Ȟ(2)(ϵ, µ2

r), (3.28)

where the sum runs over the n + 2 external partons and Ci are Casimir coefficients. The
first term in (3.28) is proportional to the identity in colour space, while the second term
has a non-trivial colour structure, which cannot be in general expressed in terms of colour
charge dipoles. However, the second term vanishes when evaluated between tree-level states
after summing over helicities [77, 80–82]:

⟨A0
n+2| Ȟ(2)(ϵ, µ2

r) |A0
n+2⟩ = 0. (3.29)

For the purpose of describing the infrared singularity structure of two-loop squared matrix
elements, the hard radiation function H(2) (ϵ, µ2

r

)
needs to be evaluated on tree-level states

and therefore it is possible to neglect Ȟ(2)(ϵ, µ2
r) in its decomposition. We can express a

colour operator proportional to the identity as a sum of colour charge dipoles using colour
conservation (3.7). We can then rewrite:∑

i

CiH(2)
i (ϵ) Id = −

∑
i

H(2)
i (ϵ)

∑
j ̸=i

Ti · Tj

= −
∑
(i,j)

H(2)
ij (ϵ)Ti · Tj , (3.30)

where, as usual, the sum runs over pairs of partons and H(2)
ij = H(2)

i + H(2)
j . The hard

radiation functions are given by [75, 77]:

H(2)
g (ϵ) = eϵγE

4Γ(1− ϵ)ϵNc

{[ 5
12 + 11

144π2 + ζ3
2

]
+ Nf

Nc

[
− 89
108 − π2

72

]

+ Nf

N3
c

[−1
4

]
+

N2
f

N2
c

[ 5
27

]}
, (3.31)
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H(2)
q (ϵ) = eϵγE

4Γ(1− ϵ)ϵNc

{[409
432 − 11

48π2 + 7
2ζ3

]
+ Nf

Nc

[
− 25
108 + π2

24

]

+ 1
N2

c

[
3
16 − π2

4 + 3ζ3

]}
. (3.32)

Using (3.16) and (3.30) and neglecting Ȟ(2)(ϵ, µ2
r), we can rearrange equation (3.25) as:

I(2)
(
ϵ, µ2

r

)
= − β0

ϵ

∑
(i,j)

I(1)
ij

(
ϵ, µ2

r

)
Ti · Tj

− 1
2
∑
(i,j)

∑
(k,l)

I(1)
ij

(
ϵ, µ2

r

)
I(1)

kl

(
ϵ, µ2

r

)
(Ti · Tj)(Tk · Tl)

+
∑
(i,j)

I(2)
ij

(
ϵ, µ2

r

)
Ti · Tj , (3.33)

where
I(2)

ij

(
ϵ, µ2

r

)
= e−ϵγE

Γ(1− 2ϵ)
Γ(1− ϵ)

(
β0
ϵ

+ K

)
I(1)

ij

(
2ϵ, µ2

r

)
−H(2)

ij (ϵ) . (3.34)

We can now use (3.12), (3.24) and (3.25) to express the singularity structure of a
two-loop matrix element:

Poles
(
M2

n+2

)
=Poles

(
⟨A2

n+2|A0
n+2⟩+⟨A0

n+2|A2
n+2⟩+⟨A1

n+2|A1
n+2⟩

)
=Poles

{
⟨A1

n+2|I(1) (ϵ)+I(1),† (ϵ) |A0
n+2⟩+⟨A0

n+2|I(1) (ϵ)+I(1),† (ϵ) |A1
n+2⟩

− 1
2 ⟨A

0
n+2|

(
I(1) (ϵ)+I(1),† (ϵ)

)(
I(1) (ϵ)+I(1),† (ϵ)

)
|A0

n+2⟩

−β0
ϵ
⟨A0

n+2|I(1) (ϵ)+I(1),† (ϵ) |A0
n+2⟩

+e−ϵγE
Γ(1−2ϵ)
Γ(1−ϵ)

(
β0
ϵ
+K

)
⟨A0

n+2|I(1) (2ϵ)+I(1),† (2ϵ) |A0
n+2⟩

+⟨A0
n+2|H(2) (ϵ)+H(2),† (ϵ) |A0

n+2⟩
}

. (3.35)

We see again that only the real parts of the insertion operators are needed to describe the
singularity structure. Using (3.16) and (3.33) it is possible to recast equation (3.35) as:

Poles
(
M2

n+2

)
=Poles

{∑
(i,j)

2Re
[
I(1)

ij

(
ϵ,µ2

r

)][
⟨A1

n+2|Ti ·Tj |A0
n+2⟩+⟨A0

n+2|Ti ·Tj |A1
n+2⟩

]
− 1
2
∑
(i,j)

∑
(k,l)

2Re
[
I(1)

ij

(
ϵ,µ2

r

)]
2Re

[
I(1)

lk

(
ϵ,µ2

r

)]
⟨A0

n+2|(Ti ·Tj)(Tk ·Tl)|A0
n+2⟩

−β0
ϵ

∑
(i,j)

2Re
[
I(1)

ij

(
ϵ,µ2

r

)]
⟨A0

n+2|Ti ·Tj |A0
n+2⟩

+
∑
(i,j)

2Re
[
I(2)

ij

(
ϵ,µ2

r

)]
⟨A0

n+2|Ti ·Tj |A0
n+2⟩

}
. (3.36)
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Therefore, the poles of the double-virtual contribution to the cross section are given by:

Poles
(
σ̂V V

NNLO

)
=N V V

NNLO

∫
dΦn+2(p3, . . . ,pn+2;p1,p2)J (n)

n ({p}n)

×Poles
{∑

(i,j)
2Re

[
I(1)

ij

(
ϵ,µ2

r

)][
⟨A1

n+2|Ti ·Tj |A0
n+2⟩+⟨A0

n+2|Ti ·Tj |A1
n+2⟩

]
− 1
2
∑
(i,j)

∑
(k,l)

2Re
[
I(1)

ij

(
ϵ,µ2

r

)]
2Re

[
I(1)

lk

(
ϵ,µ2

r

)]
⟨A0

n+2|(Ti ·Tj)(Tk ·Tl)|A0
n+2⟩

−β0
ϵ

∑
(i,j)

2Re
[
I(1)

ij

(
ϵ,µ2

r

)]
⟨A0

n+2|Ti ·Tj |A0
n+2⟩

+
∑
(i,j)

2Re
[
I(2)

ij

(
ϵ,µ2

r

)]
⟨A0

n+2|Tig ·Tj |A0
n+2⟩

}
, (3.37)

where

N V V
NNLO =

(
αsC(ϵ)
2π

)2

NLO . (3.38)

3.3 Integrated dipoles from antenna functions

We are now ready to discuss the construction of integrated dipoles in colour space. We
distinguish two types of integrated dipoles: identity-preserving (IP) and identity-changing
(IC). The former reproduce the infrared singularity structure of virtual corrections and are
naturally cast as operators in colour space. The latter address identity-changing initial-state
collinear singularities.

3.3.1 One-loop integrated dipoles

We begin by discussing one-loop integrated dipoles, originally presented in [8]. They are
obtained combining integrated three-parton tree-level antenna functions X 0

3 and NLO mass
factorization kernels Γ(1)

ab .

Identity-preserving dipoles. We define the following one-loop singularity dipole operator
in colour space for an (n + 2)-parton process:

J (1)(ϵ) =
∑

(i,j)≥3
(Ti · Tj)J (1)

2 (i, j) +
∑

i ̸=1,2
(T1 · Ti)J (1)

2 (1, i)

+
∑

i ̸=1,2
(T2 · Ti)J (1)

2 (2, i) + (T1 · T2)J (1)
2 (1, 2) . (3.39)

The first sum runs over all pairs of partons in the final state, the second and the third
sums include all pairs with an initial-state parton (respectively 1 or 2) and a final-state one
and the last term addresses the configuration where both partons are in the initial state.
The scalar functions J (1)

2 (i, j) are identity-preserving colour stripped one-loop integrated
dipoles. These can be classified according to the flavour of the partons (i, j) and their
kinematical configuration: final-final (FF), initial-final (IF) or initial-initial (II). They can
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Integrated dipoles

FF J
(1)
2 (iq, jq̄) = A0

3(sij)

IF J
(1)
2 (1q, iq̄) = A0

3,q(s1i)− Γ(1)
qq (x1) δ2

II J
(1)
2 (1q, 2q̄) = A0

3,qq̄(s12)− Γ(1)
qq (x1) δ2 − Γ(1)

qq (x2) δ1

Table 1. Identity-preserving quark-antiquark one-loop colour-stripped integrated dipoles.

Integrated dipoles

FF
J

(1)
2 (iq, jg) = 1

2D
0
3(sij)

Ĵ2
(1)(iq, jg) = 1

2E
0
3 (sij)

IFq

J
(1)
2 (1q, ig) = 1

2D
0
3,q(s1i)− Γ(1)

qq (x1) δ2

Ĵ2
(1)(1q, ig) = 1

2E
0
3,q(s1i)

IFg

J
(1)
2 (1g, iq) = D0

3,g,gq(s1i)− 1
2Γ

(1)
gg (x1) δ2

Ĵ2
(1)(1g, iq) = − 1

2 Γ̂
(1)
gg (x1) δ2

II
J

(1)
2 (1q, 2g) = D0

3,qg(s12)− Γ(1)
qq (x1) δ2 − 1

2Γ
(1)
gg (x2) δ1

Ĵ2
(1)(1q, 2g) = − 1

2 Γ̂
(1)
gg (x2) δ1

Table 2. Identity-preserving quark-gluon one-loop colour-stripped integrated dipoles. The subscripts
indicate different choices of initial-state partons.

be further decomposed as:

J (1)
2 (q, q̄) = J

(1)
2 (q, q̄), (3.40)

J (1)
2 (i, g) = J

(1)
2 (i, g) + Nf

Nc
Ĵ2

(1)(i, g), i = q, g . (3.41)

We list the IP quark-antiquark, quark-gluon and gluon-gluon one-loop colour-stripped inte-
grated dipoles in tables 1–3. We note that IF and II integrated antenna functions exhibit
a dependence on the momentum fractions x1 and x2, which is omitted in the previous
expressions and in the remainder of the paper for simplicity. We use the following short-
hand notation: δi = δ(1 − xi). We introduced, where needed, dedicated subscripts which
accompany the kinematical configuration labels IF and II, to distinguish between different
choices of initial-state partons.

As detailed in the next paragraph, the presence of splitting kernels in association with
integrated IF and II antenna functions is related to the mass factorization of initial-state
collinear singularities, which is part of the definition of the integrated dipoles. One can
therefore understand the appearance of certain splitting kernels in a given integrated dipole
by considering the possible emissions occurring from the initial-state partons. For example,
within the IP dipoles considered above, only Γ(1)

qq , Γ(1)
gg , and Γ̂(1)

gg can appear, since the emission
of a gluon does not change the species of the parton entering the hard process.
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Integrated dipoles

FF
J

(1)
2 (ig, jg) = 1

3F
0
3 (sij)

Ĵ2
(1)(ig, jg) = G0

3(sij)

IF
J

(1)
2 (1g, ig) = 1

2F
0
3,g(s1i)− 1

2Γ
(1)
gg (x1) δ2

Ĵ2
(1)(1g, ig) = 1

2G
0
3,g(s1i)− 1

2 Γ̂
(1)
gg (x1) δ2

II
J

(1)
2 (1g, 2g) = F0

3,gg(s12)− 1
2Γ

(1)
gg (x1) δ2 − 1

2Γ
(1)
gg (x2) δ1

Ĵ2
(1)(1g, 2g) = − 1

2 Γ̂
(1)
gg (x1) δ2 − 1

2 Γ̂
(1)
gg (x2) δ1

Table 3. Identity-preserving gluon-gluon one-loop colour-stripped integrated dipoles.

Cancellation of infrared singularities at one-loop. The structure of the IP integrated
dipoles is chosen in such a way that the singularities carried by the mass factorization kernels
cancel with poles in the integrated IF and II antenna functions associated with initial-state
collinear divergences. The remaining ϵ-poles exactly match the ones of the virtual matrix
element, once the operator in (3.39) is evaluated on the corresponding LO amplitude in
colour space. In particular, at one loop the following relation holds:

Poles
[
J (1)

2 (i, j)
]
= Poles

[
Re
(
I(1)

ij

(
ϵ, µ2

r

))]
, (3.42)

where the integrated dipole on the left-hand-side can be in the FF, IF or II configuration. We
have explicitly verified that the relation above is satisfied for all the partonic and kinematical
configurations. Given that unintegrated antenna functions capture the singular behaviour
associated to unresolved emissions between a pair of hard radiators, it is not surprising
that we can systematically match the singularity structure of dipole insertion operators onto
integrated antenna functions [7].

Equation (3.42) establishes a correspondence between the operators defined in (3.39)
and (3.13), which will be crucial for the formulation of the colourful antenna subtraction
method.

Identity-changing dipoles. For the IF and II configurations, we also introduce identity-
changing integrated dipoles, obtained from IC antenna functions and splitting kernels. Con-
trary to the IP ones, they are not defined as operators in colour space, for reasons that
will be explained in section 4. Their structure can however be inferred from the one of
splitting kernels at NLO in (2.8):

J (1)
ab;cd(x1, x2) = J (1)

2,a→c(x1)δdbδ(1− x2) + J (1)
2,b→d(x2)δcaδ(1− x1). (3.43)

We can distinguish between the quark-to-gluon and gluon-to-quark dipoles, which reflect the
decomposition of the splitting kernels associated to the corresponding IC splitting:

J (1)
2,q→g(g, i) =

(
N2

c − 1
Nc

)
J

(1)
2,q→g(g, i), (3.44)

J (1)
2,g→q(q, i) = J

(1)
2,g→q(q, i) , (3.45)
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Integrated dipoles

IF J
(1)
2,g→q(1q, iq̄) = − 1

2A
0
3,g(s1i)− Sg→qΓ(1)

qg (x1) δ2

II J
(1)
2,g→q(1q, 2q̄) = −A0

3,gq(s12)− Sg→qΓ(1)
qg (x1) δ2

Table 4. Identity-changing quark-antiquark one-loop colour-stripped integrated dipoles. The
subscripts indicate different choices of initial-state partons.

Integrated dipoles

IFg→q J
(1)
2,g→q(1q, ig) = −D0

3,g→q(s1i)− Sg→qΓ(1)
qg (x1) δ2

IFq→g J
(1)
2,q→g(1g, iq) = −E0

3,q′(s1i)− Sq→gΓ(1)
gq (x1) δ2

IIg→q J
(1)
2,g→q(1q, 2g) = −D0

3,gg(s12)− Sg→qΓ(1)
qg (x1) δ2

IIq→g J
(1)
2,q→g(1g, 2q) = −E0

3,q′q(s12)− Sq→gΓ(1)
gq (x1) δ2

Table 5. Identity-changing quark-gluon one-loop colour-stripped integrated dipoles.

Integrated dipoles

IF J
(1)
2,q→g(1g, ig) = −G0

3,q(s1i)− Sq→gΓ(1)
gq (x1) δ2

II J
(1)
2,q→g(1g, 2g) = −G0

3,qg(s12)− Sq→gΓ(1)
gq (x1) δ2

Table 6. Identity-changing gluon-gluon one-loop colour-stripped integrated dipoles.

where the first argument denotes the parton species which enters the hard scattering, while
the second argument i = q, g is a spectator parton which is not directly involved in the
initial-state collinear emission and can be either in the final (IF) or initial (II) state. For
identity-changing configurations we need to consider that the spin-averaging factor for a gluon
and a quark differ in d-dimensions. To properly take this into account and compensate for the
mismatch within antenna functions and splitting kernels, we introduce the following factors:

Sg→q = 2− 2ϵ

2 = 1− ϵ, Sq→g = 2
2− 2ϵ

= 1
1− ϵ

. (3.46)

The expressions for the IC quark-antiquark, quark-gluon and gluon-gluon one-loop integrated
dipoles are given in tables 4–6.

As expected, we see the appearance of IC splitting kernels Γ(1)
gq and Γ(1)

qg , associated to
a final-quark becoming collinear to an initial-state parton.

The IC integrated dipoles are free of explicit infrared singularities:

Poles
[
J (1)

2,a→b(i, j)
]
= 0, (3.47)

because the only ϵ-poles which are present in integrated IC antenna functions have an
initial-state collinear origin and completely cancel against the analogous ones in the IC
splitting kernels.
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3.3.2 Two-loop integrated dipoles

The characteristic new ingredients of two-loop integrated dipoles are integrated four-parton
tree-level antenna functions X 0

4 , three-parton one-loop antenna functions X 1
3 , convolutions

of two three-parton tree-level antenna functions X 0
3 ⊗ X 0

3 and two-loop mass factorization
kernels Γ(2)

ab . Analogously to the one-loop case, the presence of certain two-loop splitting
kernels in association with integrated antenna functions can be understood considering the
possible emissions from initial-state partons.

Also at two-loop we distinguish between identity-preserving and identity-changing inte-
grated dipoles, however a significant difference with respect to the one-loop case has to be
highlighted. Explicit integrated results are available at NLO, not only for all the three-parton
tree-level antenna functions, but also for any sub-antenna, given the simplicity of the analytical
integration. This means that both at the unintegrated and integrated level one has complete
control over which infrared-divergent configurations are considered. This is not true at NNLO,
where the unavailability of individual integrated sub-antennae forces one to include addi-
tional infrared singularities within the identity-preserving two-loop integrated dipoles. These
singularities have to be properly identified and subtracted. This is achieved by introducing
spurious terms which target the undesired structures. We identify three classes of such terms:

• flip-flopping contributions: address IC initial-state collinear limits like g → q → g

or q → g → q, where the identity of the initial-state emitter formally coincides with the
original one. These contributions are denoted in the following by the subscript f/f;

• IC corrective contributions: target genuine IC limits which need to be removed
from IP structures, denoted with the subscript IC corr.;

• unphysical triple-collinear limits: limits existing in the supersymmetric matrix
elements used to extract antenna functions, which are not present in QCD. They are
treated introducing suitable insertion operators.

We will comment further about each class in the paragraphs below. Expressions for the
two-loop colour-stripped integrated dipoles used for the construction of NNLO subtraction
terms for di-jet production can be found in [73]. In the following we review them and
discuss in more detail how to generalize their construction for any process. To simplify the
expressions, we omit the scale sij dependence of the integrated antenna functions.

We mention that the complete development of designer antenna functions [58, 59] at
NNLO will bring significant simplifications to some of the structures presented below. Indeed,
the assemblage of antenna functions from specific infrared limits, rather than from physical
matrix elements, naturally prevents the introduction of spurious divergences and therefore
the necessity of the corrective terms introduced above.

Identity-preserving dipoles. In analogy with (3.39), we can define a two-loop insertion
operator in colour space:

J (2)(ϵ) = Nc

∑
(i,j)≥3

(Ti · Tj)J (2)
2 (ig, jg) + Nc

∑
i ̸=1,2

(T1 · Ti)J (2)
2 (1̂g, ig)

+Nc

∑
i ̸=1,2

(T2 · Ti)J (2)
2 (2̂g, ig) + Nc (T1 · T2)J (2)

2 (1̂g, 2̂g) , (3.48)
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Integrated dipoles

FF

J
(2)
2 (iq, jq̄) = A0

4 +A1
3 + b0

ϵ

(
|sij |
µ2

r

)−ϵ

A0
3 − 1

2
[
A0

3 ⊗A0
3
]

J̃2
(2) (1q, 2q̄) = 1

2 Ã
0
4 + 2C0

4 + Ã1
3 − 1

2
[
A0

3 ⊗A0
3
]

Ĵ2
(2) (1q, 2q̄) = B0

4 + Â1
3 +

b0,F

ϵ

(
|sij |
µ2

r

)−ϵ

A0
3

IF

J
(2)
2 (1q, iq̄) = A0

4,q +A1
3,q + b0

ϵ

(
|s1i|
µ2

r

)−ϵ

A0
3,q − 1

2
[
A0

3,q ⊗A0
3,q

]
− Γ(2)

qq (1) δ2

J̃2
(2) (1q, iq̄) = 1

2 Ã
0
4,q + 2C0

4,q + C0
4,q̄ + Ã1

3,q − 1
2
[
A0

3,q ⊗A0
3,q

]
+
˜̃
Γ

(2)

qq (x1) δ2

Ĵ2
(2) (1q, iq̄) = B0

4,q + Â1
3,q +

b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

A0
3,q − Γ̂

(2)
qq (x1) δ2

II

J
(2)
2 (1q, 2q̄) = A0

4,qq̄ +A1
3,qq̄ + b0

ϵ

(
|s12|
µ2

r

)−ϵ

A0
3,qq̄ − 1

2
[
A0

3,qq̄ ⊗A0
3,qq̄

]
− Γ(2)

qq (1) δ2 − Γ(2)
qq (2) δ1

J̃2
(2) (1q, 2q̄) = 1

2 Ã
0
4,qq̄ + 2C0

4,qq̄ + 2C0
4,q̄q + Ã1

3,qq̄ − 1
2
[
A0

3,qq̄ ⊗A0
3,qq̄

]
+
˜̃
Γ

(2)

qq (x1) δ2 +
˜̃
Γ

(2)

qq (x2) δ1

Ĵ2
(2) (1q, 2q̄) = B0

4,qq̄ + Â1
3,qq +

b0,F

ϵ

(
|s12|
µ2

r

)−ϵ

A0
3,qq

− Γ̂
(2)
qq (x1) δ2 − Γ̂

(2)
qq (x2) δ1

Table 7. Identity-preserving quark-antiquark two-loop colour-stripped integrated dipoles.

where the functions accompanying the charge dipoles are identity-preserving two-loop colour-
stripped integrated dipoles. They can be decomposed according to:

J (2)
2 (q, q̄) = J

(2)
2 (q, q̄)− 1

N2
c

J̃2
(2) (q, q̄) + Nf

Nc
Ĵ2

(2) (q, q̄) (3.49)

J (2)
2 (g, i) = J

(2)
2 (g, i) + Nf

Nc
Ĵ2

(2) (g, i)

− Nf

N3
c

ˆ̃J (2)
2 (g, i) +

N2
f

N2
c

ˆ̂
J

(2)
2 (g, i) , i = g, q . (3.50)

Quark-antiquark integrated dipoles. The IP two-loop quark-antiquark colour-stripped
integrated dipoles can be constructed in a straightforward manner, since the quark-antiquark
NNLO antenna functions specifically contain only the desired physical limits in any kinematical
configuration and allow for a unique identification of the hard radiator partons. Even if
sub-antennae need to be employed, for example for Ã0

4 [42], this is only required to properly
define a colour-ordered momentum mapping. Therefore, for a given hard quark-antiquark
dipole, no spurious structure is present in the associated integrated antenna functions. The
IP quark-antiquark two-loop integrated dipoles are listed in table 7.

Quark-gluon integrated dipoles. The IP quark-gluon dipoles are particularly affected
by the presence of undesired singularities. This is mostly due to quark-gluon NNLO antenna
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Integrated dipoles

FF

J
(2)
2 (iq, jg) = 1

2D
0
4 + 1

2D
1
3 + 1

2
b0
ϵ

(
|sij |
µ2

r

)−ϵ

D0
3 − 1

4
[
D0

3 ⊗D0
3
]

Ĵ2
(2) (iq, jg) = E0

4 + 1
2 D̂

1
3 + 1

2E
1
3 + 1

2
b0,F

ϵ

(
|sij |
µ2

r

)−ϵ

D0
3 + 1

2
b0
ϵ

(
|sij |
µ2

r

)−ϵ

E0
3

− 1
2
[
E0

3 ⊗D0
3
]

ˆ̃J (2)
2 (iq, jg) = 1

2 Ẽ
0
4 + 1

2 Ẽ
1
3

ˆ̂
J

(2)
2 (iq, jg) = 1

2 Ê
1
3 + 1

2
b0,F

ϵ

(
|sij |
µ2

r

)−ϵ

E0
3 − 1

4
[
E0

3 ⊗ E0
3
]

IFq

J
(2)
2 (1q, ig) = 1

2D
0
4,q + 1

2D
1
3,q + 1

2
b0
ϵ

(
|s1i|
µ2

r

)−ϵ

D0
3,q − 1

4
[
D0

3,q ⊗D0
3,q

]
− Γ(2)

qq (1) δ2

Ĵ2
(2) (1q, ig) = E0

4,q + 1
2 D̂

1
3,q + 1

2E
1
3,q + 1

2
b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

D0
3,q

+ 1
2

b0
ϵ

(
|s1i|
µ2

r

)−ϵ

E0
3,q − 1

2
[
E0

3,q ⊗D0
3,q

]
− Γ̂

(2)
qq (x1) δ2

ˆ̃J (2)
2 (1q, ig) = 1

2 Ẽ
0
4,q + 1

2 Ẽ
1
3,q

ˆ̂
J

(2)
2 (1q, ig) = 1

2 Ê
1
3,q + 1

2
b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

E0
3,q − 1

4
[
E0

3,q ⊗ E0
3,q

]

IFg

J
(2)
2 (1g, iq) = D0

4,g + 1
2D

0
4,g′ +D1

3,g + b0
ϵ

(
|s1i|
µ2

r

)−ϵ

D0
3,g

−
[
D0

3,g→g ⊗D0
3,g→g

]
− 1

2Γ
(2)
gg (1) δ2 + J

(2)
2,IC corr.(q, q̄)

Ĵ2
(2) (1g, iq) = E0

4,g + D̂1
3,g + b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

D0
3,g

− 1
2 Γ̂

(2)
gg (x1) δ2 + Ĵ

(2)
2,f/f (1g, iq) + Ĵ

(2)
2,IC corr.(q, q̄)

ˆ̃J (2)
2 (1g, iq) = 1

2 Ẽ
0
4,g + 1

2
̂̃
Γ

(2)

gg (x1) δ2 + ˆ̃J (2)
2,f/f (1g, iq)

ˆ̂
J

(2)
2 (1g, iq) = − 1

2
̂̂
Γ

(2)

gg (x1) δ2

II

J
(2)
2 (1q, 2g) = D0

4,qg + 1
2D

0
4,qg′ +D1

3,qg + b0
ϵ

(
|s12|
µ2

r

)−ϵ

D0
3,qg

−
[
D0

3,qg ⊗D0
3,qg

]
− Γ̂

(2)
qq (x1) δ2 − 1

2 Γ̂
(2)
gg (x2) δ1

Ĵ2
(2) (1q, 2g) = E0

4,qg + 1
2 D̂

1
3,qg + b0,F

ϵ

(
|s12|
µ2

r

)−ϵ

D0
3,qg − Γ̂

(2)
qq (x1) δ2

− 1
2 Γ̂

(2)
gg (x2) δ1 + Ĵ

(2)
2,f/f (1q2g)

ˆ̃J (2)
2 (1q, 2g) = 1

2 Ẽ
0
4,qg + 1

2
̂̃
Γ

(2)

gg (x2) δ1 + ˆ̃J (2)
2,f/f (1q2g)

Table 8. Identity-preserving quark-gluon two-loop colour-stripped integrated dipoles. The subscripts
indicate different choices of initial-state partons.

functions containing any allowed unresolved limit among the involved partons, with no
possibility to clearly disentangle the hard radiators from the unresolved partons at the
integrated level. The IP quark-gluon two-loop colour stripped integrated dipoles are given
in table 8.

As anticipated, we see the appearance of corrective contributions. The flip-flopping
terms remove triple-collinear limits g ∥ q′ ∥ q̄′ with the gluon in the initial state, which are
present in the E0

4,g, Ẽ0
4,g, E0

4,qg and Ẽ0
4,qg integrated antenna functions. Technically, the identity
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0
3
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2
0
2
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Integrated dipoles

IF
Ĵ

(2)
2,f/f (1g, iq) = Sg→q

[
Γ(1)

qg (x1)⊗ E0
3,q′

]
+ 1

2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]
ˆ̃J (2)
2,f/f (1g, iq) = Sg→q

[
Γ(1)

qg (x1)⊗ E0
3,q′

]
+ 1

2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]
II

Ĵ
(2)
2,f/f (1g, 2q) = Sg→q

[
Γ(1)

qg (x2)⊗ E0
3,qq′

]
+ 1

2

[
Γ(1)

qg (x2)⊗ Γ(1)
gq (x2)

]
ˆ̃J (2)
2,f/f (1g, 2q) = Sg→q

[
Γ(1)

qg (x2)⊗ E0
3,qq′

]
+ 1

2

[
Γ(1)

qg (x2)⊗ Γ(1)
gq (x2)

]
Table 9. Flip-flopping contributions to identity-preserving quark-gluon two-loop integrated dipoles.

of the hard initial-state parton after integration is preserved, but the infrared divergences
associated to such an unresolved configuration are absorbed by IC spitting kernels, rather
than by virtual corrections. Therefore, in the definition of genuinely IP integrated dipoles,
these singularities need to be removed. The flip-flopping terms are given in table 9.

Analogously, spurious IC singularities are present in the D0
3,g, D1

3,g, D̂1
3,g and D0

4,g antenna
functions. In particular, these gluon-initiated antenna functions contain ϵ-poles due to the
final-state quark becoming collinear to the initial-state gluon. This is an IC unresolved limit,
which cannot be isolated from the remaining IP ones due to the unavailability of dedicated
integrated sub-antennae. It is possible to remove such singularities by a suitable combination
of gluon-initiated IC quark-gluon and quark-antiquark antenna functions. The former have
the same gluon and quark involved in the dipole as hard radiators. The latter have one quark
(antiquark) coinciding with the one in the quark-gluon dipole, and so colour-connected to
the initial-state gluon, while the other antiquark (quark) is its colour-connected partner. We
note that in such quark-antiquark antennae, no divergent behaviour is associated with the
antiquark (quark) becoming collinear to the initial-state gluon. If the antiquark (quark) is in
the final state, the introduced antenna functions will be in the initial-final configurations,
otherwise, if it is in the initial state, the antenna functions will be in the initial-initial
configuration. The explicit expressions according to the kinematical configurations of the
quark-antiquark pair are given in table 10.

These corrective terms display a quite involved structure. Indeed, even if the presence of
spurious singularities within integrated antenna functions is well understood and formally
under control, they inevitably complicate the structure of IP integrated dipoles as well as
of the subtraction terms. In particular, such corrections propagate into all the layers of the
subtraction infrastructure and require careful treatment in any practical implementation.

Finally, the D-type tree-level four-parton antenna functions D0
4(q, g1, g2, g3) (FF, IF or

II) present a triple-collinear g3 ∥ q ∥ g1 limit which is an unphysical remnant due to the
cyclicity of the super-symmetric matrix element used to extract the antenna functions [41].
This limit shows up at the integrated level as spurious ϵ-poles which need to be removed
from the integrated dipoles. The collinear poles in a quark-gluon dipole are described by
the hard radiation function H(2)

gq (ϵ) = H(2)
g (ϵ) + H(2)

q (ϵ), with H(2)
g (ϵ) and H(2)

q (ϵ) given
in (3.31) and (3.32). On the contrary, for the decay of a neutralino to a gluon and a
gluino χ → gg̃, the process used to extract the antenna functions, the collinear poles are
described by H(2)

gg̃ (ϵ) = H(2)
g (ϵ) +H(2)

g̃ (ϵ), with the quark hard radiation function replace
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2
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Integrated dipoles

IF

J
(2)
2,IC corr (1q, iq̄) = −

[
D0

3,q ⊗D0
3,g→q

]
−
[
Γ(1)

gg (x1)⊗D0
3,g→q

]
+ 2

[
Γ(1)

qq (x1)⊗D0
3,g→q

]
−A0

4,g − 1
2 Ã

0
4,g − 1

2A
1
3,g

− 1
2 Ã

1
3,g − 1

2
b0
ϵ

((
|s1i|
µ2

r

)−ϵ

− 1
)
A0

3,g +
[
A0

3,q ⊗A0
3,g

]
+ 1

2

[
Γ(1)

gg (x1)⊗A0
3,g

]
−
[
Γ(1)

qq (x1)⊗A0
3,g

]
− b0

ϵ

(
D0

3,g −D0
3,g→g

)
Ĵ

(2)
2,IC corr (1q, iq̄) = −

[
E0

3,q ⊗D0
3,g→q

]
−
[
Γ̂(1)

gg (x1)⊗D0
3,g→q

]
− 1

2 Â
1
3,g − 1

2
b0,F

ϵ

((
|s1i|
µ2

r

)−ϵ

− 1
)
A0

3,g

+ 1
2

[
Γ̂(1)

gg (x1)⊗A0
3,g

]
− b0,F

ϵ

(
D0

3,g −D0
3,g→g

)

II

J
(2)
2,IC corr (1q, 2q̄) = −

[
D0

3,q ⊗D0
3,g→q

]
−
[
Γ(1)

gg (x1)⊗D0
3,g→q

]
+ 2

[
Γ(1)

qq (x1)⊗D0
3,g→q

]
−A0

4,qg −A0
4,qg′

− 1
2 Ã

0
4,qg − 1

2A
1
3,qg − 1

2 Ã
1
3,qg

− b0
ϵ

((
|s12|
µ2

r

)−ϵ

− 1
)
A0

3,gq + 2
[
A0

3,gq ⊗A0
3,gq

]
+
[
Γ(1)

gg (x1)⊗A0
3,gq

]
− 2

[
Γ(1)

qq (x1)⊗A0
3,gq

]
− b0

ϵ

(
D0

3,g −D0
3,g→g

)
Ĵ

(2)
2,IC corr (1q, 2q̄) = −

[
E0

3,q ⊗D0
3,g→q

]
−
[
Γ̂(1)

gg (x1)⊗D0
3,g→q

]
− Â1

3,gq −
b0,F

ϵ

((
|s12|
µ2

r

)−ϵ

− 1
)
A0

3,gq

+
[
Γ̂(1)

gg (x1)⊗A0
3,gq

]
− b0,F

ϵ

(
D0

3,g −D0
3,g→g

)
Table 10. Corrective terms required to remove spurious identity-changing singularities from integrated
identity-preserving gluon-initiated quark-gluon antenna functions.

by the gluino one [41, 83]:

H(2)
g̃ (ϵ) = eϵγE

4Γ(1− ϵ)ϵNc

{[
−187
216 + 13

48π2 − 1
2ζ3

]
+ Nf

Nc

[
− 25
108 + π2

24

]}
. (3.51)

The unphysical poles which are not present in QCD matrix elements are identified by the
mismatch between the Nf = 0 components of the quark and the gluino hard radiation
functions:

H(2)
q (ϵ)−H(2)

g̃ (ϵ) = eϵγE Nc

4Γ(1− ϵ)ϵ

{[
29
16 − π2

2 + 4ζ3

]
+ 1

N2
c

[
3
16 − π2

4 + 3ζ3

]}
. (3.52)

To compensate for the discrepancy above we introduce an auxiliary quark-antiquark two-loop
integrated dipole:

J (2)
2 (q, q̄) = 1

2 J̄2
(2)(q, q̄) + 1

2N2
c

˜̄J (2)
2 (q, q̄), (3.53)
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FF
J̄2

(2)(iq, jq̄) = 1
2 Ã

0
4 + Ã1

3 − 1
2
[
A0

3 ⊗A0
3
]

˜̄J (2)
2 (iq, jq̄) = J̃2

(2)(iq, jq̄)

IF
J̄2

(2)(1q, iq̄) = 1
2 Ã

0
4,q + Ã1

3,q − 1
2
[
A0

3,q ⊗A0
3,q

]
˜̄J (2)
2 (1q, iq̄) = J̃2

(2)(iq, jq̄)

II
J̄2

(2)(1q, 2q̄) = 1
2 Ã

0
4,qq̄ + Ã1

3,qq̄ − 1
2
[
A0

3,qq̄ ⊗A0
3,qq̄

]
˜̄J (2)
2 (1q, 2q̄) = J̃2

(2)(iq, jq̄)

Table 11. Auxiliary quark-antiquark two-loop integrated dipoles needed to remove spurious poles
present in integrated quark-gluon antenna functions, which are not present in physical matrix elements.

which satisfies:

J (2)
2 (q, q̄) = H(2)

q (ϵ)
∣∣∣∣∣
Nf =0

−H(2)
g̃ (ϵ)

∣∣∣∣∣
Nf =0

+O(ϵ0). (3.54)

The integrated dipoles in (3.53) can be written in terms of integrated antenna functions
and are listed in table 11.

The combination of antenna functions which gives the auxiliary dipoles was found
previously in [42] and in [8] during the construction of double-real subtraction terms for
e+e− → 3j and pp → jj, as a correction to remove the unphysical triple-collinear limits of the
D-type antenna functions. The presence of such a combination can be easily tracked down
due to the anomalous appearance of subleading-colour quark-antiquark antenna functions
within the leading-colour contribution to the subtraction terms.

The newly introduced J (2)
2 (q, q̄) can be promoted to an operator in colour space, however

its structure depends on the number of fermionic lines present in the process. For a process
involving a single quark-antiquark pair (q, q̄) and an arbitrary number of gluons, we have:

J (2) = Nc

∑
g

(Tq + Tq̄)Tg J
(2)
2 (q, q̄), (3.55)

which has the peculiarity of combining quark-gluon dipole charge operators with quark-
antiquark integrated dipoles. This is once again due to quark-gluon integrated antenna
functions not exactly reproducing the QCD radiation among the physical quark-gluon dipole.

For processes involving more than one quark-antiquark pair, the appropriate structure in
colour space is more complicated. This is explained by the non-trivial colour connections
between quarks belonging to different quark-antiquark pairs. The extension of (3.53) to
multiple fermionic lines is first required addressing NNLO calculations with 5 partons at
Born-level, such as pp → 3j, for the sub-processes with two fermionic lines and one gluon:
qq̄q′q̄′g. Configurations with two fermionic lines and more than one gluon or three fermionic
lines with at least one gluon would appear, for example, in the computation of the NNLO
correction to pp → 4j and pp → 5j, respectively. Since at present such calculations are
well beyond the reach of available two-loop matrix elements and, arguably, computational
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techniques, we focus on the five-parton configuration. The appropriate colour space structure
for two quark-antiquark pairs (possibly of the same flavour), denoted with (q, q̄) and (q′, q̄′)
and a gluon g is then:

J (2) = Nc (Tq + Tq̄)Tg J
(2)
2 (q, q̄) + Nc

(
Tq′ + Tq̄′

)
Tg J

(2)
2 (q′, q̄′)

+ Nc (Tq − Tq̄)Tg

(
J (2)

2 (q, q̄′)− J (2)
2 (q′, q̄)

)
(δq,1 + δq,2)

+ Nc
(
Tq′ − Tq̄′

)
Tg

(
J (2)

2 (q, q̄′)− J (2)
2 (q′, q̄)

)
(δq′,1 + δq′,2), (3.56)

where the two last lines are only present if q or q′ are in the initial state. We note that the
structure above is in principle not unique and other arrangements can correctly reproduce the
same singularity structure, thanks to relations among the J (2)

2 integrated dipoles, such as:

J (2)
2 (1, 2) = J (2)

2 (1, i) + J (2)
2 (2, j)− J (2)

2 (i, j), i, j ≥ 3, (3.57)

and colour conservation

Ti = −
∑
j ̸=i

Tj . (3.58)

The configuration of antenna functions in (3.56), in their unintegrated form, correctly
subtracts the singular behaviour also at the real-virtual and double-real levels, in infrared
limits involving a q ∥ g collinear pair.

Gluon-gluon integrated dipoles. The IP gluon-gluon dipoles only require minimal
adjustments to the natural arrangement of integrated antenna functions. They are given
in table 12.

As for the E-type IF and II antenna functions, the G-type ones G0
4,g, G̃0

4,g, G0
4,gg and

G̃0
4,gg need to have the flip-flopping limits removed. When the final-state quark-antiquark

pair becomes collinear to an initial-state gluon, an IC g → q → g configuration is generated.
The required flip-flopping terms are given in table 13.

Cancellation of infrared singularities at two-loop. In analogy with (3.42), the ϵ-
poles of IP two-loop colour-stripped integrated dipoles can be related to the to the infrared
singularities of two-loop matrix elements: any pole of initial-state collinear origin cancel
against two-loop mass factorization kernels, and the remaining singularities satisfy:

Poles

[
Nc J (2)

2 (q, q̄)− β0
ϵ
J (1)

2 (q, q̄)
]
=

Poles

[
Re
(
I(2)

qq̄

(
ϵ, µ2

r

)
− β0

ϵ
I(1)

qq̄

(
ϵ, µ2

r

))]
, (3.59)

Poles

[
Nc J (2)

2 (g, g)− β0
ϵ
J (1)

2 (g, g)
]
=

Poles

[
Re
(
I(2)

gg

(
ϵ, µ2

r

)
− β0

ϵ
I(1)

gg

(
ϵ, µ2

r

))]
, (3.60)

Poles

[
Nc

(
J (2)

2 (q, g) + J (2)
2 (g, q̄)− 2J (2)

2 (q, q̄)
)
− β0

ϵ

(
J (1)

2 (q, g) + J (1)
2 (g, q̄)

) ]
=

Poles

[
Re
(
I(2)

qg

(
ϵ, µ2

r

)
+ I(2)

gq̄

(
ϵ, µ2

r

)
− β0

ϵ

(
I(1)

gg

(
ϵ, µ2

r

)
+ I(1)

gq̄

(
ϵ, µ2

r

)))]
. (3.61)
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Integrated dipoles

FF

J
(2)
2 (ig, jg) = 1

4F
0
4 + 1

3F
1
3 + 1

3
b0
ϵ

(
|sij |
µ2

r

)−ϵ

F0
3 − 1

9
[
F0

3 ⊗F0
3
]

Ĵ2
(2) (ig, jg) = G0

4 + 1
3 F̂

1
3 + G1

3 + 1
3

b0,F

ϵ

(
|sij |
µ2

r

)−ϵ

F0
3 + b0

ϵ

(
|sij |
µ2

r

)−ϵ

G0
3

− 2
3
[
G0

3 ⊗F0
3
]

ˆ̃J (2)
2 (ig, jg) = 1

2 G̃
0
4 + G̃1

3

ˆ̂
J

(2)
2 (ig, jg) = 1

2H
0
4 + Ĝ1

3 + b0,F

ϵ

(
|sij |
µ2

r

)−ϵ

G0
3 −

[
G0

3 ⊗ G0
3
]

IF

J
(2)
2 (1g, ig) = 1

2F
0
4,g + 1

2F
1
3,g + 1

2
b0
ϵ

(
|s1i|
µ2

r

)−ϵ

F0
3,g − 1

4
[
F0

3,g ⊗F0
3,g

]
− 1

2Γ
(2)
gg (1) δ2

Ĵ2
(2) (1g, ig) = G0

4,g + 1
2 F̂

1
3,g + 1

2G
1
3,g + 1

2
b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

F0
3,g

+ 1
2

b0
ϵ

(
|s1i|
µ2

r

)−ϵ

G0
3,g − 1

2
[
G0

3,g ⊗F0
3,g

]
− 1

2 Γ̂
(2)
gg (x1) δ2

+ Ĵ
(2)
2,f/f (1g, ig)

ˆ̃J (2)
2 (1g, ig) = 1

2 G̃
0
4,g + 1

2 G̃
1
3,g + 1

2
̂̃
Γ

(2)

gg (x1) δ2 + ˆ̃J (2)
2,f/f (1g, ig)

ˆ̂
J

(2)
2 (1g, ig) = 1

2 Ĝ
1
3,g + 1

2
b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

G0
3,g − 1

4
[
G0

3,g ⊗ G0
3,g

]
− 1

2
̂̂
Γ

(2)

gg (x1) δ2

II

J
(2)
2 (1g, 2g) = F0

4,gg + 1
2F

0
4,gg′ + F1

3,gg + b0
ϵ

(
|s12|
µ2

r

)−ϵ

F0
3,gg

−
[
F0

3,gg ⊗F0
3,gg

]
− 1

2Γ
(2)
gg (1) δ2 − 1

2Γ
(2)
gg (2) δ1

Ĵ2
(2) (1g, 2g) = G0

4,gg + F̂1
3,gg + b0,F

ϵ

(
|s12|
µ2

r

)−ϵ

F0
3,gg − 1

2 Γ̂
(2)
gg (x1) δ2

− 1
2 Γ̂

(2)
gg (x2) δ1 + Ĵ

(2)
2,f/f (1g, 2g)

ˆ̃J (2)
2 (1g, 2g) = 1

2 G̃
0
4,gg + 1

2
̂̃
Γ

(2)

gg (x1) δ2 + 1
2
̂̃
Γ

(2)

gg (x2) δ1 + ˆ̃J (2)
2,f/f (1g, 2g)

ˆ̂
J

(2)
2 (1g, 2g) = − 1

2
̂̂
Γ

(2)

gg (x1) δ2 − 1
2
̂̂
Γ

(2)

gg (x2) δ1

Table 12. Identity-preserving gluon-gluon two-loop colour-stripped integrated dipoles.

Integrated dipoles

IF
Ĵ

(2)
2,f/f (1g, ig) = Sg→q

[
Γ(1)

qg (x1)⊗ G0
3,q′

]
+ 1

2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]
ˆ̃J (2)
2,f/f (1g, ig) = Sg→q

[
Γ(1)

qg (x1)⊗ G0
3,q′

]
+ 1

2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]

II

Ĵ
(2)
2,f/f (1g, 2g) = Sg→q

[
Γ(1)

qg (x1)⊗ G0
3,qg

]
+ 1

2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]
+ Sg→q

[
Γ(1)

qg (x2)⊗ G0
3,gq

]
+ 1

2

[
Γ(1)

qg (x2)⊗ Γ(1)
gq (x2)

]
ˆ̃J (2)
2,f/f (1g, 2g) = Sg→q

[
Γ(1)

qg (x1)⊗ G0
3,qg

]
+ 1

2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]
+ Sg→q

[
Γ(1)

qg (x2)⊗ G0
3,gq

]
+ 1

2

[
Γ(1)

qg (x2)⊗ Γ(1)
gq (x2)

]
Table 13. Flip-flopping contributions to identity-preserving gluon-gluon two-loop integrated dipoles.
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Integrated dipoles

IFg→q

J
(2)
2,g→q (1q, iq̄) = −A0

4,g − 1
2A

1
3,g − 1

2
b0
ϵ

(
|s1i|
µ2

r

)−ϵ

A0
3,g

+ 1
2
[
A0

3,g ⊗A0
3,q

]
− Sg→qΓ

(2)
qg (1) δ2

+ 1
2

[
A0

3,g ⊗ Γ(1)
gg (x1)

]
+ 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ(1)
gg (x1)

]
− 1

2

[
A0

3,g ⊗ Γ(1)
qq (x1)

]
− 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ(1)
qq (x1)

]
Ĵ

(2)
2,g→q (1q, iq̄) = − 1

2 Â
1
3,g − 1

2
b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

A0
3,g − Sg→qΓ̂

(2)
qg (x1) δ2

+ 1
2

[
A0

3,g ⊗ Γ̂(1)
gg (x1)

]
+ 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ̂(1)
gg (x1)

]
J̃

(2)
2,g→q (1q, iq̄) = −Ã0

4,g − Ã1
3,g +

[
A0

3,q ⊗A0
3,g

]
−
[
Γ(1)

qq (x1)⊗A0
3,g

]
− Sg→q

[
Γ(1)

qg (x1)⊗ Γ(1)
qq (x1)

]
+ 2Sg→qΓ̃

(2)
qg (x1) δ2

IFq→q̄ J̃
(2)
2,q→q̄ (1q̄, iq) = C0

4,q̄′ + Γ̃
(2)
qq̄ (x1) δ2

IFq→g→q

J
(2)
2,q→g→q (1q, iq̄) = B0

4,q′ + Sq→g

[
Γ(1)

gq (x1)⊗A0
3,g

]
+
[
Γ(1)

gq (x1)⊗ Γ(1)
qg (x1)

]
− 2Γ̃

(2)
qq (x1) δ2

Table 14. Initial-final identity-changing quark-antiquark two-loop colour-stripped integrated dipoles.

For quark-gluon dipoles we observe in the last equation the presence of J (2)
2 to compensate

for unphysical poles. We have explicitly verified that the relations above are satisfied for
all the partonic and kinematical configurations.

Identity-changing dipoles. Identity-changing integrated dipoles, as for the one-loop
case, are not treated in colour space. We have two possible structures, one is associated to
configurations where at least one initial state parton actually changes identity, while the
other addresses flip-flopping contributions for which, after integration, the species of the
initial-state partons is formally the same as before. The first type reads:

J (2)
ab;cd(x1, x2) = J (2)

2,a→c(x1)δdbδ(1− x2) + J (2)
2,b→d(x2)δcaδ(1− x1)

+ J (2)
2,ab→cd(x1, x2), (3.62)

where either a single initial-state leg changes identity (first two terms) or both legs change
identity (last term). The flip-flopping integrated dipoles are given by:

J (2)
ab;cd;ab(x1, x2) = J (2)

2,a→c→a(x1)δdbδ(1− x2) + J (2)
2,b→d→b(x2)δcaδ(1− x1). (3.63)

The integrated dipoles in (3.62) and (3.63) have a colour decomposition which mirrors the
one of two-loop IC splitting kernels:

J (2)
2,q→g(g, i) =

(
N2

c − 1
Nc

)[
NcJ

(2)
2,q→g(g, i) + 1

Nc
J̃

(2)
2,q→g(g, i)

+ Nf Ĵ
(2)
2,q→g(g, i)

]
, (3.64)
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Integrated dipoles

IIg→q

J
(2)
2,g→q (1q, 2q̄) = −A0

4,gq −A0
4,g′q −A1

3,gq − b0
ϵ

(
|s12|
µ2

r

)−ϵ

A0
3,gq

+
[
A0

3,gq ⊗A0
3,qq̄

]
− Sg→qΓ

(2)
qg (1) δ2

+
[
A0

3,gq ⊗ Γ(1)
gg (x1)

]
+ 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ(1)
gg (x1)

]
−
[
A0

3,gq ⊗ Γ(1)
qq (x1)

]
− 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ(1)
qq (x1)

]
Ĵ

(2)
2,g→q (1q, 2q̄) = − 1

2 Â
1
3,gq −

b0,F

ϵ

(
|s12|
µ2

r

)−ϵ

A0
3,gq − Sg→qΓ̂

(2)
qg (x1) δ2

+
[
A0

3,gq ⊗ Γ̂(1)
gg (x1)

]
+ 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ̂(1)
gg (x1)

]
J̃

(2)
2,g→q (1q, 2q̄) = −Ã0

4,gq − Ã1
3,gq

+
[
A0

3,qq ⊗A0
3,gq

]
−
[
Γ(1)

qq (x1)⊗A0
3,gq

]
− 1

2 Sg→q

[
Γ(1)

qg (x1)⊗ Γ̂(1)
qq (x1)

]
+ Sg→qΓ̃

(2)
qg (x1) δ2

IIq→q′
J

(2)
2,q→q′ (1q′ , 2q̄) = B0

4,q′q + Sq→g

[
Γ(1)

gq (x1)⊗A0
3,gq

]
+ 1

2

[
Γ(1)

gq (x1)⊗ Γ(1)
qg (x1)

]
− Γ(2)

qq′ (x1) δ2

IIq→q̄ J̃
(2)
2,q→q̄ (1q̄, 2q) = C0

4,q̄′q̄ + Γ̃
(2)
qq̄ (x1) δ2

IIq→g→q

J
(2)
2,q→g→q (1q, 2q̄) = B0

4,q′q + Sq→g

[
Γ(1)

gq (x1)⊗A0
3,gq

]
+ 1

2

[
Γ(1)

gq (x1)⊗ Γ(1)
qg (x1)

]
− Γ(2)

qq′ (x1) δ2

IIgg→qq̄

J
(2)
2,gg→qq̄ (1q, 2q̄) = A0

4,gg + Sg→q

[
Γ(1)

qg (x1)⊗A0
3,qg

]
+ Sg→q

[
Γ(1)

qg (x2)⊗A0
3,gq

]
+ S2

g→qΓ
(1)
qg (x1) Γ(1)

qg (x2)

J̃
(2)
2,gg→qq̄ (1q, 2q̄) = Ã0

4,gg + 2Sg→q

[
Γ(1)

gq (x1)⊗A0
3,qg

]
+ 2Sg→q

[
Γ(1)

qg (x2)⊗A0
3,gq

]
+ 2S2

g→qΓ
(1)
qg (x1) Γ(1)

qg (x2)

Table 15. Initial-initial identity-changing quark-antiquark two-loop colour-stripped integrated dipoles.

J (2)
2,g→q(q, i) = NcJ

(2)
2,g→q(q, i) + 1

Nc
J̃

(2)
2,g→q(q, i) + Nf Ĵ

(2)
2,g→q(q, i) , (3.65)

J (2)
2,q→q̄(q̄, i) =

(
N2

c − 1
Nc

)[
J

(2)
2,q→q̄(q̄, i) + 1

Nc
J̃

(2)
2,q→q̄(q̄, i)

]
, (3.66)

J (2)
2,q→q′(q′, i) =

(
N2

c − 1
Nc

)
J

(2)
2,q→q′(q′, i) , (3.67)

J (2)
2,gg→qq̄(q, q̄) = Nc J

(2)
2,gg→qq̄(q, q̄) + 1

Nc
J̃

(2)
2,gg→qq̄(q, q̄) , (3.68)

J (2)
2,qq′→gg(g, g) =

(
N2

c − 1
Nc

)
J

(2)
2,qq̄→gg(g, g) , (3.69)

J (2)
2,q′g→gq(g, q) = Nc J

(2)
2,q′g→gq(g, q) + 1

Nc
J̃

(2)
2,q′g→gq(g, q) , (3.70)

J (2)
2,q→g→q(q, i) =

(
N2

c − 1
Nc

)
J

(2)
2,q→g→q(q, i) , (3.71)
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where i = q, g. For configurations where only one initial-state parton changes identity, the
second hard parton in the dipole acts as a mere spectator and no unresolved limits are
associated to it. This means that in any practical implementation one has the freedom
to choose different spectators for the same IC limits. In particular, in any IC unresolved
configuration resulting in a hard quark, such as g → q, q → q′, q → q̄ and q → g → q, it
is always possible to choose the fermionic partner of the hard quark as a spectator. For
this reason, there is no need to define IC integrated dipoles for these configurations with
a hard gluon as spectator. In the following we present the expressions for the two-loop
IC integrated dipoles. We note that typically for a specific process only some of the listed
dipoles are actually needed. However, we provide expressions for all of them for the sake
of generality. The IC quark-antiquark, quark-gluon and gluon-gluon two-loop integrated
dipoles are listed in tables 14–17.

In the J
(2)
2,q→g(1g, iq) and in the J

(2)
2,q′g→gq(1g, 2q) integrated dipoles of table 16, corrective

terms had to be included, as one can notice from the appearance of quark-antiquark integrated
antenna functions. The origin of such terms is completely analogous to the ones of table 10:
they are needed to remove the triple collinear q′ ∥ q̄′ ∥ q limit present in the integrated
E-type four-parton antenna functions. Indeed, such contributions yields a q → g → q

identity-changing limit which is not compatible with the considered configurations.
Contrary to the one-loop IC dipoles, two-loop ones are not free from singularities. This

is understood considering that, with two unresolved partons, along with initial-state collinear
singularities which cancel against the mass factorization kernels, additional soft or final-state
collinear poles can be present. As we will see in more detail in section 5, the singularities of
the IC two-loop integrated dipoles cancel against explicit poles in other structures present in
the two-loop mass factorization counterterm for identity-changing splittings. This cancellation
yields an IC double-virtual subtraction term which is correctly free from explicit singularities.

4 Colourful antenna subtraction at NLO

In the following, we describe the colourful antenna subtraction approach at NLO, aiming to
introduce the underlying concepts and preparing for the full NNLO formulation.

The NLO correction to a partonic sub-process initiated by partons a and b reads as follow.

dσ̂ab,NLO =
∫

n

[
dσ̂V

ab,NLO − dσ̂T
ab,NLO

]
+
∫

n+1

[
dσ̂R

ab,NLO − dσ̂S
ab,NLO

]
, (4.1)

with
dσ̂T

ab,NLO = −
∫

1
dσ̂S

ab,NLO − dσ̂MF
ab,NLO. (4.2)

Typically, the construction of the subtraction terms would begin by analysing the divergent
behaviour of the real emission correction and by individuating the proper combination of
antenna functions and reduced LO squared amplitudes which reproduces the implicit infrared
singularities. Hence, the real subtraction term dσ̂S

ab,NLO, up to an overall process-dependent
normalisation, has the following form [8]:

dσ̂S
ab,NLO ∼

∑
c,c′

∑
i,j,k

dΦn+1(p3, . . . , pn+3; p1, p2)

× X0
3 (i, k, j) a0

n+2(c, c′; {., ĩk, ., k̃j, .})J (n)
n (., p

ĩk
, ., p

k̃j
, .). (4.3)
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Integrated dipoles

IFq→g

J
(2)
2,q→g(1g, iq) = −E0

4,q′ − E0
4,q̄′ − E1

3,q′ − b0
ϵ

(
|s1i|
µ2

r

)−ϵ

E0
3,q′

+ 2
[
D0

3,g ⊗ E0
3,q′

]
+
[
Γ(1)

qq (x1)⊗ E0
3,q′

]
−
[
Γ(1)

gg (x1)⊗ E0
3,q′

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
− 1

2 Sq→g

[
Γ(1)

gg (x1)⊗ Γ(1)
gq (x1)

]
− Sq→gΓ

(2)
gq (1) δ2

+ B0
4,q′ + 2Sg→q

[
Γ(1)

qg (x1)⊗ E0
3,q′

]
+ Sq→g

[
Γ(1)

gq (x1)⊗A0
3,g

]
+ 2

[
Γ(1)

gq (x1)⊗ Γ(1)
qg (x1)

]
Ĵ

(2)
2,q→g(1g, iq) = −Ê1

3,q′ − b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

E0
3,q′ −

[
Γ̂(1)

gg (x1)⊗ E0
3,q′

]
− 1

2 Sq→g

[
Γ̂(1)

gg (x1)⊗ Γ(1)
gq (x1)

]
− Sq→gΓ̂

(2)
gq (x1) δ2

J̃
(2)
2,q→g(1g, iq) = −Ẽ0

4,q′ − Ẽ1
3,q′ +

[
Γ(1)

qq (x1)⊗ E0
3,q′

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
+ Sq→gΓ̃

(2)
gq (x1) δ2

IIq→g

J
(2)
2,q→g(1g, 2q) = −E0

4,q′q − E0
4,q̄′q − E1

3,q′q −
b0
ϵ

(
|s12|
µ2

r

)−ϵ

E0
3,q′q

+ 2
[
D0

3,gq ⊗ E0
3,q′q

]
+
[
Γ(1)

qq (x1)⊗ E0
3,q′q

]
−
[
Γ(1)

gg (x1)⊗ E0
3,q′q

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
− 1

2 Sq→g

[
Γ(1)

gg (x1)⊗ Γ(1)
gq (x1)

]
− Sq→gΓ

(2)
gq (1) δ2

Ĵ
(2)
2,q→g(1g, 2q) = −Ê1

3,q′q −
b0,F

ϵ

(
|s12|
µ2

r

)−ϵ

E0
3,q′q

−
[
Γ̂(1)

gg (x1)⊗ E0
3,q′q

]
− 1

2 Sq→g

[
Γ̂(1)

gg (x1)⊗ Γ(1)
gq (x1)

]
− Sq→gΓ̂

(2)
gq (x1) δ2

J̃
(2)
2,q→g(1g, 2q) = −Ẽ0

4,q′q − Ẽ1
3,q′q +

[
Γ(1)

qq (x1)⊗ E0
3,q′q

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
+ Sq→gΓ̃

(2)
gq (x1) δ2

IIq′g→gq

J
(2)
2,q′g→gq(1g, 2q) = 2E0

4,q̄′g + 2Sq→g

[
Γ(1)

gq (x1)⊗D0
3,gg

]
+ 2Sg→q

[
Γ(1)

gq (x2)⊗ E0
3,q′q

]
+ Γ(1)

gq (x1) Γ(1)
qg (x2)

− B0
4,q′ +

[
E0

3,q′ ⊗A0
3,g

]
+ 2Sg→q

[
Γ(1)

qg (x1)⊗ E0
3,q′

]
+ 2

[
Γ(1)

qg (x1)⊗ Γ(1)
gq (x1)

]
Table 16. Identity-changing quark-gluon two-loop colour-stripped integrated dipoles.

In the notation of section 3, a0
n+2(c, c′, {. . . }) indicates a generic (n + 2)-parton interference

between colour ordering c and c′. The first sum runs over the possible colour structures
and orderings, while the inner sum covers permutations of external momenta. In (4.3),
as well as analogous expressions in the remainder of the paper, each term in the sum can
come with a different numerical factor in front of it. Such factors are not generalizable and
not particularly relevant for the description of the structure of the subtraction terms. The
symbol ∼ indicates their omissions.
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Integrated dipoles

IFq→g

J
(2)
2,q→g (1g, ig) = −G0

4,q − G1
3,q − b0

ϵ

(
|s1i|
µ2

r

)−ϵ

G0
3,q

+
[
G0

3,q ⊗F0
3,g

]
− Sq→gΓ

(2)
gq (1) δ2

+
[
Γ(1)

qq (x1)⊗ G0
3,q

]
−
[
Γ(1)

gg (x1)⊗ G0
3,q

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
− 1

2 Sq→g

[
Γ(1)

gg (x1)⊗ Γ(1)
gq (x1)

]
Ĵ

(2)
2,q→g(1g, ig) = H0

4,q − Ĝ1
3,q −

b0,F

ϵ

(
|s1i|
µ2

r

)−ϵ

G0
3,q

+ Sq→g

[
Γ(1)

gq (x1)⊗ G0
3,g

]
+ 1

2 Sq→g

[
Γ(1)

gq (x1)⊗ Γ̂(1)
gg (x1)

]
− Sq→gΓ̂

(2)
gq (x1) δ2

J̃
(2)
2,q→g (1g, ig) = − 1

2 G̃
0
4,q − G̃1

3,q +
[
G0

3,q ⊗ Γ(1)
qq (x1)

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
+ Sq→gΓ̃

(2)
gq (x1) δ2

IIq→g

J
(2)
2,q→g (1g, 2g) = −G0

4,qg − G0
4,qg′ − G1

3,qg − b0
ϵ

(
|s12|
µ2

r

)−ϵ

G0
3,qg

+ 2
[
G0

3,qg ⊗F0
3,gg

]
− Sq→gΓ

(2)
gq (1) δ2

− Sg→q

[
Γ(1)

qg (x2)⊗ G0
3,qq

]
+
[
Γ(1)

qq (x1)⊗ G0
3,qg

]
−
[
Γ(1)

gg (x1)⊗ G0
3,qg

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
− 1

2 Sq→g

[
Γ(1)

gg (x1)⊗ Γ(1)
gq (x1)

]
Ĵ

(2)
2,q→g (1g, 2g) = −Ĝ1

3,qg − b0,F

ϵ

(
|s12|
µ2

r

)−ϵ

G0
3,qg − Sq→gΓ̂

(2)
gq (x1) δ2

−
[
G0

3,qg ⊗ Γ̂(1)
gg (x1)

]
− 1

2 Sq→g

[
Γ(1)

gq (x1)⊗ Γ̂(1)
gg (x1)

]
J̃

(2)
2,q→g (1g, 2g) = −G̃0

4,qg − G̃1
3,qg +

[
G0

3,qg ⊗ Γ(1)
qq (x1)

]
− Sg→q

[
Γ(1)

qg (x2)⊗ G0
3,qq

]
+ 1

2 Sq→g

[
Γ(1)

qq (x1)⊗ Γ(1)
gq (x1)

]
+ Sq→gΓ̃

(2)
gq (x1) δ2

IIqq̄→gg

J
(2)
2,qq̄→gg (1g, 2g) = H0

4,qq′ + Sq→g

[
Γ(1)

gq (x2)⊗ G0
3,qg

]
+ Sq→g

[
Γ(1)

gq (x1)⊗ G0
3,gq

]
+ S2

q→gΓ
(1)
gq (x1) Γ(1)

gq (x2)

Table 17. Identity-changing gluon-gluon two-loop colour-stripped integrated dipoles.

An analytical integration of (4.3) over the phase space of the unresolved radiation
(antenna phase space) yields:∫

1
dσ̂S

ab,NLO ∼
∑
c,c′

∑
i,j,k

dΦn(., p
ĩk

, ., p
k̃j

, .; p1, p2)

×X 0
3 (s(ĩk)(k̃j)) a0

n+2(c, c′; {., ĩk, ., k̃j, .})J (n)
n (., p

ĩk
, ., p

k̃j
, .) , (4.4)

where the indices ĩk and j̃k are the mapped momenta that also feature in the unintegrated
subtraction term (4.3). Finally, the full virtual subtraction term (2.6) is obtained by adding
all mass factorization counterterms appropriate for the incoming partons.
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In the context of the antenna subtraction method, the construction of real-emission
subtraction terms for a generic process may become cumbersome and require a considerable
amount of process-specific work. In particular, beyond leading-colour, one cannot directly
rely on colour connections of squared amplitudes as the guiding principle for the construction
of the subtraction terms, especially at high multiplicities. The colourful antenna subtraction
approach is designed to systematise the construction of the real-emission subtraction term.
The main idea behind it consists of exploiting the predictability of the singularity structure
of virtual amplitudes in colour space to straightforwardly construct the virtual subtraction
term in a completely general way. Subsequently, the real subtraction term is derived with
a systematic procedure exploiting the correspondence between integrated and unintegrated
antenna functions. To properly introduce how this is done we first need to recast the NLO
mass factorization counterterm in colour space.

4.1 NLO mass factorization in colour space

We notice that equation (2.7) has both identity-preserving and identity-changing contributions,
respectively when (c, d) = (a, b) and (c, d) ̸= (a, b). For a given LO partonic matrix element,
initiated by partons a and b, the virtual infrared singularities in (3.22) and the identity-
preserving contributions in (2.7) factorize upon the same set of LO partonic colour correlations.
Nevertheless, it is possible to express the identity-preserving mass factorization kernels in
colour space, in analogy to the singularity structure of one-loop amplitudes. We define:

Γ(1)
ab;ab (x1, x2) = Γ(1)

aa,full (x1) δ(1− x2) + Γ(1)
bb,full (x2) δ(1− x1), (4.5)

where, as usual, bold symbols are used to indicate that the splitting kernels have been
promoted to be operators in colour space:

Γ(1)
cc,full (xi) = −Γ(1)

cc,full (xi)
1

Cc

∑
j ̸=i

Ti · Tj , c = a(b), i = 1(2). (4.6)

This colour operator is proportional to the identity in colour space when it acts on a
colour-singlet vector, due to colour conservation:

Γ(1)
ab;ab (x1, x2) |Aℓ

n+2⟩ = Γ(1)
ab;ab (x1, x2) |Aℓ

n+2⟩ , (4.7)

which restores the original result. We can then rewrite the identity-preserving (IP) sector
of the mass factorization counterterms in (2.7) as:

dσ̂MF,IP
ab,NLO = −N V

NLO

∫ dx1
x1

dx2
x2

∫
dΦn(p3, . . . , pn+2;x1p1, x2p2) J (n)

n ({p}n)

× ⟨A0
n+2|Γ

(1)
ab;ab (x1, x2) |A0

n+2⟩ , (4.8)

which is analogous to (3.22).
While it is possible to apply a similar treatment for the identity-changing mass factor-

ization kernels in principle, it is not particularly convenient to rewrite them as operators
in colour space. Hence, we choose to maintain the identity-changing mass factorization
counterterm as colour scalars:

dσ̂MF,IC
ab,NLO = −

(
αsC(ϵ)
2π

) ∑
(c,d) ̸=(a,b)

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd(x1, x2) dσ̂cd,LO . (4.9)
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4.2 NLO virtual subtraction term

The virtual subtraction term at NLO, σ̂T
ab,NLO can be separated into IP and IC components:

σ̂T
ab,NLO = σ̂T,IP

ab,NLO + σ̂T,IC
ab,NLO . (4.10)

The IP component has to:

• remove the explicit poles of the virtual matrix element;

• contain the IP mass factorization counterterm dσ̂MF,IP
ab,NLO.

We know that the first requirement can be addressed with (3.22), while dσ̂MF,IP
ab,NLO is given

above in (4.8). By (3.39), (3.42) and the explicit formulae given in section 3.3.1. One can
see that the one-loop integrated dipoles that were introduced in section 3.3.1 address both
tasks, yielding the construction of the NLO IP virtual subtraction term as

dσ̂T,IP
ab,NLO = N V

NLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2 ⟨A0
n+2|J (1)(ϵ)|A0

n+2⟩ . (4.11)

The equation above explains the important role of the integrated dipoles and justifies their
definition. First of all, we can describe in a general way the singularity structure of one-loop
matrix elements, naturally including also the IP mass factorization contribution. Moreover,
we achieved this by means of integrated antenna functions, which will be crucial for the next
step. The explicit form of (4.11) is obtained computing ⟨A0

n+2|Ti · Tj |A0
n+2⟩ and dressing

them with the associated colour stripped integrated dipoles. We remark that (4.11) is a
completely process-independent result, which is valid for any multiplicity and retains the
full Nc dependence.

The IC component of the virtual subtraction term is analogously obtained exploiting IC
one-loop integrated dipoles. These were defined as scalars in colour space in (3.43), since
IC infrared singularities factorize onto full LO squared matrix elements. Hence, dσ̂T,IC

ab,NLO
is given by:

dσ̂T,IC
ab,NLO =

(
αsC(ϵ)
2π

) ∑
(c,d) ̸=(a,b)

∫ dx1
x1

dx2
x2

J (1)
ab;cd(x1, x2) dσ̂cd,LO . (4.12)

The contribution above contains integrated initial-state collinear limits and the associated
mass factorization kernels.

4.3 NLO real subtraction term

In the colourful antenna approach, we aim for a systematic generation of dσ̂S
ab,NLO, starting

from the dσ̂T
ab,NLO derived above. Each term in dσ̂T

ab,NLO must have an unintegrated coun-
terpart in dσ̂S

ab,NLO. Since dσ̂T
ab,NLO is completely written in terms of integrated antenna

functions, there is a one-to-one relation with their unintegrated counterparts:

X 0
3 (sij) a0

n+2(c, c′, {., i, ., j, .}) ↔ X0
3 (i, u, j)a0

n+2(c, c′, {., ĩu, ., ũj, .}), (4.13)
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where X 0
3 (sij) is the integrated antenna function obtained by integrating the tree-level

three-parton antenna function X0
3 (i, u, j) over the phase space of the unresolved parton u.

Due to this correspondence, once the virtual subtraction term is obtained, the structure of
the real subtraction term can be determined by inserting an unresolved emission between
each pair of hard radiators appearing in the integrated dipoles. This involves a transition
from an integrated NLO antenna function to an unintegrated one and from a genuine LO
colour interference to a reduced one where the (n + 2)-particle momenta are meant to be
obtained from a (n + 3)-particle phase space through a suitable mapping, dictated by the
accompanying antenna function. The right-hand-side of (4.13) reproduces the divergent
behaviour of the real interference a0

n+3(c, c′; {., i, ., u, ., j, .}) when parton u is unresolved
between the hard pair (i, j).

We will illustrate how the transition between integrated and unintegrated quantities is
performed. The procedure can be summarized as follows:

1) remove the mass-factorization kernels from the colour-stripped integrated dipoles J
(1)
2

in dσ̂T
ab,NLO;

2) replace each integrated antenna function X 0
3 (sij) with its unintegrated counterpart

X0
3 (i, u, j) (see below);

3) suitably replace the momenta in the colour interferences, according to the accompanying
integrated antenna, following (4.13);

4) apply the same momenta relabelling to the jet function;

5) promote the phase-space measure to the appropriate one for (n+1) final-state momenta;

6) replace the overall factor with an appropriate one for the real correction:

N V
NLO → NR

NLO = sR (4παs)NLO, (4.14)

where sR compensates the potentially different final-state symmetry factors in the
presence of an extra emission;

All the steps above consist of rather simple manipulations, except for step 2. The replacement
of an integrated antenna function with its unintegrated counterpart stands at the core of the
whole algorithm and dictates how to perform the subsequent steps. As indicated in (4.13),
the transition occurs by inserting an unresolved parton within the hard dipole described by
the integrated antenna function. We have to distinguish three different types of insertions:

• insertion of an unresolved gluon;

• insertion of an unresolved quark-antiquark pair, coming from a hard gluon splitting;

• insertion of unresolved partons in IC limits.

These three cases are described in detail in the following.
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J
(1)
2 X 0

3 X0
3

q − q̄

J
(1)
2 (iq, jq̄) A0

3(sij) A0
3(iq, ug, jq̄)

J
(1)
2 (1q, iq̄) A0

3,q(s1i) A0
3,q(1q, ug, iq̄)

J
(1)
2 (1q, 2q̄) A0

3,qq̄(s12) A0
3,qq̄(1q, ug, 2q̄)

q − g

J
(1)
2 (iq, jg) 1

2D
0
3(sij) d0

3(iq, ug, jg)

J
(1)
2 (1q, ig) 1

2D
0
3,q(s1i) d0

3,q(1q, ug, ig)

J
(1)
2 (1g, iq) D0

3,g→g(s1i) d0
3,g(iq, ug, 1g)

J
(1)
2 (1q, 2g) D0

3,qg(s12) D0
3,qg(1q, ug, 2g)

g − g

J
(1)
2 (ig, jg) 1

3F
0
3 (sij) f0

3 (ig, ug, jg)

J
(1)
2 (1g, ig) 1

2F
0
3,g(s1i) f0

3,g(1g, ug, ig)

J
(1)
2 (1g, 2g) F0

3,gg(s12) F 0
3,gg(1g, ug, 2g)

Table 18. Replacement rules to convert integrated antenna functions to their unintegrated counter-
parts for the insertion of an unresolved gluon (denoted with ug) between the pair of hard radiators.

Insertion of an unresolved gluon. The insertion of an unresolved gluon was already
described in our earlier work [23]. From a practical standpoint, it is the simplest type of
insertion, since it affects all the external partons in the same way. It occurs within antenna
functions coming from the integration over a soft or collinear gluon, namely A-, D-, and
F -type three-parton tree-level antenna functions. In table 18 we indicate the transition
rules to convert integrated dipoles and corresponding integrated antenna functions to the
unintegrated antenna functions. The inserted unresolved gluon is denoted with the label ug.

In a practical implementation, one typically requires a numerical indexing of the partons:
for an (n + 2)-parton LO process, one can chose ug = n + 3. We clarify how the insertion is
performed with an example. We consider the following term which is part of the leading-colour
NLO virtual subtraction term for pp → 4j production, specifically for qq̄ → gggg:

−
(
J

(1)
2 (1q, 3g) + J

(1)
2 (3g, 4g) + J

(1)
2 (4g, 5g) + J

(1)
2 (5g, 6g) + J

(1)
2 (2q̄, 6g)

)
× A2q,0

6 (1q, 3g, 4g, 5g, 6g, 2q̄)J (4)
4 (p3, p4, p5, p6). (4.15)

To insert the unresolved gluon 7g, we can rely on table 18 to first convert the integrated
dipoles to integrated antenna functions, and then replace them with their unintegrated
counterparts. We obtain:

− d0
3,q(1q, 7g, 3g)A2q,0

6 ((̃17)q, (̃37)g, 4g, 5g, 6g, 2q̄)J (4)
4 (p̃37, p4, p5, p6)

− f0
3 (3g, 7g, 4g)A2q,0

6 (1q, (̃37)g, (̃47)g, 5g, 6g, 2q̄)J (4)
4 (p̃37, p̃47, p5, p6)

− f0
3 (4g, 7g, 5g)A2q,0

6 (1q, 3g, (̃47)g, (̃57)g, 6g, 2q̄)J (4)
4 (p3, p̃47, p̃57, p6)

− f0
3 (5g, 7g, 6g)A2q,0

6 (1q, 3g, 4g, (̃57)g, (̃67)g, 2q̄)J (4)
4 (p3, p4, p̃57, p̃67)

− d0
3,q(2q̄, 7g, 6g)A2q,0

6 (1q, 3g, 4g, 5g, (̃67)g, (̃27)q̄)J
(4)
4 (p3, p4, p5, p̃67). (4.16)
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As another example, we consider a specific contribution to the subleading-colour part of
the virtual subtraction terms:

− 2
(
J

(1)
2 (1q, 2q̄)− J

(1)
2 (1q, 6g)− J

(1)
2 (2q̄, 4g) + J

(1)
2 (4g, 6g)

)
× A2q,0

6 (1q, 3g, 4g, 5g, 6g, 2q̄; 1q, 4g, 5g, 6g, 3g, 2q̄)J (4)
4 (p3, p4, p5, p6), (4.17)

where we have an interference term between the two colour orderings (1q, 3g, 4g, 5g, 6g, 2q̄)
and (1q, 4g, 5g, 6g, 3g, 2q̄), accompanied by a non-trivial dipole structure. Repeating the
insertion steps yields:

− 2A0
3,qq̄(1q, 7g, 2q̄)A2q,0

6 ((̃17)q, 3g, 4g, 5g, 6g, (̃27)q̄; (̃17)q, 4g, 5g, 6g, 3g, (̃27)q̄)

× J
(4)
4 (p3, p4, p5, p6)

+ 2d0
3,q(1q, 7g, 6g)A2q,0

6 ((̃17)q, 3g, 4g, 5g, (̃67)g, 2q̄; (̃17)q, 4g, 5g, (̃67)g, 3g, 2q̄)

× J
(4)
4 (p3, p4, p5, p̃67)

+ 2d0
3,q(2q̄, 7g, 4g)A2q,0

6 (1q, 3g, (̃47)g, 5g, 6g, (̃27)q̄; 1q, (̃47)g, 5g, 6g, 3g, 2q̄)

× J
(4)
4 (p3, p̃47, p5, p6)

− 2f0
3 (4g, 7g, 6g)A2q,0

6 (1q, 3g, (̃47)g, 5g, (̃67)g, 2q̄; 1q, (̃47)g, 5g, (̃67)g, 3g, 2q̄)

× J
(4)
4 (p3, p̃47, p5, p̃67) . (4.18)

The resulting expressions are part of the NLO real subtraction term for qq̄ → gggg.
Let’s now assume that, instead of the particular terms considered in (4.15) and (4.17) one
performs the insertion of the unresolved gluon 7g within the full virtual subtraction term for
qq̄ → gggg, namely summing over all possible colour orderings. The result obtained this way
will still not contain the entire unresolved behaviour of the real matrix element associated to
gluon 7g becoming soft or collinear to hard partons. In particular, it will contain the entirety
of the soft limits and the quark-gluon collinear limits, but for each possible gluon-gluon
collinear pair (ig, 7g) it will only have part of the collinear limit, due to the construction of
the three-parton tree-level sub-antenna functions. The full collinear behaviour is restored
when an analogous term with unresolved gluon ig is added.

To be more precise, the procedure described before for the insertion of the unresolved
gluon 7g generates a function of the external real-kinematics momenta:

f(p1, p2, p3, p4, p5, p6; p7) , (4.19)

where we isolated the last argument, since it is the one corresponding to the newly inserted
gluon, which, for the moment, is the only one with infrared divergences associated to it. The
full singular behaviour is obtained, in this specific example with five final-state gluons, taking:

f(p1, p2, p3, p4, p5, p6; p7) + f(p1, p2, p4, p5, p6, p7; p3)
f(p1, p2, p5, p6, p7, p3; p4) + f(p1, p2, p6, p7, p3, p4; p5)
f(p1, p2, p7, p3, p4, p5; p6). (4.20)
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J
(1)
2 X 0

3 X0
3

q − g
Ĵ2

(1)(iq, jg) 1
2E

0
3 (sij) 1

4
[
E0

3(iq, uq, uq̄) + E0
3(iq, uq̄, uq)

]
Ĵ2

(1)(1q, ig) 1
2E

0
3,q(s1i) 1

4

[
E0

3,q(1q, uq, uq̄) + E0
3,q(1q, uq̄, uq)

]

g − g
Ĵ2

(1)(ig, jg) G0
3(sij)

1
2

[
G0

3(ig, uq, uq̄) + G0
3(ig, uq̄, uq)

+G0
3(uq, uq̄, jq) + G0

3(uq̄, uq, jq)
]

Ĵ2
(1)(1g, jg) 1

2G
0
3,g(s1i) 1

4

[
G0

3,g(1g, uq, uq̄) + G0
3,g(1g, uq̄, uq)

]
Table 19. Replacement rules to convert integrated antenna functions to their unintegrated counter-
parts when the final-state gluon splits into an unresolved quark-antiquark pair, denoted with (uq, uq̄).
Symmetrization over the inserted quark-antiquark pair is always considered.

The combination above allows each gluon to play the role of the unresolved parton, effectively
reproducing all the soft and collinear limits in the considered process. We note that the
actual ordering of the hard gluons in each instance of the function f is irrelevant, since it
already contains a sum over all possible colour orderings. Indeed, in (4.20), the only relevant
position for a gluon momentum is the last one.

Insertion of an unresolved quark-antiquark pair. The insertion of quark-antiquark
pair is necessary when the LO process has gluons in the final state. E- and G-type antenna
functions address such configuration. While the insertion of an unresolved gluon proceeds
just by adding a parton on top of the LO partonic content, in this case we have a final-state
gluon which is converted into a quark-antiquark pair.

We consider a (n+2)-parton process with ng final-state gluons, labelled as (i, . . . , i+ng−1),
while we temporarily label the new quark and antiquark with uq and uq̄. Any final-state
gluon is allowed to split into (uq, uq̄). To take this into account, we apply to the integrated
expression the insertions described in table 19. In particular, within the FF G0

3 antenna
function, either gluon ig or jg can split into (uq, uq̄) and both contributions are taken into
account. Since we are inserting a quark-antiquark pair which is allowed to become collinear,
it is convenient to directly perform a symmetrization over the quark and the antiquark
indices already at this level.

After the insertion, we need to relabel the partonic indices. First of all, the real kinematics
has one gluon less, so the gluons are re-assigned to indices (i, . . . , i + ng − 2). The actual
way this relabelling happens is not relevant, since, once again, we will sum over all possible
colour orderings. Then, the newly added quark uq is assigned to the free index i + ng − 1,
while the antiquark is indexed as n + 3. This strategy ensures that a quark-antiquark pair is
consistently inserted in any possible ordering of the original set of gluons. As a result, the
subtraction term for each limit is generated exactly ng times, and we must normalize by 1/ng.

If the LO process already has hard quark-antiquark pairs, for the insertion procedure we
assume the newly added pair has a flavour different from any other pair already present in
the process. Indeed, collinear q ∥ q̄ singularities are only present at the squared amplitude
level when q and q̄ belong to the same fermionic line. Therefore, the q ∥ q̄ singular behaviour
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of real emissions corrections with two or more identical-flavour fermionic lines are described
by the same structures required for the different-flavour case.

For an example, we can consider once again the qq̄ → gggg process in the context of the
NLO correction to pp → 4j. In this case ng = 4 and the final-state gluons are labelled with
indices 3g, 4g, 5g and 6g. After the insertion, we will have three gluons labelled as 3g, 4g

and 5g, a quark 6q and an antiquark 7q̄. We take the following term from the leading-Nf

contribution to the virtual subtraction term:

−
(

Ĵ2
(1)(1q, 3g) + Ĵ2

(1)(3g, 4g) + Ĵ2
(1)(4g, 5g) + Ĵ2

(1)(5g, 6g) + Ĵ2
(1)(2q̄, 6g)

)
× A2q,0

6 (1q, 3g, 4g, 5g, 6g, 2q̄)J (4)
4 (p3, p4, p5, p6). (4.21)

The insertion yields, after summing over all gluons and multiplying with an overall factor
1/ng = 1/4:

− 1
16E0

3,q(1q, 6q, 7q̄)A2q,0
6 ((̃16)q, (̃67)g, 3g, 4g, 5g, 2q̄)J (4)

4 (p3, p4, p5, p̃67)

− 1
16E0

3,q(2q̄, 6q, 7q̄)A2q,0
6 (1q, 3g, (̃67)g, 4g, 5g, (̃26)q̄)J

(4)
4 (p3, p4, p5, p̃67)

− 1
16G0

3(3g, 6q, 7q̄)
[
A2q,0

6 (1q, (̃36)g, (̃67)g, 4g, 5g, 2q̄)

A2q,0
6 (1q, (̃67)g, (̃36)g, 4g, 5g, 2q̄)

]
J

(4)
4 (p̃36, p4, p5, p̃67)

− 1
16G0

3(4g, 6q, 7q̄)
[
A2q,0

6 (1q, 3g, (̃46)g, (̃67)g, 5g, 2q̄)

A2q,0
6 (1q, 3g, (̃67)g, (̃46)g, 5g, 2q̄)

]
J

(4)
4 (p3, p̃46, p5, p̃67)

− 1
16G0

3(5g, 6q, 7q̄)
[
A2q,0

6 (1q, 3g, 4g, (̃56)g, (̃67)g, 2q̄)

A2q,0
6 (1q, 3g, 4g, (̃67)g, (̃56)g, 2q̄)

]
J

(4)
4 (p3, p4p̃56, p̃67)

+ (6 ↔ 7) . (4.22)

The insertion proceeds analogously even beyond the leading-Nf contributions, with
squared coherent partial amplitudes possibly replaced by incoherent interferences between
different colour orderings. Contrary to the gluon insertion case, no additional sum over
permutations of real-kinematics momenta is required here, because the obtained expression
completely encapsulates the singular behaviour in the q ∥ q̄ limit.

Insertion of an unresolved parton in IC limits. IC limits at NLO occur when a
final-state quark (antiquark), denoted in the following by uq (uq̄) becomes collinear to either
an initial-state gluon (g → q) or initial-state quark (antiquark) of the same flavour (q → g).
The appropriate replacement rules for IC insertions are listed in table 20, where parton 1 is the
one involved in the identity-changing limit, while the second parton in the integrated dipoles
(antenna functions) is just a spectator. Symmetrization over the collinear quark-antiquark
pair is considered for G- and E-type antenna functions.

Analogously to the insertion of a quark-antiquark pair, IC insertions require a suitable
relabelling of the parton indices within the affected structures. The quark (antiquark) uq (uq̄)
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J
(1)
2 X 0

3 X0
3

q − q̄
J

(1)
2,g→q(1q, iq̄) −1

2A
0
3,g(s1i) −A0

3,g(uq, 1g, iq̄)

J
(1)
2,g→q(1q, 2q̄) −A0

3,gq(s12) −A0
3,gq(uq, 1g, 2q̄)

q − g

J
(1)
2,g→q(1q, ig) −D0

3,g→q(s1i) −d0
3,g(uq, 1g, ig)

J
(1)
2,q→g(1g, iq) −E0

3,q′(s1i) −1
2

[
E0

3,q′(iq, 1q, uq̄) + E0
3,q′(iq, uq̄, 1q)

]
J

(1)
2,g→q(1q, 2g) −D0

3,gg(s1i) −D0
3,gg(uq, 1g, 2g)

J
(1)
2,q→g(1g, 2q) −E0

3,q′q(s12) −1
2

[
E0

3,q′q(2q, 1q, uq̄) + E0
3,q′q(2q, uq̄, 1q)

]
g − g

J
(1)
2,q→g(1q, ig) −G0

3,q(s1i) −1
2

[
G0

3,q(ig, 1q, uq̄) + G0
3,q(ig, uq̄, 1q)

]
J

(1)
2,q→g(1q, 2g) −G0

3,qg(s12) −1
2

[
G0

3,qg(2g, 1q, uq̄) + G0
3,qg(2g, uq̄, 1q)

]
Table 20. Replacement rules to convert integrated antenna functions to their unintegrated coun-
terparts for identity-changing insertions. The final-state quark (antiquark) causing the change of
identity of parton 1 is denoted with uq (uq̄). Symmetrization over the collinear quark-antiquark pair
is considered for G- and E-type antenna functions.

responsible for the IC limit is labelled with the proper index that it has in the real-emission
kinematics, while the indices of the other final-state partons are shifted accordingly. The
procedure can be clarified with an example: we consider the LO process qg → qggg and
we address a g → q IC limits. Namely we aim to construct the subtraction term for the
real-emission process gg → qq̄ggg, for the limit when the final state antiquark becomes
collinear to the initial state gluon. We have uq̄ = 4, which means that the additional
final-state gluons, in the transition from the LO to the real kinematics, must have their
indices shifted from (4, 5, 6) to (5, 6, 7).

We start from the following contribution in the IC component of the virtual subtrac-
tion term:

−J
(1)
2,g→q(1q, 2g)M0,2q

6 (1q, 2g, 3q, 4g, 5g, 6g)J (4)
4 (p3, p4, p5, p6), (4.23)

where M0,2q
6 represents the full LO matrix element. The transition to the unintegrated level,

including the appropriate relabelling of momenta gives:

d0
3,gg(4q̄, 1g, 2g)M0,2q

6 ((̃14)q, (̃24)g, 3q, 5g, 6g, 7g)J (4)
4 (p3, p5, p6, p7). (4.24)

The same logic applies to contributions beyond the leading-colour approximation and to g → q

collinear limits. Also in this case, the generated expressions completely cover the considered
IC collinear limit and no additional sum over permutations of the external momenta is needed.

The procedure described above, taking into account all different types of insertions, is
comprehensively summarized by the following notation:

dσ̂S
ab,NLO = −Ins

[
dσ̂T

ab,NLO

]
. (4.25)
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Removal of splitting kernels from J
(1)
2

Insertion of a single unresolved parton: X 0
3 → X0

3

Relabelling/mapping of momenta

Fix overall factors

Figure 1. General outline of the generation of the real subtraction term from the virtual subtraction
term, via the application of the Ins [·] operator.

The Ins [·] operator systematically applies the transition from integrated to unintegrated
quantities, as well as the required adjustments, such as momentum mapping, relabelling
and appropriate sum over permutations of the external momenta. We summarize the action
of the Ins [·] operator in figure 1.

We will now clarify some important aspects related to the procedure we have described.
First of all, we observe that the real subtraction term obtained by (4.25) satisfies (2.6) by
construction. Indeed, the analytical integration of dσ̂S

ab,NLO is realized in the context of
antenna subtraction by integrating the antenna functions appearing in it. Since the action
of the Ins [·] operator is based on the univocal correspondence in (4.13), by converting the
unintegrated antenna functions in dσ̂S

ab,NLO into their integrated counterparts (analytical
integration as in the traditional approach), one would obtain the exact same expression
for the virtual subtraction term used as the input of (4.25), modulo the mass factorization
counterterm which is added later. In this regard, equation (4.25) should be viewed as the
unambiguous inverse operation with respect to (2.6). Namely, up to mass factorization
counterterms, one has: ∫

1
Ins [f ] = f, (4.26)

where f is used instead of dσ̂T
ab,NLO to emphasize the generality of such property.

The momentum mapping relating the (n+3)- and the (n+2)-momentum sets is induced in
each term of an expression like (4.3) by the antenna function. The specific form of the mapping
does not affect the final integrated result, provided it preserves the exact factorization of the
antenna phase space [7, 8]. Therefore, when the Ins [·] operator is applied, the unintegrated
antenna functions straightforwardly dictate which kind of momentum mapping is required
within the associated reduced matrix element, namely what are the hard radiators, the
unresolved parton and the kinematical configuration (FF, IF or II). The specific form of
the mapping can then be chosen at the level of the numerical implementation. As in the
traditional antenna subtraction approach, we always consider the mappings described in [84].
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What is in principle left to discuss is whether dσ̂S
ab,NLO obtained via the outlined approach

correctly subtracts all the infrared-divergent behaviour of the real-emission correction. First
of all, we remark once again that the relation in (2.6) is automatically fulfilled. Although
equation (2.6) alone is not sufficient to claim that dσ̂S

ab,NLO works as intended, it is a necessary
condition for the cancellation of the infrared singularities between real and virtual corrections
and significantly restricts the form of the real subtraction term. In addition, with (4.25) we
are effectively dressing each pair of hard radiators with an unresolved emission, taking then
into account all possible unresolved limits of the real-emission matrix element. The potential
double-counting of an unresolved configuration is prevented by the fact that NLO antenna
functions have well defined unresolved partons and hard radiators. As discussed in the
insertion examples above, the correct infrared behaviour in collinear limits is only recovered
when a sum over all potentially unresolved partons is performed, due to the ambiguity in the
identification of a hard emitter and an unresolved parton in such limits. We anticipate that
at NNLO some of these features are less clearly manifest in the final form of the subtraction
terms. This is the reason why we will need to suitably decompose the subtraction framework
into several structures with specific roles in order to define a process-independent strategy to
assemble the subtraction terms. The knowledge and insights accumulated during previous
applications of the traditional antenna subtraction method will be particularly relevant for
the formulation of the colourful antenna subtraction approach at NNLO.

We conclude by mentioning here that angular correlations in collinear limits require
particular attention. Such terms average to zero after integration over the phase space of
the collinear particles, yielding no explicit poles at the virtual level. Within the antenna
subtraction method, angular terms are never subtracted locally. As explained in detail in [65],
a suitable point-by-point angular average is performed to locally enforce the vanishing of the
angular terms. For this reason, the absence of explicit poles associated to such divergences at
the virtual level does not represent an issue for the colourful antenna subtraction method.

4.4 Observations

We carefully treated the insertion of unresolved partons at NLO because the techniques
established at NLO are repeatedly used at NNLO as well. Indeed, the majority of the
NNLO subtraction terms can be generated through the iterated application of Ins [·] to
integrated quantities. This was recently observed also in the context of the nested soft-
collinear subtraction scheme [18]. The only exception is represented by configurations that
require a simultaneous double insertion of unresolved partons.

The construction of the NLO real subtraction term concludes the description of the
colourful antenna method at this perturbative order. As in the traditional subtraction
schemes, the key requirement is the analytical integrability of the real subtraction term
over the phase space of the unresolved radiation. In addition, here it is crucial that the
virtual subtraction term is expressed in a language suitable for the unintegration procedure.
The correspondence between integrated antenna functions, collected in (3.39), and their
unintegrated versions guarantees this property.

We remark that the knowledge of the unintegrated antenna functions required for the
construction of the real subtraction term is a crucial premise for the application of this
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method. Indeed, the described unintegration procedure allows for a systematic assembly of
such ingredients and not for an actual direct generation of the structures required to remove
the infrared divergences of real emission corrections, such as eikonal factors or splitting
kernels. This observation, of course, applies to the NNLO case too.

5 Colourful antenna subtraction at NNLO

In the following, we document the colourful antenna subtraction method at NNLO. We recall
the structure of the NNLO correction to a partonic sub-process initiated by partons a and b:

dσ̂ab,NNLO =
∫

n

[
dσ̂V V

ab,NNLO − dσ̂U
ab,NNLO

]
+
∫

n+1

[
dσ̂RV

ab,NNLO − dσ̂T
ab,NNLO

]
+
∫

n+2

[
dσ̂RR

ab,NNLO − dσ̂S
ab,NNLO

]
, (5.1)

with

dσ̂S
ab,NNLO = dσ̂S,1

ab,NNLO + dσ̂S,2
ab,NNLO ,

dσ̂T
ab,NNLO = dσ̂V S

ab,NNLO −
∫

1
dσ̂S,1

ab,NNLO − dσ̂MF,1
ab,NNLO ,

dσ̂U
ab,NNLO = −

∫
1

dσ̂V S
ab,NNLO −

∫
2

dσ̂S,2
ab,NNLO − dσ̂MF,2

ab,NNLO . (5.2)

As for the NLO case, typically one would study the infrared-divergent behaviour of the
real-virtual and double-real matrix elements to construct dσ̂V S

ab,NNLO, dσ̂S,1
ab,NNLO and dσ̂S,2

ab,NNLO
first, which are then integrated and combined with the mass factorization counterterms to
complete the subtraction infrastructure. In contrast, the application of the colourful antenna
subtraction method at NNLO begins by addressing the double-virtual correction in colour
space. Once the double-virtual subtraction term is constructed, the real-virtual and double-
real subtraction terms are generated via the insertion of unresolved partons, exploiting the
relations between integrated and unintegrated structures in the subtraction terms in (2.20).

To outline the colourful antenna subtraction method at NNLO, we summarize its
procedure in figure 2. Single descendant red arrows represent the transition from an integrated
quantity to its unintegrated counterpart by means of the insertion of an unresolved parton.
Two disjoint red arrows indicate the iterated insertion of two unresolved partons, while two
connected red arrows indicate the simultaneous insertion of two unresolved partons.

To facilitate the navigation through this section, we list in table 21 the location of the
definition of each term appearing in figure 2.

5.1 NNLO mass factorization in colour space

We start by casting the NNLO mass factorization counterterm in a form which suits the
colourful approach. At NNLO, as indicated in (2.19) and (2.20), we have two different
contributions: the double-virtual and the real-virtual mass factorization terms.
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VV

RV

RR

˷˷˷˷

Figure 2. Structure of the colourful antenna subtraction at NNLO. Descendant red arrows represent
the transition from an integrated quantity to its unintegrated counterpart via single insertion (single
arrow), two iterated single insertions (two disjoint arrows) or double simultaneous insertion (two
connected arrows) of unresolved partons. The definitions of each component are listed in table 21.

U, a eq. (5.16)
U, a0 eq. (5.19)

U, a1 eq. (5.20)

U, b eq. (5.17)
U, b, c.u. eq. (5.24)

U, b, a.c.c. eq. (5.23)

U, c eq. (5.18)

S, a eq. (5.95)

S, b1 eq. (5.104)

S, b2 eq. (5.97)

S, c eq. (5.106)

S, d eq. (5.108)

T, a eq. (5.32)

T, b1 eq. (5.43)

T, b2 eq. (5.50)

T, b2, X1
3 eq. (5.47)

T, b2, JX Section 5.3.2

T, b2, MX eq. (5.49)

T, b3 eq. (5.53)

T, c eq. (5.80)

T, c1 eq. (5.81)

T, c2 eq. (5.82)

T, c0 eq. (5.83)

Table 21. Definitions of each term appearing in figure 2.
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5.1.1 Double virtual mass factorization term

The double-virtual mass factorization term at NNLO reads:

dσ̂MF,2
ab,NNLO = −

∫ dx1
x1

dx2
x2

∑
c,d

{(
αsC(ϵ)
2π

)[
Γ(1)

ab;cd (x1, x2)
(
dσ̂V

cd,NLO − dσ̂T
cd,NLO

)]

+
(

αsC(ϵ)
2π

)2 [
Γ(2)

ab;cd (x1, x2)−
β0
ϵ
Γ(1)

ab;cd (x1, x2)

+ 1
2
∑
α,β

[
Γ(1)

ab;αβ ⊗ Γ(1)
αβ;cd

]
(x1, x2)

]
dσ̂cd,LO

}
, (5.3)

and collects contributions factorizing onto an n-particle phase space, where n is the final-state
multiplicity of the LO process. As usual we separate the IP and IC components:

dσ̂MF,2
ab,NNLO = dσ̂MF,2,IP

ab,NNLO + dσ̂MF,2,IC
ab,NNLO. (5.4)

As in section 4.1 at NLO, we express the two-loop identity-preserving mass factorization
kernels in colour space as:

Γ(2)
ab;ab (x1, x2) = Γ(2)

aa,full (x1) δ(1− x2) + Γ(2)
bb,full (x2) δ(1− x1), (5.5)

where
Γ(2)

aa,full (xi) = −Γ(2)
aa,full (xi)

1
Ca

∑
j ̸=i

Ti · Tj , i = 1, 2. (5.6)

Hence, we can write the IP component of the mass factorization counterterm as:

dσ̂MF,2,IP
ab,NNLO = −N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n){

⟨A0
n+2|Γ

(1)
ab;ab (x1, x2) |A1

n+2⟩+ ⟨A1
n+2|Γ

(1)
ab;ab (x1, x2) |A0

n+2⟩

− 2 ⟨A0
n+2|

[
Γ(1)

ab;ab ⊗J (1)(ϵ)
]
(x1, x2)|A0

n+2⟩

+ 1
2 ⟨A0

n+2|
[
Γ(1)

ab;ab ⊗ Γ(1)
ab;ab

]
(x1, x2)|A0

n+2⟩

− β0
ϵ
⟨A0

n+2|Γ
(1)
ab;ab (x1, x2) |A0

n+2⟩

+ ⟨A0
n+2|Γ

(2)
ab;ab (x1, x2) |A0

n+2⟩
}

, (5.7)

where we inserted the expression of the identity-preserving virtual subtraction term dσ̂T,IP
cd,NLO

given in (4.11).
The IC part of the two-loop mass factorization counterterms is not expressed in colour

space. It reads:

dσ̂MF,2,IC
ab,NNLO =−

∫ dx1
x1

dx2
x2

∑
(cd) ̸=(ab)

{(
αsC(ϵ)
2π

)[
Γ(1)

ab;cd (x1,x2)
(
dσ̂V

cd,NLO−dσ̂T
cd,NLO

)]

+
(

αsC(ϵ)
2π

)2[ ∑
(ef) ̸=(ab),(cd)

1
2
[
Γ(1)

ab;ef ⊗Γ(1)
ef ;cd

]
(x1,x2)

+Γ(2)
ab;cd(x1,x2)−

β0
ϵ
Γ(1)

ab;cd (x1,x2)
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+1
2
[
Γ(1)

ab;ab⊗Γ(1)
ab;cd

]
(x1,x2)+

1
2
[
Γ(1)

ab;cd⊗Γ(1)
cd;cd

]
(x1,x2)

]
dσ̂cd,LO

}

+
(

αsC(ϵ)
2π

)2 ∑
(ef) ̸=(ab)

[
1
2
[
Γ(1)

ab;ef ⊗Γ(1)
ef ;ab

]
(x1,x2)+Γ(2)

ab;ef ;ab(x1,x2)
]
dσ̂ab,LO,

(5.8)

where the last line includes the flip-flopping contributions, with the flip-flopping kernel
defined as

Γ(2)
ab;ef ;ab (x1, x2) = Γ(2)

a→e→a (1) δ(1− x2)δae + Γ(2)
b→f→b (2) δ(1− x1)δbf . (5.9)

5.1.2 Real virtual mass factorization term

The real-virtual mass factorization term is given by (2.21):

dσ̂MF,1
ab,NNLO = −

(
αsC(ϵ)
2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2)

(
dσ̂R

cd,NLO − dσ̂S
cd,NLO

)
,

and can be split into two contributions:

dσ̂MF,1
ab,NNLO = dσ̂MF,1,a

ab,NNLO + dσ̂MF,1,b
ab,NNLO, (5.10)

with

dσ̂MF,1,a
ab,NNLO = −

(
αsC(ϵ)
2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2) dσ̂R

cd,NLO, (5.11)

dσ̂MF,1,b
ab,NNLO =

(
αsC(ϵ)
2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2) dσ̂S

cd,NLO. (5.12)

Both dσ̂MF,1,a
ab,NNLO and dσ̂MF,1,b

ab,NNLO can be split into their IP and IC components. In analogy
with (4.8), the IP component of dσ̂MF,1,a

ab,NNLO can be rewritten in colour space as:

dσ̂MF,1,a,IP
ab,NNLO = −NRV

NNLO

∫ dx1
x1

dx2
x2

∫
dΦn(p3, . . . , pn+2;x1p1, x2p2) J (n+1)

n ({p}n+1)

× ⟨A0
n+3|Γ

(1)
ab;ab (x1, x2) |A0

n+3⟩ , (5.13)

where |A0
n+3⟩ indicates the single-real correction amplitude and NRV

NNLO is the appropriate
overall coefficient at the real-virtual level:

NRV
NNLO = sRV (4παs)

(
αsC(ϵ)
2π

)
NLO, with sRV = sR. (5.14)

Terms in dσ̂MF,1,b
ab,NNLO have a structure like Γ(1)

ij X0
3 a0

n+2. As we show in section 5.3.2 below,
this term is used to reconstruct one-loop integrated dipoles that are needed in the real-virtual
subtraction term to remove the explicit poles of one-loop reduced matrix elements.
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5.2 NNLO double-virtual subtraction term

The double-virtual subtraction term at NNLO dσ̂U
ab,NNLO, reproduces the explicit poles of

the two-loop matrix element and contains the double-virtual mass factorization counterterm.
In the following we see how to construct dσ̂U

ab,NNLO in a general way relying on the results
of the previous sections.

We focus first on the identity-preserving component. Using the dipole operators defined
in sections 3.3.1 and 3.3.2, we can construct:

dσ̂U,IP
ab,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
⟨A0

n+2|J (1)(ϵ)|A1
n+2⟩+ ⟨A1

n+2|J (1)(ϵ)|A0
n+2⟩

− ⟨A0
n+2|J (1)(ϵ)⊗J (1)(ϵ)|A0

n+2⟩

− β0
ϵ
⟨A0

n+2|J (1)(ϵ)|A0
n+2⟩

+ ⟨A0
n+2|J (2)(ϵ)|A0

n+2⟩ − ⟨A0
n+2|J

(2)(ϵ)|A0
n+2⟩

}
. (5.15)

One can verify that the expression above reproduces the same infrared singularity structure
described by (3.37), thanks to the identities relating the ϵ-poles of colour-stripped integrated
dipoles and infrared insertion operators, given in equations (3.59), (3.60) and (3.61). We
remark the presence of J (2) in the last line, to compensate for the unphysical poles present
in quark-gluon integrated dipoles. Equation (5.15) provides a fully general result for the
removal of explicit double-virtual singularities in terms of integrated antenna functions.

According to the usual decomposition of the double-virtual subtraction term [8], we
split (5.15) into the following contributions:

dσ̂U,a,IP
ab,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
⟨A0

n+2|J (1)(ϵ)|A1
n+2⟩+ ⟨A1

n+2|J (1)(ϵ)|A0
n+2⟩

− β0
ϵ
⟨A0

n+2|J (1)(ϵ)|A0
n+2⟩

}
, (5.16)

which collects dipole insertions within the one-loop correction,

dσ̂U,b,IP
ab,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
− ⟨A0

n+2|J (1)(ϵ)⊗J (1)(ϵ)|A0
n+2⟩

}
, (5.17)

which addresses double dipole insertions at tree-level and

dσ̂U,c,IP
ab,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
⟨A0

n+2|J (2)(ϵ)|A0
n+2⟩ − A0

n+2|J
(2)(ϵ)|A0

n+2

}
, (5.18)

which contains two-loop integrated dipoles. We further decompose dσ̂U,a
ab,NNLO into

dσ̂U,a0,IP
ab,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
− β0

ϵ
⟨A0

n+2|J (1)(ϵ)|A0
n+2⟩

}
, (5.19)
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dσ̂U,a1,IP
ab,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
⟨A0

n+2|J (1)(ϵ)|A1
n+2⟩+ ⟨A1

n+2|J (1)(ϵ)|A0
n+2⟩

}
, (5.20)

where we separated the contribution of the one-loop amplitude from the β0 term, which
only contains tree-level amplitudes.

We also introduce a decomposition of dσ̂U,b,IP
ab,NNLO in (5.17) according to the colour con-

nections among the hard radiators in the two integrated dipoles. After the evaluation of
the colour algebra, dσ̂U,b,IP

ab,NNLO has the form:

dσ̂U,b,IP
ab,NNLO ∼

∑
c,c′

∑
ij,kl

J (1)
2 (i, j)J (1)

2 (k, l)a0
n+2(c, c′; ., i, ., j, ., k, ., l, .), (5.21)

which we split into the following contributions [7, 8]:

• colour-connected (c.c.) contributions, where the pair of hard radiators coincides in the
two integrated dipoles:

dσ̂U,b,IP,c.c.
ab,NNLO ∼

∑
c,c′

∑
ij

J (1)
2 (i, j)J (1)

2 (i, j)a0
n+2(c, c′; ., i, ., j, .), (5.22)

• almost colour-connected (a.c.c.) contributions, where the two integrated dipoles share
one hard radiator i:

dσ̂U,b,IP,a.c.c.
ab,NNLO ∼

∑
c,c′

∑
ijk

J (1)
2 (i, j)J (1)

2 (i, k)a0
n+2(c, c′; ., i, ., j, ., k, .), (5.23)

• colour-unconnected (c.u.) contributions, where there is no overlap between the hard
radiators in the two integrated dipoles:

dσ̂U,b,IP,u.c.
ab,NNLO ∼

∑
c,c′

∑
ij

∑
kl ̸=ij

J (1)
2 (i, j)J (1)

2 (k, l)a0
n+2(c, c′; ., i, ., j, ., k, ., l, .). (5.24)

Finally, we label the contributions in dσ̂U,c
ab,NNLO according to the different types of

integrated antenna functions which appear in them:

• dσ̂
U,c,X 0

4
ab,NNLO: integrated four-parton tree-level antenna functions;

• dσ̂
U,c,X 1

3
ab,NNLO: integrated three-parton one-loop antenna functions;

• dσ̂
U,c,X 0

3 ⊗X 0
3

ab,NNLO : convolution of two integrated three-parton tree-level antenna functions;

• dσ̂U,c,β0
ab,NNLO: β0/ϵ terms, with a single integrated three-parton tree-level antenna function.

Other structures appearing in the two-loop integrated dipoles are not listed here since
they originate from mass factorization and do not propagate beyond the double-virtual
level. Such structures are two-loop mass factorization kernels, convolutions of two one-loop
mass factorization kernels and convolutions of a one-loop mass factorization kernel with an
integrated three-parton tree-level antenna function.
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The identity-changing part of the double-virtual subtraction term reflects the structure
of the IC mass factorization counterterm:

dσ̂U,IC
ab,NNLO = −

∫ dx1
x1

dx2
x2

∑
(cd) ̸=(ab)

{(
αsC(ϵ)
2π

)[
J (1)

ab;cd(x1, x2)
(
dσ̂V

cd,NLO − dσ̂T
cd,NLO

)]

+
(

αsC(ϵ)
2π

)2 [ ∑
(ef) ̸=(ab),(cd)

1
2
[
J (1)

ab;ef ⊗ J (1)
ef ;cd

]
(x1, x2)

+ J (2)
ab;cd(x1, x2)−

β0
ϵ
J (1)

ab;cd(x1, x2)
]
dσ̂cd,LO

}

+
(

αsC(ϵ)
2π

)2 ∑
(ef) ̸=(ab)

[
1
2
[
J (1)

ab;ef ⊗ J (1)
ef ;ab

]
(x1, x2) + J (2)

ab;ef ;ab(x1, x2)
]
dσ̂ab,LO.

(5.25)
The expression above collects all the structures in the double-virtual IC mass factorization

counterterm and combines them with IC integrated NNLO antenna functions. It is overall
free from infrared singularities. We notice that in the first line, the difference between the
virtual correction and its corresponding subtraction term has no ϵ-poles. Therefore, even
if we were to express the virtual subtraction term in colour space to expose its singularity
structure, it would not be necessary to do so in this context.

Despite not being expressed in colour space, the IC double-virtual subtraction term
exhibits analogous structures to the ones present in its IP counterpart. We can indeed
decompose it in the following components:

dσ̂U,IC,a0
ab,NNLO =

(
αsC(ϵ)
2π

)2 ∑
(cd) ̸=(ab)

∫ dx1
x1

dx2
x2

(
β0
ϵ
J (1)

ab;cd(x1, x2)
)

dσ̂cd,LO, (5.26)

dσ̂U,IC,a1
ab,NNLO = −

(
αsC(ϵ)
2π

) ∑
(cd) ̸=(ab)

∫ dx1
x1

dx2
x2

J (1)
ab;cd(x1, x2)

×
(
dσ̂V

cd,NLO − dσ̂T
cd,NLO

)
dσ̂cd,LO, (5.27)

dσ̂U,IC,b
ab,NNLO = − 1

2

(
αsC(ϵ)
2π

)2 ∫ dx1
x1

dx2
x2

{
∑

(cd) ̸=(ab)

∑
(ef) ̸=(ab),(cd)

[
J (1)

ab;ef ⊗ J (1)
ef ;cd

]
(x1, x2)dσ̂cd,LO

+
∑

(ef) ̸=(ab)

[
J (1)

ab;ef ⊗ J (1)
ef ;ab

]
(x1, x2)dσ̂ab,LO

}
, (5.28)

with a subsequent decomposition into colour-connected, almost colour-connected and colour-
unconnected contributions as for the IP counterparts, and

dσ̂U,IC,c
ab,NNLO = −

(
αsC(ϵ)
2π

)2 ∫ dx1
x1

dx2
x2

{ ∑
(cd) ̸=(ab)

J (2)
ab;cd(x1, x2)dσ̂cd,LO

+
∑

(ef) ̸=(ab)
J (2)

ab;ef ;ab(x1, x2)dσ̂ab,LO

}
, (5.29)
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which can be further decomposed according to the specific type of integrated structures
appearing in each term.

Since the IP and IC components of the double-virtual subtraction term exhibit the same
structures in terms of integrated dipoles, in the derivation of the real-virtual and double-real
subtraction terms we can always consider the full combination of IP and IC terms, given
that the required manipulations to translate integrated quantities to unintegrated ones are
analogous. For this reason, in the following sections we will often drop the superscripts
IP and IC, indicating that we are working with the complete subtraction terms. We will
restore the labels only when needed.

At NLO, once the virtual subtraction term is obtained, it is straightforward to system-
atically construct the real subtraction term. At NNLO, the structure of the subtraction
is significantly more involved, due to the presence of two additional layers besides the
double-virtual correction: real-virtual and double-real.

5.3 NNLO real-virtual subtraction term

The real-virtual subtraction term dσ̂T
ab,NNLO cancels the explicit ϵ-poles in the real-virtual

matrix element, contains the real-virtual mass factorization counterterm and removes the
divergent behaviour in single-unresolved infrared limits. In the following, we illustrate how
the real-virtual subtraction term can be generated in the context of the colourful antenna
subtraction method.

We anticipate that the current section is the densest one, with the construction of the
real-virtual subtraction term really being the core step of the colourful antenna subtraction
method. This may sound surprising, since we are dealing with just a single unresolved emission.
However, as we show in section 5.4, the price to pay for a particularly straightforward
generation of the double-real subtraction term for a generic process, is that we must carefully
arrange all the structures in the real-virtual subtraction term in order to achieve this. The
reader may notice that some components of the real-virtual subtraction term seem redundant,
and that significant cancellations are possible when one considers the full expressions. This is
indeed true, but, once again, to properly prepare the derivation of the double-real subtraction
term, we are forced to isolate individual structures, even if they yield a simpler result when
summed. Of course, such separation is necessary only for the illustration purposes. In
any practical implementation of the subtraction terms, one can consider the sum over all
components, likely resulting in more compact expressions.

The construction of dσ̂T
ab,NNLO is performed in two main steps:

• integrated terms are translated from dσ̂U
ab,NNLO to dσ̂T

ab,NNLO inserting an unresolved
parton, via the application of Ins [·], in complete analogy to what is done at NLO;

• additional terms are systematically generated to remove leftover explicit and implicit
infrared singularities.

Any additional contribution which is added at the real-virtual level and does not have a
direct correspondence to terms in dσ̂U

ab,NNLO will eventually generate corresponding terms
at the double-real level after the insertion of a second unresolved parton. We note that not
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Figure 3. Structure of the infrared-subtracted real-virtual correction. Green boxes enclose ϵ-finite
quantities, while inside light-blue ones the infrared-divergent behaviour has been completely subtracted.
The combination of the matrix element (ME) and the subtraction terms is free from any explicit and
implicit infrared singularity.

the entirety of dσ̂U
ab,NNLO will be translated to dσ̂T

ab,NNLO, some terms will undergo a double
insertion and directly move from dσ̂U

ab,NNLO to dσ̂S
ab,NNLO.

We recall the usual decomposition of dσ̂T
ab,NNLO in the context of antenna subtraction [8]:

dσ̂T
ab,NNLO = dσ̂T,a

ab,NNLO + dσ̂T,b
ab,NNLO + dσ̂T,c

ab,NNLO. (5.30)

The meaning of this decomposition is the following:

• dσ̂T,a
ab,NNLO removes the explicit poles of the real-virtual matrix element;

• dσ̂T,b
ab,NNLO reproduces the divergent behaviour of the real-virtual matrix element in

single unresolved limits, but requires additional contributions to ensure ϵ-finiteness;

• dσ̂T,c
ab,NNLO removes the overlap in the single unresolved behaviour between the two

terms above.

We summarize in figure 3 the interplay between different contributions in the real-virtual
subtraction term and the matrix element, denoted with ME. Green boxes are free from
explicit ϵ-poles, namely the quantities they contain are constructed to be ϵ-finite. Light-blue
boxes denote combinations of terms which are not divergent in single-unresolved limits. One
can observe that the sum of the matrix element and the subtraction terms is overall free from
any infrared singularity. Each term appearing in figure 3 is discussed in detail in the following.

5.3.1 dσT,a
ab,NNLO

This component of the real-virtual subtraction term removes the explicit poles of the (n + 3)-
particle one-loop matrix element. Moreover, it contains the mass factorization contribution
dσ̂MF,1,a

ab,NNLO given in (5.11). It is indicated as the orange box in figure 3. The construction

– 49 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

of σT,a
ab,NNLO is completely analogous to the one adopted for the NLO virtual subtraction

term in section 4.2, with the only difference given by the presence of an additional particle.
Hence, we have:

dσ̂T,a,IP = dσ̂T,a,IP
ab,NNLO + dσ̂T,a,IC

ab,NNLO, (5.31)

with

dσ̂T,a,IP
ab,NNLO = NRV

NNLO

∫ dx1
x1

dx2
x2

dΦ(p3, . . . , pn+3;x1p1, x2p2)J (n+1)
n ({p}n+1)

× 2 ⟨A0
n+3|J (1)(ϵ)|A0

n+3⟩ , (5.32)

and
dσ̂T,a,IC

ab,NNLO =
(

αsC(ϵ)
2π

) ∑
(c,d) ̸=(a,b)

∫ dx1
x1

dx2
x2

J (1)
ab;cd(x1, x2) dσ̂R

cd,NLO. (5.33)

This term is not directly related to any contribution at the double-virtual level. Indeed, its
unintegrated counterpart removes the single-unresolved behaviour of the double-real matrix
element and will be subtracted there.

5.3.2 dσT,b
ab,NNLO

This term reproduces the divergent behaviour of the real-virtual matrix element in single
unresolved infrared limits. The subtraction of infrared divergences from a one loop matrix
element is more involved than the one required at tree-level. In particular, along with tree-level
antenna functions and reduced one-loop matrix elements (tree × loop), suitable combinations
of three-particle one-loop antenna functions and tree-level reduced matrix elements (loop ×
tree) have to be used. Both these structures are present, in their integrated form, in the
double-virtual subtraction term, since they describe the emission of soft and collinear particles
from the one-loop amplitude. It is indeed possible to systematically generate these terms
at the real-virtual level starting from dσ̂U

ab,NNLO, as we show in the following. According
to [8], we introduce a suitable decomposition of dσ̂T,b

ab,NNLO:

dσ̂T,b
ab,NNLO = dσ̂T,b1

ab,NNLO + dσ̂T,b2
ab,NNLO + dσ̂T,b3

ab,NNLO, (5.34)

where the elements on the right-hand-side respectively contain (tree × loop) contributions,
(loop × tree) contributions and suitable terms needed to ensure the correct renormalization
of loop quantities in the real-virtual subtraction term. Moreover, dσ̂T,b1

ab,NNLO and dσ̂T,b2
ab,NNLO

need to be made ϵ-finite including additional terms, as shown in figure 3. dσ̂T,b1
ab,NNLO and

dσ̂T,b2
ab,NNLO are indicated in figure 3 by the two central green boxes.

dσT,b1
ab,NNLO. We first focus on dσ̂T,b1

ab,NNLO, which addresses configurations where the infrared
divergences can be captured by the same tree-level unresolved factors used at NLO. The
respective integrated counterpart appears in the double-virtual subtraction term as a combi-
nation of a one-loop integrated dipole (integrated tree-level three-parton antenna function)
and a one-loop reduced matrix element in dσ̂U,a1

ab,NNLO. The procedure of inserting an unre-
solved parton at this level is the same as the one depicted in section 4.3, with the tree-level
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amplitudes replaced by the one-loop ones. The result has the (tree × loop) structure:

Ins
[
dσ̂U,a1

ab,NNLO

]
∼
∑
ij,u

∑
c,c′

X0
3 (i, u, j) a1

n+2(c, c′; {., ĩu, ., ũj, .}), (5.35)

where u denotes the inserted unresolved parton. Even if the used notation is technically
only appropriate in the context of unresolved-gluon insertions, we rely on it here and in
the following examples for the sake of simplicity.

Terms in Ins
[
dσ̂U,a1

ab,NNLO

]
partially take care of the divergent behaviour of the real-virtual

matrix element. However, the one-loop colour interferences a1
n+2 contain explicit ϵ-poles

which must be removed to ensure the finiteness of the real-virtual subtraction term. This only
affects the IP sector of the subtraction terms, with the IC one being free of any explicit ϵ-poles.

Omitting the phase space integration and other factors which are not relevant for the
current discussion, these poles read:

Poles
{
Ins

[
dσ̂U,a1

ab,NNLO

]}
∼ Poles

{
Ins

[
2
(
⟨A0

n+2|J (1)|A1
n+2⟩+ ⟨A1

n+2|J (1)|A0
n+2⟩

) ]}

= Poles

Ins

[
2
∑
ij

J (1)
2 (i, j)

(
⟨A0

n+2| (Ti · Tj) |A1
n+2⟩+ ⟨A1

n+2| (Ti · Tj) |A0
n+2⟩

) ]
= Poles

4 Ins

[∑
ij

J (1)
2 (i, j)Re

(
⟨A0

n+2| (Ti · Tj) |A1
n+2⟩

) ]
= 4

∑
ij,u

X0
3 (i, u, j)Poles

{
Re
(
⟨A0

ñ+2| (Ti · Tj) |A1
ñ+2⟩

)}

= 4
∑
ij,u

X0
3 (i, u, j)Poles

{
Re
(
⟨A0

ñ+2| (Ti · Tj)
(∑

kl

(Tk · Tl) I(1)
kl

(
ϵ, µ2

r

))
|A0

ñ+2⟩
)}

= 4
∑
ij,u

X0
3 (i, u, j)

∑
kl

Poles
{

Re
[
I(1)

kl

(
ϵ, µ2

r

)]}
⟨A0

ñ+2| (Ti · Tj) (Tk · Tl) |A0
ñ+2⟩ , (5.36)

where (ñ + 2) is a shorthand notation to indicate that the momenta of the external partons
in the colour-ordered amplitudes underwent a suitable relabelling according to the action of
the Ins [·] operator. In particular, the momenta associated to partons k and l, which enter
in the one-loop infrared operator, belong to the relabelled set of momenta.

These poles can be reproduced systematically by applying the unresolved parton insertion
to the dσ̂U,b

ab,NNLO, namely within the double dipole structure:

Ins
[
dσ̂U,b

ab,NNLO

]
∼ Ins

[
−2 ⟨A0

n+2|J (1)(ϵ)⊗J (1)(ϵ)|A0
n+2⟩

]
. (5.37)

We need to clarify how the unresolved parton insertion works in the presence of more
than one integrated dipole. The Ins [·] operator discards the splitting kernels from both the
integrated dipoles J (1). The transition to unintegrated antenna functions is then performed
in only one of the integrated dipoles (integrated antenna functions). The choice of integrated
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dipole should be done in such a way that any pair of hard radiators is addressed once and
only once. In practice, this can be easily achieved by symmetrizing:

J (1)
a ⊗J (1)

b = 1
2J

(1)
a ⊗J (1)

b + 1
2J

(1)
b ⊗J (1)

a , (5.38)

where the subscripts a and b have been introduced to distinguish the two dipoles, and then
fixing the first dipole in each term of the symmetrized expression to be the one subjected to
the insertion of an unresolved parton. Finally, the momenta relabelling has to be performed,
not only within the colour interferences and the jet function, but also within the surviving
integrated antenna functions. This applies in general at NNLO, namely the transition to
higher multiplicities via momenta relabelling occurs within any function of the external
momenta accompanying the integrated dipole (antenna function) which is converted into
an unintegrated antenna function. With this, we can write:

Poles
{
Ins

[
−2 dσ̂U,b

ab,NNLO

]}
∼ 4Poles

{
Ins

[
⟨A0

n+2|J (1)(ϵ)⊗J (1)(ϵ)|A0
n+2⟩

]}
= 4Poles

Ins

∑
ij

∑
kl

J (1)
2 (i, j)J (1)

2 (k, l) ⟨A0
n+2| (Ti · Tj) (Tk · Tl) |A0

n+2⟩


= 4

∑
ij,u

X0
3 (i, u, j)

∑
k,l

Poles
{

sXX 0
3 (skl)

}
⟨A0

ñ+2| (Ti · Tj) (Tk · Tl) |A0
ñ+2⟩ , (5.39)

where sX indicates the specific symmetry factor and sign relating integrated dipoles and
antenna functions. The obtained results is already quite similar to (5.36), but one final
manipulation is needed to compare the two expressions. The goal is to convert the integrated
antenna function in (5.39) back to an integrated one-loop dipole. One can indeed verify that
the mass factorization kernels which restore the integrated dipoles are precisely provided
by dσ̂MF,1,b

ab,NNLO. Hence, one has:

Poles
{
Ins

[
−2dσ̂U,b

ab,NNLO

]
− dσ̂MF,1,b

ab,NNLO

}
∼ 4

∑
ij,u

X0
3 (i, u, j)

∑
k,l

Poles
{
J (1)

2 (k, l)
}
⟨A0

ñ+2| (Ti · Tj) (Tk · Tl) |A0
ñ+2⟩ , (5.40)

where we note that the momenta k and l belong to the relabelled set according to the
action of the insertion operator. We can finally use (3.42) to conclude that (5.36) and (5.40)
are equivalent, so:

Poles
{
Ins

[
dσ̂U,a1

ab,NNLO

]}
= Poles

{
−2 Ins

[
dσ̂U,b

ab,NNLO

]
− dσ̂MF,1,b

ab,NNLO

}
. (5.41)

This relation provides a natural and general way to produce terms to remove the residual
explicit poles in Poles

{
Ins

[
dσ̂U,a1

ab,NNLO

]}
. Schematically, these terms look like:

−2 Ins
[
dσ̂U,b

ab,NNLO

]
− dσ̂MF,1,b ∼

∑
ij,u

∑
kl

∑
c,c′

X0
3 (i, u, j)J (1)

2 (k, l)a0
n+2(c, c′; {., ĩu, ., ũj, .}).

(5.42)
It is particularly convenient that this can be achieved by the action of the Ins [·] operator on
pre-existent structures at the double-virtual level and fully absorbing dσ̂MF,1,b

ab,NNLO.
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The final result for dσ̂T,b1
ab,NNLO then reads:

dσ̂T,b1
ab,NNLO = −Ins

[
dσ̂U,a1

ab,NNLO

]
− 2 Ins

[
dσ̂U,b

ab,NNLO

]
− dσ̂MF,1,b

ab,NNLO, (5.43)

which, thanks to (5.41), is free of explicit ϵ-singularities. To compensate dσ̂U,b
ab,NNLO in the

double-virtual subtraction term, we should add back a factor +Ins
[
dσ̂U,b

ab,NNLO

]
, which will

appear below in the generation of the real-virtual and double-real subtraction terms. In
figure 3, the (tree × loop) component of dσ̂T,b1

ab,NNLO is indicated by the label X0
3 M1, while

additional contributions to remove the ϵ-poles are indicated by X0
3 J

(1)
2 M1.

As a cross-check for the strategy described above, we can extract the explicit singularity
structure of the one-loop colour-ordered partial amplitudes, following closely the procedures
used for the real-virtual corrections to pp → jj in [45]. For a general process, one can
extract the amplitude-level pole structure via suitable projectors in colour space. A generic
renormalized n-parton one-loop amplitude in colour space is given by:

|A1
n({p}n)⟩ =

∑
c∈I1

C1
n,c A1

n,c({p}n), (5.44)

with the coefficients A1
n,c being one-loop colour-ordered amplitudes. Each vector C1

n,c defines
a direction in colour space. By linearly combining the generating vectors

{
Cℓ

n,c

}
c

one
can construct a projector Pc to single out the component of the full amplitude along a
specific direction:

Pc |A1
n({p}n)⟩ = A1

n,c({p}n). (5.45)

One can then exploit the relation above to isolate the infrared poles of the colour-ordered
amplitude A1

n,c({p}n):

Poles
(
A1

n,c({p}n)
)
= Poles

(
Pc |A1

n({p}n)⟩
)

= Pc Poles
(
|A1

n({p}n)⟩
)

= Pc I(1)
(
ϵ, µ2

r

)
|A0

n({p}n)⟩ , (5.46)

where we used that the projector commutes with the extraction of the poles. The obtained
pole structure can then be inserted in (5.35) to obtain Poles

{
Ins

[
dσ̂U,a1

ab,NNLO

]}
, in order

to validate (5.41).

dσT,b2
ab,NNLO. We consider now dσ̂T,b2

ab,NNLO, namely (loop × tree) contributions, addressing
configurations which require novel one-loop unresolved factors to described the divergent
behaviour due to the unresolved emission. The core part of this term is given by unintegrated
three-parton one-loop antenna functions X1

3 combined with tree-level reduced matrix elements.
The integrated counterpart of these terms is contained in dσ̂

U,c,X 1
3

ab,NNLO. Once again, we can
insert an unresolved parton and obtain from dσ̂

U,c,X 1
3

ab,NNLO the contribution needed at the real-
virtual level. The replacement rules for integrated three-parton one-loop antenna functions
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are completely analogous to the ones followed by tree-level antenna functions and are listed
in appendix A.1. We label the resulting contribution dσ̂

T,b2,X1
3

ab,NNLO. It has the following form:

dσ̂
T,b2,X1

3
ab,NNLO = −Ins

[
dσ̂

U,c,X 1
3

ab,NNLO

]
∼
∑
ij,u

∑
c,c′

X1
3 (i, u, j)a0

n+2(c, c′; {., ĩu, ., ũj, .}). (5.47)

As it happened for dσ̂T,b1
ab,NNLO, the expression above contains explicit ϵ-poles coming from

the one-loop antenna functions. These singularities need to be removed to obtain a finite
subtraction term. This can be done systematically since the singularity structure of the
unintegrated three-parton one-loop antenna functions can be expressed by means of one-loop
integrated dipoles and three-parton tree-level antenna functions [7, 8]. The poles of a generic
one-loop three-parton antenna function can be absorbed by the following replacement:

X1
3 (i,u,j)→X1

3 (i,u,j)+
NX∑

(l,m)=1
J

(1)
2 (l,m)X0

3 (i,u,j)−MXJ
(1)
2 (ĩu, ũj)X0

3 (i,u,j), (5.48)

where the sum in the second term runs over the pairs of colour-connected partons in the
antenna configuration. The replacement is valid in any kinematics (FF, IF or II). The number
of colour-connected pairs NX , as well as the coefficient MX depend on the specific antenna
function. Values for NX and MX and the explicit replacements required for all the one-loop
antenna functions are listed in appendix A.1. The expression obtained inserting (5.48)
in (5.47) is free of poles and becomes part of the real-virtual subtraction term.

To use a similar notation to [8], we label dσ̂T,b2,JX
ab,NNLO and dσ̂T,b2,MX

ab,NNLO the two additional
blocks coming from the newly added terms in (5.48). As we will explain in detail in the
following, dσ̂T,b2,MX

ab,NNLO can be related to dσ̂
U,c,X 0

3 ⊗X 0
3

ab,NNLO after the insertion of an unresolved parton,
while dσ̂T,b2,JX

ab,NNLO is a genuinely new contribution added at the real-virtual level, which needs to
be compensated by its unintegrated counterpart at the double-real level. This can be noticed
by looking at the arguments of the integrated dipoles appearing in the two blocks. dσ̂T,b2,MX

ab,NNLO
depends on mapped momenta, which come from the insertion of an extra unresolved parton
in the n-particle phase space, where the double-virtual subtraction term lives. On the other
hand, the integrated dipoles in dσ̂T,b2,JX

ab,NNLO depend on (n + 3)-particle phase space momenta,
which are not accessible at the double-virtual level. It is trivial to verify that the mass
factorization kernels between the integrated dipoles in dσ̂T,b2,JX

ab,NNLO and dσ̂T,b2,MX
ab,NNLO exactly

cancel for any configuration of partons i, j and u. For bookkeeping purposes we label this
mass factorization dσ̂MF,1,b2

ab,NNLO.
The term dσ̂T,b2,MX

ab,NNLO can be constructed as follows:

dσ̂T,b2,MX
ab,NNLO = −mXIns

[
dσ̂

U,c,X 0
3 ⊗X 0

3
ab,NNLO

]
− dσ̂MF,1,b2

ab,NNLO, (5.49)

where mX is an integer. For purely gluonic processes, it was found previously [23] that
mX = 2. Any multiple of Ins

[
dσ̂

U,c,X 0
3 ⊗X 0

3
ab,NNLO

]
that is not compensated by the double-virtual

subtraction term will be re-introduced in the construction of σT,c
ab,NNLO below.

In conclusion, the (loop × tree) block is given by:

dσ̂T,b2
ab,NNLO = −Ins

[
dσ̂

U,c,X 1
3

ab,NNLO

]
+ dσ̂T,b2,JX

ab,NNLO + dσ̂T,b2,MX
ab,NNLO, (5.50)
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which is free of ϵ-poles. In figure 3, the (loop × tree) component of dσ̂T,b2
ab,NNLO is indicated by

the label X1
3 M0, while contributions in dσ̂T,b2,JX

ab,NNLO and dσ̂T,b2,MX
ab,NNLO are generically indicated

by X0
3 J

(1)
2 M0.

dσT,b3
ab,NNLO. The last contribution to dσ̂T,b

ab,NNLO is required to fix the renormalization of
one-loop antenna functions in dσ̂T,b2

ab,NNLO. To fix the correct renormalization of the one-loop
antenna functions it is sufficient to perform the following replacements [7]:

X1
3 (i, u, j) → X1

3 (i, u, j) + b0
ϵ

X0
3 (i, u, j)

(( |siuj |
µ2

r

)−ϵ

− 1
)

, (5.51)

X̂1
3 (i, u, j) → X1

3 (i, u, j) + b0,F

ϵ
X0

3 (i, u, j)
(( |siuj |

µ2
r

)−ϵ

− 1
)

, (5.52)

for the leading-colour and the fermionic-loop one-loop antenna functions. The subleading-
colour one-loop antenna functions do not require any renormalization. dσ̂T,b3

ab,NNLO is entirely
constructed with terms coming from the double-virtual subtraction term:

dσ̂T,b3
ab,NNLO = −Ins

[
dσ̂U,a0

ab,NNLO

]
− Ins

[
dσ̂U,c,β0

ab,NNLO

]
, (5.53)

as can be easily checked keeping track of the coefficient β0.
The contribution dσ̂T,b3

ab,NNLO is not depicted explicitly in figure 3, since we assume it is
absorbed in the (loop × tree) term of dσ̂T,b2

ab,NNLO, when the three-parton one-loop antenna
functions are evaluated at the correct renormalization scale.

5.3.3 dσT,c
ab,NNLO

The last block of the real-virtual subtraction term is dσ̂T,c
ab,NNLO. This contribution is signifi-

cantly less straightforward to derive than σT,a
ab,NNLO and σT,b

ab,NNLO, discussed in the previous
sections. The reason for this lies in less stringent constraints for the generation of new
structures, which propagate to the double-real subtraction term. Typically, the correctness
of the σT,c

ab,NNLO term can only be fully assessed by cross-checking its influence at the real-
virtual and double-real level. Moreover, the σT,c

ab,NNLO contribution in general has an exiguous
numerical impact, which makes it hard to clearly detect mistakes during the validation
process. We also notice that the remainder of this section differs significantly from section
4.4.3 of [23], because the extension beyond gluonic processes required a reinterpretation of
the derivation strategy. Indeed, the completely symmetric structure of the subtraction terms
in the gluons-only case allowed for a straightforward generation of the σT,c

ab,NNLO term, which
is not directly applicable to other partonic configurations.

We begin by observing figure 3: dσ̂T,c
ab,NNLO has to remove residual divergent behaviour

present in the combination of dσ̂T,a
ab,NNLO and the X0

3 J
(1)
2 M0 terms of dσ̂T,b

ab,NNLO and has to
be individually free from ϵ-poles. We address these two requirements in this order.

Removal of single-unresolved behaviour. The first requirement is fulfilled designing a
preliminary candidate for dσ̂T,c

ab,NNLO, denoted with dσ̂T,c,prel.
ab,NNLO, given by:

dσ̂T,c,prel.
ab,NNLO =−

dσ̂T,a
ab,NNLO

∣∣∣∣∣
singular

+dσ̂T,b1
ab,NNLO

∣∣∣∣∣
X0

3 J
(1)
2 M0

+dσ̂T,b2
ab,NNLO

∣∣∣∣∣
X0

3 J
(1)
2 M0

 , (5.54)
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where the first term represents the singular behaviour of dσ̂T,a
ab,NNLO in single-unresolved

limits, while the remaining contributions are simply identical to the terms with a X0
3 J

(1)
2 M0

structure in dσ̂T,b1
ab,NNLO and dσ̂T,b2

ab,NNLO. By construction, dσ̂T,c,prel.
ab,NNLO trivially fulfils its purpose,

but a systematic procedure to construct dσ̂T,a
ab,NNLO

∣∣
singular must be defined. The caveat is to

have dσ̂T,a
ab,NNLO

∣∣
singular extracted by means of three-parton tree-level antenna functions, to

produce a dσ̂T,c,prel.
ab,NNLO which coherently fits within the subtraction terms.

The structure of dσ̂T,a
ab,NNLO discussed in section 5.3.1 is the one for an NLO virtual

subtraction term for a process with (n + 3) partons:

dσ̂T,a
ab,NNLO ∼

∑
c,c′

∑
ij

J
(1)
2 (i, j)a0

n+3(c, c′; {., i, ., j, .}). (5.55)

The colour correlations a0
n+3(c, c′; {.}) exhibit a divergent behaviour in single-unresolved

limits. The expression in (5.55) is clearly not a physical matrix element, therefore we
cannot reproduce its divergent behaviour with the same techniques we employed for the
construction of NLO subtraction terms. Nevertheless, the full dσ̂T,a

ab,NNLO
∣∣
singular can be

obtained if in each term of (5.55) we replace the colour interference a0
n+3(c, c′; {., i, ., j, .})

with the description of its divergent behaviour in terms of antenna functions. In other words,
we need a systematic procedure to construct a real subtraction term for an individual colour
interference a0

n+3(c, c′; {.}). Unfortunately, the paradigm of the colourful antenna subtraction:
infer real emission subtraction terms from virtual structures, cannot be applied in this case.
The reason lies in the fact that it is not possible to identify a one-to-one correspondence
between single terms in the colour decomposition of the matrix elements for virtual and real
corrections. Hence, for this specific task, we need to rely on the factorization properties
of tree-level amplitudes in single-unresolved limits.

The strategy we adopt is similar to the one described in section 5.3.2 for the extraction
of the explicit singularities of one-loop colour-ordered amplitudes. We first exploit universal
factorization properties of QCD to describe the singular behaviour of tree-level amplitudes
and then rely on suitable projection operators to single out a specific direction in colour
space, effectively extracting the singular behaviour of single colour-ordered amplitudes. We
recall the decomposition of a n-parton tree-level amplitude:

|A0
n({p}n)⟩ =

∑
c∈I0

C0
n,c A0

n,c({p}n), (5.56)

where the vectors
{
C0

n,c

}
n

span the entire n-parton tree-level colour space. We can construct
projectors Pc which satisfy:

Pc |A0
n({p}n)⟩ = A0

n,c({p}n). (5.57)

We now consider the emission of a soft gluon, labelled as usual with u. The factor-
ization reads:

|A0
n({p}n)⟩

u→0−−−→
n−1∑
i=1

Ti
pµ

i

pu · pi
|A0

n−1({p}n−1)⟩ , (5.58)
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where µ is the Lorentz index associated to the soft gluon and Ti are the colour charges
of the hard partons. The (n − 1)-parton amplitude on the r.h.s. is obtained removing the
soft gluon u from the partonic content of the original amplitude. If we are interested in
the soft behaviour of a specific colour-ordered amplitude A0

n,c({p}n), we can make use of
the projectors defined above:

A0
n,c({p}n)

u→0−−−→ Pc

(
n−1∑
i=1

Ti
pµ

i

pu · pi
|A0

n−1({p}n−1)⟩
)

. (5.59)

We can apply this result to a generic interference between amplitudes with colour-ordering
c and c′:

a0
n(c, c′; {p}n) = A0

n,c({p}n)
†A0

n,c′({p}n)
u→0−−−→[

Pc

(
n−1∑
i=1

Ti
pµ

i

pu · pi
|A0

n−1({p}n−1)⟩
)]† Pc′

n−1∑
j=1

Tj

pµ
j

pu · pj
|A0

n−1({p}n−1)⟩

 . (5.60)

The expression above can be evaluated contracting colour and Lorentz indices to obtain a
real result describing the soft behaviour of a generic colour interference. The results, up
to numerical factors, has the following form:

a0
n(c, c′; {p}n)

u→0−−−→
∑
c̃,c̃′

∑
ij

S0
iuja0

n−1(c̃, c̃′; ., ĩu, ., ũj, .), (5.61)

where the first sum runs over colour structures c̃ and c̃′ in the (n− 1)-parton tree-level colour
space and S0

iuj is the soft eikonal factor given:

S0
ijk = 2sik

sijsjk
. (5.62)

We can build on the result in (5.61) exchanging the eikonal factors with suitable three-
parton tree level antenna functions. Indeed, X0

3 (i, u, j) antenna functions, exactly reproduce
the eikonal factor S0

iuj when a soft gluon u is emitted between the pair of hard radiators
(i, j). The specific choice of antenna function depends on the species and the kinematical
configurations of partons i and j. Additionally, antenna functions also contain the collinear
behaviour in the limits i ∥ u and j ∥ u, with the collinear limit g ∥ g is not captured by a
single X0

3 antenna function, but is distributed between pairs of antenna functions where the
role of the hard and unresolved gluons are interchanged. We can therefore take the result
in (5.61), with eikonal factors suitably replaced by antenna functions, and perform a sum
over all possible choices of soft gluon u. The final result has the following structure:

a0
n(c, c′; {p}n)

u→0−−−→
∑
c̃,c̃′

∑
ij,u

X0
3 (i, u, j)a0

n−1(c̃, c̃′; ., ĩu, ., ũj, .), (5.63)

which is capturing not only the soft behaviour of the considered colour correlation in all
possible soft limits, but also the correct collinear behaviour in any collinear g ∥ g and g ∥ q

configuration. In particular, we notice that the described procedure also retains IC collinear
limits for a hard initial-state gluon and a final-state quark. This is straightforwardly achieved
by letting the initial-state gluon play the role of the unresolved one, and then by replacing the
eikonal factor with suitable IC IF or II antenna functions, which do not contain any soft limit.
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Finally the treatment q′ ∥ q̄′ collinear limits is quite simple, since these limits are only
present in colour-interferences where q′ and q̄′ are colour connected in both ordering c and
c′. In this case, the factorization reads:

a0
n(c, c′; ., q′, q̄′, .) u→0−−−→ 1

sq′q̄′
P 0

qq̄→g(x) a0
n−1(c̃, c̃′; ., q̃′q̄′, .), (5.64)

where q̃′q̄′ represent a gluon, which, in the colour orderings c̃ and c̃′ of the reduced matrix
element, occupies the same positions of the original q′q̄′ pair. As far as the other hard partons
are concerned, c̃ and c̃′ coincide with c and c′. The splitting function P 0

qq̄→g/sq′q̄′ can then be
replaced by an appropriate antenna function choosing a spectator parton for the collinear
limit. If the spectator is chosen to be a gluon g, G0

3(g, q′, q̄′) is used, otherwise, if it is a quark
q, E0

3(q, q′, q̄′) is considered. Any choice yields the same result in the collinear limit, given that
the spectator parton in these antenna functions is not associated with any singular behaviour.

We notice that the extraction of the single-unresolved behaviour of colour-ordered
interferences discussed here is completely analogous to the description of infrared limits
done in the context of the dipole subtraction formalism [1]. We focused here on specific
colour orderings, or equivalently specific directions in colour space, rather than on the full
matrix element, in order to derive the correct factorization behaviour of a more generic
object, namely dσ̂T,a

ab,NNLO.
With the described procedure, we can systematically write down the singular behaviour

of dσ̂T,a
ab,NNLO in single-unresolved limits and consequently assemble dσ̂T,c,prel.

ab,NNLO.

Pole cancellation. The outcome of the first part of the current derivation, dσ̂T,c,prel.
ab,NNLO,

has explicit ϵ-poles, which need to be removed without spoiling the infrared behaviour of
the whole expression.

We consider the generic structure of dσ̂T,c,prel.
ab,NNLO, which is given by [23, 68]:

dσ̂T,c,prel.
ab,NNLO ∼

∑
c,c′

∑
ij,u

∑
a,b

X0
3 (i, u, j)

[
(
J (1)

2 (ĩu, ũj)− J (1)
2 (i, j)

)
−
(
J (1)

2 (ĩu, a)− J (1)
2 (i, a)

)
−
(
J (1)

2 (b, ũj)− J (1)
2 (b, j)

) ]
a0

n+2(c, c′; ., a, ., ĩu, ., j̃u, ., b, .), (5.65)

where we chose to use integrated colour-stripped one-loop dipoles, but we could have equiva-
lently used integrated three-parton tree-level antenna functions X 0

3 , since the mass factoriza-
tion kernels cancel exactly in the three differences of integrated dipoles. The combination
above has residual ϵ−1 poles, whose origin can be related to soft gluons emitted at large angle
in the double-real emission correction. As discussed in [42, 85], such poles cancel against a
suitable combination of integrated soft eikonal factors. One can verify that the poles structure
given by the arrangement of integrated dipoles in (5.65) is:

Poles
{(

J (1)
2 (ĩu, ũj)− J (1)

2 (i, j)
)
−
(
J (1)

2 (ĩu, a)− J (1)
2 (i, a)

)
−
(
J (1)

2 (b, ũj)− J (1)
2 (b, j)

)}
= 1

ϵ

{
− ln

(
s(iu)(uj)

sij

)
+ ln

(
s(iu)a
sia

)
+ ln

(
sb(uj)
sbj

)}
. (5.66)
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We note that there are no residual poles in the Nf colour factor [42]. The poles structure
above is removed introducing the so-called integrated large angle soft terms [8, 42, 65, 69, 85].
We consider the integral of an eikonal factor over the unresolved antenna phase space:

S(sij , si′j′ , xij,i′j′) = 8π2

C(ϵ)

∫
dΦXiuj S0

iuj . (5.67)

In the expression above, i and j represent any pair of hard partons, while partons i′ and
j′ can be chosen arbitrarily since there is a priori no singular behaviour associated with
them. They appear as reference momenta in a phase space mapping for soft gluon radiation
between the hard radiators i and j, which can, but do not have to, be different from i′ and
j′. All specific arrangements of i, j and i′, j′ are discussed in section 5.4.3 below, when these
structures are propagated at the double-real level. In particular, for process involving four or
more partons at LO, i′ and j′ can be chosen to be two final-state partons [69]. This is the
reason why in (5.67) we used the FF antenna phase space. Explicit expressions for (5.67)
are given in [69]. The key point for the current discussion is that:

Poles

{
−
(
S(s(iu)(uj), si′j′ , x(iu)(uj),i′j′)− S(sij , si′j′ , 1)

)
+
(
S(s(iu)a, si′j′ , x(iu)a,i′j′)− S(sia, si′j′ , xia,i′j′)

)
+
(
S(sb(uj), si′j′ , xb(uj),i′j′)− S(sbj , si′j′ , xbj,i′j′)

)}

= −1
ϵ

{
− ln

(
s(iu)(uj)

sij

)
+ ln

(
s(iu)a
sia

)
+ ln

(
sb(uj)
sbj

)}
, (5.68)

namely the pole structure of the arrangement of integrated eikonal factors above precisely
cancels against the one in (5.66). The combination:[ (

J (1)
2 (ĩu, ũj)− J (1)

2 (i, j)
)
−
(
J (1)

2 (ĩu, a)− J (1)
2 (i, a)

)
−
(
J (1)

2 (b, ũj)− J (1)
2 (b, j)

) ]

−
[ (

S(s(iu)(uj), si′j′ , x(iu)(uj),i′j′)− S(sij , si′j′ , 1)
)

−
(
S(s(iu)a, si′j′ , x(iu)a,i′j′)− S(sia, si′j′ , xia,i′j′)

)
−
(
S(sb(uj), si′j′ , xb(uj),i′j′)− S(sbj , si′j′ , xbj,i′j′)

) ]
(5.69)

is indeed free from explicit infrared singularities, for any partonic configuration. Therefore,
the expression for dσ̂T,c,prel.

ab,NNLO in (5.65) can be made ϵ-finite by suitably inserting integrated
eikonal factors according to the following replacements:

J (1)
2 (ĩu, ũj) → J (1)

2 (ĩu, ũj) + S(sij , si′j′ , 1)− S(s(iu)(uj), si′j′ , x(iu)(uj),i′j′), (5.70)

J (1)
2 (ĩu, a) → J (1)

2 (ĩu, a) + S(sia, si′j′ , xia,i′j′)− S(s(iu)a, si′j′ , x(iu)a,i′j′), (5.71)

J (1)
2 (b, ũj) → J (1)

2 (b, ũj) + S(sbj , si′j′ , xbj,i′j′)− S(sb(uj), si′j′ , xb(uj),i′j′). (5.72)
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We notice that the considered arrangement of integrated eikonal factors vanishes in single
unresolved limits, therefore no additional unresolved behaviour is introduced. The complete
dσ̂T,c

ab,NNLO is then obtained performing the substitutions above in dσ̂T,c,prel.
ab,NNLO. For bookkeeping

purposes, we denote as dσ̂T,c,S
ab,NNLO the collection of integrated eikonal factors we have included

in the subtraction term. It has the following structure:

dσ̂T,c,S
ab,NNLO ∼ −

∑
c,c′

∑
ij,u

∑
a,b

X0
3 (i, u, j)

[
(
S(sij , si′j′ , 1)− S(s(iu)(uj), si′j′ , x(iu)(uj),i′j′)

)
−
(
S(sia, si′j′ , xia,i′j′)− S(s(iu)a, si′j′ , x(iu)a,i′j′)

)
−
(
S(sbj , si′j′ , xbj,i′j′)− S(sb(uj), si′j′ , xb(uj),i′j′)

)
]
a0

n+2(c, c′; ., a, ., ĩu, ., ũj, ., b, .). (5.73)

The procedure described up to here is sufficient to ensure finiteness in the soft gluon as
well as in the g ∥ g and q ∥ q̄ collinear limits. In fact, it turns out that in such limits, the
contribution of dσ̂T,c,prel.

ab,NNLO is even suppressed by several orders of magnitude with respect to
other components of the real-virtual subtraction term, due to a basically complete cancellation
of the divergent behaviour in the r.h.s. of (5.54). However, the strategy above requires further
extension to handle also q ∥ g collinear limits. Indeed, in dσ̂T,c,prel.

ab,NNLO, constructed according
to (5.54), contributions proportional to A- and D-type unintegrated antenna functions do
not actually have the structure given in (5.65). In particular, they do not come with the
complete set of three pairs of integrated dipoles, but rather with one or two pairs only. This is
explained by the interplay of two phenomena. First of all, we have seen in section 3.3.2 that it
is necessary to introduce quark-antiquark integrated dipoles by means of the colour operator
J (2) to remove unphysical limits present in D-type antenna functions. Hence, a propagation
of A-type antenna functions occurs from dσ̂U,c

ab,NNLO to the real-virtual subtraction term,
which are not matched by corresponding structures coming from dσ̂U,b

ab,NNLO. Additionally,
the colour-charge operators for a quark-gluon dipole Tq · Tg and quark-antiquark dipole
Tq · Tq̄ contribute to different colour factors when evaluated on a given tree-level or one-loop
amplitude. Specifically, Tq · Tq̄ does not contribute at leading-colour. This yields incomplete
sets of integrated dipoles in (5.65) for some choices of hard partons i, j, a and b. The
incompleteness of (5.65) prevents the removal of the leftover ϵ-poles by the inclusion of
the combination of integrated eikonal factors described above. However, according to our
understanding, (5.69) is the only fundamental ϵ-finite structure we can construct for arbitrary
partonic configurations, which correctly propagates at the double-real level. The solution
to this issue consists of restoring the complete structure in (5.65) by introducing suitable
combinations of integrated dipoles, to then proceed with the inclusion of integrated eikonal
factors as before. We illustrate how this is done in the following.

We consider a process with a colour-connected quark-antiquark pair denoted with (q, q̄).
We focus first on contributions proportional to D-type antenna functions, generically indicated
in the following by D0

3(q, u, g), with g a hard gluon serving as the second hard radiator for
the antenna, and u, as usual an unresolved gluon. The incomplete structure they come
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with has the following form:

∑
c,c′

D0
3(q, u, g)

[ (
J (1)

2 (q̃u, ũg)− J (1)
2 (q, g)

)

−
(
J (1)

2 (b, ũg)− J (1)
2 (b, g)

) ]
a0

n+2(c, c′; ., q̃u, ., ũg, ., b, .), (5.74)

where b indicates a generic hard spectator different from q̄. One can see that a pair of
integrated dipoles is missing. To fix this, we can add the following term:

−
∑
c,c′

D0
3(q, u, g)

(
J (1)

2 (q̃u, q̄)− J (1)
2 (q, q̄)

)
a0

n+2(c, c′; ., q̄., q̃u, ., ũg, ., b, .), (5.75)

with q̄ acting as a spectator along with q in quark-antiquark integrated dipoles. The resulting
structure then reads

∑
c,c′

D0
3(q, u, g)

[ (
J (1)

2 (q̃u, ũg)− J (1)
2 (q, g)

)
−
(
J (1)

2 (b, ũg)− J (1)
2 (b, g)

)
−
(
J (1)

2 (q̃u, q̄)− J (1)
2 (q, q̄)

) ]
a0

n+2(c, c′; ., q̄., q̃u, ., ũg, ., b, .), (5.76)

which is analogous to (5.65).
We address now the case of an generic unintegrated A-type antenna function A0

3(q, u, q̄).
In dσ̂T,c,prel.

ab,NNLO it comes with a single pair of integrated dipoles:

∑
c,c′

A0
3(q, u, q̄)

(
J (1)

2 (q̃u, ũq̄)− J (1)
2 (q, q̄)

)
a0

n+2(c, c′; ., q̃u, ., ũq̄, .), (5.77)

hence we need to add two pairs of integrated dipoles:

−
∑
c,c′

A0
3(q, u, q̄)

[ (
J (1)

2 (q̃u, q)− J (1)
2 (q, a)

)
−
(
J (1)

2 (b, ũq̄)− J (1)
2 (b, q̄)

) ]
a0

n+2(c, c′; ., a, ., q̃u, ., ũq̄, ., b, .), (5.78)

with a and b two hard spectators. Differently from the D-type antenna case, here there is no
natural choice for spectators a and b and they can in principle be represented by any hard
parton in the process different from q and q̄. However, inconsistent choices of a and b across
multiple contributions may produce subtraction terms which perform in a suboptimal way
in some unresolved limits, either at the real-virtual or double-real level after insertion of a
second unresolved parton. For specific partonic configurations or colour factors it is possible
to define guidelines for the choice of a and b. For example, at leading-colour the choice is
dictated by the adjacency patterns in the colour ordering of the reduced matrix elements. In
general, the numerical validation of the subtraction terms, discussed in section 6.1, typically
indicates which choice of spectators is preferable.
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We collect all the inserted dipoles in (5.75) and (5.78) in a contribution that we denote
as dσ̂T,c,extra

ab,NNLO:

dσ̂T,c,extra
ab,NNLO =

−
∑

q,q̄,g,u

∑
c,c′

D0
3(q,u,g)

(
J (1)

2 (q̃u, q̄)−J (1)
2 (q, q̄)

)
a0

n+2(c,c′; ., q̄., q̃u, ., ũg, ., b, .)

−
∑

q,q̄,u,a,b

∑
c,c′

A0
3(q,u, q̄)

[(
J (1)

2 (q̃u,q)−J (1)
2 (q,a)

)
−
(
J (1)

2 (b, ũq̄)−J (1)
2 (b, q̄)

)]
a0

n+2(c,c′; .,a, ., q̃u, ., ũq̄, ., b, .). (5.79)

Adding dσ̂T,c,extra
ab,NNLO to dσ̂T,c,prel.

ab,NNLO and removing of the residual poles with dσ̂T,c,S
ab,NNLO yields

a finite and complete result. However, dσ̂T,c,extra
ab,NNLO inevitably introduces additional singularities

in g ∥ q collinear limits, deviating from the original design of dσ̂T,c,prel.
ab,NNLO. One finds that

the divergent behaviour ends up being over-subtracted exactly twice, and simply adding
an overall factor 1/2 to the final expression (after the removal of the ϵ-poles) compensates
for the additional terms. As we explained before, other single-unresolved limits are not
affected by this, since there dσ̂T,c

ab,NNLO is vanishing by construction. The characteristic factor
1/2 derived here can be also explicitly found for example in [68, 69]. There, its presence
was inferred at leading-colour proceeding with the traditional logic: from the double-real
correction to the real-virtual one. The recovery of the same structures in the general colourful
approach is a solid cross-check.

To summarize, the final expression for dσ̂T,c
ab,NNLO is:

dσ̂T,c
ab,NNLO = 1

2
[
dσ̂T,c,prel.

ab,NNLO + dσ̂T,c,S
ab,NNLO + dσ̂T,c,extra

ab,NNLO

]
, (5.80)

with the different components given in equations (5.54), (5.73) and (5.79) respectively. We
conclude the treatment of dσ̂T,c

ab,NNLO in the following section, illustrating which part of the
structures discussed above is actually derived from the double-virtual subtraction terms via
the insertion of an unresolved partons and which terms, on the contrary, constitute a new
addition at the real-virtual level, which will be inherited by the double-real subtraction term.

Extraction of dσT,c0
ab,NNLO. The σT,c

ab,NNLO derived above contains contributions which can
be related to structures in the double-virtual subtraction terms that underwent the insertion
of an unresolved parton. These contributions are denoted as σT,c1

ab,NNLO and σT,c2
ab,NNLO [8, 23].

The first block dσ̂T,c1
ab,NNLO comes from part of the leftover +Ins

[
dσ̂U,b

ab,NNLO

]
that we did

not use in section 5.3.2 during the construction of dσ̂T,b1
ab,NNLO. In particular, it comes from

the insertion of an unresolved parton in the colour-connected and almost colour-connected
components of dσ̂U,b

ab,NNLO defined in equations (5.22) and (5.23):

dσ̂T,c1
ab,NNLO = +Ins

[
dσ̂U,b,c.c.

ab,NNLO

]
+ Ins

[
dσ̂U,b,a.c.c.

ab,NNLO

]
. (5.81)

The remaining colour-unconnected component +Ins
[
dσ̂U,b,u.c.

ab,NNLO

]
produces structures in the

double-real subtraction term, as we will explain in section 5.4.4.
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To generate dσ̂T,c2
ab,NNLO, we directly use the residual term from (5.49):

dσ̂T,c2
ab,NNLO =−Ins

[
dσ̂

U,c,X 0
3 ⊗X 0

3
ab,NNLO

]
−
[
dσ̂T,b2,MX

ab,NNLO+dσ̂MF,1,b2
ab,NNLO

]
∼+Ins

[
dσ̂

U,c,X 0
3 ⊗X 0

3
ab,NNLO

]
,

(5.82)
where the proportionality factor depends on the mX required in (5.49) for the respective
term. We observe that, to ensure that the insertion is properly performed in both integrated
antenna functions, the same symmetrization procedure employed for dσ̂U,b

ab,NNLO can be used
here as well.

We can now define the following term:

dσ̂T,c0
ab,NNLO = dσ̂T,c

ab,NNLO − dσ̂T,c1
ab,NNLO − dσ̂T,c2

ab,NNLO, (5.83)

which collects all contributions in dσ̂T,c
ab,NNLO that are not derived from the unintegration of

structures in the double-virtual subtraction term and, hence, are introduced at the real-virtual
level for the first time. As we see in section 5.4.3, the insertion of an unresolved parton within
dσ̂T,c0

ab,NNLO produces contributions in the double-real subtraction term.

5.3.4 Summary and observations

For ease of reference, we collect here the main results of this section. The real-virtual
subtraction term has been decomposed according to:

dσ̂T
ab,NNLO = dσ̂T,a

ab,NNLO + dσ̂T,b
ab,NNLO + dσ̂T,c

ab,NNLO. (5.84)

The first term dσ̂T,a
ab,NNLO has an NLO-like structure and is presented in section 5.3.1. The

other terms are given by

dσ̂T,b
ab,NNLO = dσ̂T,b1

ab,NNLO + dσ̂T,b2
ab,NNLO + dσ̂T,b3

ab,NNLO, (5.85)

with

dσ̂T,b1
ab,NNLO = −Ins

[
dσ̂U,a1

ab,NNLO

]
− 2 Ins

[
dσ̂U,b

ab,NNLO

]
− dσ̂MF,1,b

ab,NNLO, (5.86)

dσ̂T,b2
ab,NNLO = −Ins

[
dσ̂

U,c,X 1
3

ab,NNLO

]
+ dσ̂T,b2,JX

ab,NNLO + dσ̂T,b2,MX
ab,NNLO, (5.87)

dσ̂T,b3
ab,NNLO = −Ins

[
dσ̂U,a0

ab,NNLO

]
− Ins

[
dσ̂U,c,β0

ab,NNLO

]
, (5.88)

and
dσ̂T,c

ab,NNLO = dσ̂T,c1
ab,NNLO + dσ̂T,c2

ab,NNLO + dσ̂T,c0
ab,NNLO, (5.89)

with

dσ̂T,c1
ab,NNLO = +Ins

[
dσ̂U,b,c.c.

ab,NNLO

]
+ Ins

[
dσ̂U,b,a.c.c.

ab,NNLO

]
, (5.90)

dσ̂T,c2
ab,NNLO = −Ins

[
dσ̂

U,c,X 0
3 ⊗X 0

3
ab,NNLO

]
−
[
dσ̂T,b2,MX

ab,NNLO + dσ̂MF,1,b2
ab,NNLO

]
. (5.91)

All the contributions to dσ̂T,b
ab,NNLO and dσ̂T,c

ab,NNLO are discussed in detail respectively in
sections 5.3.2 and 5.3.3.
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To illustrate the origin of the different contributions, we also recall the full decomposition
of the double virtual subtraction terms, described in detail in section 5.2:

dσ̂U
ab,NNLO = dσ̂U,a0

ab,NNLO + dσ̂U,a1
ab,NNLO

+ dσ̂U,b,c.c.
ab,NNLO + dσ̂U,b,a.c.c.

ab,NNLO + dσ̂U,b,c.u.
ab,NNLO

+ dσ̂
U,c,X 0

4
ab,NNLO + dσ̂

U,c,X 1
3

ab,NNLO + dσ̂
U,c,X 0

3 ⊗X 0
3

ab,NNLO + dσ̂U,c,β0
ab,NNLO. (5.92)

One can notice that almost the entire double-virtual subtraction term has been converted
into its unintegrated counterpart and has been used at the real-virtual level, with the only
exceptions being dσ̂U,b,c.u.

ab,NNLO and dσ̂
U,c,X 0

4
ab,NNLO, which are directly converted to the double-real

subtraction term. Moreover, new components had to be added at the real-virtual level and
require a corresponding counterpart in the double-real subtraction term. These components
are dσ̂T,a

ab,NNLO, dσ̂T,b2,JX
ab,NNLO and dσ̂T,c0

ab,NNLO.

5.4 NNLO double-real subtraction term

The last ingredient for an NNLO calculation is the double-real subtraction term dσ̂S
ab,NNLO,

which removes the divergent behaviour of the double-real matrix element in single and
double unresolved limits. In the colourful antenna subtraction approach, the generation
of dσ̂S

ab,NNLO is the last step of the procedure. It is a feature of the colourful formalism
that once the double-virtual and the real-virtual subtraction terms are available, it is quite
straightforward to complete the subtraction procedure with the missing blocks needed to
cancel the unmatched contributions in those two layers.

The double-real subtraction term is constructed by inserting a second unresolved parton
in contributions coming from dσ̂T

ab,NNLO and two unresolved partons in terms coming from
dσ̂U

ab,NNLO. As we discuss below, the only genuinely new procedure at this level is represented
by the simultaneous insertion of two colour-connected unresolved partons within the integrated
four-parton antennae X 0

4 .
We recall the usual decomposition of dσ̂S

ab,NNLO [8]:

dσ̂S
ab,NNLO = dσ̂S,a

ab,NNLO + dσ̂S,b
ab,NNLO + dσ̂S,c

ab,NNLO + dσ̂S,d
ab,NNLO. (5.93)

The first term dσ̂S,a
ab,NNLO removes single unresolved limits and it is analogous to an NLO real

subtraction term for an underlying (n + 1)-particle final state LO process. The remaining
terms respectively reproduce the divergent behaviour of the double-real correction in colour-
connected, almost colour-connected and colour-unconnected configurations [8, 65]. dσ̂S,c

ab,NNLO
also contains the large angle soft terms [42, 85]. In the following, we describe how to
systematically generate each contribution.

5.4.1 dσS,a
ab,NNLO

This contribution to the subtraction term is directly generated from dσ̂T,a
ab,NNLO, since it can

be seen as its corresponding real NLO subtraction term:

dσ̂T,a
ab,NNLO = −

∫
1

dσ̂S,a
ab,NNLO − dσ̂MF,1,a

ab,NNLO, (5.94)

– 64 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

which reflects equation (2.6) and therefore, following what is done in section 4.3 for the NLO
real subtraction term, we can simply write:

dσ̂S,a
ab,NNLO = −Ins

[
dσ̂T,a

ab,NNLO

]
. (5.95)

5.4.2 dσS,b
ab,NNLO

In the colour-connected configuration, the two unresolved partons are emitted between the
same pair of hard radiators. According to [8], we further decompose dσ̂S,b

ab,NNLO into two
contributions:

dσ̂S,b
ab,NNLO = dσ̂S,b1

ab,NNLO + dσ̂S,b2
ab,NNLO. (5.96)

The dσ̂S,b1
ab,NNLO terms contains four-parton antenna functions X0

4 , while the dσ̂S,b2
ab,NNLO term

contains convolutions of two three-parton antenna functions X0
3 ⊗ X0

3 , which are needed to
remove the singular behaviour of X0

4 antenna functions in single-unresolved limits.
The generation of dσ̂S,b2

ab,NNLO is straightforward, since its integrated counterpart is exactly
dσ̂T,b2,JX

ab,NNLO, so:

dσ̂S,b2
ab,NNLO = −Ins

[
dσ̂T,b2,JX

ab,NNLO

]
, (5.97)

where the momenta relabelling due to the insertion of an unresolved parton must also occur
within the unintegrated antenna functions which appear in dσ̂T,b2,JX

ab,NNLO. The general structure
of the resulting term is the following:

dσ̂S,b2
ab,NNLO ∼

∑
ij,u1,u2

∑
c,c′

[
X0

3 (i,u2, j)X0
3 (ĩu2,u1, j̃u2)a0

n+2(c,c′; ., ˜(iu2)u1, ., ˜(u2j)u1, .)

+X0
3 (i,u2,u1)X0

3 (ĩu2, ũ1u2, j)a0
n+2(c,c′; ., ˜(iu2)(u1u2), ., ˜j(u1u2), .)

+X0
3 (u1,u2, j)X0

3 (i, ũ1u2, j̃u2)a0
n+2(c,c′; ., ˜i(u1u2), ., ˜(u2j)(u1u2), .)

]
,

(5.98)

where u1 and u2 represent the two unresolved partons.
dσ̂S,b1

ab,NNLO comes from the insertion of two unresolved partons in dσ̂
U,c,X 0

4
ab,NNLO, namely

from the transition of integrated tree-level four-parton antenna functions to the unintegrated
level. In figure 2, such insertion was depicted with two connected descendant red arrows to
emphasize the fact that it cannot be performed relying on the Ins [·] operator defined in
section 4. Nevertheless, we can still identify a one-to-one correspondence between four-parton
integrated and unintegrated antenna functions:

X 0
4 (sij)a0

n+2(c, c′, {., i, ., j, .}) ↔ X0
4 (i, u1, u2, j)a0

n+2(c, c′, {., ĩu1u2, ., ũ1u2j, .}). (5.99)

The momentum mapping relating the two different phase-space multiplicities is the one
appropriate at NNLO [7, 8, 84]. The simultaneous insertion of two unresolved partons cannot
be achieved by the single-insertion operator Ins [·]. We need to define a new procedure,
which is however analogous to the one described in section 4. The insertion of two unresolved
colour-connected partons occurs as follows:
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1) remove the mass factorization kernels if present;

2) replace each four-parton integrated antenna function X 0
4 (sij) with its unintegrated

counterpart X0
4 (i, u1, u2, j) (see below);

3) suitably replace the momenta in the colour interferences, according to the accompanying
integrated antenna, following (5.99);

4) apply the same momenta relabelling to the jet function;

5) promote the phase-space measure to the appropriate one for (n+2) final-state momenta;

6) replace the overall factor with appropriate one for the real correction:

N V V
NNLO → NRR

NNLO = sRR (4παs)2 NLO, (5.100)

where sRR compensates the potentially different final state symmetry factors in the
presence two real emissions;

As for the single-insertion case, we need to clarify how exactly point 2 is performed. At
NNLO we can identify the following possibilities for the insertion of two unresolved partons:

• insertion of two unresolved gluons;

• insertion of an unresolved quark-antiquark pair, which becomes soft or collinear to hard
partons;

• insertion of two collinear quark-antiquark pairs;

• insertion of unresolved partons in IC limits.

We comment in the following about the different types of insertions. The appropriate
replacement rules to convert integrated antenna functions to their unintegrated counterparts
are presented in appendix A.2.

Insertion of two unresolved gluons. The insertion of two unresolved gluons ug1 and ug2

was presented in [23]. It is the natural extension of the insertion of a single unresolved gluon.
If the underlying LO process has (n + 2) external partons, the additional gluonic emissions
are labelled with indices ug1 = n + 3 and ug2 = n + 4. The expressions obtained performing
steps 1 to 4 above provides the appropriate structure to remove the double-unresolved limits
of partons u1 = n + 3 and u2 = n + 4, which we denote with:

f(p1, . . . , pn+2; pn+3, pn+4), (5.101)

with the last two entries representing the two momenta which can become unresolved. The
ordering of the hard momenta p1, . . . , pn+2 is irrelevant, since a sum over all possible colour
orderings is considered. A suitable sum of structures like the one in (5.101) is required to
cover all possible two-gluon unresolved configurations of the double-real matrix elements:∑

g1,g2 ∈ f.s. gluons
f(. . . ; pg1 , pg2), (5.102)
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where the sum runs over the momenta of ordered pairs of final-state gluons and the dots
indicate all the other external momenta. The final result reproduces the full singular
behaviour of the double-real matrix element when any pair of colour-connected gluons
becomes unresolved. The replacement rules for the insertion of two unresolved gluons are
given in appendix A.2 in table 28.

Insertion of an unresolved quark-antiquark pair. This type of insertion differs from
the corresponding one at NLO because in the infrared limits it addresses, the extra quark-
antiquark pair (uq, uq̄) can become soft or collinear to another hard parton.

On the practical side, the insertion at NNLO is actually simpler to perform than the
one at NLO. Indeed, at NLO, the splitting of a gluon into a quark-antiquark pair required
a proper shift of all the partonic indices and a dedicated procedure to cover all possible
splittings. At NNLO, given that this is a double-unresolved limit, we can proceed as for
the insertion of two unresolved gluons and simply append the indices of the newly added
quark and antiquark to the original set of momenta, namely uq = n + 3 and uq̄ = n + 4 for a
process with (n + 2) partons at LO. Moreover, no additional sum over partonic permutations
is needed. The associated replacement rules are given in appendix A.2 in table 29.

Insertion of two unresolved quark-antiquark pairs. This insertion targets the situation
in which two hard gluons individually split into two collinear quark-antiquark pairs (uq, uq̄)
and (uq′ , uq̄′). Since the two pairs belong to distinct fermionic lines, their flavours can be
considered different, with the same-flavour case not adding any contribution to this specific
unresolved limit.

The only IP antenna function related to such configuration is the gluon-gluon final-
final antenna function H0

4 (q, q̄, q′, q̄′), which only contains the double-collinear limit q ∥ q̄,
q′ ∥ q̄′. The transition from the integrated to the unintegrated antenna function is given in
appendix A.2 in table 30. Symmetrization within each pair and over the exchange of the two
pairs is considered. As it happens for the quark-antiquark insertion at NLO, besides adding
two extra partons, two gluons which are present in the original set of partons need to be
converted into quarks. We consider an (n + 2)-parton process with ng ≥ 2 final-state gluons
labelled as i, . . . , i + ng − 1. After the insertions, the final-state gluons can be relabelled as
i, . . . , i + ng − 3, while the added quarks are labelled, for example, as:

uq = i + ng − 2, uq̄ = i + ng − 1, uq′ = n + 3, uq̄′ = n + 4. (5.103)

The insertion is done by letting all possible pairs of external gluons split into the quark-
antiquark pairs, so no additional sums are required to reproduce the full singular behaviour
of the matrix element.

Insertion of two unresolved partons in IC limits. At NNLO, significantly more
IC configurations are present with respect to the NLO case. The possibilities parallel the
two-loop mass factorization kernels listed in section 2.1.2. The replacement rules to convert IC
four-parton antenna functions to their unintegrated counterparts are given in appendix A.2 in
table 31 for quark-antiquark antenna functions, in table 32 for quark-gluon antenna functions
and in table 31 for gluon-gluon antenna functions.
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Removal of splitting kernels

Insertion of two unresolved partons: X 0
4 → X0

4

Relabelling/mapping of momenta

Fix overall factors

Figure 4. Application of the Ins2 [·] operator for the simultaneous insertion of two colour-connected
unresolved partons.

We introduce a new operator denoted with Ins2 [·] for the simultaneous double insertion
of two unresolved partons, applying the procedure outlined above addressing each insertion
possibility. The application of Ins2 [·] is summarized in figure 4.

With the new operator, we can finally write:

dσ̂S,b1
ab,NNLO = −Ins2

[
dσ̂

U,c,X 0
4

ab,NNLO

]
, (5.104)

which has the following structure:

dσ̂S,b1
ab,NNLO ∼

∑
c,c′

∑
ij,u1,u2

X0
4 (i, u1, u2, j)a0

n+2(c, c′; ., ĩu1u2, ., j̃u1u2, .). (5.105)

With this, we completed the generation of the dσ̂S,b
ab,NNLO component of the double-real

subtraction term.
We observe that, in the outlined procedure, dσ̂S,b1

ab,NNLO and dσ̂S,b2
ab,NNLO are inferred from

apparently independent contributions. However, a precise relation between these two terms
should hold to ensure the removal of single unresolved limits from the four-particle antenna
functions at the double-real level. In fact, the structure of dσ̂S,b2

ab,NNLO directly descends from
the one-loop three-parton antennae appearing in the two-loop integrated dipoles, which are in
turn related to the four-parton antenna functions. Indeed, the relation among dσ̂S,b1

ab,NNLO and
dσ̂S,b2

ab,NNLO is actually mirrored by the inner structure of the two-loop integrated dipoles and
the interplay between the X 0

4 and the X 1
3 , which gives the correct ϵ-poles at the double-virtual

level, manifest here in the form of the correct arrangement of X0
4 and X0

3 ⊗ X0
3 contributions.

The removal of the single-unresolved behaviour of dσ̂S,b1
ab,NNLO by dσ̂S,b2

ab,NNLO can be used as a
strong check of the correctness of the derivation we illustrated.

5.4.3 dσS,c
ab,NNLO

In the almost colour-connected configuration, the unresolved partons are emitted between
two pairs of hard radiators which share one common hard radiator. The structure of the
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blocks needed to remove the divergences associated to these configurations is shared by
the large angle soft terms too, which are thus naturally incorporated in dσ̂S,c

ab,NNLO [8, 65].
The integrated counterpart of dσ̂S,c

ab,NNLO is dσ̂T,c0
ab,NNLO generated at the real-virtual level, as

described in section 5.3.3. Hence we have:

dσ̂S,c
ab,NNLO = −Ins

[
dσ̂T,c0

ab,NNLO

]
. (5.106)

The action of the Ins [·] operator on dσ̂T,c0
ab,NNLO requires the insertion of an unresolved parton

within integrated large angle soft terms. With u1 and u2 respectively the previously inserted
unresolved parton and the newly inserted unresolved parton at the double-real level, the
required replacements are:

S(sIJ , sI′J ′ , x) → S(I, u2, J) for (I, J) ̸= (I ′, J ′),
S(sI′J , sI′J ′ , x) → S(Ĩ ′u2, u2, J) for J ̸= J ′,

S(sIJ ′ , sI′J ′ , x) → S(I, u2, ũ2J ′) for I ̸= I ′,

S(sI′J ′ , sI′J ′ , x) → S(Ĩ ′u2, u2, ũ2J ′),

(5.107)

where S(a, b, c) = S0
abc is the usual soft factor. I and J represent any unmapped or mapped

parton and I ′, J ′ indicate either i′, j′ or ĩ′u1, ũ1j′. In this latter case, namely when parton i′

or j′ acts as a hard radiator for both partons u1 and u2, the correct order of the momentum
mapping is i′ → ĩ′u2 → ˜(i′u2)u1 or j′ → j̃′u2 → ˜(j′u2)u1, since the first parton which is
integrated over at the double-real level is u2. The eikonal factors generated via (5.107)
remove the remnant soft gluon divergent behaviour associated to colour-connected and almost
colour-connected contributions at the double-real level [8, 42, 65, 85, 86].

5.4.4 dσS,d
ab,NNLO

In the colour-unconnected configuration, the two unresolved partons are emitted between
two distinct pairs of hard radiators. These terms do not appear at the real-virtual level
but can be inherited directly from the double-virtual subtraction term to the double-real
one. This is achieved inserting two unresolved partons in dσ̂U,b,c.u.

ab,NNLO, one in each of the
two one-loop integrated dipoles. Since the two pairs of hard radiators are distinct, the two
insertions can be performed independently. Therefore, dσ̂S,d

ab,NNLO is generated through the
iterated application of the Ins [·] operator:

dσ̂S,d
ab,NNLO = +Ins

[
Ins

[
dσ̂U,b,c.u.

ab,NNLO

]]
. (5.108)

In figure 2, we indicated the iterated insertion of two unresolved partons as two disjoint
descendant red arrows, to differentiate it from the simultaneous double insertion discussed
in section 5.4.2.

5.4.5 Summary and observations

For ease of reference, we collect here the main results of this section. The double-real
subtraction term has been decomposed according to:

dσ̂S
ab,NNLO = dσ̂S,a

ab,NNLO + dσ̂S,b
ab,NNLO + dσ̂S,c

ab,NNLO + dσ̂S,d
ab,NNLO, (5.109)

– 69 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

with

dσ̂S,a
ab,NNLO = −Ins

[
dσ̂T,a

ab,NNLO

]
, (5.110)

dσ̂S,b
ab,NNLO = dσ̂S,b1

ab,NNLO + dσ̂S,b2
ab,NNLO, (5.111)

dσ̂S,b1
ab,NNLO = −Ins2

[
dσ̂

U,c,X 0
4

ab,NNLO

]
, (5.112)

dσ̂S,b2
ab,NNLO = −Ins

[
dσ̂T,b2,JX

ab,NNLO

]
, (5.113)

dσ̂S,c
ab,NNLO = −Ins

[
dσ̂T,c0

ab,NNLO

]
, (5.114)

dσ̂S,d
ab,NNLO = +Ins

[
Ins

[
dσ̂U,b,c.u.

ab,NNLO

]]
. (5.115)

Comparing the summary above with the one in section 5.3.4 and with the visual support
of figure 2, one can easily track down the relations among all the components of the three
layers of the NNLO subtraction infrastructure. In particular, since, up to mass factorization
counterterms which are absorbed in the redefinition of the PDFs, the following relations hold:∫

1
Ins [f ] = f, (5.116)∫

2
Ins2 [f ] = f, (5.117)

where f indicates a generic contribution to the subtraction terms, it is possible to verify
that the relations in (2.20) are fulfilled and therefore the total sum of the subtraction terms
vanishes after integration over the unresolved partons.

6 Subtraction terms for three-jet production at hadron colliders

As a first application, we re-derived the NNLO subtraction terms for pp → 2 jets and
pp → H + j in the colourful antenna subtraction method and compared them to their original
implementations [45, 53] in NNLOjet. Exact pointwise agreement has been found for most
of the structures, with few discrepancies showing up away from the infrared limits. This is
explained by the fact that in some cases different choices can be made for the construction of
subtraction terms. In general, the systematic procedure described in this paper to construct
the virtual subtraction terms by means of the integrated dipoles defined in sections 3.3.1
and 3.3.2 may yield different structures at the integrated level with respect to the ad-hoc
construction done in the past for specific processes. However, the two implementations clearly
provide the same virtual poles and only differ by ϵ-finite contributions.

Differences in the virtual subtraction terms obtained from the two approaches imply that
also the real subtraction terms should not coincide exactly, to ensure that after integration
the net contribution of the subtraction terms vanishes. In this case, the discrepancies only
show up in the resolved regions and do not affect the infrared limits. If consistent choices
are made at the integrated and unintegrated level, namely equations (2.6) and (2.20) are
satisfied, any implementation provides the same numerical result for the cross section when
all the layers of a fixed-order calculation are combined.

A typical example is the choice of the spectator parton in an initial-state collinear limit:
different options reproduce the same singular behaviour, but do not give the same numerical
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outcome in the hard regions. Such discrepancies in the real-emission layers are compensated
by different ϵ-finite terms in the virtual subtraction terms, in such a way the final result
is unaffected by the specific choice.

We used the colourful antenna subtraction method to construct the subtraction terms
relevant to pp → 3 jets. Three-jet production and in general multi-jet events at hadron
colliders provide an optimal environment for investigating the properties of QCD. The
reduced sensitivity to electroweak effects allows for precision studies of parton dynamics in
QCD and the extraction of the strong coupling constant αs [87–91].

Three-jet production, with five external partons at LO, presents an unprecedented
complexity in the context of antenna subtraction. In general, the computation of the NNLO
correction to pp → 3j stands as the most challenging fully massless NNLO calculation among
the ones which are in principle feasible at present, given the available matrix elements. Such
a calculation lies beyond the practical reach of most of the current subtraction schemes
at NNLO. It has been computed in [22, 25], with the sector-improved residue subtraction
technique [11, 12]. The only approximation present in these calculations is the truncation to
the leading-colour component of the infrared-finite remainder of the two-loop amplitudes [34],
since the complete subleading-colour contributions to these amplitudes are not yet available.

Along with the complicated infrared structure, due to the large number of partons
and, hence, possible infrared limits, this calculation has an extremely high computational
cost [25]. The stability over the whole phase space of the high-multiplicity one- and two-
loop matrix elements must be ensured exploiting quadruple-precision arithmetic when the
standard evaluation fails. Moreover, the numerical integration of real-virtual and double-real
corrections and their respective subtraction terms requires a very substantial number of
evaluations to reach a satisfactory precision.

We exploited the colourful antenna subtraction method to systematically construct NNLO
subtraction terms for pp → 3j. In the following we discuss their validation. The first proof-
of-principle application of the colourful antenna subtraction approach was the calculation
of the NNLO correction to the subchannel gg → ggg in the gluons-only scenario, presented
in [23]. The construction and validation of the subtraction terms discussed below anticipates
the complete calculation of the NNLO correction for three-jet production at hadron colliders.

The computation is performed within the NNLOjet framework [48]. NNLOjet is a
parton-level Monte Carlo event generator which implements the antenna subtraction method
to compute NNLO QCD corrections to a series of processes.

For three-jet production at NNLO, high multiplicity tree and loop amplitudes are needed.
The computation relies on a mixture of analytical results and numerical implementations
for the amplitudes. The helicity amplitudes the LO and NLO processes, namely five- and
six-parton scattering at tree-level [92–97] and five-parton scattering at one-loop [98–101]
are incorporated in a fully analytical form in NNLOjet. The planar five-parton two-
loop amplitudes have been computed in [102] using a basis of pentagon functions [30–32].
We rely on a public C++ code [34] which implements the aforementioned amplitudes and
computes the renormalized infrared-finite remainder of the five-parton two-loop matrix
elements. The implementation in [34] provides the leading-colour part of the finite remainder,
including leading-Nf and leading-N2

f contributions. However, for the infrared poles of the
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two-loop matrix element we employ the complete full-colour result, derived from its infrared
factorization properties [75, 77, 78]. The six-parton one-loop matrix elements are computed
with the OpenLoops generator [103–105]. We rely on the built-in quadruple-precision rescue
system to increase the accuracy in infrared limits and deal with occasional unstable points.
We rely on OpenLoops also for the tree-level seven-parton matrix elements, with the only
exception of the seven-gluon matrix element. For the tests we performed, quadruple-precision
is not needed to have a satisfactory stability of tree-level matrix elements in single- and
double-unresolved limits.

6.1 Validation of the subtraction terms

In this section we discuss how the process of validation of the subtraction terms occurs.
Three-jet production at NNLO has a large number of partonic sub-channels, for an overall
number of possible single- and double-unresolved limits of O(1000). The computational costs
of high-multiplicity matrix elements is such that even the validation procedure requires a
non-negligible amount of CPU-hours. For this reasons, we limit the following presentation
to some exemplary unresolved configurations.

6.1.1 Double-virtual subtraction terms

The validation of the double-virtual subtraction term consists of checking the cancellation of
all the explicit ϵ-poles against the ones of the double-virtual matrix element, as predicted
by (3.37), as well as in the recovery of the complete structure of the mass factorization kernels
at two loops, including IC contributions. Both requirements are validated at the symbolic
level. As explained above, even if the finite-remainder of the two-loop correction is only
available at leading colour, these checks are performed considering the complete full-colour
results. Retaining the full-colour double-virtual subtraction terms is actually mandatory to
be consistent with the full-colour calculation of the real-virtual and double-real corrections.

In the colourful antenna subtraction approach, the double-virtual subtraction term is
constructed mirroring the infrared structure of the two-loop matrix element. Hence, one may
expect this part of the validation procedure to be trivial. However, several crucial aspects
of the colourful approach are assessed during this phase, such as:

• the definition of IP and IC two-loop colour-stripped integrated dipoles, in particular
the correct removal of spurious limits from IP ones;

• the colour decomposition of tree-level and one-loop amplitudes and the insertion of
operators in colour space;

• the assembling of real quantities at the squared level.

We also note that the extraction of the singularity structure of one-loop colour-ordered
amplitudes discussed in section 5.3.2 becomes useful in this context, since one-loop squared
amplitudes and colour interferences are part of the infrared structure at two loops.

We successfully generated and validated the double-virtual subtraction terms for all the
sub-process of three-jet production at hadron colliders in full-colour.
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6.1.2 Real-virtual subtraction terms

The assessment of the real-virtual subtraction terms occurs in two phases: cancel-
lation of explicit infrared poles and correct subtraction of the singular behaviour in
single-unresolved limits.

First of all, during the automated generation, we check that, aside from the dσ̂T,a
ab,NNLO

term, the real-virtual subtraction terms is ϵ-finite. In particular, we check that the contribu-
tions dσ̂T,b1

ab,NNLO, dσ̂T,b2
ab,NNLO (with the one-loop antenna functions properly renormalized) and

the dσ̂T,c
ab,NNLO are individually free from explicit infrared singularities, since, as explained in

section 5.3, they are constructed to be ϵ-finite. Secondly, the explicit poles of the dσ̂T,a
ab,NNLO

component are compared at the symbolic level against the singularity structure of one-loop
matrix elements, assessing their complete correspondence. Finally, the coefficients of the
ϵ-poles in the full subtraction terms at the level of the numerical implementation are validated
against the ones of the real-virtual matrix element. The cancellation of the poles has to
occur up to machine-level precision. Once the validation is successful, only the finite part
of both the matrix element and the subtraction term is computed.

The assessment of the subtraction of implicit divergent behaviour occurs with pointwise
tests against the real-virtual matrix element, which we call spike-tests. The procedure is
outlined in [65]: we generate a sample of 10000 phase space points at

√
s = 13TeV close

to a given infrared limit and we compute:

RRV =
dσ̂RV

ab,NNLO
dσ̂T

ab,NNLO
. (6.1)

We then bin the events according to the following quantity:

tRV = log10 (|1− RRV |) , (6.2)

which provides an estimate of the number of correct digits reproduced by the subtraction
terms. We probe each unresolved limit through the variable x, which parametrizes the depth
at which each infrared limit is tested. The definition of x varies according to the considered
unresolved configuration and is given in table 22. The squared centre-of-mass energy is
indicated as s, while the other invariants are defined as:

si1...im = (pi1 + · · ·+ pim)2 small when i1, . . . , im are collinear,

s−i1...im =

 ∑
j≥3, j ̸=i1...im

pj

2

close to s when i1, . . . , im are soft.
(6.3)

The smaller x becomes, the more enhanced is the divergent behaviour of matrix elements. To
remove angular correlations and achieve a proper subtraction in infrared limits with collinear
partons, a point-by-point angular average is considered, as described in detail in [65].

We present here the spike-tests for the assessment of the real-virtual subtraction terms
across a sample of partonic subprocesses of pp → 3j. The validation is carried out in full-
colour. The titles of the plots below state the infrared configuration, the unresolved parton,
counted from 1 to 6 with (1,2) in the initial state, and the considered subprocess. The pairs
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Configuration Soft Collinear x y

Single soft i - (s − s−i)/s -

Single collinear - i ∥ j sij/s -

Table 22. Variable x used to probe single-unresolved infrared limits.
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Figure 5. Validation of the real-virtual subtraction terms for single-soft limits.

of numbers reported under the label ‘outside’ respectively indicate how many events fell on
the left and on the right of the displayed range in tRV .

We first consider the soft limit. In figure 5 we present the validation of the subtraction
terms for a selection of subprocesses. The first plot, which refers to the gg → gggg channel,
differs from the results discussed in the gluons-only case in [23] by the inclusion of fermionic-
loop contributions (Nf ̸= 0). In general, we observe a very good convergence pattern: the
deeper the infrared limit is probed, the better is the agreement between the matrix element
and the subtraction terms. The distributions appear particularly smooth, indicating that
potential numerical noise from the multitude of terms in subleading-colour factors is not
spoiling the overall convergence.

We notice however a small fraction of points (≲ 0.5%) leaking to the right side of the plots
for the deepest choice of the x variable (red curve) form some of the considered subprocesses.
Given the good quality of the three spikes, it is unlikely that this is due to a mistake in
the construction of the subtraction terms, which would show up with much more dramatic
effects. We can assume that for x = 10−7, it is inevitable to hit a few unstable points, where
either the full-colour matrix element returned by OpenLoops or the large expressions in
our subtraction terms have percent-level deviations from the true result. During the full
calculation, such extreme regions of the phase space are highly suppressed. A small number of
unstable points should not significantly affect the importance sampling techniques employed
to optimize a Monte Carlo integration.
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Figure 6. Validation of the real-virtual subtraction terms for single-collinear limits.

In figure 6 we show examples of the validation for single-collinear limits. We note that
the spikes look less peaked with respect to the soft limits, for the same reasons mentioned
in the gluons-only case [23]. Nevertheless, we observe a satisfactory agreement between
the matrix elements and the subtraction terms. For collinear limits, we do not see the
appearance of numerical instabilities.

6.1.3 Double-real subtraction terms

The assessment of the subtraction at the double-real level is performed with the same strategy
employed for the real-virtual correction. We generate 10000 phase space points at

√
s = 13TeV

in single- and double-unresolved limits and study the ratio

RRR =
dσ̂RR

ab,NNLO
dσ̂S

ab,NNLO
, (6.4)

binned according to

tRR = log10 (|1− RRR|) . (6.5)

To parametrize the depth we reach in unresolved limits we use the variables x and y. For
single-unresolved limits, the definition of x is given above in table 22, while x and y for
double-unresolved ones are given in table 23. For configurations that require both x and
y (soft-collinear and double-collinear), we choose to fix x = y. Also for the double-real
case, a point-by-point angular average is considered [65], to enforce a local subtraction of
the singular behaviour.

We present the spike-tests for the assessment of the double-real subtraction terms across
a sample of partonic subprocesses of pp → 3j. The validation is carried out in full-colour.
The titles of the plots below state the infrared configuration, the unresolved parton involved
counting from 1 to 7 with (1,2) in the initial state, and the considered subprocess. As before,
the pairs of numbers reported under the label ‘outside’ respectively indicate how many events
fell on the left and on the right of the displayed range in tRR.
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Configuration Soft Collinear x y

Double soft i, j - (s − s−ij)/s -

Triple collinear - i ∥ j ∥ k sijk/s -

Soft and collinear i j ∥ k (s − s−i)/s sjk/s

Double collinear - i ∥ j, k ∥ l sjk/s skl/s

Table 23. Variables x and y used to probe double-unresolved infrared limits.
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Figure 7. Validation of the double-real subtraction terms in double-soft (upper row) and triple-
collinear (lower row) limits for a selection of subprocesses.

In figure 7, we display some examples of double-unresolved configurations related to
colour-connected unresolved partons: double-soft and triple-collinear limits. We observe a very
good convergence. The double-real matrix elements and subtraction terms, not containing
any loop amplitude, are in general much more stable in double-unresolved limits than the
real-virtual ones in single-unresolved configurations. For this reason, we do not notice any
numerical instability in the point-by-point tests and we can exclude the necessity of employing
quadruple-precision arithmetic for the computation of the double-real correction.

In figure 8 we show a few examples of double-unresolved limits given by the overlap
of two single-unresolved configurations: soft-collinear and double-collinear limits. For the
qq̄ → q′q̄′ggg subprocess we have an example of suboptimal behaviour, with unusually large
tails towards the right edge of the tRR range. Nevertheless, the behaviour of the distribution
for decreasing x clearly indicates the proper functioning of the subtraction.

Double-real subtraction terms also need to properly remove the single-unresolved be-
haviour of the matrix elements. A non-trivial interplay occurs between all the components to
yield the correct result. In particular, the singular behaviour of four-parton tree-level antenna
functions needs to be properly subtracted by combinations of three-parton tree-level antenna
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Figure 8. Validation of the double-real subtraction terms in soft-collinear (upper row) and double-
collinear (lower row) limits for a selection of subprocesses.

10 9 8 7 6 5 4
tRR

0

200

400

600

800

1000

1200

1400

1600

# 
Ev

en
ts

Single soft  3   qq ggggg
points: 10000
outside: 0/0

26/0
253/0

x = 10 4

x = 10 6

x = 10 8

11 10 9 8 7 6 5 4 3
tRR

0

250

500

750

1000

1250

1500

1750

2000

# 
Ev

en
ts

Single soft  5   qq q′q′ggg
points: 10000
outside: 0/120

0/0
18/0

x = 10 4

x = 10 6

x = 10 8

11 10 9 8 7 6 5 4 3
tRR

0

250

500

750

1000

1250

1500

1750

2000

# 
Ev

en
ts

Single soft  7   qq q′q′q′′q′′g
points: 10000
outside: 0/77

0/0
34/0

x = 10 4

x = 10 6

x = 10 8

7 6 5 4 3 2 1
tRR

0

200

400

600

800

1000

1200

1400

1600

# 
Ev

en
ts

Single collinear  5//6   gg qqggg
points: 10000
outside: 0/28

26/0
258/0

x = 10 5

x = 10 7

x = 10 9

6 5 4 3 2 1
tRR

0

200

400

600

800

1000

1200

1400

# 
Ev

en
ts

Single collinear  1//3   qg qgggg
points: 10000
outside: 0/131

1/0
62/0

x = 10 5

x = 10 7

x = 10 9

7 6 5 4 3 2 1
tRR

0

250

500

750

1000

1250

1500

1750

2000

# 
Ev

en
ts

Single collinear  3//4   qq q′q′ggg
points: 10000
outside: 0/47

4/0
20/0

x = 10 5

x = 10 7

x = 10 9

Figure 9. Validation of the double-real subtraction terms in single-soft (upper row) and single-
collinear (lower row) limits for a selection of subprocesses.

functions. In figure 9 we demonstrate the correct behaviour of a sample of subtraction terms
in single-soft and single-collinear limits.

7 Conclusions and outlook

We presented the colourful antenna subtraction method, a general and fully automatable
framework for NNLO calculations in massless QCD. We outlined in detail how the new
formalism is applied for the generation of the infrared subtraction terms for NLO and NNLO
calculations, respectively in sections 4 and 5. The derivation is carried out in a completely
process-independent fashion. The key aspect of the colourful antenna subtraction method
is the derivation of the subtraction terms for real emissions from the subtraction terms
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for virtual corrections by exploiting the one-to-one correspondence between integrated and
unintegrated antenna functions. We described in detail how the transition from integrated to
unintegrated quantities occurs, providing a list of replacement rules and algorithmic steps to
perform it. We delineated methodical procedures for the construction of each component
and discussed the interplay among the different layers of the subtraction, demonstrating the
coherence of the approach and the complete cancellation of infrared singularities at NLO
and NNLO. We show that the large majority of the contributions to the NNLO subtraction
infrastructure can be obtained by suitably iterating the operations used at NLO, with the
only exception being the emission of two colour-connected unresolved partons.

The new formalism overcomes some of the intrinsic limitations present in the origi-
nal formulation of the antenna subtraction method, addressing in particular leading- and
subleading-colour contributions in a unified and systematic framework. One of its main
advantages lies in the significant simplifications it yields in constructing the double-real
subtraction term at NNLO, which is essentially derived as a by-product of the double-virtual
and real-virtual subtraction terms. For these reasons, in comparison to the traditional
approach, the colourful antenna subtraction method is better suited for the application
to high-multiplicity processes. Furthermore, it is naturally suited to be fully automated.
We anticipate that in the future the colourful antenna subtraction method can be readily
modified to accommodate different types of antenna functions, such as designer antenna
functions [58–60], antenna functions for identified final-state particles [106, 107] or antenna
functions with massive radiators [108].

As a first application of the colourful antenna subtraction approach, we generated
the subtraction terms for the computation of the NNLO corrections to hadronic three-jet
production. In section 6 we discuss the validation procedure for the large variety of subtraction
terms, showing how we can assess their correct behaviour in single- and double-unresolved
limits. The natural next step is the calculation of the complete NNLO correction to three-jet
production at hadron colliders, which will represent the ultimate validation of the colourful
antenna subtraction formalism. Its heavy computational cost has to be necessarily taken
into account while designing the phenomenological study.
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A Treatment of NNLO antenna functions

In this appendix we collect results needed for the conversion of integrated NNLO antenna
functions into their unintegrated counterparts.
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X 1
3 X1

3 X̂ 1
3 X̂1

3 X̃ 1
3 X̃1

3

q − q̄

A1
3(sij) A1

3(iq, ug, jq̄) Â1
3(sij) Â1

3(iq, ug, jq̄) Ã1
3(sij) Ã1

3(iq, ug, jq̄)

A1
3,q(s1i) A1

3,q(1q, ug, iq̄) Â1
3,q(s1i) Â1

3,q(1q, ug, iq̄) Ã1
3,q(s1i) Ã1

3,q(1q, ug, iq̄)

A1
3,qq̄(s12) A1

3,qq̄(1q, ug, 2q̄) Â1
3,qq̄(s12) Â1

3,qq̄(1q, ug, 2q̄) Ã1
3,qq̄(s12) Ã1

3,qq̄(1q, ug, 2q̄)

q − g

D1
3(sij) 2d1

3(iq, ug, jg) D̂1
3(sij) 2d̂1

3(iq, ug, jg)

D1
3,q(s1i) 2d1

3,q(1q, ug, ig) D̂1
3,q(s1i) 2d̂1

3,q(1q, ug, ig)

D1
3,g(s1i) D1

3,g(iq, ug, 1g) D̂1
3,g(s1i) D̂1

3,g(iq, ug, 1g)

D1
3,qg(s12) D1

3,qg(1q, ug, 2g) D̂1
3,qg(s12) D̂1

3,qg(1q, ug, 2g)

g − g

F1
3 (sij) 3f1

3 (ig, ug, jg) F̂1
3 (sij) 3f̂1

3 (ig, ug, jg)

F1
3,g(s1i) 2f1

3,g(1g, ug, ig) F̂1
3,g(s1i) 2f̂1

3,g(1g, ug, ig)

F1
3,gg(s12) F 1

3,gg(1g, ug, 2g) F̂1
3,gg(s12) F̂ 1

3,gg(1g, ug, 2g)

Table 24. Replacement rules to convert integrated one-loop antenna functions to their unintegrated
counterparts for the insertion of an unresolved gluon (denoted with ug) between the pair of hard
radiators. The three columns address the leading-colour, the fermionic-loop and the subleading-colour
antenna functions respectively.

A.1 One-loop three-parton antenna functions

The insertion of unresolved partons within one-loop antenna functions is completely analogous
to the insertion at tree-level, presented in table 18, table 19 and table 20. The insertion of an
unresolved gluon is presented in table 24, the insertion of an unresolved quark-antiquark pair
is presented in table 25 and the insertion a parton within IC limits is presented in table 26.

We also illustrate here the ϵ-poles structure of the renormalized unintegrated three-parton
one-loop antenna functions. We recall that, in any kinematic configuration (II, IF or FF),
the ϵ-poles of a generic X1

3 antenna function can be absorbed by the following replacement:

X1
3 (i, u, j) → X1

3 (i, u, j) +
NX∑

(l,m)=1
J

(1)
2 (l, m)X0

3 (i, u, j)− MXJ
(1)
2 (ĩu, ũj)X0

3 (i, u, j), (A.1)

where the sum in the second term runs over the NX pairs of colour-connected partons within
the antenna configuration. In table 27 we give the value for the NX and MX constants
for the different antenna functions.

We give here the explicit form of (A.1) for FF kinematics. Completely analogous
formulae hold for II and IF configurations.

A1
3(q,g, q̄)→A1

3(q,g, q̄)+A0
3(q,g, q̄)

(
J

(1)
2 (q,g)+J

(1)
2 (g, q̄)−2J

(1)
2 (q̃g, g̃q̄)

)
, (A.2)

Â1
3(q,g, q̄)→ Â1

3(q,g, q̄)+A0
3(q,g, q̄)

(
Ĵ2

(1)(q,g)+Ĵ2
(1)(g, q̄)

)
, (A.3)

Ã1
3(q,g, q̄)→ Â1

3(q,g, q̄)+A0
3(q,g, q̄)

(
J

(1)
2 (q, q̄)−J

(1)
2 (q̃g, g̃q̄)

)
, (A.4)
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X 1
3 X1

3

q − g
E1

3 (sij) 1
2
[
E1

3(iq, uq, uq̄) + E1
3(iq, uq̄, uq)

]
E1

3,q(s1i) 1
2

[
E1

3,q(1q, uq, uq̄) + E1
3,q(1q, uq̄, uq)

]

g − g
G1

3(sij)
1
2

[
G1

3(ig, uq, uq̄) + G1
3(ig, uq̄, uq)

+G1
3(uq, uq̄, jq) + G1

3(uq̄, uq, jq)
]

G1
3,g(s1i) 1

2

[
G1

3,g(1g, uq, uq̄) + G1
3,g(1g, uq̄, uq)

]
X̂ 1

3 X̂1
3

q − g
Ê1

3 (sij) 1
2

[
Ê1

3(iq, uq, uq̄) + Ê1
3(iq, uq̄, uq)

]
Ê1

3,q(s1i) 1
2

[
Ê1

3,q(1q, uq, uq̄) + Ê1
3,q(1q, uq̄, uq)

]

g − g
Ĝ1

3(sij)
1
2

[
Ĝ1

3(ig, uq, uq̄) + Ĝ1
3(ig, uq̄, uq)

+Ĝ1
3(uq, uq̄, jq) + Ĝ1

3(uq̄, uq, jq)
]

Ĝ1
3,g(s1i) 1

2

[
Ĝ1

3,g(1g, uq, uq̄) + Ĝ1
3,g(1g, uq̄, uq)

]
X̃ 1

3 X̃1
3

q − g
Ẽ1

3 (sij) 1
2

[
Ẽ1

3(iq, uq, uq̄) + Ẽ1
3(iq, uq̄, uq)

]
Ẽ1

3,q(s1i) 1
2

[
Ẽ1

3,q(1q, uq, uq̄) + Ẽ1
3,q(1q, uq̄, uq)

]

g − g
G̃1

3(sij)
1
2

[
G̃1

3(ig, uq, uq̄) + G̃1
3(ig, uq̄, uq)

+G̃1
3(uq, uq̄, jq) + G̃1

3(uq̄, uq, jq)
]

G̃1
3,g(s1i) 1

2

[
G̃1

3,g(1g, uq, uq̄) + G̃1
3,g(1g, uq̄, uq)

]
Table 25. Replacement rules to convert integrated one-loop antenna functions to their unintegrated
counterparts when the final-state gluon splits into an unresolved quark-antiquark pair, denoted with
(uq, uq̄). Symmetrization over the inserted quark-antiquark pair is always considered.

d1
3(q,g1,g2)→ d1

3(q,g1,g2)+d0
3(q,g1,g2)

(
J

(1)
2 (q,g1)+J

(1)
2 (q,g2)+J

(1)
2 (g1,g2)

−2J
(1)
2 (q̃g1, g̃1g2)

)
, (A.5)

d̂1
3(q,g1,g2)→ d̂1

3(q,g1,g2)+d0
3(q,g1,g2)

(
Ĵ2

(1)(q,g1)+Ĵ2
(1)(q,g2)+Ĵ2

(1)(g1,g2)

−2Ĵ2
(1)(q̃g1, g̃1g2)

)
, (A.6)

E1
3(q,q′, q̄′)→E1

3(q,q′, q̄′)+E0
3(q,q′, q̄′)

(
J

(1)
2 (q,q′)+J

(1)
2 (q, q̄′)−J

(1)
2 (q̃q′, q̃q̄′)

)
, (A.7)

Ê1
3(q,q′, q̄′)→ Ê1

3(q,q′, q̄′)+E0
3(q,q′, q̄′)

(
−Ĵ2

(1)(q̃q′, q̃q̄′)
)
, (A.8)

Ẽ1
3(q,q′, q̄′)→ Ẽ1

3(q,q′, q̄′)+E0
3(q,q′, q̄′)

(
J

(1)
2 (q′, q̄′)

)
, (A.9)
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X 1
3 X1

3

q − q̄
A1

3,g(s1i) 2A1
3,g(iq̄, 1q, uq)

A1
3,gq(s12) A1

3,gq(uq, 1g, 2q̄)

q − g

E1
3,q′(s1i) 1

2

[
E1

3,q′(iq, 1q, uq̄) + E1
3,q′(iq, uq̄, 1q)

]
D1

3,gg(s1i) D1
3,gg(uq, 1g, 2g)

E1
3,q′q(s12) 1

2

[
E1

3,q′q(2q, 1q, uq̄) + E1
3,q′q(2q, uq̄, 1q)

]
g − g

G1
3,q(s1i) 1

2

[
G1

3,q(ig, 1q, uq̄) + G1
3,q(ig, uq̄, 1q)

]
G1

3,qg(s12) 1
2

[
G1

3,qg(2g, 1q, uq̄) + G1
3,qg(2g, uq̄, 1q)

]
X̂ 1

3 X̂1
3

q − q̄

1
2Â

1
3,g(s1i) A1

3,g(iq̄, 1q, uq)

Â1
3,gq(s12) A1

3,gq(uq, 1g, 2q̄)

q − g

Ê1
3,q′(s1i) 1

2

[
Ê1

3,q′(iq, 1q, uq̄) + Ê1
3,q′(iq, uq̄, 1q)

]
D̂1

3,gg(s1i) D1
3,gg(uq, 1g, 2g)

Ê1
3,q′q(s12) 1

2

[
Ê1

3,q′q(2q, 1q, uq̄) + Ê1
3,q′q(2q, uq̄, 1q)

]
g − g

Ĝ1
3,q(s1i) 1

2

[
Ĝ1

3,q(ig, 1q, uq̄) + Ĝ1
3,q(ig, uq̄, 1q)

]
Ĝ1

3,qg(s12) 1
2

[
Ĝ1

3,qg(2g, 1q, uq̄) + Ĝ1
3,qg(2g, uq̄, 1q)

]
X̃ 1

3 X̃1
3

q − q̄
Ã1

3,g(s1i) 2A1
3,g(iq̄, 1q, uq)

Ã1
3,gq(s12) A1

3,gq(uq, 1g, 2q̄)

q − g
Ẽ1

3,q′(s1i) 1
2

[
Ẽ1

3,q′(iq, 1q, uq̄) + Ẽ1
3,q′(iq, uq̄, 1q)

]
Ẽ1

3,q′q(s12) 1
2

[
Ẽ1

3,q′q(2q, 1q, uq̄) + Ẽ1
3,q′q(2q, uq̄, 1q)

]
g − g

G̃1
3,q(s1i) 1

2

[
G̃1

3,q(ig, 1q, uq̄) + G̃1
3,q(ig, uq̄, 1q)

]
G̃1

3,qg(s12) 1
2

[
G̃1

3,qg(2g, 1q, uq̄) + G̃1
3,qg(2g, uq̄, 1q)

]
Table 26. Replacement rules to convert integrated one-loop antenna functions to their unintegrated
counterparts for identity-changing insertions. The final-state quark (antiquark) causing the change of
identity of parton 1 is denoted with uq (uq̄). Symmetrization over the collinear quark-antiquark pair
is considered for G- and E-type antenna functions.

f1
3 (g1,g2,g3)→ f1

3 (g1,g2,g3)+f0
3 (g1,g2,g3)

(
J

(1)
2 (g1,g2)+J

(1)
2 (g1,g3)+J

(1)
2 (g2,g3)

−2J
(1)
2 (g̃1g2, g̃2g3)

)
, (A.10)
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J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

X1
3 A1

3 Â1
3 Ã1

3 D1
3 D̂1

3 E1
3 Ê1

3 Ẽ1
3 F 1

3 F̂ 1
3 G1

3 Ĝ1
3 G̃1

3

NX 2 2 1 3 3 2 0 1 3 3 2 2 1

MX 1 0 1 2 2 2 2 0 2 2 2 2 0

Table 27. Values of NX (colour-connected pairs) and MX to be used in (A.1) to remove the ϵ-poles
of unintegrated one-loop antenna functions.

f̂1
3 (g1,g2,g3)→ f̂1

3 (g1,g2,g3)+f0
3 (g1,g2,g3)

(
Ĵ2

(1)(g1,g2)+Ĵ2
(1)(g1,g3)+Ĵ2

(1)(g2,g3)

−2Ĵ2
(1)(g̃1g2, g̃2g3)

)
, (A.11)

G1
3(g,q, q̄)→G1

3(g,q, q̄)+G0
3(g,q, q̄)

(
J

(1)
2 (g,q)+J

(1)
2 (g, q̄)−2J

(1)
2 (g̃q, q̃q̄)

)
, (A.12)

Ĝ1
3(g,q, q̄)→ Ĝ1

3(g,q, q̄)+G0
3(g,q, q̄)

(
Ĵ2

(1)(g,q)+Ĵ2
(1)(g, q̄)−2Ĵ2

(1)(g̃q, q̃q̄)
)

, (A.13)

G̃1
3(g,q, q̄)→ G̃1

3(g,q, q̄)+G0
3(g,q, q̄)

(
J

(1)
2 (q, q̄)

)
. (A.14)

A.2 Tree-level four-parton antenna functions

The replacement rules are presented in table 28 for the insertion of two unresolved gluons, in
table 29 for the insertion of an unresolved quark-antiquark pair, in table 30 for the insertion
of two collinear quark-antiquark pairs, while IC limits are split into tables 31, 32 and 33. For
IC antenna functions with more than two quarks (antiquarks) we make use of the subscripts
q′ and q̄′, in addition to q and q̄ to better differentiate between the primary and secondary
quarks. For IP antenna functions, the secondary quark pair is uniquely identified as the
unresolved pair, denoted by the label u. The only exception is given by the H0

4 antenna
function, where two unresolved quark-antiquark pairs are present, so we distinguish them.
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J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

X 0
4 X0

4

q − q̄

A0
4(sij) A0

4(iq, ug1 , ug2 , jq̄)

Ã0
4(sij) Ã0

4,a(iq, ug1 , ug2 , jq̄) + Ã0
4,a(iq, ug2 , ug1 , jq̄)

A0
4,q(s1i) A0

4,q(1q, ug1 , ug2 , iq̄)

Ã0
4,q(s1i) Ã0

4,q(1q, ug1 , ug2 , iq̄)

A0
4,qq̄(s12) A0

4,qq̄(1q, ug1 , ug2 , 2q̄)

Ã0
4,qq̄(s12) Ã0

4,qq̄(1q, ug1 , ug2 , 2q̄)

q − g

D0
4(sij) D0

4,a(iq, jg, ug2 , ug1 ) + D0
4,a(iq, ug1 , ug2 , jg)

D0
4,c(iq, jg, ug2 , ug1 ) + D0

4,c(iq, ug1 , ug2 , jg)

D0
4,q(s1i) D0

4,q(1q, ig, ug1 , ug2)

D0
4,g(s1i) D0

4,g(iq, 1g, ug1 , ug2)

D0
4,g′(s1i) D0

4,g′(iq, ug1 , 1g, , ug2)

D0
4,qg(s12) D0

4,qg(1q, 2g, ug1 , ug2)

D0
4,qg′(s12) D0

4,qg(1q, ug1 , 2g, ug2)

g − g

F0
4 (sij) 4

(
F 0

4,a(ig, ug1 , ug2 , jg) + F 0
4,b(ig, ug2 , ug1 , jg)

)
F0

4,g(s1i) F 0
4,g(1g, ug1 , ug2 , ig)

F0
4,gg(s12) F 0

4,gg(1g, ug1 , ug2 , 2g)

F0
4,gg′(s12) F 0

4,gg′(1g, ug1 , 2g, ug2)

Table 28. Replacement rules to convert integrated four-parton antenna functions to their unintegrated
counterparts for the insertion of two colour-connected unresolved gluons (denoted with ug1 and ug2)
between the pair of hard radiators.
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J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

X 0
4 X0

4

q − q̄

B0
4(sij) 1

2B0
4(iq, uq, uq̄, jq̄) + (uq ↔ uq̄)

C0
4(sij) 1

2C0
4 (iq, uq, uq̄, jq̄) + (uq ↔ uq̄)

B0
4,q(s1i) 1

2B0
4,q(1q, uq, uq̄, iq̄) + (uq ↔ uq̄)

C0
4,q̄,q̄q′q̄′(s1i) 1

2C0
4,q̄,q̄q′q̄′(1q, uq, uq̄, iq̄) + (uq ↔ uq̄)

B0
4,qq̄(s12) 1

2B0
4,qq̄(1q, uq, uq̄, 2q̄) + (uq ↔ uq̄)

q − g

E0
4 (sij) 1

2

(
E0

4,a(iq, uq, uq̄, jg) + E0
4,b(iq, uq, uq̄, jg)

)
+ (uq ↔ uq̄)

Ẽ0
4 (sij) 1

2Ẽ0
4(iq, uq, uq̄, jg) + (uq ↔ uq̄)

E0
4,q(s1i) 1

2E0
4,q(1q, uq, uq̄, ig) + (uq ↔ uq̄)

Ẽ0
4,q(s1i) 1

2Ẽ0
4,q(1q, uq, uq̄, ig) + (uq ↔ uq̄)

E0
4,g(s1i) 1

2E0
4,g(iq, uq, uq̄, 1g) + (uq ↔ uq̄)

Ẽ0
4,g(s1i) 1

2Ẽ0
4,g(iq, uq, uq̄, 1g) + (uq ↔ uq̄)

E0
4,qg(s12) 1

2E0
4,qg(1q, uq, uq̄, 2g) + (uq ↔ uq̄)

Ẽ0
4,qg(s12) 1

2Ẽ0
4,qg(1q, uq, uq̄, 2g) + (uq ↔ uq̄)

g − g

G0
4(sij)

1
4

(
G0

4,a(ig, uq, uq̄, jg) + G0
4,b(ig, uq, uq̄, jg)

+G0
4,c(ig, uq, uq̄, jg) + (i ↔ j)

)
+ (uq ↔ uq̄)

G̃0
4(sij) 1

2G̃0
4(ig, uq, uq̄, jg) + (uq ↔ uq̄)

G0
4,g(s1i) 1

2G0
4,g(1g, uq, uq̄, ig) + (uq ↔ uq̄)

G̃0
4,g(s1i) 1

2G̃0
4,g(1g, uq, uq̄, ig) + (uq ↔ uq̄)

G0
4,gg(s12) 1

2G0
4,gg(1g, uq, uq̄, 2g) + (uq ↔ uq̄)

G̃0
4,gg(s12) 1

2G0
4,gg(1g, uq, uq̄, 2g) + (uq ↔ uq̄)

Table 29. Replacement rules to convert integrated four-parton antenna functions to their unintegrated
counterparts for the insertion of an unresolved quark-antiquark pair (uq, uq̄) between the pair of
hard radiators.

X 0
4 X0

4

g − g H0
4(sij) 1

8
[(

H0
4
(
uq, uq̄, uq′ , uq̄′

)
+ H0

4
(
uq′ , uq̄′ , uq, uq̄

)
+ (uq ↔ uq̄)

)
+ (uq′ ↔ uq̄′)

]
Table 30. Replacement rules to convert integrated four-parton antenna functions to their unintegrated
counterparts for the insertion of two unresolved quark-antiquark pairs (uq, uq̄) and (u′

q, u′
q̄) between

the pair of hard radiators.
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J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

X 0
4 X0

4

q − q̄

A0
4,g(s1i) A0

4,g(uq, 1g, ug, iq̄)

Ã0
4,g(s1i) Ã0

4,g(uq, 1g, ug, iq̄)

B0
4,q′(s1i) 1

2B0
4,q′(uq, 1q′ , uq̄′ , iq̄) + (1q′ ↔ uq̄′)

C0
4,q(s1i) 1

2C0
4,q(iq, uq, uq̄, 1q̄) + (uq ↔ uq̄)

C0
4,q̄′,qq̄q̄′(s1i) 1

2C0
4,q̄′,qq̄q̄′(iq, 1q′ , uq̄′ , uq̄) + (1q′ ↔ uq̄′)

A0
4,qg(s12) A0

4,qg(1q, 2g, ug, uq̄)

A0
4,qg′(s12) A0

4,qg(1q, ug, 2g, uq̄)

Ã0
4,qg(s12) Ã0

4,qg(1q, 2g, ug, uq̄)

A0
4,gg(s1i) A0

4,gg(uq, 1g, 2g, uq̄)

Ã0
4,gg(s12) Ã0

4,gg(uq, 1g, 2g, uq̄)

B0
4,qq′(s12) 1

2B0
4,qq′(1q, 2q′ , uq̄′ , uq̄) + (2q′ ↔ uq̄′)

B0
4,q′q̄′(s12) B0

4,q′q̄′(uq, 1q′ , 2q̄′ , uq̄)

C0
4,qq̄(s12) 1

2C0
4,qq̄(2q, uq′ , uq̄′ , 1q̄) + (uq′ ↔ uq̄′)

C0
4,qq′(s12) 1

2C0
4,qq̄(uq, u′

q, 2′q̄, 1q̄) + (uq′ ↔ 2q̄′)

C0
4,q′q̄′(s12) C0

4,qq̄(uq, 2′q, 1′q̄, uq̄)

C0
4,q̄q̄′(s12) 1

2C0
4,qq̄(1q, 2′q, u′

q̄, uq̄) + (2q′ ↔ uq̄′)

Table 31. Replacement rules to convert integrated quark-antiquark four-parton antenna functions to
their unintegrated counterparts in the presence of identity-changing limits. The label ui, with i =
g, q, q̄, q′, q̄′ denotes partons (even potentially hard ones) participating to the identity-changing limits.
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J
H
E
P
0
3
(
2
0
2
4
)
1
1
4

X 0
4 X0

4

q − g

E0
4,q′(s1i) 1

2E0
4,q′(uq, 1′q, uq̄′ , ig) + (1q′ ↔ uq̄′)

Ẽ0
4,q′(s1i) 1

2Ẽ0
4,q′(uq, 1′q, uq̄′ , ig) + (1q′ ↔ uq̄′)

D0
4,gg(s12) D0

4,gg(uq, 1g, 2g, ug)

D0
4,gg′(s12) D0

4,gg′(uq, 1g, ug, 2g)

E0
4,qq′(s12) 1

2E0
4,qq′(1q, 2′q, uq̄′ , ug) + (2q′ ↔ uq̄′)

Ẽ0
4,qq′(s12) 1

2Ẽ0
4,qq′(1q, 2′q, uq̄′ , ig) + (2q′ ↔ uq̄′)

E0
4,qq̄′(s12) 1

2E0
4,qq̄′(1q, u′

q, 2q̄′ , ug) + (uq′ ↔ 2q̄′)

Ẽ0
4,q′q̄′(s12) 1

2Ẽ0
4,qq̄′(1q, u′

q, 2q̄′ , ug) + (uq′ ↔ 2q̄′)

E0
4,q′g(s12) 1

2E0
4,q′g(uq, 1′q, uq̄′ , 2g) + (1q′ ↔ uq̄′)

Ẽ0
4,q′g(s12) 1

2Ẽ0
4,q′g(uq, 1′q, uq̄′ , 2g) + (1q′ ↔ uq̄′)

Table 32. Replacement rules to convert integrated quark-gluon four-parton antenna functions to their
unintegrated counterparts in the presence of identity-changing limits. The label ui, with i = g, q, q̄, q′, q̄′

denotes partons (even potentially hard ones) participating to the identity-changing limits.

X 0
4 X0

4

g − g

G0
4,q(s1i) 1

2G0
4,q(ig, 1q, uq̄, ug) + (1q ↔ uq̄)

G̃0
4,q(s1i) 1

2G̃0
4,q(ig, 1q, uq̄, ug) + (1q ↔ uq̄)

H0
4,q(s1i) 1

2

(
H0

4,q(1q, uq, uq′ , uq̄′) + (uq′ ↔ uq̄′)
)

G0
4,qq̄(s12) G0

4,qq̄(ug1 , 1q, 2q̄, ug2)

G̃0
4,qq̄(s12) G̃0

4,qq′(ug1 , 1q, 2q̄, ug2)

G0
4,qg(s12) 1

2G0
4,qg(2g, 1q, uq̄, ug) + (1q ↔ uq̄)

G̃0
4,qg(s12) 1

2G̃0
4,qg(2g, 1q, uq̄, ug) + (1q ↔ uq̄)

H0
4,qq′(s12) 1

2H0
4,qq′(1q, uq̄, 2′q, uq̄′) + (2′q ↔ uq̄′)

Table 33. Replacement rules to convert integrated gluon-gluon four-parton antenna functions to their
unintegrated counterparts in the presence of identity-changing limits. The label ui, with i = g, q, q̄, q′, q̄′

denotes partons (even potentially hard ones) participating to the identity-changing limits.
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