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Abstract 

This paper introduces an improvement of the “Shake-The-Box (STB)” (Schanz, Gesemann, 
and Schröder, Exp. Fluids 57.5, 2016) technique using the polynomial calibration model and 
the line-of-sight constraints (LOSC) to overcome the refractive interface issues in Lagrangian 
particle tracking (LPT) measurement. The method (named LOSC-LPT) draws inspiration 
from the two-plane polynomial camera calibration in tomographic particle image velocimetry 
(Tomo-PIV) (Worth and Nickels, Thesis, 2010) and the STB-based open-source Lagrangian 
particle tracking (OpenLPT) framework (Tan, Salibindla, Masuk, and Ni, Exp. Fluids 61.2, 
2019). The LOSC-LPT introduces polynomial mapping functions into STB calibration in 
conditions involving gas–solid–liquid interfaces at container walls exhibiting large refractive 
index variations, which facilitates the realization of particle stereo matching, three-
dimensional (3D) triangulation, iterative particle reconstruction, and further refinement of 3D 
particle position by shaking the LOS. Performance evaluation based on synthetic noise-free 
images with a particle image density of 0.05 particle per pixel (ppp) in the presence of 
refractive interfaces demonstrates that LOSC-LPT can detect a higher number of particles and 
exhibits lower position uncertainty in the reconstructed particles, resulting in higher accuracy 
and robustness than that achieved with OpenLPT. In the application to an elliptical jet flow in 
an octagonal tank with refractive interfaces, the use of polynomial mapping results in smaller 
errors (mean calibration error < 0.1 px) and thus more long trajectories identified by LOSC-
LPT (13,000) compared with OpenLPT (4,500) which uses the pinhole Tsai model (mean 
calibration error > 1.0 px). Moreover, 3D flow-field reconstructions demonstrate that the 
LOSC-LPT framework can recover a more accurate 3D Eulerian flow field and capture more 
complete coherent structures in the flow, and thus holds great potential for widespread 
application in 3D experimental fluid measurements. 
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1. Introduction 

Advanced four-dimensional Lagrangian particle tracking velocimetry (LPT) methods, represented by the “shake-the-box” 
(STB) technique [1, 2], enable much higher spatial resolution flow measurements than tomographic particle image velocimetry 
(Tomo-PIV) [3], avoiding the spatial filtering effect arising from cross-correlation analysis in Tomo-PIV and minimizes the 
occurrence of ghost particles. STB requires precise and efficient camera calibration, such as the pinhole camera model [4], for 
repeated particle reprojection during the iterative particle reconstruction (IPR) procedure [5] and particle correction. However, 
when refractive interfaces exist between the cameras and the measurement target, which are commonly encountered in 
experiments in water [6], the efficient pinhole model yields significant calibration error even with a small angle between the 
camera optical axis and interface normal. In this context, polynomial mapping functions are more flexible alternatives that can 
capture nonlinearities in the imaging system [6] and have been widely applied in Tomo-PIV [7, 8]. However, repeated 
projection of the 3D particle positions in the fluid domain onto camera images using polynomials is quite challenging and 
imprecise, causing large errors in the interpolation of the particle positions during the projection and correction steps. Much 
effort should be made on the precise and efficient polynomial mapping procedure for the STB method applied for interface 
refraction.  

 
The LPT method [9] is derived from classical particle tracking velocimetry (PTV) and enables the three-dimensional (3D) 

reconstruction and tracking of long particle trajectories based on triangulation and track linking. The development of the STB 
technique [1] transforms the processes of triangulation-then-tracking [10] in classical 3D-PTV into tracking-prediction-
triangulation. This approach involves the use of the existing tracks to predict the particle location in the next time-step, followed 
by the implementation of IPR with the predicted location reprojection using a camera model. This enables the measurement of 
flow fields with much higher resolution than that can be achieved by Tomo-PIV under high particle density [11, 12]. Notably, 
the STB algorithm in LPT is quite flexible and can be combined with any calibration models, however, the successful 
application of STB relies on accurate camera calibration, with a typical requirement of a calibration error lower than 0.1 px. 
Pinhole camera models [1, 13] are commonly used as they are efficient for the repeated reprojection of 3D particle positions 
onto images. Indeed, the pinhole models perform well with the assumption that the LOSs between the particles in the fluid 
domain and the camera center are straight. However, several scenarios are commonly encountered in experiments in water 
where the refractive interfaces exist. This deflects the LOSs at the interfaces and usually results in a calibration error larger 
than 2 px when using the pinhole model for camera calibration. This calibration error cannot be reduced by volume self-
calibration (VSC) [14, 15], in which only the parameters of the pinhole model are updated while the refraction effects on the 
model form are still not considered. Recently, an extended IPR with “global shake” approach by Jahn et al. [16] has shown 
great potential to solve problems IPR for high particle concentration, and correction for both initial decalibrations of camera 
calibration. However, numerous studies focus on the improvement of pinhole camera model with refractive interface effects. 
The bundle adjustment approaches using ray tracing [17-21] can accurately correct each deviated line of sight (LOS) between 
the particles and camera center in the presence of a refractive interface. These approaches use ray tracing based on Snell’s law 
and the co-planarity of the surface normal vector with the incident and refracted rays, which requires many loops of iteration 
for each LOS. It is extraordinarily time-consuming and is rarely applied in 3D-PTV or LPT measurement where millions of 
LOSs need to be determined. Several novel pinhole camera models [22, 23] have been introduced to overcome the challenges 
associated with refractive index variations. Paolillo and Astarita [23] developed a ray-tracing camera model for the 
measurements inside a transparent cylinder immersed in water. This model has an accuracy equivalent to the case of a 7th-order 
polynomial model discussion in Paolillo and Astarita [6], but still requires time-consuming iterations. Acher et al. [22] presented 
a new camera model based on the combination of an analytical model (e.g. linear or polynomial) and a local discrete correction, 
saving all the corrections to the projection and back-projection functions in two adaptive grids and refining the grid locally 
enough to meet the required accuracy. The local discrete correction is similar to the work by Schanz et al. [24], the “2D-
shaking” method that varies the peak location on a single camera to minimize the local residuum, which applied to correct the  
projected positions of particles seen by a certain camera to best fit the original camera image, a “2D correction maps” is built, 
which is obtained by averaging disparities between the reprojection 2D positions on the different cameras and particle peak 
present at the source image, the “2D correction maps” can be used to correct a location projected from 3D space to a 2D camera 
image, with a simply shift according to the deflection value at this position given by the average calibrated map. However, the 
local discrete correction or “2D correction maps” may need a good initialization, which means that the corrections are 
performed based on an accurate enough camera model such as a pinhole model or a polynomial model, meanwhile under a high 
calibration error, it may need many time-consuming grid searching, interpolation calculations, and grid refinement. All the 
above-mentioned strategies try to improve the pinhole model with refractive correction at the expense of efficiency. Such 
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methods yield several orders of computational time increasing when implemented in 3D-PTV or LPT and thus may not be the 
best choice for the STB with frequent projection and 3D reconstruction.  

 
The polynomial camera model can capture nonlinearities in the imaging system through higher-order terms, represented as 

polynomials, multi-plane polynomials, and rational functions with different orders. Typically, for polynomials or rational 
functions, 7th orders (7  7  7) at each dimension of world coordinates (X, Y, Z) is required to ensure small errors according to 
Paolillo and Astarita [6]. This involves a large number of parameters and results in complexities in the key particle reprojection 
in the triangulation and IPR procedures. Barta et al. [25] used the Soloff mapping functions [26] with 16 parameters of the 3rd 
order (3  3  3) models for triangulation. However, an iterative process was required to determine the LOS by two points as 
well as the partial derivatives of the mapping functions [27]. This required multiple Z-position planes to obtain sufficiently 
accurate 3D mapping functions, and the recovery of the 3D particle positions was cumbersome due to the excessive number of 
iterations. We have noted that the multi-plane polynomials that the calibration parameters are the polynomial coefficients only 
for X, Y coordinates in each Zi-plane, then simple linearly interpolating 3D particle positions along the Z-direction to obtain the 
image coordinates (Z-interpolation), showing similar performance compared with the best rational models with 7th-order [6], 
but have much simpler calibration procedure and the reduced number of parameters. This multi-plane polynomial camera model 
[26] has been applied in 3D tomographic reconstruction of Tomo-PIV [7, 8] to enhance accuracy, assuming that the LOSs 
between two planes are linear, its mapping functions between points on calibration planes and images can be accurately 
represented using only 10 parameters in a 3rd-order model. In addition, the determination of LOSs between two planes for the 
3D position reconstruction can be found in works [28, 29], while the projection of the 3D particle positions onto camera images 
using multi-plane polynomials model is not easy and challenging, a common projection idea is to find the point where the LOS 
intersects the image plane, which is difficult to achieve in the presence of refractive interfaces. The projection of particles onto 
the images by Z-interpolation according to particle position between multi Z-plane might be non-physical due to the LOSs of 
pixels is not parallel [6], causing reprojection error of several pixels (px) and huge triangulation error for PTV (will be discussed 
in Section 2.3 in details). Therefore, LOS interpolation must be implemented to achieve the sub-pixel accuracy of the projected 
particle images [6], which is based on the assumption that straight LOSs in the fluid and each LOS through a pixel can be 
determined by two points on two calibration planes. When refractive interfaces exist and meanwhile the angle (1) between the 
camera optical axis and interface normal is large, the reprojection onto images by linear LOS interpolation causing a 
reprojection error of approximately 0.2 px and a triangulation error of the same level during the particle shaking step with LOS 
interpolation reprojection (will be discussed in Section 2.3). Thus, a strategy of LOS constraints is designed and implemented 
to solve this error accumulation. After shaking the 3D particle positions with interpolation projection, the 2D particle centers 
on the image are also corrected by “2D-shaking”, resulting in a new LOS with two calibration planes, which is similar to the 
ray of light (LOS) moving with the displacement of its light source (2D particle center). The latter is named LOS constraints 
(LOSC) in our present implement. 

 
Considering these aspects, the objective of this study is to provide an improvement of the “Shake-The-Box (STB)” of LPT 

using the polynomial calibration model in Tomo-PIV. The method (named LOSC-LPT) introduces polynomial mapping 
functions into STB calibration, camera calibration is performed using only two planes and expressed using polynomial 
functions. An effective LOS interpolation approach using polynomial functions is designed and applied to ensure accurate 
reprojection during stereo matching, 3D particle reconstruction, IPR, and shaking process of STB in conditions involving gas–
solid–liquid interfaces at container walls exhibiting large refractive index variations. A precise and efficient way based on LOS 
interpolation and LOS constraints by shaking the LOSs based on two-plane polynomial calibration is added to realize the 
refinement of 3D particle positions after IPR and STB. The accuracy, convergence, and robustness are evaluated using synthetic 
particle images from the Johns Hopkins turbulence database (JHTDB) [30]. Additionally, the proposed framework is applied 
to an experimental study of a jet from an elliptical nozzle with an aspect ratio (AR) of 2, to capture the vortex dynamics of the 
elliptical jet. 

2. Methodology 

The LOSC-LPT framework is realized based on introducing camera calibration with two planes [7, 8] into the STB of LPT, 
the particle tracking process is inspired by the shake-the-box (STB) [1] technique and the open-source Lagrangian particle 
tracking (OpenLPT) framework [13, 31]. This section describes the camera calibration of two-plane polynomial mapping 
functions, and its application for the particle reprojection onto the image, and the LOS constraint procedure for refinement of 
particle 3D position. 
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2.1 Camera calibration 

Camera calibration is to establish mapping functions from 3D space to the 2D image for the camera, the process can be 
represented [4, 32], pinhole camera calibration can be performed using the Tsai two-step calibration [4] or Zhang Zhengyou 
calibration [32] methods by optimizing the abovementioned camera parameters and quantifying any image distortions during 
recording. The pinhole model is highly accurate when the world position and camera are in the same medium, with mean 
calibration errors smaller than 1e-5 px, as shown in Fig. 1b, all calibration errors are assessed using synthetic images generated 
by the modified alternating forward ray tracing (AFRT) method by Mulsow [17] and Belden [18]. However, PIV measurements 
typically involve cameras that capture images in air through a transparent tank or container (made of glass or acrylic) containing 
water or another fluid. In this condition, the pinhole model between the world and image points fails because the pinhole model 
assumes that the LOSs are straight lines and neglects the refraction of light. As shown in Fig. 1a, the 2D particle centers (green 
points) in the image without interfaces are considerably different from those (blue points) in the case with refractive interfaces. 
Even when the world (Pi' and Pi'') and image points (Pi) (in blue points) are exactly known in the synthetic dataset, the LOSs 
from all 3D world points do not meet in a single point (camera center) during the pinhole camera model calibration, and then 
the resulting pinhole model exhibits substantial errors (Fig. 1c), and the point positions on the image deviate from those obtained 
through the direct application of the pinhole Tsai camera model under considering only radial distortion, with a maximal 
calibration error exceeding 2.0 px, as discussed by Treibitz et al. [33].  

 

Fluid
Interface defined
by h parameters

Images
Camera 

center

Ideal projection
Actual projectionPlane 2 Plane 1

Actual Points in Planes
Virtual points in Planes

(a) (b)

(c)

(d)

(e)

P1'

P2'

P1''

P2''

P1

P2

Ideal LOS
Real LOS

GP1, w2i, FP1, i2w
GP2, w2i, FP1, i2w  

Figure 1 (a) Schematic of imaging through refractive interfaces. The projected point position (blue line and projection) on 
the image with refractive interfaces deviates from that (green dash line and projection) obtained by directly applying the pinhole 
Tsai camera model. As well as the schematic of lines-of-sight (LOS, green dash lines or blue lines) based on calibration by two 
planes are shown, using a third-order polynomial for 2D points Pi (u, v) in images corresponding to the 3D physical world 
coordinates Pi' (FP1, w2i, GP1, i2w) or Pi'' (FP2, w2i, GP2, i2w) in each Z-plane. Comparison of reprojection or calibration errors using 
the pinhole Tsai model in scenarios without (b), or with refractive interfaces (c). Comparison of reprojection or calibration 
errors from using the third-order polynomial in scenarios without (d), or with refractive interfaces (e). All calibration errors are 
assessed using synthetic images generated by the modified alternating forward ray tracing (AFRT) method. 

 
In this context, polynomial mapping functions are more flexible and can capture the nonlinearities in an imaging system 

through higher-order terms [6]. The mapping functions from the 3D space to the 2D image for the camera can be represented 
as polynomials or two-plane polynomials with different orders. For the two-plane polynomial model in the z-direction can be 
simplified as the calibration for polynomial the mapping functions Gp, w2i from each 2D Z-plane to the 2D image for the camera 
are polynomials: 

 
2 3 2 3 2 2

0 1 2 3 4 5 6 7 8 9u a a X a X a X a Y a Y a Y a XY a X Y a XY= + + + + + + + + + , (1) 
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2 3 2 3 2 2

0 1 2 3 4 5 6 7 8 9v b b X b X b X b Y b Y b Y b XY b X Y b XY= + + + + + + + + + , (2) 

where, u and v are the 2D pixel coordinates on the image in two directions, respectively; (ai, bi) are the coefficients of the 
polynomial model in the kth Z-plane for , X, Y are point positions in calibration plane in world coordinate system. Similarly, 
the mapping functions Fp, i2w from the 2D image in u and v to the 2D plane in X and Y for the camera are expressed with the 
3th-order polynomials for the triangulation:  

 2 3 2 3 2 2
0 1 2 3 4 5 6 7 8 9X c c u c u c u c v c v c v c uv c u v c uv= + + + + + + + + + , (3) 

 2 3 2 3 2 2
0 1 2 3 4 5 6 7 8 9Y d d u d u d u d v d v d v d uv d u v d uv= + + + + + + + + + . (4) 

The calibration coefficients ai, bi, ci, and di of each plane are fitted using the least square method with the 2D image pixel 
coordinate points in u and v and the exact world coordinate 3D points in the 2D plane in X and Y. The 3-order polynomials are 
selected in this work with 40 parameters for each plane to image, and the number of orders can be raised for a better calibration 
accuracy in more complex scenarios. 

 
It is worth noting that only the polynomial mapping function from each 2D Z-plane to the 2D image is calibrated, as shown 

in Fig. 1a, the FP1, i2w (Orange line arrow arrow) and FP2, i2w (Red line arrow) are mapping function for image point (Pi) to Plane1 
point (Pi') and Plane2 point (Pi''), the inverse polynomial functions GP1, w2i  and GP2, w2i are respectively mapping function for 
Plane1 point (Pi') to image point (Pi) and Plane2 point (Pi'') to image point (Pi), respectively. If the image point (Pi) is known, 
next the Plane1 point (Pi') and Plane2 point (Pi'') can be calculated by FP1, i2w and FP2, i2w, then a LOS (Pi'→ Pi'') can be 
determined. This strategy is built on each LOS remains straight in the fluid, which is accepted in almost all Tomo-PIV because 
the tomographic reconstruction of voxels relies on the voxels crossed by straight LOS [7]. Note that the calibration coefficients 
ai, bi, ci, and di are accurate only in the target Z-position, and Z-interpolation is usually applied for the reprojection at other Z-
positions, which may be non-physical and imprecise when the angle between the camera optical axis and interface normal is 
large, therefore the reprojection algorithm are realized based on LOS interpolation in this work. By above strategy, the refractive 
interface can be neglected and the effect of light refraction is removed, and the camera center in pinhole camera model is not 
necessary. Note that the P1' and P2' need not be the fixed calibration points in checkerboard calibration plate, they can be any 
points in calibration plane (fixed Z), and each LOS can be recovered if we know any one of Pi', Pi'' and 2D center Pi in image. 
The presence of refractive interfaces does not considerably affect the calibration, as shown in Fig. 1e-f, as the mean calibration 
errors in cases with and without refractive interfaces are lower than 1e-3 px.  

 
In this work, the polynomial mapping functions are calibrated with two positions in depth throughout the volume; 

reprojection for stereo matching, triangulation, IPR, and shaking of STB are redesigned; and a novel shaking the LOS strategy 
named LOS constraints (LOSC) is developed to refine 3D particle positions based on two-planes polynomial camera calibration. 
The stereo matching, triangulation, and shaking for IPR are important parts of IPR [5], the stereo-matching algorithm [9] with 
the camera model is a combination of the algorithms proposed by Dracos [34] and Mann and Ott [35]. Stereo matching is 
accomplished through epipolar line reprojection, in which the LOS of camera 1 through the illuminated volume from Z1 to Z2 
is projected onto the image of camera 2, thereby capturing the nearest neighbor matching 2D particle center near the epipolar 
line reprojection with an uncertainty range of ±max. Subsequently, the 3D particle position (X, Y, Z) is reconstructed by 
triangulation of each combination of 2D particle centers in the images of cameras 1 and 2. To confirm the accuracy of the 
reconstructed particles, the presence of each 3D particle is verified in the images of camera 3 and 4 within ±max around the 
projection of the 3D particle position (X, Y, Z) onto these images. The uncertainty in stereo matching and triangulation is 
typically set according to the calibration error. Shaking is repeatedly conducted during the IPR and after prediction to refine 
the 3D particle positions [1, 5, 13]. Then the detected particles and their projection on each camera image are removed and a 
new round of IPR is performed using the residual image. For the scenarios with refractive interfaces, the LOSs deflect at the 
interface, and their direction vectors in the fluids cannot be precisely and promptly located using the pinhole camera model. 
The LOSs can be determined with intersections of LOSs in two planes using the polynomial mapping functions, then the stereo 
matching can be executed successfully. Then each 3D particle position coordinates are then computed using a least squares 
solution of the LOSs from all camera images. 

2.2 Reprojection by LOS interpolation 

Following stereo matching and triangulation in the IPR [5], the shaking process is applied to refine the 3D particle positions, 
which is also a key process after prediction using the Wiener filter in the STB. Shaking is performed in a small 3D space by 
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projecting the particles onto all camera images using the OTF parameters. The objective is to determine the least difference 
(summing Ires. over all pixels of local residual images) between the reprojection image and original particle image, enabling the 
reconstruction of more particles from the residual images by IPR. Notably, the reprojection of 3D particle positions onto the 
images is a critical and frequent step. Any 3D particle position can be projected onto the image using the camera model from 
pinhole Tsai model in a straightforward manner. However, projecting 3D particle positions outside the calibration planes onto 
images based on the two-plane polynomial mapping functions from Eqs. (1-2) is challenging. As shown in Fig.2a, the projection 
coordinates [u, v] on the image are typically obtained by evaluating the polynomial functions in Eqs. (1-2) of the world 3D 
position Pp [Xp, Yp, Zp] on the Zp-planes with Z = Zk using [Xp, Yp], obtaining the projection coordinates [u', v'] of P1' and [u'', v''] 
of P1'', subsequently, the projection coordinates [u, v] are linearly interpolated along the Z-direction according to the position 
of Pp between P1' to P1'' from Fig. 2b. Z-interpolation may be non-physical and imprecise when the angle between the camera 
optical axis and interface normal is large, the maximal reprojection error of particles with refractive interface are over 1.0 px 
in Fig.2e. To enhance the accuracy, LOS interpolation must be implemented [6]. Thus, in this study, LOS interpolation is 
applied to ensure accurate reprojection.  

 
As shown in Fig.2c, the reprojection algorithm based on LOS interpolation involves the following steps: First, all the LOSs 

of image pixels for each camera are computed based on the two-plane polynomial functions in Eqs. (1-2) with two calibration 
planes, each 2D center Pi can determine two points Pi' and Pi'' in two planes from Fig. 1 or Fig.2, then a LOS can be determined 
with the two points Pi' and Pi'', and then temporarily stored in a lookup table. Each LOS consists of four elements, i.e., (1) 
image pixel coordinates [u, v] of all the pixel points in each camera image, (2) points Pi' in world coordinates on the intersections 
of LOS across the first calibration plane, (3) points Pi'' in world coordinates on the intersections of LOS across the second 
calibration plane, and (4) the normalized unit vector of the LOS. Second, for a 3D particle world coordinate Pp [Xp, Yp, Zp] 
obtained by triangulation in IPR or prediction using the Wiener filter in STB, all the intersections [XLOS, YLOS, Zp] of the LOSs 
of all pixels across the virtual Zp-plane are calculated, and their Euclidean distance to the coordinate Pp [Xp, Yp, Zp] is stored. 
An intersection [XLOS, YLOS, Zp] of the LOS with the least Euclidean distance to the coordinate [Xp, Yp, Zp] (red circle) is searched 
and recorded, as indicated by the purple circle in Fig.2d, and this intersection corresponds to a LOS in the lookup table. Note 
that the calculation and searching procedure for intersections of this particle can be terminated once the intersection with the 
least Euclidean distance has been recorded. Third, based on Fig.2d, sub-pixel coordinates [up, vp] can be interpolated in the four 
pixels corresponding to the four LOSs (as green, orange, light blue and purple dashed lines) around the intersection with 
coordinates [XLOS, YLOS, Zp] in red circle. As displayed in Fig.2f, the reprojection errors are evaluated using synthetic particle 
images, revealing that mean reprojection errors of particles by LOS interpolation are less than 0.10 px, which is much smaller 
than those by Z-interpolation. Note that the maximum reprojection errors of particles are over 0.1 px from Fig.2f, therefore a 
new strategy named LOS constraints (LOSC) is introduced for reducing the particles 3D reconstruction error. 
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Figure 2 (a)(b) Schematic of particle reprojection by Z-interpolation with two calibration planes. (c)(d) Schematic of particle 

reprojection by LOS interpolation with two calibration planes. (e) Reprojection or calibration errors of calibration points or 
particles from Z-interpolation with refractive interface. (f) Reprojection or calibration errors of calibration points or particles 
from LOS interpolation with refractive interface. 

2.3 LOS constraints 

The shaking of the 3D particle position is frequently performed after stereo matching and 3D triangulation in the IPR [13] 
and after the Wiener filter prediction in the STB [1]. Figure 3 schematically illustrates the repeated shaking in the STB process. 
The 3D particle coordinate is adjusted in all three dimensions [±X, ±Y, ±Z] by projecting its coordinate onto the image and 
recording the residual difference (summing Ires. over all pixels of the local residual images) between the reprojection image and 
original particle image. For example, in the X-dimension, the residual values at -X, 0, +X are recorded and fitted to a quadratic 
polynomial function in Fig. 3d, and then the minimal value is solved using the quadratic polynomial function, which 
corresponds to the optimal 3D particle world coordinates. This process is also repeated for the Y- and Z-dimensions [5]. Shaking 
is an iterative process, and the initial shaking 3D range can be based on the calibration error or particle acceleration. Subsequent 
shaking widths are half of the width in the last iteration, and the process is typically terminated after a specific number of 
iterations. When there are no refractive interfaces, the 3D particle coordinate can be accurately reconstructed by 3D 
triangulation using all 2D particle centers after shaking on the images of several cameras and the camera model from Fig. 3. 
However, when refractive interfaces exist, the shaking process with the camera model requires a larger initial shaking 3D width 
or more iterations, and moreover, the LOSs do not usually meet at a single point in the 3D triangulation. When the polynomial 
mapping functions are used, the calibration error is small, thus the initial shaking 3D width and the number of iterations will 
be small. The initial shaking 3D width or number of iterations is nearly the same in the cases with and without refractive 
interfaces thanks to the mean calibration errors in cases with and without refractive interfaces are lower than 1e-3 px from 
Fig.1d-e. Additionally, the shaking process is slightly different than that with the camera model. The shaking of particle Z-
position is first performed to determine the virtual Z-plane from Fig. 3c for reprojection based on interpolation, followed by 
shaking the particle X and Y positions using LOS interpolation.  
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Figure 3 Schematic of the line-of-sight constraints (LOSC) in LOSC-LPT, based on STB algorithm. 
 
Despite repeated shaking, the particle position reconstructed by 3D triangulation with all the 2D particle centers still involves 

certain errors, caused by the LOS interpolation from Fig. 2f, due to four neighboring LOS points that are not regular distribution 
in the virtual plane. The linear LOS interpolation is selected for higher efficiency, while the nonlinearity in imaging cannot be 
interpolated linearly. Thus, the minimal value determined from the quadratic polynomial function  during shaking exhibits 
significant errors, and cause that the least square solution (triangulation point) of the LOSs from all cameras are slightly 
different from the particle position. To solve this problem, a new strategy named LOS constraints (LOSC) is introduced: After 
shaking the 3D particle position with interpolation projection, the 2D particle center on the image with OTF parameters is 
corrected yielding the least difference (summing Ires. over all pixels of local residual images) between the new particle image 
and the original one, as shown in Fig. 3c. Subsequently, the LOSs are shaken with respect to the 2D particle centers as shown 
in Fig. 3e, while the directions of the LOSs remain unchanged; this is similar to a ray of light moving with the movement of its 
light source. The summing Ires. over all pixels of local residual images at -u, 0, +u for the u-direction in the image, -v, 0, 
+v for the v-direction in the image are recorded and fitted to a quadratic polynomial function during the shaking process in 
Fig. 3f, and the minimal value is then solved from the quadratic polynomial function, representing the optimal reprojection of 
3D particle world coordinates. This process is similar to the “2D-shaking” by Schanz et al. [24] that varies the peak location 
on a single camera to minimize the local residuum, which applied to correct the projected positions of particles seen by a certain 
camera to best fit the original camera image. Then from the optimal reprojection position, the LOSs can be determined with 
intersections of LOSs in two planes using the polynomial mapping functions, and then the exact 3D particle position can be 
triangulation reconstruction with a least squares solution of the LOSs from all camera images [35]. Although LOS interpolation 
has some errors, the intersections of LOSs in two calibration planes using the polynomial mapping functions are very precise, 
and the LOSs where the particle is located at can be accurately reconstructed. This procedure can effectively reduce the 3D 
reconstruction error to less than 0.1px, with the fact that the triangulation of the 3D particles based on the calibrated polynomial 
function (Eqs. (1-2)) is precise while the interpolation error in the 3D-to-2D projection can be corrected. The initial shaking 2D 
width can be set as the final shaking 3D width by converting physical coordinates to pixel coordinates, and the number of 
iterations can be made consistent in both cases.  

 
By combining the abovementioned strategies of polynomial function calibration, reprojection based on LOS interpolation, 

3D shaking, and LOSC, we realize an LPT framework as LOSC-LPT based on the original STB, and then the performance 
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evaluation is conducted using synthetic images and an experimental dataset in the presence of refractive interfaces. The 
determination of LOSs between two planes for the 3D position reconstruction is referred to the works [28, 29], and the stereo 
matching with two planes and LOS constraints are built upon the particle triangulation procedure by Dracos [34] and Mann 
and Ott [35], the track linking and STB parts of particle tracking are based on the methods proposed by Ouellette et al. [9], 
Schanz et al. [1], and Tan et al. [13], and track initialization is based on IPR [5] and 4BE-ETI [36], or particle–space correlation 
[37]. This framework has been parallelized based on open multi-processing (OpenMP) with the CPU [38] and will be further 
improved using the compute unified device architecture (CUDA) [39] with graphics processing unit (GPU) devices in the 
future. 

3. Synthetic data validation 

3.1 Synthetic 3D experimental setup 
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Figure 4 (a) Definitions of world, camera, and image coordinate systems for a multi-camera setup with refractive interfaces. 

Octagonal water tank. The distance Doctagon between the inner wall of the tank and world origin (0, 0, 0) is 200 mm, and the 
thickness hoctagon of the water tank is 20 mm. (b) Schematic of the alternating forward ray tracing (AFRT) procedure for synthetic 
particle images.  

 
The accuracy, convergence, and robustness of the LOSC-LPT framework are evaluated using a synthetic image dataset 

generated from a synthetic 3D experimental setup simulating particle motion in an isotropic-turbulence flow from the JHTDB 
[30]. In the absence of refractive interfaces, synthetic images can be easily generated using the pinhole camera model. However, 
the complexity of image generation increases in the presence of refractive interfaces. To address this problem, a synthetic 
particle image code with refractive interfaces based on the modified alternating forward ray tracing (AFRT) method is realized, 
building upon the methods of Mulsow [17] and Belden [18]. The modified AFRT algorithm can effectively produce highly 
accurate datasets closely resembling real experimental data with interfaces. Figure 4b illustrates the AFRT procedure in the 
octagonal water tanks, along with the definitions of the world, camera, and image coordinate systems, for synthetic images in 
the multi-camera setup with refractive interfaces. The details of the synthetic particle image procedure AFRT are only briefly 
described herein, and details can be found in the work of Belden [18]. From Fig. 4a, X-Y-Z is the fixed world coordinate system, 
which can be positioned arbitrarily. xc-yc-zc is the camera coordinate system, with its origin located at the camera center Oc. 
The physical and pixel coordinates at the image plane are x-y and u-v, respectively. For an octagonal water tank, the distance 
Doctagon between the inner wall of the tank and world origin [0, 0, 0] is 200 mm, and the thickness parameter hoctagon of the water 
tank is 20 mm (Fig. 4a). The centers of the four cameras are summarized in Table 1. All cameras have a focal length of 120 
mm. The centers of the image planes are also computed and presented in Table 1, the camera setup is designed with the cameras 
rotated 5° along the xc axis of the camera coordinate system to simulate installation error. The layout of the four cameras from 
the top view of the tank is shown in Fig. 8a.  

 
Table 1 Definitions of the world, camera, and image coordinate systems 
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Camera 
ID 

Focal length 
f (mm) 

xc-axis 
 () 

yc-axis 
φ () 

zc-axis 
 () 

Center of camera 
Oc (mm) 

Center of image 
plane Oi (mm) 

1 120 5 0 0 400[-sin(/8),0,-cos(/8)] 280[-sin(/8),0,-cos(/8)] 
2 120 5 0 0 400[sin(/8),0,-cos(/8)] 280[sin(/8),0,-cos(/8)] 
3 120 5 0 0 400[cos(/8),0,sin(/8)] 280[cos(/8),0,sin(/8)] 
4 120 5 0 0 400[-cos(/8),0,sin(/8)] 280[-cos(/8),0,sin(/8)] 

 
The Gaussian intensity profile is used for each particle distribution in synthetic images, with the OTF parameters [5] covering 

various experimental optical distortion effects such as blurring and astigmatism: 

 
2 2( ' ' )

part ( , , )i bx cy
i iI x y p ae- +=

, (5) 

along with rotation effects: 

 ' ( ) cos ( )sini ip i ipx x x y y = - + -
, (6) 

 ' ( )sin ( )cosi ip i ipy x x y y = - - + -
, (7) 

where [xip, yip] is the particle image center, that is, the intersection of the LOS and image plane in pixel units; and [xi, yi] is the 
2D center of all pixels around the intersection. With reference to the work of Tan et al. [13], the constants a = 255, b = 1.5, c = 
1.5, and  = 0 are selected for generating the ideal synthetic images.  
 

The particle motion is simulated in a cubic volume of 40  40  40 mm3, with the origin located at the origin O of the world 
coordinate system [40]. This framework represents the magnification of a small volume in the isotropic-turbulence flow from 
JHTDB. The image resolutions of all cameras are fixed at 2,000  2,000 pixels to capture all particles in the cubic volume with 
or without different refractive interfaces. To compare the performances of STB algorithms with different camera models under 
the same particle density with or without different refractive interfaces, the camera layout remains unchanged, but the image 
zone with particles varies as shown in Fig. 5, which provides detailed views of synthetic particle images with a resolution of 
2,000  2,000 pixels for a pppmean = 0.05 (ppp denotes particles per pixel). Due to the deflection of the LOS, the image zone 
with particles from the plane interface of the octagonal tank (750  750 pixels) is larger than that (600  675 pixels) without 
any interfaces. To account for higher refractive distortion, each camera has a fixed resolution of 2,000  2,000 pixels. Moreover, 
in the cubic area of each condition, the particle image density varies between 0.01 and 0.07 ppp within different zones of the 
camera images, with an average particle image density of approximately 0.05 ppp. The motions of 400,000 particles are 
simulated according to an initial density of 0.10 ppp. Then, the projected particles under each refractive interface are randomly 
selected, with the number controlled by the particle image density according to the image zone size. The particle image density 
is set as 0.01, 0.025, 0.05, 0.075, and 0.10 ppp. 
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Figure 5 Detailed views of synthetic particle images with a resolution of 2,000  2,000 pixels in the image center of camera 

1 for pppmean = 0.05. To record all the particles under a higher refractive distortion, each camera has a fixed resolution of 2,000 
 2,000 pixels. In the boxed area of each condition, the particle image density varies between 0.01 and 0.07 ppp within the 
camera images, and the particle image density averaged over the complete image is approximately 0.05 ppp. (a) Without 
refractive interface. (b) Planar wall of the octagonal water tank with a thickness of 20 mm. (c-d) Comparison of calibration 
errors in different regions of image before and after VSC. 

 
After obtaining the synthetic calibration and particle images with the interface, the camera calibration for the pinhole camera 

model and the two-plane polynomials was performed with the synthetic calibration images. Then the VSC procedure [14] for 
the pinhole camera model was executed with the synthetic particle images with its particles corresponding 3D position. From 
the comparison of calibration errors in different regions of the image before and after VSC in Fig. 5c–d, the VSC cannot correct 
all the calibration deviation caused by the refractive interface, although it successfully reduces calibration errors in some 
regions, some errors are still over 1.5 px. The reason may be that the classical pinhole camera model with distortion parameters 
is too linear and cannot capture the nonlinearities for 3D space to the 2D image plane in the refractive imaging system. For the 
3rd-order two-plane polynomials calibration, the mean reprojection errors of particles in cases with the refractive interface are 
all lower than 0.1 px from Fig. 2f without VSC. The reprojection errors are small by the two-plane polynomials calibration, 
which is a better selection for STB. 

3.2 Computational accuracy and efficiency 

Table 2 Configuration parameters for the performance comparison of OpenLPT and LOSC-LPT 
Configuration parameters OpenLPT LOSC-LPT 
Number of iterations 4(0)1 4(0)1 
Number of shake iterations 6 6 
2D intensity threshold 202 202 
Initial shake width (px) 0.5 0.5 
Allowed triangulation error (px) 0.6 0.6 
Physical unit of image pixel (mm/px) 0.02 0.02 
Search radius without predictor (px)  10  10 
Search radius with predictor (px) 0.5 0.5 
Particle intensity threshold 0.1 Iavg 0.1 Iavg 
Projection factor 1 1 
Predictor for initialization Particle–space correlation Particle–space correlation 
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Number of passes 1 1 
Hardware Intel® Xeon® Gold 6230 Intel® Xeon® Gold 6230 
Number of cores 40 cores/80 threads, 2.1GHz 40 cores/80 threads, 2.1GHz 
Runtime environment gcc 8.1.0 gcc 8.1.0 

Note:  1-The number in brackets indicates the number of iterations for a reduced camera, which is not applied in this work. 
      2-The maximum image intensity is 255. 
 
The accuracy, convergence, and robustness of the LOSC-LPT framework are evaluated at a high image density of up to 0.10 

ppp without any wall interfaces. The performance of the proposed framework is compared with OpenLPT, which uses the 
pinhole Tsai camera model [13] based on the STB [1] algorithm. Figure 6 presents the percentages of detected particles (Fd), 
ghost particles (Fg), and position uncertainty (p, reconstructed error) as functions of snapshot series. These three quantities 
serve as key indicators of the convergence performance of the framework under a high image density. Cases with image 
densities over 0.10 ppp are not considered, as such conditions (> 0.10 ppp) are typically not encountered in real experiments. 
The configuration parameters for the performance comparison of OpenLPT and LOSC-LPT are summarized in Table 2. The 
same conditions are used to ensure a fair comparison across different frameworks. The computation time required by the 
OpenLPT and LOSC-LPT frameworks is determined using a multi-core CPU (Intel® Xeon® Gold 6230) in the high-
performance computing supercomputing cluster located at Shanghai Jiao Tong University. 

 

 
Figure 6 (a)(b) Total number of detected particles relative to the number of true particles by OpenLPT and LOSC-LPT in a 

scenario without any wall interfaces. (c)(d) Total number of reconstructed ghost particles (tracked and untracked) relative to 
the number of true particles. (e)(f) 3D positional error in a pixel, averaged over all tracked particles relative to the true particle 
position. 

 
Figure 6a shows that in the absence of a refractive interface, LOSC-LPT and OpenLPT exhibit similar convergence in terms 

of the total number of detected particles relative to the number of true particles (Fd) for all image densities. For example, using 
IPR, the mean Fd of the particle cloud in the first four frames at 0.05 ppp is 84.51% by LOSC-LPT, slightly lower than that of 
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OpenLPT (85.56%). The Fd of the particle cloud exhibits complete convergence when the snapshot series reaches 100 frames, 
with the values being 99.11% for LOSC-LPT and 99.28% for OpenLPT. At a density of 0.10 ppp, the percentage of detected 
particles by LOSC-LPT is slightly lower than that by OpenLPT in each snapshot, which means that the complete convergence 
time for LOSC-LPT is longer. This difference is attributable to the reprojection algorithm during the shaking process based on 
LOS interpolation, because some reprojection errors of particles by LOS interpolation are over 0.1 px from Fig. 2f. Then the 
least square solution (some triangulation points) of the LOSs from all cameras is slightly different from the particle X, Y, and 
Z-position from Fig. 7a, which shows that some reconstructed particle positions deviate from the exact particle positions. To 
address this, the LOSC strategy is introduced to refine the 3D particle position, and the strategy can improve accuracy of particle 
positions effectively from Fig. 7b. During the process of shaking the 2D particle center, i. e. LOSC, in the image, the sum Ires. 
of residual image pixels is locally optimized when multiple particles overlap at the same position in the image, which may 
cause a slightly slower convergence. Although LOSC leads to slightly slower convergence, an Fd of over 99.50% is reached 
when the snapshot reaches 120 at 0.05 ppp. For the percentage of ghost particles Fg, as shown in Fig. 6b and consistent with 
the findings of Tan et al. [13], OpenLPT outperforms STB (Schanz et al. [1] in reducing the number of ghost particles during 
IPR. Compared with the OpenLPT framework, LOSC-LPT has fewer ghost particles when the image density is less than 0.10 
ppp, although the percentage is higher in the first four frames; this is attributable to the use of LOSC during track initialization. 
Local optimization during LOSC helps reduce the number of ghost particles because many overlapped particles are used only 
once. In addition, as shown in Figs. 6e-f, the 3D mean positional error in pixels (averaged over all tracked particles relative to 
the true particle position) by LOSC-LPT is slightly larger than that computed by OpenLPT (1e-6), likely because of the larger 
calibration error (1e-3 px), and the mean 3D positional error remains acceptable at approximately 0.054 px (2.7e-3 mm) for 
0.10 ppp. Note that if LOSC is not applied, the mean reconstruction errors of all 3D particles are much larger as shown in Fig. 
7c, and after LOSC the errors can be reduced to less than 0.1 px in Fig. 7d, which indicates that the LOSC is necessary for STB 
using two-plane polynomials. Overall, the comparative discussion without refractive interfaces indicates that the LOSC-LPT 
framework exhibits similar accuracy and convergence performances as OpenLPT. 

 

 
Figure 7 (a) The comparison of the x, y, and z component positions of the reconstructed track with the positions of real 

particles before LOSC. (b) The comparison of the x, y, and z component positions of the reconstructed track after LOSC. (a) 
and (b) are obtained under 0.010ppp. (c–d) 3D positional error in pixels, averaged over all tracked particles relative to the true 
particle position, (c) represents the statistical results before LOSC, (d) represents the statistical results before LOSC.  
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Figure 8 Comparison of reconstruction performance in different water tanks with refractive interfaces; pppmean = 0.05. (a) 

Cameras are not parallel to the wall of the octagonal tank. (b) Maximal reprojection error. (c) Comparison of numbers of ghost 
or detected particles relative to the number of true particles, Fg and Fd, respectively. (d) Mean reprojection error of detected 
particles. 

 
When the cameras are not parallel to the wall of the octagonal tank (Fig. 8a), an angle 1 exists between the camera optical 

axis and normal to the wall. Compared with the condition without refractive interfaces, Figure 8b shows the maximal calibration 
error by the pinhole Tsai camera model suddenly increases to 1.0 pixel even when 1 is 0°, and it continues to increase linearly 
with the angle 1. In contrast, the maximal reprojection error by the polynomial mapping function remains constant at 2e-3 px. 
As shown in Fig. 8c, when the pinhole Tsai camera model is used, the percentage of detected particles (Fd) dramatically 
decreases as 1 increase, and more ghost particles are reconstructed. Furthermore, the position uncertainty increases as 1 
decreases but decreases when 1 exceeds 5° (Fig. 8d) because the number of detected particles is smaller than that shown in 
Fig. 8d. In contrast, when the polynomial mapping function is used, the percentage of detected particles does not change because 
the reprojection error is maintained at 2e-3 px, resulting in a small number of ghost particles. 

 

 1 

(a)

Calibration 
plane
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Figure 9 Comparison of reconstruction performance in different water tanks with increasing particle concentration. All 

cameras are rotated by 10° around the X axis of the fixed world coordinate system, 1 = 10°. (a–b) Comparison of the numbers 
of ghost or detected particles relative to the number of true particles, Fg and Fd, respectively. (c–d) Mean errors of detected 
particles. (e–f) Mean IPR time per frame. 

 
Figure 9 presents a comparison of the reconstruction accuracy, robustness, and efficiency in different water tanks at image 

densities of 0.10, 0.025, 0.05, 0.075, and 0.10 ppp. When the refractive interface exists, all cameras are rotated 10° around the 
X axis of the fixed world coordinate system, 1 = 10°. In the absence of interfaces, the performances of OpenLPT with the Tsai 
camera model and LOSC-LPT framework with polynomial functions are similar under high image densities, and the calculation 
time is the same, as shown in Fig. 9a. When the refractive interface cannot be neglected, LOSC-LPT outperforms OpenLPT in 
terms of a higher percentage of detected particles (Fd), reduced number of ghost particles, and higher 3D reconstruction 
accuracy, as shown in Figs. 9b and d. The computational time for LOSC-LPT is slightly larger than that for OpenLPT due to 
the incorporation of LOSC. Figures 9c–d indicate that the position uncertainty (p) under different image densities by OpenLPT 
is greater than that by LOSC-LPT, and the computational times of the two frameworks are nearly identical from Figures 9e–f. 
The mean IPR time per frame is slower than STB by Schanz et al. [1], that may be caused by the different 2D particle 
identification method, the velocity field calculations (particle-space correlation), or optimization of particles position with the 
residual image during shaking, as well as the computer performance.  

3.3 Three-dimensional flow-field reconstruction 
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Figure 10 (a) 3D trajectories from DNS. (d) 3D flow field with Q = 120 [-] from DNS. (b, c, e, f) Results obtained using 

OpenLPT or LOSC-LPT without interfaces. (g-j) Results obtained using OpenLPT or LOSC-LPT in the octagonal water tank 
with φ1 = 10. Tracks represent the particle fields of the 105th–196th frames. Q is defined by the Q criterion. 

 
The particle position errors along the tracks can be effectively eliminated using the track fitting procedure named TrackFit 

proposed by Gesemann [41], which approximates the optimal Wiener filter for our particle motion model. The cut-off frequency 
for assessing the contribution of the increment in particle acceleration to the cost function of all tracks is determined following 
the work of Gesemann [41]. To account for the large reconstruction errors near the track edges [42], a few points on each side 
of the track are removed from the final results. In this study, four points are removed on each side of the tracks in this work. 
The first 100 frames of the convergence phase are subtracted from the entire long track, based on Fig. 6. Using a synthetic 
image dataset of 200 frames with an image density of 0.05 ppp, the reconstructed 3D trajectories by OpenLPT and by LOSC-
LPT are shown in Fig. 10. The first 100 frames of the tracks and four points on each side of the tracks are removed, and the 
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cases involve an octagonal water tank with φ1 = 10. The tracks correspond to the 105th–196th frame-based particle cloud. 
Compared with the DNS-Tracks in Fig. 10a from JHTDB [30], when the refractive interfaces do not exist, both OpenLPT and 
LOSC-LPT framework exhibit a high accuracy. The number of tracks in Fig. 10a is approximately 21,000 at a density of 0.05 
ppp in an area of 600  675 pixels (Fig. 6a). The percentages of exactly reconstructed 3D trajectories for both OpenLPT and 
LOSC-LPT are more than 99% without the refractive interface. Several incorrect tracks are also observed in Figs. 10b–c, which 
may have been caused by overlapping particles at a high image density of 0.05 ppp. When refractive interfaces are present, the 
performance of OpenLPT using the Tsai camera model deteriorates, as shown in Fig. 10g, and most of the tracks contain high 
levels of noise due to the high reprojection error (Fig. 8b). In contrast, LOSC-LPT produces tracks with low noise levels, as 
shown in Fig. 10h, owing to the small reprojection error obtained using polynomial mapping functions (Fig. 8b).  

 

 
Figure 11 Comparison of flow field along the y-axis in different water tanks: (a-b) Velocity components. (c-d) Q criteria in 

the flow fields. 
 
Additionally, the velocity and acceleration are extracted as the first and second derivatives of each track using the TrackFit 

method [41]. The flow field containing velocity and pressure can be interpolated into the Eulerian grid with the velocity and 
acceleration of discrete particles through adaptive Gaussian windowing [43], FlowFit [44], or vortex-in-cell plus [45]. In this 
study, the FlowFit method by Gesemann et al. [44] is used for the Eulerian flow-field interpolation, and this work realized the 
div1 version of FlowFit with only the penalization of divergence (for a velocity field of an incompressible flow) is performed 
and the divergence can also be represented as a linear combination of the unknown coefficients at any point in this volume. 
Figure 10 presents the comparison of different flow fields with the DNS flow field, with or without an interface (with the iso-
surface of vorticity Q = 120 [-]). The vorticity results with the Q criterion shown in Figs. 10d–f indicate that with the accurate 
tracks, the flow field can be precisely recovered, and almost all vortex structures can be reconstructed. However, in the 
octagonal water tank with φ1 = 10, the flow field reconstructed by OpenLPT and LOSC-LPT are considerably different, with 
the flow field by OpenLPT exhibiting higher levels of noise. The reconstruction by LOSC-LPT is more accurate than the DNS-
Q distribution (Fig. 10d). Figure 11 compares the flow field velocity magnitude U and Q criteria along the y-axis. In the 
octagonal water tank (Figs. 11b–d), in several local regions, the error generated by OpenLPT using the pinhole camera model 
is considerably larger than that generated by LOSC-LPT. A significant deviation exists between the pinhole-model solution 
and the DNS or LOSC-LPT solution may be caused by some strongly deviating tracks, which can be removed by a-posteriori 
outlier filtering based on neighboring tracks. The velocity error induced by LOSC-LPT using the polynomial camera model is 

Page 17 of 25 AUTHOR SUBMITTED MANUSCRIPT - MST-119878.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal XX (XXXX) XXXXXX Author et al  

 18  
 

smaller than that of OpenLPT because the number of strongly deviating tracks is small, which highlights its superior robustness 
and stability. 

 
Overall, the comparative analysis of the computational performances of the LOSC-LPT framework using polynomial 

functions and OpenLPT using the Tsai camera model indicates that the LOSC-LPT framework has a higher percentage of 
detected particles (Fd), fewer ghost particles (Fg), and smaller position uncertainty (p). Moreover, it can accurately reconstruct 
the flow field even when refractive interfaces are considered. This framework is thus applied for the experimental measurement 
of a jet from an elliptical nozzle involving refractive interfaces, as discussed in Section 4. 

4. Application to elliptical jet flow 

4.1 Experimental setup 

The LOSC-LPT framework is experimentally validated in an octagonal tank (with each side measuring 250 mm and a height 
of 900 mm) filled with tap water [46], as shown in Fig. 12a. The vertical octagonal tank is designed to study the fluid dynamics 
of 3D jet flow at a high Reynolds number (Re). The nozzle outlets are deformable, and thus jet experiments with different 
geometrical shapes can be conducted in this octagonal tank. An elliptical nozzle with an aspect ratio AR = 2 (defined as the 
ratio of the semi-major axis length a to the semi-minor axis length b of the elliptical nozzle) is installed at the bottom of the 
octagonal tank. The equivalent diameter is De = 20 mm, calculated based on the diameter of a circular jet with a momentum 
flux equal to that of the elliptical jet with exit semi-major and semi-minor axes a and b respectively, i.e., De  2(ab)1/2 [47]. Re 
is set as 3,000 according to the equivalent diameter and inlet velocity. The geometrical shape of the elliptical nozzle is designed 
with a contraction ratio of 5:1 from a circular cross-section (diameter Di = 100 mm) to an elliptical cross-section. The 
contraction length is approximately 1.6Di and the contraction profile of the elliptical nozzles follows a third-order polynomial 
curve with short straight portions at both upstream and downstream ends [48]. 

 

(b) Nozzle
De = 20mm

Cameras

(c) (d)(a)

Camera 1
Camera 2

Laser 
beam

50 mm

Mirrors

Mirrors

 
Figure 12 (a) Experimental setup and camera configuration. (b) Top view of two cameras with mirrors and their relative 

positions. (c)(d) Two views obtained from camera 2 by cropping the particle image. 
 
For flow visualization, 50-μm polyamide tracer particles (Dantec, Denmark) are seeded into the octagonal tank, and the 

nozzle is illuminated with a 25-W continuous-wave laser operating at 532 nm (Millennia EV25S, USA). The volumetric light 
is expanded and reflected through a flat-concave lens system to ensure that a 50 mm thick light beam illuminates the jet 
longitudinal plane. Particle images are recorded in continuous acquisition mode using two 12-bit complementary metal-oxide-
semiconductor cameras (PCO, Germany) and a lens of 100 mm with a spatial resolution of 2,000 × 2,000 pixels. The cameras 
achieve a continuous sampling rate of 2,000 image pairs per second, the total sampling time is 3 s, and 6,000 image sets are 
recorded. The particle size in each image is approximately 3 × 3 pixels, and the particle density is approximately 0.02 ppp. 
Using mirrors, as indicated by the green dashed line for the top view of the two cameras and their relative positions in Fig. 12b 
[49], four different views with image resolutions of 1,000 × 2,000 pixels in the radial direction can be obtained using only two 
cameras. Further details of the experimental setup can be found in the literature [50]. 
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For the LOSC-LPT framework, the 3D volumetric calibration of each camera is realized using a checkerboard plane with a 
grid size of 5 mm, and a 30-mm normal shift (-15 ~ 15 mm, step size is 2mm) of the calibration plate is achieved through a 
traversal mechanism. The precision of the traversal mechanism is 0.02 mm, which corresponds to 0.1 pixel in the image 
(Fig. 12c). All the particles are reconstructed in a volume with dimensions of 50 mm (2.5De in the x-direction)  100 mm (5De 
in the y-direction)  50 mm (2.5De in the z-direction). The mapping functions from the 3D space to the 2D image for each 
camera are calibrated using the Tsai camera model for the OpenLPT framework and the two-plane polynomial camera model 
for the proposed LOSC-LPT framework. 

4.2 Experimental results and discussion 

 

 
Figure 13 Comparison of calibration errors from the application of the different camera models in the elliptical jet 

experiment, (a-d) Pinhole Tsai model before VSC, (e-h) Pinhole Tsai model after VSC, (i-l) Calibration based on two planes 
using a third-order polynomial. 

 
Owing to the use of mirrors, as shown in the top view of the two cameras and their relative positions in Fig. 12b, only two 

cameras are required [49] to obtain four different views in the radial direction, which helps reduce the hardware cost of 3D 
measurement using Tomo-PIV or 3D LPT. While determining the angle between the camera optical axis and normal line of the 
window is challenging. Moreover, the refractive interfaces prepared using acrylic material cannot be neglected, resulting in 
significant calibration uncertainty. Figure 13 compares the calibration errors associated with the calibration based on the pinhole 
Tsai camera model using a third-order polynomial in the elliptical jet experiment, two planes at -15 mm and +15 mm are used. 
The maximal calibration errors using the pinhole Tsai model in four views are larger than 3.0 px (Figs. 13a–d), and the mean 
calibration errors are approximately 1.0 px. Although the VSC has been applied for improving the calibration accuracy by 
pinhole Tsai model, the mean calibration errors stay nearly 1.0 px from Figs. 13e–h. These values do not satisfy the high 
precision requirements of 3D measurement by LPT, because the calibration errors for Tomo-PIV or 3D LPT must be lower 
than 0.4 px [3] and preferably less than 0.1 px [14]. In contrast, when the polynomial mapping functions are used, as shown in 
Figs. 13i–l, the maximal calibration errors are less than 0.4 px, and the mean calibration errors are all less than 0.1 px. What’s 
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more, then calibration plate from the range of -13 ~ + 13 mm (step size = 2 mm) can be used for the accuracy evaluation of 
static reprojection by LOS interpolation and triangulation reconstruction. The maximal reprojection errors using the pinhole 
Tsai model are larger than 3.0 px, and the mean calibration errors are over 1.0 px. These values do not satisfy the high precision 
requirements of 3D measurement by LPT which must be lower than 0.4 px. In contrast, when the polynomial mapping functions 
are used, the mean reprojection errors are over 0.5 px by Z-interpolation, while the mean reprojection errors are all less than 
0.12 px by LOS interpolation. These findings demonstrate that polynomials can yield high-precision calibration parameters for 
3D measurement techniques compared with the pinhole Tsai camera model.  

 

 
Figure 14 Sample particle trajectories from an elliptical jet, reconstructed by OpenLPT or LOSC-LPT. Overlay of 200 time-

steps, colored by streamwise velocity via (a) OpenLPT or (d) LOSC-LPT. Trajectory details obtained using (b) OpenLPT or 
(e) LOSC-LPT. Tracked particles for single time-step (tn, indicated by dots) with a tail of 50 time-steps (reaching back to tn −49) 
by (c) OpenLPT or (f) LOSC-LPT. 

 
For the elliptical jet with AR = 2, all current tracks are subjected to the TrackFit function after subtracting the first 100 frames 

of the tracks and removing four points on each side of the tracks [41]. Figure 14 presents the results from the track reconstruction 
based on OpenLPT and LOSC-LPT, showing the tracks of 100 successive time-steps out of 500 snapshots, colored by 
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streamwise velocity. The numbers of tracks obtained using OpenLPT and LOSC-LPT framework are considerably different 
(Fig. 14). The number of long trajectories generated by OpenLPT is no more than 4,500, whereas the LOSC-LPT generates 
more than 13,000 tracks. Figures 14b and 14e show the details of parts of all tracks by OpenLPT and LOSC-LPT, respectively. 
Although TrackFit is applied to fit all trajectories, the tracks generated by OpenLPT exhibit significant uncertainty. The tracked 
particles for a single time-step (tn, marked by dots) with a tail of 50 time-steps (reaching back to tn −49) by OpenLPT (Fig. 14c) 
and LOSC-LPT (Fig. 14f) are visualized to examine the trajectories near the passing elliptical vortex rings produced in the 
initial shear layer due to Kelvin–Helmholtz instability [47].  

 
Subsequently, the interpolation of the Eulerian flow-field interpolation into 36  36  70 vectors is performed using the 

velocity and acceleration data of discrete particles obtained by the FlowFit method developed by Gesemann et al. [44]. Figure 
15 shows the Eulerian flow field with iso-surfaces of Q = 0.5 U0

2/De
2  colored by streamwise velocity. For comparison, the 

Tomo-PIV result in Fig. 15a is reconstructed using a custom GPU-based Tomo-PIV framework [51]. Notably, the flow-field 
noise is large, and the non-zero divergence of velocity is significant (most absolute values greater than 0.11 U0

2/De
2) in the 

Tomo-PIV data. Due to the inferior quantity and quality of tracks generated by OpenLPT (Fig. 14a), the instantaneous Eulerian 
flow-field interpolation based on tracks by OpenLPT is not ideal, and thus the flow field exhibits significant noise (Fig. 15b). 
The flow field interpolation based on the tracks generated by LOSC-LPT (Fig. 15c) is more accurate, which captures more 
complete coherent structures, such as the axial switching events of elliptical jet due to Biot–Savart self-induction [47, 52]. The 
axis-switching phenomenon in the elliptical jet signifies the evolution of the vortex ring structure, with expansion of the minor 
axis and rapid narrowing of the major axis. The major axis of the elliptical vortex ring switches in the downstream region of 
the jet exit. Figure 15c provides evidence of this axis switching as the major axis of the second elliptical vortex ring is different 
from that of the third elliptical vortex ring in the instantaneous flow field.  

 
The application to the elliptical jet flow demonstrates that the LOSC-LPT framework using polynomial mapping functions 

has a smaller calibration error and higher accuracy for real 3D flow measurement with refractive interfaces than the OpenLPT 
framework using the pinhole Tsai camera model, resulting in the recovery of more complete vortical structures in the flow. 

 

 
Figure 15 (a) Iso-surfaces of Q = 0.5 U  2/De 2 colored by streamwise velocity, obtained by Tomo-PIV. (b) Eulerian flow field 

reconstructed by OpenLPT and FlowFit. (c) Eulerian flow field reconstructed by LOSC-LPT and FlowFit. All flow fields 
pertain to the same spatial resolution. 

 

5. Conclusions 

 n improvement of the “Shake-The-Box (STB)” of LPT is provided using the polynomial calibration model in Tomo-PIV. 
The method (named LOSC-LPT) features innovative and effective strategies for incorporating polynomial mapping functions 
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in STB to realize particle stereo matching, 3D triangulation, IPR, and refinement of 3D particle position by shaking the LOS. 
This approach facilitates temporal domain particle tracking at high particle image densities, especially in scenarios commonly 
encountered in experimental fluid mechanics involving gas–solid–liquid interfaces at container walls. The proposed technique 
can enable accurate determination of the position, velocity, and acceleration of flow in LPT measurements, even in situations 
in which refractive interfaces cannot be neglected. The assessment of the LOSC-LPT framework using the synthetic image 
datasets and the experimental elliptical jet flow demonstrate the following conclusions: 

 
(1) For noise-free images with a particle image density of up to 0.10 ppp without refractive interfaces, the accuracy, 

convergence, and robustness of the LOSC-LPT framework are identical with OpenLPT framework. For noise-free images 
at 0.05 ppp, more than 99.0% of the particles are detected (Fd); the percentage of ghost particles, Fg, is less than 0.04%; 
and the mean position uncertainty p is less than 0.015 px after convergence. Better results can be achieved at lower 
particle image densities. 

(2) In scenarios with refractive interfaces, the maximal calibration error based on the Tsai camera model (> 1.0 pixel in 
synthetic image datasets) is larger than that induced by polynomial mapping functions (< 2e-3 pixel). When using 
OpenLPT based on the pinhole Tsai camera model, the number of detected particles can be retained, while the position 
uncertainty of the reconstructed particles increases to more than 0.2 px. When the angle 1 exists between the camera 
optical axis and normal to the wall is not equal to zero, based on the pinhole Tsai camera model, the number of detected 
particles decreases sharply to 5% (1 = 20). In contrast, the LOSC-LPT framework, which adopts polynomial mapping 
function calibration, can maintain high accuracy (Fd > 99.00%), robustness (Fg < 0.05 %) and accuracy (p < 0.15 px). 
The 3D flow-field reconstructions by FlowFit demonstrate that the velocity error pertaining to LOSC-LPT is considerably 
smaller than that generated by OpenLPT. 

(3) For the elliptical jet flow at Reynolds number Re = 3,000 in an octagonal tank with gas–solid–liquid interfaces, the 
maximal calibration errors using the pinhole Tsai model > 3.0 px, and the mean calibration errors  1.0 px. These values 
are considerably larger than those associated with the polynomial mapping functions (maximal calibration errors < 0.4 px 
and mean calibration errors < 0.1 px). The huge calibration errors by the pinhole Tsai model caused OpenLPT fails when 
the refractive interface exists. 

(4) Owing to the large calibration errors, the number of long trajectories detected by OpenLPT is no more than 4,500, and 
excessive noise is introduced in the Eulerian flow-field interpolation. In contrast, the LOSC-LPT yields over 13,000 
trajectories under small calibration errors. The LOSC-LPT recovers a more accurate 3D Eulerian flow field with a lower 
velocity divergence and captures axial switching events in the elliptical jet due to Biot–Savart self-induction. 

 
The particle tracks and 3D flow-field reconstructions demonstrate that the LOSC-LPT framework can recover a more 

accurate 3D Eulerian flow field and capture more complete coherent structures in the flow, and thus holds great potential for 
widespread application in 3D experimental fluid measurements in scenarios with refractive interfaces. 
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