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H I G H L I G H T S  

• Four different configurations of hybrid renewable energy systems are considered. 
• The configuration that integrated PV, wind turbine, biogas generator, battery, and converter is best. 
• Machine learning techniques are used to assess economic and environmental performances. 
• The bilayered neural network, with ReLU activation function, outperforms other models in predicting LCOE with R2 = 1 
• The medium neural network, using ReLU activation, outperforms other models in predicting CO2 emissions with R2 = 1.  
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A B S T R A C T   

This article offers a detailed investigation into the technical, economic along with environmental performance of 
four configurations of hybrid renewable energy systems (HRESs), aiming at supplying renewable electricity to a 
remote location, Henry Island in India. The study explores combinations involving photovoltaic (PV) panels, 
wind turbines, biogas generators, batteries, and converters, while evaluating their economic, technical, and 
environmental performance. The economic analysis yield that among all the systems examined, the PV, wind 
turbine, biogas generator, battery, and converter integrated configuration stands out with highly favourable 
results, showcasing the minimal value of levelized cost of electricity (LCOE) at $0.4224 per kWh and the lowest 
net present cost (NPC) at $6.41 million. However, technical analysis yield that the configuration comprising 
wind turbines, PV panels, converters, and battery yields a maximum excess electricity output of 2,838,968 kWh/ 
yr. Additionally, machine learning techniques are employed to analyse economic and environmental perfor-
mance data. The study shows Bilayered Neural Network model achieves exceptional accuracy in predicting 
LCOE, while the Medium Neural Network model proves to be the most accurate in predicting environmental 
performance. These findings provide valuable perception into the design and optimisation of HRES systems for 
off-grid applications in remote regions, taking into account their technical, economic, and environmental aspects.   

1. Introduction 

1.1. Background and motivation 

Energy consumption in India has doubled since 2000, primarily 
relying on coal, oil, and solid biomass to fulfil 80% of the demand [1]. 
The country emits 1.5 Mt./TWh of CO2 emissions from fuel combustion 
per unit of the total electricity output [2]. Currently, solar energy con-
tributes less than 4% to India’s electricity generation, while coal 

accounts for approximately 70% [1]. Although there has been signifi-
cant growth in renewable energy sources, particularly in solar power, 
there is still much work to be done to fulfil India’s commitment to 
reaching 450 GW of renewable capacity by 2030 [3] and achieving the 
Net Zero target [4]. 

Rural areas in India, where a significant portion of the population 
resides, often face challenges in accessing reliable and uninterrupted 
electricity [5]. The challenges faced in remote areas are considerable. 
Despite government efforts to bring electricity to these regions, frequent 
power outages hinder consistent and uninterrupted access to power. In 

* Corresponding author. 
E-mail addresses: dibyendu.roy@durham.ac.uk (D. Roy), shunmin.zhu@durham.ac.uk (S. Zhu).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2024.122884 
Received 26 September 2023; Received in revised form 17 January 2024; Accepted 16 February 2024   



Applied Energy 361 (2024) 122884

2

this regard, integration of various renewable energy resources such as 
solar, biomass, and wind through hybridization employing hybrid 
renewable energy systems (HRES), presents a promising solution for 
rural and remote areas. 

1.2. Review of literature 

Numerous studies have been undertaken to evaluate the technical 
and financial viability of HRES across various nations. Abdelhady [6] 
investigated various configurations of HRES that integrate photovoltaic 
(PV), wind turbine (WT), converter, and biogas generator (BG) with the 
electric grid employing technoeconomic analysis. The study focused on 
a hotel located in a typical city in Egypt. The findings revealed that the 
PV/WT grid-connected system would exhibit the minimal value of net 
present cost (NPC) of 388 k$ and levelized cost of electricity (LCOE) of 
0.021 $/kWh. Das et al. [7] examined HRES incorporating solar and 
small hydro energy, diesel generator, as well as storage modules to 
deliver affordable continuous power using technoeconomic analysis. By 
comparing five storage modules (lead acid, lithium-ion, vanadium redox 
and zinc bromide batteries, and pumped hydro energy storage (PHES)) 
across two distinct strategies, they determined that the optimal solution 
would have a LCOE of $0.197/kWh and NPC of $3,62,384. Mulumba 
and Farzaneh [8] examined the use of HRES in a remote area of Makueni 
County, Kenya using technoeconomic analysis and multi objective 
optimisation techniques. The system integrated PV and WT technolo-
gies, along with a storage facility that combined lithium-ion batteries 
and a flywheel storage system and found that the LCOE was significantly 
reduced to $0.519 per kWh. Similarly, Ahmed et al. [9] examined HRES 

configuration in Al-Issawiya, Sudan employing technoeconomic and 
environmental analyses. The system combined PV panels, diesel 
generator system, and an energy storage with a solar tracking system. 
The study leading to an optimal LCOE of $0.18 per kWh. In another 
study, Das and De [10] investigated HRES configurations that integrated 
WT, PV, convertor, diesel generator, and battery storage in a remote 
village in Gujarat using technoeconomic analysis, multi-criteria deci-
sion-making (MCDM), and life cycle assessment (LCA). Their optimal 
solution for the village would be a combination of PV, diesel generator, 
and battery systems, resulting in a LCOE of $0.21 per kWh. Ma and 
Javed [11] analysed HRES consisting of PV, battery, WT, along with 
convertor components for the remote island of Jiuduansha, China using 
technoeconomic analysis. They reported that a WT-only system ach-
ieved a minimum LCOE of $0.187 per kWh. Skroufouta and Baltas [12] 
investigated on HRES configuration that integrated WT, PV, and a 
desalination plant in the remote area of Karpathos island, Greece. They 
found that the system was reliable, and could fulfil the drinking water 
requirements of the island, 89.75% of irrigation needs, and 50.63% of 
energy demands. Yazdani et al. [13] conducted a comprehensive ex-
amination of various off-grid and on-grid configurations for HRES using 
environmental analysis and a MCDM algorithm to determine the optimal 
design configuration. They reported that the configuration comprising 
PV, FC, electrolyser, hydrogen tank, Battery and Inverter, with a 20% 
grid integration for the on-grid scenario, emerged as the most prominent 
configuration. Dehshiri and Firoozabadi [14] explored the integration of 
PV and converter components in a grid-connected HRES in Iran. Their 
investigation utilised technoeconomic analysis and MCDM techniques to 
evaluate the feasibility of various PV system configurations, including 

Nomenclature 

Abbreviations 
BG biogas generator 
CAP capital cost 
CRF capital recovery factor 
DG diesel generator 
EM CO2 emission 
FT fixed tilt 
GPR Gaussian process regression 
HDA horizontal daily adjustment 
HMA horizontal monthly adjustment 
HRES hybrid renewable energy systems 
LCA life cycle assessment 
LCOE levelized cost of electricity,$/kWh 
MAE mean absolute error 
MCDM multi-criteria decision-making 
ML machine learning 
MSE mean square error 
NPC net present cost, $ 
OM operating and maintenance cost, $ 
PHES pumped hydro energy storage 
PV photovoltaic 
RC replacement cost,$ 
RMSE root mean square error 
SL salvage cost,$ 
STC standard test conditions 
SVM support vector machines 
VCA vertical continuous adjustment 
WT wind turbines 

Symbols 
Cannual total annualised cost, $ 
dn real discount rate 

EGEN total annual electricity, kWh 
EPV energy from the PV arrays, kWh 
fr rate of inflation,% 
FDPV derating factor of PV 
IT incident solar irradiation on the PV array, W/m2 

IT,STC incident solar irradiation at the STC, W/m2 

LHVfuel lower heating value of the fuel, MJ/kg 
mfuel mass flow rate of fuel, kg/s 
Nk the number of components 
PBG power output of the generator, kW 
Ta,NOCT ambient temperature, ◦C 
TC temperature of the PV cell, K 
TC,NOCT operating (nominal) cell temperature, ◦C 
TC,STC temperature of the cell under STC, K 
Tk lifetime of component, year 
Tk,rem remaining lifespan of the kth component, year 
TPro,j lifetime of the project, year 
V velocity, m/s 
Vcut,in cut-in wind speed, m/s 
Vcut,off cut-off wind speed, m/s 
Vrated rated wind velocity, m/s 
WPV power output of a photovoltaic array, kW 
Wrated rated power, kW 
WWT power delivered by the wind turbines, kW 
ZPV rated capacity of PV array, kW 
Δt time-period, hour 

Greek letters 
βt temperature coefficient of power 
ηBG electrical efficiency of the BG 
ηMP,STC maximum power efficiency achieved under STC 

Subscripts 
k the kth component  
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fixed tilt, vertical continuous adjustment, horizontal monthly adjust-
ment, and horizontal daily adjustment. Their findings indicated that the 
fixed tilt system exhibited the lowest LCOE, with this parameter re-
ported to be 0.097 $/kWh. 

Machine learning models can be effective tools for measuring per-
formance investigations of HRES configurations. It has been applied to 
medical diagnosis [15], transient emission prediction of diesel engine 
[16], financial crisis prediction [17], Coronavirus disease prediction 
[18], and crude oil price prediction [19]. However, very few studies can 
be found on HRES system where machine learning techniques were 
employed. Shabestari et al. [20], predicted of future power outages in 
rural areas of Iran using machine learning techniques with various linear 
regression models focusing on a grid connected HRES comprising PV 
panels, a biodiesel fuelled generator, and a battery bank. They consid-
ered three power outage scenarios: peak-time outages, planned outages, 
and random outages, showing that LCOE would range between $0.066/ 
kWh and $0.070/kWh while maintaining an optimal hybrid solution 
with a renewable energy share of approximately 15%. Roy [21] exam-
ined off-grid HRES configurations comprising diesel fuelled generators, 
WTs, PV panels, converters, and batteries on a remote Indian island 
using machine learning techniques. The findings indicated that would be 
the most efficient configuration offering minimum LCOE of $0.31 per 
kWh. Izadi et al. [22] used a genetic algorithm-based machine learning 
approach to optimise an HRES comprising PV, WT, electrolyzer, fuel 
cell, and control devices. Their study aimed to determine the optimal 
levels of CO2 emissions, cost rate, and loss of power supply probability 
(LPSP). The findings revealed that the optimised system yielded a CO2 
emission of 53.48 tons/year, a low LPSP of 0.4057, and a system cost 
rate of 1.422 €/hr. In another study, Sakthi et al. [23] employed a 
support vector machine-based machine learning approach to assess the 
performance of HRES integrating PV and WT. Employing a support 
vector machine-based approach, the method demonstrated impressive 
results with 89% scalability, 86% power consumption, 95% network 
efficiency, and a high training accuracy of 96%. Ghandehariun et al. 
[24] explored an HRES incorporating WTs, PVs, electrolysers, pumped- 
hydro, and reverse osmosis. Using a backpropagation neural network, 
they predicted the system’s exergy efficiency, achieving a high R2 value 
of 0.98. 

The performance of HRES has been evaluated and optimised by 
various methodologies, and Table 1 presents a summary of related 
studies. 

1.3. Novelty and contribution of the work 

The literature review showed that prior studies on HRES have pri-
marily focused on evaluating the techno-economic performance of these 
systems via integrating the renewable and non-renewable energy sour-
ces, and the application of machine learning techniques in assessing 
HRES performance has been relatively limited. Whereas there is a gap in 
research utilising machine learning algorithms to explore the techno- 
economic and environmental aspects of HRES that incorporate 100% 
renewable energy sources. This study will make several contributions 
including:  

• Analysing the technical, financial, and environmental aspects of four 
HRES configurations to electrify a remote island in India. These 
configurations involve PV panels, WTs, BG, batteries, and converters.  

• Determination of the optimal configuration among the developed 
HRES based on the criteria for achieving the minimal LCOE.  

• Utilising component sizes as input data to predict economic and 
environmental performances, exploring variations in the sizing of PV 
panels, WT, BG, batteries, and converters—examining 1295 poten-
tial combinations. The collected data underwent comprehensive 
analysis using 26 distinct machine learning models.  

• Determining the optimal machine learning model to precisely predict 
the techno-economic performance parameter, LCOE, as well as the 
environmental emission performance parameter, CO2 emissions 
(EM), for the developed HRES configurations. 

2. Material and methods 

2.1. Study location and energy availability 

The chosen study location is situated in Henry Island near Bakkhali 
in South 24 Parganas, West Bengal, India and the location is marked in 
Fig. 1. According to 2011 Census, the island has a total population of 

Table 1 
Summary of related studies on performance optimisation of HRES.  

Combination Scope Objective function Key findings Location 

PV/WT/BG/Flywheel/ 
Battery [25] 

Off-grid and on-grid HRES 
for a governorate 

Minimise net present and levelized cost, maximise 
renewable electricity share by commercial software 

PV/WT system connected to the grid with 
batteries for storage is the optimal configuration 

Jordan 

PV/WT/Hydro/Battery 
[26] 

Stand-alone HRES for a 
remote rural area 

Optimise cost of energy and net present cost by 
commercial software 

Under combined dispatch strategy, lithium-ion 
battery based HRES delivers the most optimal 
operational costs 

India 

PV/WT/Fuel cells [27] Stand-alone HRES for a city Minimise total system cost by Al-Biruni algorithm The Modified Al-Biruni Earth Radius (MBER) 
algorithm is found to be the most efficient and 
reliable system 

China 

PV/WT/Diesel/Battery 
[28] 

Stand-alone, reliability- 
constrained HRES 

Optimise solution for cost and reliability using robust 
satisficing approaches 

The scenario-based and stochastic-free robust 
satisficing lead to better in-sample solutions 

Canada 

PV/WT/Diesel/Battery 
[29] 

Stand-alone HRES Minimise cost by robust simulation-optimisation 
methods 

The robust model with a properly-sized 
distributional ambiguity set leads to better 
solutions than the nominal model 

Canada 

PV/BG/Battery/ 
Electrolyser/Fuel cells 
[30] 

Renewable-based hydrogen 
and electricity co-supply 
hub 

Minimise total annual cost and optimise capacity 
arrangement using metaheuristic-TOPSIS approach 

The multi-objective mayfly algorithm assisted 
with TOPSIS generates the most preferred 
solution 

Malaysia 

PV/WT/BG/Battery [31] Stand-alone HRES for two 
rural areas 

Optimise economic, environmental, technical, and 
energy security criteria by multi-criteria decision- 
making 

The optimum solution reduces CO2 emissions by 
over 20% and yeilds lower fuel dependency 

Iran 

PV/BG/Hydro/Battery 
[32] 

On-grid HRES for a village Optimise techno-economic solution for HRES by a 
Fractional order updated JAYA algorithm 

The non-reliable power supply from grid can be 
supported with the designed HRES 

India 

PV/WT/Diesel/ 
Electrolyser/Fuel cell/ 
Battery [33] 

Off-grid HRES for a city Minimise levelized cost of energy and CO2 emissions 
by multi-objective optimisation method based on the 
Taguchi approach 

The hybridization of energy resources allows 
lower annual emissions compared to a diesel-only 
system. 

Turkey 

PV/Battery [34] On-grid HRES for a 
commercial centre 

Predict weather patterns over the lifespan of a HRES 
in optimising its size by machine learning and hybrid 
metaheuristics 

The approach leads to a more realistic HRES 
capacity that satisfies weather conditions over 
the lifespan of the system 

South 
Korea  
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6675 persons [35]. The present analysis takes into account the energy 
requirements of 1600 households, as outlined in Table A1 of Appendix 
A. 

Fig. 2 presents the recorded monthly solar irradiation and clearness 
index at Henry Island obtained from NASA databases [36]. Throughout 
the year, the monthly solar irradiation ranges between 3.774 kWh/m2 

per day and 5.43 kWh/m2 per day, with an estimated average solar 
irradiation of 4.506 kWh/m2 per day. April exhibits the highest levels of 
solar irradiation, whereas July experiences the lowest intensity. The 
clearness index is derived by dividing the amount of global irradiation 
received at the Earth’s surface on a horizontal plane by the corre-
sponding extraterrestrial irradiation on a horizontal plane during the 
same time period [37]. This dimensionless parameter ranges from 0 to 1, 
with higher values indicating clearer skies. Notably, the clearness index 
reaches its lowest point of 0.344 in July and peaks at its highest level of 
0.568 in December. The wind speed data for the study area, also sourced 

from NASA databases [36], is depicted in Fig. 3. Wind speed, ranging 
from 3.77 m/s to 7.44 m/s on Henry Island, substantially impacts WT 
power output, with the importance of optimising cut-in and cut-out 
speeds and selecting suitable sites based on local wind patterns to 
maximise energy output. Furthermore, the location has a steady supply 
of woody biomass which can be used in the biomass systems. Fig. 4 il-
lustrates the average available biomass on a daily basis [38], as shown 
on the left axis, along with the average temperature at the location, 
displayed on the right axis. 

2.2. System topology 

This study focuses on the performance optimisation of four different 
hybrid energy systems that operate entirely on renewable sources. The 
proposed configurations of these systems involve the integration of 
solar, wind, biomass, converter, and battery technologies. The system 

Fig. 1. Study location (Henry Island, West Bengal, India).  

Fig. 2. Solar irradiation and Clearness Index of Henry Island, West Ben-
gal, India. Fig. 3. Monthly wind speed at the location.  
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configurations are modelled to meet the required electricity demand 
throughout the year, with a simulation time step of 1 h. The details of the 
system configurations are provided below.  

• System A: PV, WT, BG, convertor, battery integrated system  
• System B: PV, BG, convertor, battery integrated system  
• System C: WT, PV, convertor, battery integrated system  
• System D: WT, BG, convertor, battery integrated system 

The diagrams illustrating the suggested configurations are presented 
in Fig. 5. 

2.3. Energy performance of the system components 

2.3.1. Photovoltaic array 
The power output of a photovoltaic array is denoted by ẆPV (kW) 

and it can be determined as follows [39]: 

ẆPV = ZPV ×FDPV ×

(
IT

IT,STC

)

×
(
1+ βt

(
TC − TC,STC

) )
(1)  

where ZPV : rated capacity of PV array (kW), FDPV : derating factor of PV 
(%), IT : Incident solar irradiation on the PV array during the present 
time step (kW/m2), IT,STC: incident solar irradiation at the standard test 
conditions (STC) (kW/m2), βt : temperature coefficient of power, TC: 
temperature of the PV cell at the present time step (◦C) and, TC,STC: 
temperature of the cell under STC (◦C). 

To estimate the PV cell temperature, the following equation can be 
utilised [39]: 

Tc =
Ta +

(
TC,NOCT − Ta,NOCT

)
(

IT
IT,STC

)(
1 −

η
MP,STC(1− βt×TC,STC)

τα

)

1 +
(
TC,NOCT − Ta,NOCT

)
(

IT
IT ,STC

)(
βt×ηMP,STC

ατ

) (2)  

where TC,NOCT and Ta,NOCT denote the nominal operating cell tempera-
ture (NOCT) and ambient temperature, respectively. The NOCT is 
considered as 20 ◦C. The parameter ηMP,STC denotes the maximum power 
efficiency achieved under STC. 

Energy converted from the PV arrays is denoted by EPV (kWh) and it 
can be determined as follows [39]: 

EPV = NPV × ẆPV (t) ×Δt (3)  

where, NPV is number of PV arrays; Δt: time-period and is 1 h. 

Fig. 4. Daily average available biomass and average temperature at 
the location. 

Fig. 5. Topology of the HRES: (A) System A, (B) System B, (C) System C, (D) System D.  
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2.3.2. Wind turbine (WT) 
Power delivered by the WTs is denoted WWT (kW) and it can be 

calculated as follows [40]: 

WWT =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0;V < Vcut,in
α× V3 − β × Ẇrated;Vcut,in < V < Vrated

Ẇrated ;Vrated < V < Vcut,off
0;V > Vcut,off

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)  

where Vcut,in (m/s) denotes the cut-in wind velocity, Vcut,off (m/s) denotes 
cut-off wind velocity, Vrated (m/s) denotes to the rated wind velocity, and 
Ẇrated (kW) denotes the rated power. 

The provided equations can be used to determine the values of both 
‘α’ and ‘β’ [39]. 

α =
Ẇrated

V3
rated − V3

cut,in
(5)  

β =
V3
cut,in

V3
rated − V3

cut,in
(6)  

2.3.3. Battery 
Reliability of any energy system can be improved by integrating 

battery storage facilities [41]. These facilities are commonly used to 
supply electrical energy during peak load hours or when renewable 
sources are unavailable. In this study, lead-acid batteries were assessed 
for their ability to store surplus energy during the charging process. 

The electric energy storage (EES) charge is denoted by QESS (kWh) 
and it can be estimated by the following Eq. [42]. 

QESS = QESS,0 +

∫ t

0
VBATIBATdt (7)  

where, QESS,0 is the initial EES charge (kWh), VBAT is the battery voltage 
(V), and IBAT is battery current (A). 

The batteries state of charge (SOC) can be estimated by the following 
Eq. [42]. 

BATSOC =
QESS

QESS,max
× 100 (8)  

where QESS,max is the total EES’s capacity (kWh). 

2.3.4. Biogas generator (BG) 
Electrical efficiency of the BG is denoted by ηBG (%) and it can be 

calculated as follows [43]: 

ηBG =
3.6 × PBG

ṁfuel × LHVfuel
(9)  

where,ṁfuel:mass flow rate of fuel (kg/h),PBG:power output of the 
generator (kW), and LHVfuel:lower heating value of the fuel (MJ/kg). 

2.4. Economics of the configurations 

Economic performance of the proposed configurations has been 
investigated using two important indicators: (i) net present cost (NPC) 
and (ii) levelized cost of energy (LCOE). The total NPC ($) was calcu-
lated using the following mathematical expression [44,45]: 

NPC = CAP+OM+RC+ SL (10)  

where different cost components like capital costs, operating and 
maintenance costs, replacement costs, and salvage costs, are termed as 
CAP ($), OM ($), RC ($), and SL ($), respectively. The costs for different 
components of the four considered systems can be found in in Table A2 
of Appendix A. 

During the calculation of capital cost (CAP) of the configurations, the 

number of components (Nk) is multiplied by the corresponding capital 
cost of the kth component (CAPk) and can be determined as follows [44]: 

CAP =
∑Ncomp

k=1
NkCAPk (11) 

Operating and maintenance cost (OM) is determined as follows [44]: 

OM =
∑

k∈comp

∑TProj

y=1

1
[

1 +

(
dn − fr
1+fr

)]yNk ×OMk (12)  

where OMk: operating and management cost any (kth) component ($), 
dn: real discount rate (%), fr: rate of inflation (%), and TProj: lifetime of 
the project in years. 

The replacement cost (RC) of any component can be computed as 
follows [44]: 

RC =
∑ 1

[

1 +

(
dn − fr
1+fr

)]TkNk ×RCk (13)  

where Tk: total lifetime of any component (in years), and RCk: total 
replacement cost ($). 

Now, the total salvage cost (SL) can be estimated as follows [44]: 

SL =
∑

k∈comp

1
[

1 +

(
dn − fr
1+fr

)]Tk ×
Tk,rem
Tk

×Nk × SLk (14)  

where Tk,rem: remaining lifespan of the kth component, and SLk: salvage 
cost ($). 

Total annualised cost (Cannual) is estimated as follows: 

Cannual = NPC×CRF (15)  

where CRF: capital recovery factor and it is determined as: 

CRF =

(
dn − fr
1+fr

)

×

[

1 +

(
dn − fr
1+fr

)]p

[

1 +

(
dn − fr
1+fr

)]TPro
− 1

(16)  

2.5. Objective function and optimisation constraints 

The objective function considered for the analysis is LCOE ($/kWh), 
representing the minimum cost required to sell the electrical energy to 
the consumers at break-even price throughout the lifespan of the 
different HRES. Mathematically, it can be determined as follows [44]: 

LCOE =
Cannual

EGEN
(17)  

where Cannual: total annualised cost ($), and EGEN:total annual electricity 
(kWh).The HRES is optimised to meet the necessary electrical demand 
while minimising the LCOE, subject to specified optimisation con-
straints. These constraints are outlined below. 

a) Range of decision variables: The decision variables for opti-
mising the size of the HRES are determined by the various components it 
comprises. In order to facilitate efficient computations, predefined 
upper and lower bounds are imposed on the solution space, outlined as 
follows: 

Nm,min ≤ Nm ≤ Nm,max,m ∈ ( PV,WT,BG,Convertor,Battery) (18)  

where Nm represents the number of a system component of m, and Nm,min 
and Nm,max refer to the minimum and maximum number of system 
component of m, respectively.The imposition of upper and lower bounds 
is implemented to restrict the solution space, effectively reducing 
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processing time. This decision is reached early in the optimisation pro-
cess, following a trial-and-error approach. 

b) Energy balance constraints: The aggregate energy output from 
all system components within an hour should be equal to or exceed the 
hourly load demand. 

EPV (t) + EWT(t) + EBG(t) + EES(t) ≥ EL(t) (19)  

where EPV ,EWT, and EBG are the energy output from PV (kWh), WT 
(kWh), and BG (kWh) while meeting the total electrical demand (EL) and 
storing energy (EES) at that hour. 

c) Energy storage capacity constraints: The constraint governing 
the energy storage capacity in the system is as follows: 

HES,min < HES(t) < HES,max (20)  

where HES,min (kWh) and HES,max (kWh) are the maximum electricity 
storage. 

2.6. Machine learning 

In this study, an extensive exploration of component sizing varia-
tions, encompassing PV panels, WTs, BGs, batteries, and converters, was 
conducted using machine learning algorithms. A total of 1295 potential 
combinations of these components were evaluated to assess their eco-
nomic and environmental emission performances. The collected data 
underwent comprehensive analysis using 26 distinct machine learning 
models within the within the MATLAB environment. To validate the 
accuracy of the regression models, several evaluation metrics were 
calculated, such as root mean square error (RMSE), mean square error 
(MSE), mean absolute error (MAE), and coefficient of determination 
(R2). RMSE, a widely used statistical metric, is determined as follows 
[46]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

k=1
(sk − ṡk)2

√

(21)  

where, n is sample size, sk is actual value and ṡk is predicted value. 
The MSE metric quantifies the average of the differences (squared) 

between the predicted and actual values. Mathematically, it can be 
expressed as the sum of the squares of the errors divided by the total 
number of observations, as shown below [46]: 

MSE =
1
n
∑n

k=1
(sk − ṡk)2 (22) 

MAE is the statistical metrics that determines the average extent of 
the errors between the actual and predicted variations and defined as 
follows [46]: 

MAE =
1
n

∑n

k=1
|sk − ṡk| (23) 

Coefficient of determination (R2) is a crucial metric used to assess the 
accuracy of regression model predicted results. It is defined as the ratio 
of the variance of the predicted values to the variance of the actual 
values and considered as most important index to verify the exactness of 
the regression models predicted results and determined as follows [46]: 

R2 = 1 −

∑n

k=1
(sk − ṡk)2

∑n

k=1
(sk − sk)2

(24)  

where, sk is the mean of actual value sk. If, R2 = 1, the regression model 
is having extreme level of accuracy. 

3. Results and discussions 

3.1. Technical analysis 

This section provides a comprehensive analysis of the technical 
performance of four fully hybrid renewable energy system configura-
tions. The analysis primarily focuses on critical technical parameters, 
such as the optimised design configuration, excess electricity, electricity 
production and consumption, capacity shortage, renewable fraction, 
and total fuel consumption. Detailed technical specifications for each of 
the four HRESs are presented in Table 2. Notably, System C stands out as 
it does not include a BG unit, eliminating the need for fuel to operate the 
system. Furthermore, system C yields highest electricity output, fol-
lowed by System D, System B and System A, respectively. In comparison, 
System A exhibits the lowest fuel consumption at 470 tons per year, 
followed by System B at 644 tons per year, and System D at 1143 tons 
per year. Additionally, all investigated systems demonstrate minimal 
capacity shortage. In terms of excess electricity generation, System C 
provides the highest amount, followed by System D, System B, and 
System A, respectively. It is important to highlight that a higher excess 
electricity output leads to greater storage requirements. Therefore, 
System C has the highest energy storage requirement. 

3.2. Economic analysis 

Fig. 6 presents a graphical representation of the capital costs for four 
different system configurations, accompanied by a comprehensive 
breakdown of the capital expenditures linked to each configuration’s 
specific components. It is worth highlighting that system B demonstrates 
the lowest total capital cost among all the configurations. In system B, 
the capital cost distribution is as follows: BG contributes 38.82%, PV 
contributes 35.42%, battery contributes 22.76%, and convertor con-
tributes 3%. On the other hand, system D has the highest capital cost, 
primarily due to the WT component, which accounts for the largest 
capital cost contribution at 55.44%. It is followed by BG at 30.55%, 
battery at 10.64%, and convertor at 3.37%. 

Considering the complete lifespan of integrated energy systems, it is 
crucial to factor in the replacement needs of individual components. 
Specifically, the Converter, Battery, and BG components will need to be 
replaced over time. Upon reviewing Fig. 7, it becomes evident that the 
battery component incurs the highest cost for replacement among all the 
systems. System A has the lowest overall replacement cost, with the 
majority of the cost attributed to battery (94.47%), followed by 
convertor (5.53%). Furthermore, System D requires the second lowest 
replacement cost, with battery accounting for the largest proportion 
(73.02%), followed by BG (21.61%), and convertor (5.37%). 

Fig. 8 provides a visual representation of the total operation and 
management costs for each of the four hybrid renewable energy systems. 
It is worth noting that system D has the highest total O&M cost, pri-
marily due to the significant contribution from BG (64.13%), followed 
by WT (30.53%), battery (3.87%), and convertor (1.47%). In contrast, 
system A has the lowest O&M cost, with BG contributing the most 
(49.80%), followed by PV (23.60%), WT (14.28%), battery (9.70%), and 
convertor (2.62%), respectively. Furthermore, Fig. 9 illustrates the fuel 
costs associated with the various components of the systems. Notably, 
System C stands out as it does not include a BG unit, eliminating the need 
for fuel to operate that particular system. System D incurs the highest 
fuel cost at $1,477,841.62, followed by System A and System B. Addi-
tionally, Fig. 10 presents the salvage costs for each system configuration. 
System C has the lowest salvage cost, followed by system A, system D, 
and system B, respectively. In system B, battery accounts for the highest 
salvage cost (50.86%), followed by BG (46.26%), and convertor 
(2.88%). 

Fig. 11 presents the net present cost (NPC) and levelized cost of 
electricity (LCOE) for the four configurations analysed at the study site. 
As shown, system A achieves the lowest NPC and LCOE, followed by 
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system B, system C, and system D, respectively. Specifically, the results 
indicate that system A, consisting of PV, WT, BG, convertor, battery, has 
the lowest LCOE (0.4224 $/kWh) and NPC (6.41 M$) among all the 

systems examined. On the other hand, system D, comprising WT, BG, 
convertor, battery, exhibits the highest LCOE (0.5947 $/kWh) and NPC 
(9.02 M$) among all the configurations investigated. 

Table 2 
Technical details of the investigated systems.  

Technical Parameters System A System B System C System D 

Optimised design PV:937 kW 
WT:340 kW 
BG: 500 kW 
Convertor:520 kW 
Battery: 2888Strings 

PV: 1479 kW 
BG:500 kW 
Convertor:387 kW 
Battery:3664 Strings 

PV:2902 kW 
WT:313 kW 
Convertor:719 kW 
Battery:5006 
Strings 

WT:1375 kW 
BG:500 kW 
Convertor:552 kW 
Battery:2177 Strings 

Electricity output (kWh/yr) 1,894,776 2,074,793 4,184,860 2,633,977 
Electricity consumption (kWh/yr) 1,173,840 1,173,840 1,173,133 1,172,900 
Excess Electricity (kWh/yr) 560,508 714,990 2,838,968 1,327,943 
Capacity Shortage (%) 0 0.0133 0.0602 0.0801 
Total fuel consumption (tons/yr) 470 644 0 1143 
RF(%) 100 100 100 100  

Fig. 6. Capital cost comparison of the four investigated systems.  

Fig. 7. Replacement cost comparison of the four investigated systems.  

Fig. 8. Operation and management cost comparison of the four investi-
gated systems. 

Fig. 9. Fuel cost comparison of the four investigated systems.  
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3.3. Environmental analysis 

Fig. 12 provides a comprehensive comparison of CO2 emissions for 
the four configurations analysed at the study site. It is important to note 
that System C, which does not include BG, stands out as an environ-
mentally friendly option, emitting zero CO2. This makes System C a 
promising candidate for sustainable practices. Among the remaining 
three system configurations, System D emerges as the highest emitter of 
CO2, releasing a substantial 206 kg/yr. On the other hand, System B and 
System A exhibit lower CO2 emissions at 116 kg/yr and 85 kg/yr, 
respectively. 

This data emphasizes the significance of BG in influencing CO2 
emissions, and it showcases the advantages of System C for those seeking 
to minimise their carbon footprint. Additionally, the results underscore 
the potential for reducing CO2 emissions in Systems B and A, suggesting 
opportunities for further improvement in their design and operation. It 
is evident from the data that the presence of BG plays a crucial role in 
reducing carbon emissions, and further research and attention should be 
directed towards optimising the integration of BG in various 
configurations. 

3.4. Data analysis employing machine learning algorithms 

The simulation encompassed altering the dimensions of various 
system elements, including BG capacity, PV capacity, WT capacity, 
converter capacity, and the number of battery strings, in diverse per-
mutations. This was done to forecast the corresponding LCOE and CO2 
emissions. The data obtained from the energy models is pre-processed 
and organised in an Excel file for further analysis using machine 
learning algorithms. Over 1200 combinations of data were thoroughly 
examined using Machine Learning techniques within the MATLAB 
environment. The data’s attributes are depicted using scatter plots in the 
scatter matrix plot, as depicted in Fig. 13. 

3.4.1. LCOE prediction using machine learning models 
A wide range of machine learning techniques, including Linear 

Regression, Tree, Support Vector Machines (SVM), Ensemble, Gaussian 
Process Regression (GPR), Neural Network, and Kernel, have been 
employed to build a predictive model for estimating the LCOE of a given 
hybrid renewable energy system and are presented in Table 3. 
Furthermore, to prevent overfitting, a 5-fold cross-validation scheme has 
been employed. 

The majority of machine learning methods employed for LCOE pre-
diction demonstrate strong agreement with simulation data. Notably, 
the Linear Regression, Tree, Ensemble, Neural Network, and Kernel 
regression models exhibit relatively short training times compared to 
other models, with a maximum training time of 23.224 s. Conversely, 
the Cubic SVM training algorithm requires the longest training duration, 
clocking in at 90.384 s, followed by the Quadratic SVM at 83.369 s. 
Gaussian Process Regression models range between 34 and 53 s for 
training. The Coarse Gaussian SVM boasts the shortest training time 
among all models, completing in just 2.3184 s. 

Among the various models, the Neural Network models, including 
Exponential GPR, Matern 5/2 GPR, and Rational Quadratic GPR, exhibit 
increasing accuracy in LCOE prediction, showcasing a coefficient of 
determination of 1. Notably, the Bilayered Neural Network model at-
tains the highest accuracy among all training algorithms, yielding an 
impressive R2 value of 1. It achieves the lowest values for RMSE, MSE, 
and MAE, which are recorded as 7.4143 × 10− 3, 5.4972 × 10− 5, and 
3.4191 × 10− 3, respectively. Thus, the Bilayered Neural Network model 
emerges as the optimal choice for LCOE prediction in the HRES, as 
indicated by the response plot, and predicted versus actual LCOEs shown 
in Figs. 14 and 15, respectively. Model hyperparameters of neural 
network models for LCOE are provided in Table 4. 

Fig. 10. Salvage cost comparison of the four investigated systems.  

Fig. 11. NPC and LCOE comparison of the four investigated systems.  

Fig. 12. CO2 emission comparison of the four investigated systems.  
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Fig. 13. Scatter matrix plot.  

Table 3 
Prediction of LCOE of the models through multiple ML techniques.  

Regression Types Training algorithms RMSE R2 MSE MAE Training time (in sec) 

Linear Regression Linear 0.0385 0.99 0.0014822 0.025078 5.8596 
Linear Regression Interaction Linear 0.03058 1 0.00093514 0.019588 5.9103 
Linear Regression Robust Linear 0.041612 0.99 0.0017316 0.022055 5.0791 
Stepwise Linear Regression Stepwise Regression 0.030638 1 0.00093869 0.019492 10.525 
Tree Fine Tree 0.070794 0.98 0.0050118 0.02672 5.4198 
Tree Medium Tree 0.087925 0.97 0.0077309 0.036321 4.8752 
Tree Coarse Tree 0.145 0.91 0.021026 0.062793 4.4008 
SVM Linear SVM 0.039785 0.99 0.0015828 0.028207 4.0177 
SVM Quadratic SVM 0.033145 1 0.0010986 0.024936 83.369 
SVM Cubic SVM 0.09165 0.96 0.0083997 0.046573 90.384 
SVM Fine Gaussian SVM 0.2461 0.74 0.060564 0.060285 2.9018 
SVM Medium Gaussian SVM 0.10151 0.96 0.010304 0.030526 2.6133 
SVM Coarse Gaussian SVM 0.048526 0.99 0.0023548 0.029547 2.3184 
Ensemble Boosted Trees 0.067437 0.98 0.0045478 0.038154 6.1176 
Ensemble Bagged Trees 0.087238 0.97 0.0076104 0.035493 4.8175 
Gaussian Process Regression Squared Exponential GPR 0.075363 0.98 0.0056796 0.01226 36.945 
Gaussian Process Regression Matern 5/2 GPR 0.022737 1 0.00051695 0.0045933 34.124 
Gaussian Process Regression Exponential GPR 0.014287 1 0.00020412 0.004517 42.856 
Gaussian Process Regression Rational Quadratic GPR 0.020063 1 0.0040253 0.0045437 53.016 
Neural Network Narrow Neural Network 0.011605 1 0.00013468 0.0056936 7.7455 
Neural Network Medium Neural Network 0.0088319 1 7.8002e-05 0.0039739 9.131 
Neural Network Wide Neural Network 0.0080785 1 6.5262e-05 0.0036875 18.203 
Neural Network Bilayered Neural Network 0.0074143 1 5.4972e-05 0.0034191 15.387 
Neural Network Trilayered Neural Network 0.0092423 1 8.5419e-05 0.0043468 23.224 
Kernel SVM Kernel 0.25074 0.73 0.06287 0.078402 19.782 
Kernel Least Squares Regression Kernel 0.27034 0.68 0.073086 0.11727 19.685  
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3.4.2. CO2 emissions prediction using machine learning models 
A total of 26 machine learning algorithms of different types were 

employed to develop a predictive model for estimating CO2 emissions 
(EM). Furthermore, to prevent overfitting, a 5-fold cross-validation 
scheme has been employed. The results are presented in Table 5. The 
majority of machine learning techniques used to predict EM show strong 
agreement with simulation data. Linear Regression, Tree, Ensemble, 
Neural Network, and Kernel regression models demonstrate relatively 
quick training times compared to other methods, taking a maximum of 
20.028 s to train. In contrast, the Cubic SVM training algorithm requires 
the longest training duration, taking 85.497 s. Gaussian Process 
Regression models range between 34.236 and 50.889 s for training. 
Among all models, the Medium Gaussian SVM exhibits the shortest 
training time, completing in just 0.61993 s. 

The accuracy of EM prediction improves with the use of Neural 
Network models, specifically the Rational Quadratic GPR, Medium 
Neural Network, and Wide Neural Network. These models demonstrate 
a coefficient of determination of 1, indicating high accuracy. The Me-
dium Neural Network model outperforms the others in terms of RMSE, 
MSE, and MAE, with values of 3.5409, 12.538, and 1.6295, respectively. 
Therefore, the Medium Neural Network model is considered the most 
suitable choice for EM prediction as indicated by the response plot and 
the predicted versus actual EMs shown in Figs. 16 and 17, respectively. 
Model hyperparameters of neural network models for EM are provided 
in Table 6. 

3.5. Comparisons with previous studies 

Table 7 compares the LCOE of the optimised combination from 
present study with the LCOE of renewable energy systems with energy 
storage from previous studies. It is found that the LCOE of different 
systems varies considerably with the combination of renewable energy 
sources and their installation capacity. The lowest LCOE from present 
study, i.e., 0.4224 $/kWh is clearly higher than the price of electricity 
for systems which are in the size of MW. This is mainly due to the energy 
systems in larger size can produce more electricity, which reduces the 
LCOE. As the BG is used in this study, the price of biomass feedstock 
undoubtedly accounts for a large portion of the total capital cost, 
increasing the LCOE. In addition, higher LCOE is related to the 
complexity of energy systems, as concluded by the comparison between 
the LCOE from this study and study in [47]. The investment cost 
considered for installing more energy storage systems would be higher 
and increase the LCOE. It should be noted that even the lowest LCOE 
derived from present study is significantly higher than the typical tariff 
for residential electricity in India (around 0.078 $/kWh [48]). There-
fore, scaling up the capacity and reducing feedstock cost are key factors 
in promoting implementation of HRES, as one of the main objectives of 
HRES is to obtain the comparable electricity price to achieve reliability 
for its use. 

4. Conclusions 

This article offers an extensive examination of the technical, finan-
cial, and environmental aspects of HRESs designed to provide 100% 

Fig. 14. Response plot using Bilayered Neural Network model for LCOE.  
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renewable electricity exclusively to a remote location, i.e., Henry Island 
in India. Four combinations involving photovoltaic panels, wind tur-
bines, biogas generators, batteries, and converters were explored and 

optimised based on techno-economic considerations. Additionally, ma-
chine learning techniques are employed to analyse economic and envi-
ronmental performance data for up to 1295 combinations. The main 
findings derived from this research can be summarised as follows:  

• Regarding surplus electricity output, System C with a combination of 
wind turbine, photovoltaic panel, convertor and battery yields the 
maximum (2,838,968 kWh/yr), while System A with a combination 
of wind turbine, photovoltaic panel, biogas generator, convertor and 
battery yield the minimum.  

• The economic results indicate that System A, consisting of wind 
turbine, photovoltaic panel, biogas generator, convertor and battery, 
has the lowest levelized cost of electricity (LCOE) at $0.4224/kWh 
and net present cost (NPC) of $6.41 million among all the systems 
examined. On the other hand, System D, comprising wind turbine, 
battery, biogas generator, and convertor, exhibits the highest LCOE 
($0.5947/kWh) and NPC ($9.02 million) among all the configura-
tions investigated.  

• The environmental analysis reveals that System C, which does not 
include biogas generator would emit zero CO2 whereas System D has 
the highest CO2 emissions.  

• For LCOE prediction, the Bilayered Neural Network model achieves 
the highest accuracy among all training algorithms, with an 
impressive R2 value of 1. Additionally, it achieves the lowest values 
for root mean square error (RMSE), mean squared error (MSE), and 
mean absolute error (MAE), which are recorded as 7.4143 × 10− 3, 
5.4972 × 10− 5, and 3.4191 × 10− 3, respectively. 

Fig. 15. Predicted LCOE versus the actual LCOE using Bilayered Neural Network model.  

Table 4 
Model hyperparameters of neural network models for LCOE.  

Neural network model Activation 
function 

Model hyperparameters 

Narrow Neural Network ReLU Number of fully connected 
layer:1 
First layer size:10 
Iteration limit:1000 

Medium Neural Network ReLU Number of fully connected 
layer:1 
First layer size:25 
Iteration limit:1000 

Wide Neural Network ReLU Number of fully connected 
layer:1 
First layer size:100 
Iteration limit:1000 

Bilayered Neural 
Network 

ReLU Number of fully connected 
layer:2 
First layer size:10 
Second layer size:10 
Iteration limit:1000 

Trilayered Neural 
Network 

ReLU Number of fully connected 
layer:3 
First layer size:10 
Second layer size:10 
Third layer size:10 
Iteration limit:1000  
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• For CO2 emission prediction, the Medium Neural Network model 
outperforms the others in terms of R2, RMSE, MSE, and MAE, with 
values of 1, 3.5409, 12.538, and 1.6295, respectively. Therefore, the 

Medium Neural Network model is considered the most suitable 
choice for CO2 emission prediction. 

This study addresses a critical gap in the existing literature by 

Table 5 
Evaluation of EM prediction models employing diverse ML techniques.  

Regression Types Training algorithms RMSE R2 MSE MAE Training time (in sec) 

Linear Regression Linear 40.02 0.65 1601.6 26.869 3.2417 
Linear Regression Interaction Linear 30.883 0.79 953.77 20.02 2.627 
Linear Regression Robust Linear 43.588 0.58 1899.9 23.572 2.0126 
Stepwise Linear Regression Stepwise Regression 30.914 0.79 955.65 19.885 2.9907 
Tree Fine Tree 12.844 0.96 164.97 5.6704 1.1266 
Tree Medium Tree 15.754 0.95 248.18 7.09 0.91839 
Tree Coarse Tree 22.347 0.89 499.37 11.225 4.7272 
SVM Linear SVM 40.974 0.63 1678.8 24.938 4.047 
SVM Quadratic SVM 31.746 0.78 1007.8 20.732 43.674 
SVM Cubic SVM 156.39 − 4.37 24,459 80.445 85.497 
SVM Fine Gaussian SVM 15.753 0.95 248.14 9.3891 0.91913 
SVM Medium Gaussian SVM 25.84 0.85 667.73 15.341 0.61993 
SVM Coarse Gaussian SVM 36.979 0.70 1367.4 22.837 1.5349 
Ensemble Boosted Trees 12.814 0.96 164.19 6.4671 2.2583 
Ensemble Bagged Trees 16.246 0.94 263.93 7.4849 5.2403 
Gaussian Process Regression Squared Exponential GPR 10.11 0.98 102.2 4.1125 36.454 
Gaussian Process Regression Matern 5/2 GPR 5.9987 0.99 35.984 1.9724 44.031 
Gaussian Process Regression Exponential GPR 6.4029 0.99 40.997 2.3557 34.236 
Gaussian Process Regression Rational Quadratic GPR 4.0145 1 16.117 1.4748 50.889 
Neural Network Narrow Neural Network 6.7814 0.99 45.987 3.049 4.584 
Neural Network Medium Neural Network 3.5409 1 12.538 1.6295 8.6323 
Neural Network Wide Neural Network 4.0238 1 16.191 1.324 14.514 
Neural Network Bilayered Neural Network 6.4135 0.99 41.133 2.7852 14.162 
Neural Network Trilayered Neural Network 7.4303 0.99 55.209 3.4088 20.028 
Kernel SVM Kernel 47.799 0.50 2284.7 28.902 15.052 
Kernel Least Squares Regression Kernel 25.263 0.86 638.24 14.906 14.659  

Fig. 16. Response plot using medium neural network model for EM.  
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examining the performance of off-grid HRES that rely solely on 100% 
renewable energy sources, leveraging machine learning techniques. In 
addition to shedding light on system performance, the study offers 

Fig. 17. Predicted EM versus the actual EM using medium neural network model with 5-fold cross validation.  

Table 6 
Model hyperparameters of neural network models for EM.  

Neural network model Activation 
function 

Model hyperparameters 

Narrow Neural Network ReLU Number of fully connected 
layer:1 
First layer size:10 
Iteration limit:1000 

Medium Neural Network ReLU Number of fully connected 
layer:1 
First layer size:25 
Iteration limit:1000 

Wide Neural Network ReLU Number of fully connected 
layer:1 
First layer size:100 
Iteration limit:1000 

Bilayered Neural 
Network 

ReLU Number of fully connected 
layer:2 
First layer size:10 
Second layer size:10 
Iteration limit:1000 

Trilayered Neural 
Network 

ReLU Number of fully connected 
layer:3 
First layer size:10 
Second layer size:10 
Third layer size:10 
Iteration limit:1000  

Table 7 
Comparative performances with previous studies.  

Renewable 
energy systems 

Capacity Energy storage LCOE 
($/kWh) 

Reference 

Stand-alone PV 125 MW 

Electrolyser and 
fuel cell 

0.0702 

[49] 
Stand-alone WT 34.5 MW 0.0786 

Hybrid PV and 
WT 

PV: 2 MW 
WT: 30.5 
MW 

0.0783 

Stand-alone PV 1707 kW Electrolyser and 
battery 

0.68 

[47] 
Stand-alone WT 3000 kW Electrolyser, fuel 

cell, and battery 
0.88 

Hybrid PV and 
WT 

PV: 985 
kW 
WT: 1500 
kW 

Electrolyser and 
battery 0.66 

Hybrid PV and 
BG 

PV: 80 kW 
BG: 80 kW 

Grid 0.488 [50] 

Hybrid PV, WT, 
and BG 

PV:1.79 
MW 
WT:2 MW 
BG: 0.92 
MW 

Battery and 
pumped-hydro 
storage 

0.1626 [51] 

Hybrid PV, WT, 
and BG 

PV:937 
kW 
WT:340 
kW 
BG: 500 
kW 

Battery 0.4224 Present 
study  

D. Roy et al.                                                                                                                                                                                                                                     



Applied Energy 361 (2024) 122884

15

valuable insights into optimised configurations and predictive models 
for a thorough techno-economic and environmental evaluation. The 
identified optimised hybrid system emerges as a promising solution for 
rural and remote areas in India. The employed methodology is 
straightforward, facilitating its application to similar HRES studies 
across diverse geographical locations. However, to provide a more 
comprehensive view of the system, a thorough resilience assessment of 
the proposed HRES is crucial. Furthermore, investigating the resilience 
of stand-alone microgrids during natural disasters in future work will 
contribute to a more robust understanding of the system’s capabilities 
and vulnerabilities across various operational scenarios. 
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Appendix A  

Table A1 
Electric demand at the study location.  

Load Appliances Quantity Power 
(W) 

Summer (Mar-Oct) Winter (Nov-Feb) 

Usage 
(hr) 

Load (Wh/ 
d) 

Total category 
(kWh/d) 

Usage 
(hr) 

Load (Wh/ 
d) 

Total category 
(kWh/d) 

House demand (1) CFL 3 40 7 840  7 840  
Fan 2 70 8 1120 0 0 
Television 1 100 5 500 5 500 
Mobile 
Charger 

1 10 1 10 1 10 

Miscellaneous 1 100 1 100 1 100 
Total number of houses 

(1600)      
4112   2320   

Table A2 
Technoeconomic specifications of components.  

Component Parameters Data Ref 

PV Rated capacity 1 kW [52,53] 
Derating factor 80% 
Rated voltage 54.7 V 
Temperature coefficient -0.5%/℃ 
Efficiency 13% 
Operating Temperature 47 ◦C 
Rated current 5.98 A 
Efficiency 13% 
Capital cost $925/kW 
Replacement cost $800/kW 
O&M cost $15/kW 
Lifetime 25 

WT Power rating 1 kW [54,55] 
Hub height 20 m 
Rated wind speed 12.5 m/s 
Start-up wind speed 2.5 m/s 
Nominal voltage configuration 24 V/48 V 
Diameter of rotor 3.35 m 
Capital cost $1980/kW 
Replacement cost $980/kW 
O&M cost $25/year 
Lifetime 25 years 

Battery Voltage rating 12 V [53] 
Capacity ratio 0.403 
Roundtrip efficiency 80% 
Maximum charge current 16.7 A 

(continued on next page) 
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Table A2 (continued ) 

Component Parameters Data Ref 

Maximum discharge current 24.3 A 
Minimum state of charge 40% 
Initial state of charge 100% 
Capital cost $240 per unit 
Replacement cost $190 per unit 
O&M cost $2.0 per year 
Lifetime 5 years 

Converter Power rating 1 kW [38,56,57] 
Inverter efficiency 95% 
Rectifier efficiency 95% 
Capital cost $300/kW 
Replacement cost $300/kW 
O&M cost 3$/year 
Lifetime 15 years 

BG Power rating 500 kW [50,58] 
Minimum load ratio 50% 
Fuel cost 100$/t 
Biogas LHV 5.5 MJ/kg 
Biogas density 0.720 kg/m3 

Capital cost $3000/unit 
Replacement cost $1250/unit 
O&M cost 0.10$/hour 
Lifetime 20,000 h  
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