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Abstract
With the rapid evolution of artificial intelligence (AI), its potential
implications for higher education have become a focal point of interest. This
study delves into the capabilities of AI in physics education and offers
actionable AI policy recommendations. Using openAI’s flagship
gpt-3.5-turbo large language model (LLM), we assessed its ability to answer
1337 physics exam questions spanning general certificate of secondary
education (GCSE), A-Level, and introductory university curricula. We
employed various AI prompting techniques: Zero Shot, in context learning,
and confirmatory checking, which merges chain of thought reasoning with
reflection. The proficiency of gpt-3.5-turbo varied across academic levels: it
scored an average of 83.4% on GCSE, 63.8% on A-Level, and 37.4% on
university-level questions, with an overall average of 59.9% using the most
effective prompting technique. In a separate test, the LLM’s accuracy on
5000 mathematical operations was found to be 45.2%. When evaluated as a
marking tool, the LLM’s concordance with human markers averaged at
50.8%, with notable inaccuracies in marking straightforward questions, like

∗
Author to whom any correspondence should be addressed.

Original Content from this workmay be used
under the terms of the Creative Commons

Attribution 4.0 licence. Any further distribution of this work
must maintain attribution to the author(s) and the title of the
work, journal citation and DOI.

1 ©2024TheAuthor(s). Published by IOPPublishing Ltd

http://iopscience.org/ped
https://orcid.org/0000-0002-9444-108X
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6552/ad1fa2&domain=pdf&date_stamp=2024-2-6
mailto:will.yeadon@durham.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


WYeadon and T Hardy

multiple-choice. Given these results, our recommendations underscore
caution: while current LLMs can consistently perform well on physics
questions at earlier educational stages, their efficacy diminishes with
advanced content and complex calculations. LLM outputs often
showcase novel methods not in the syllabus, excessive verbosity, and
miscalculations in basic arithmetic. This suggests that at university,
there’s no substantial threat from LLMs for non-invigilated physics
questions. However, given the LLMs’ considerable proficiency in
writing physics essays and coding abilities, non-invigilated
examinations of these skills in physics are highly vulnerable to
automated completion by LLMs. This vulnerability also extends to
pysics questions pitched at lower academic levels. It is thus
recommended that educators be transparent about LLM capabilities
with their students, while emphasizing caution against overreliance on
their output due to its tendency to sound plausible but be incorrect.

Keywords: ChatGPT, prompt engineering, higher education, AI benchmark, Zero Shot, Few Shot,
AI in physics education

1. Introduction

1.1. Background

Since OpenAI released ChatGPT, there has been a
burgeoning interest in the higher education (HE)
sector regarding the potential impact of artifi-
cial intelligence (AI) on learning and teaching
[1–3]. The transformative potential of AI, par-
ticularly large language models (LLMs) - neural
networks trained on vast amounts of text—has
captivated educators. Reinforcing its significance
in the educational realm, OpenAI even released
a ‘tips for educators’ blog post1. Chatbots like
ChatGPT, built on the transformer architecture
[4], use a decoder-only design to predict sub-
sequent words, equipping them to handle intricate
queries. Following the prominence of ChatGPT,
tech behemoths such as Meta, Google, and Baidu
have launched their own AI-driven chatbots:
LLama, Gemini [5], and Ernie. While these mod-
els excel in various tasks, preliminary research
indicates that they may not consistently meet the
rigorous academic standards of university settings
[6], with GPT-4, the latest iteration of the GPT
series, outperforming its counterparts.

1 Available at https://openai.com/blog/teaching-with-ai.

Research within physics specifically has
begun to assess the capabilities and implica-
tions of AI, largely focusing on ChatGPT. For
instance, at the secondary school level, a pilot
study led by Bitzenbauer engaged students in
asking ChatGPT physics questions as a learn-
ing exercise and elicited their feedback on the
generated responses [7]. Moreover, Yeadon and
Halliday, when examining a set of physics exams
administered at Durham university, found that
GPT-4 typically achieved scores around the
50% mark [8]. Interestingly, the markers fre-
quently noted the plausible sounding nature of the
responses from GPT-4, despite them not always
being correct. This phenomenon was also high-
lighted in a study by Dahlkemper et al [9].
They observed that responses from ChatGPT to
challenging physics questions—ones that were
more difficult than the students tested had pre-
viously encountered—were rated comparably to
researcher-written responses. This was the case
even though, for simpler questions, incorrect
ChatGPT responses could be identified more eas-
ily by the students. Similarly, Gregorcic and
Pendrill [10] found that a conversation with
ChatGPT could yield intricate dialogue but incor-
rect physics concepts. This issue of complex yet
plausible-sounding language masking incorrect
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content is a hallmark of ChatGPT completions.
Focusing on essay-based physics assignments,
researchers discovered that ChatGPT’s perform-
ance was generally on par with the average
student’s score on short-form physics essay
assignments [11].

A growing body of research suggests the
importance of equipping students with skills and
experience to interact effectively with AI [7,
12, 13]. While this idea seems practical, it is
crucial to acknowledge the continuous evolu-
tion of AI and computational technologies. As
these systems become more user-friendly, the
requirement for extensive technical knowledge
decreases. This trend is evident in the rise of
intuitive development environments like Replit
and design tools like Figma, both of which have
simplified many complexities in software cre-
ation. A similar trend towards readability is seen
in programming languages, with Python being a
prime example. Supporting this trend, ChatGPT
has shown the capability to convert natural lan-
guage into functional source code that can solve
Leetcode problems [14]. Here, natural language
can be seen as an even higher-level represent-
ation of source code, which itself is a higher-
level representation of machine code. This sug-
gests a future where specialized knowledge in
areas like prompt engineering could become less
important, replaced by more intuitive and direct
interaction with AI systems. Indeed, the interac-
tion techniques used in this research might soon
be outdated due to the rapid development in AI
technology.

While these studies underscore AI’s prowess
in solving physics problems, they represent just
one facet of physics education. Assessment for
learning, with its focus on continuous, format-
ive assessments to enhance teaching and learn-
ing, contrasts starkly with summative assessments
aimed at mere problem-solving. This distinc-
tion becomes crucial as AI, particularly modern
LLMs, are advancing in ability and becoming
closer to student performance in exams [8]. In
global contexts, such as Singapore [15], where
high-stakes exams—tests that constitute over 50%
of the final grades—dominate, there’s a tendency
towards an exam-driven learning approach, per-
haps at the expense of a deeper grasp of the sub-
ject. It’s imperative, therefore, when considering

AI’s role in assessments, to look more broadly at
technology-enhanced assessment (TEA). French
et al [16] emphasize the need for a comprehensive
re-evaluation of traditional assessment methods in
education, arguing for the integration of TEA to
foster deeper, more authentic learning experiences
that align with the demands of a digitally evolving
world. Their analysis underscores the importance
of moving beyond rote memorization and exam-
centric approaches, advocating for assessments
that encourage critical thinking, creativity, and the
application of knowledge in diverse contexts.

Understanding the effects of different inter-
action methods on AI performance, along with
grasping AI’s current capabilities, is vital for the
physics education community. This study aims to
delve into these topics to provide educators with
a better understanding of how to adapt to the AI
evolution and to suggest practical ways to adjust
to this rapid change.

1.2. Interaction with AI models

There’s a growing recognition that the conven-
tional back-and-forth messaging inherent in chat-
style interactions may not be entirely representat-
ive of the full potential of LLMs. The interaction
quality and the outcome largely depend on not just
the proper formulation of the prompt, but also on
the application of various frameworks like reflec-
tion and chain of thought reasoning. Furthermore,
integrating external tools such as Wolfram Alpha
can significantly enhance the performance of the
LLMs.

Prompting techniques, including Zero Shot
and Few Shot, are among the primary factors
influencing the output quality. The Zero Shot
approach entails asking a question directly and
expecting an answer, without providing any prior
context or examples. On the other hand, Few Shot
involves presenting examples to the model before
posing the question [17], thereby giving the model
a context to generate a more informed response.
This study uses OpenAI’s ChatGPT thus in order
to implement Few Shot prompting in context
learning (ICL) is used whereby the examples are
presented within the prompt sent to the LLM.

The Confirmatory Check technique is an
implementation that combines elements of the
chain of thought [18] and reflection [19] methods.
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It encourages a LLM to reconsider its previous
outputs, removing excess content if appropriate.
This method prompts the model to evaluate its
initial response, thereby mitigating the problem
where the LLM becomes ‘stuck’ with a mistake
in its produced answer. Additionally, LLM out-
puts can sometimes be long, rambling, and incon-
sistent with the complexity of the question. The
confirmatory check technique provides an oppor-
tunity for the LLM to avoid these issues. This
approach offers valuable insights in educational
contexts, where it mimics a more conversational
interaction between students and the LLM. This
back-and-forth dialogue can lead to more refined
and accurate answers.

The idea of equipping LLMs with external
tools to handle challenging tasks has also gained
traction recently. A notable instance is the integ-
ration of Wolfram Alpha with ChatGPT, allowing
the LLM to leverage Wolfram Alpha’s capabilit-
ies to tackle complex mathematical tasks that are
typically difficult for LLMs [20].

In exploring these different techniques, our
aim is not only to provide a broader understand-
ing of how these models can be utilized but also
to evaluate their efficacy within the context of
physics education. This serves the larger goal
of this study—to benchmark these cutting-edge
LLMs thoroughly and provide educators with a
clearer picture of AI’s strengths and weaknesses.
By doing so, we hope to offer a comprehensive
resource to understand AI’s current capabilities
and thereby inform educators about effective ways
to integrate AI into their teaching practices.

2. Method

2.1. Question sources

To ensure a comprehensive examination of the
AI’s capabilities across various difficulty levels,
we sourced questions that spanned from general
certificate of secondary education (GCSE) to A-
Level, as well as textbooks used in introductory
university courses, often covering first-year con-
tent and occasionally extending into second-year
material. These questions were obtained from a
wide array of educational boards and institutions,
culminating in a diverse and robust dataset. The
GCSE andALevels are key academic stages in the

UK education system. GCSEs, undertaken at ages
14–16, mark the end of compulsory education and
encompass a range of subjects. Post-GCSE, stu-
dents aged 16–18 take A Levels, choosing three
to four subjects aligned with their future goals. A
Levels are critical for university admission, with
their grades significantly influencing university
entrance decisions.

To transfer questions from their original
sources into a digital, machine-readable format,
we utilized a combination of regular expres-
sion matching and manual transcription. Special
emphasis was placed on maintaining the accuracy
of the transcription process, preserving the ori-
ginal complexity and structure of each question.
However, due to the requirement of sending API
requests in Latin-1 encoding (ISO/IEC 8859-1),
mathematical notations such as the square root or
integral symbols were unavailable. We adapted to
this constraint by using natural language short-
hands, such as ‘sqrt(x)’ or ‘integrate(x)’, which
proved to be an effective solution. Further, when
questions incorporated tables or figures, we adop-
ted specific strategies. Tables were reformatted
to resemble nested Python lists. As for figures,
we provided detailed descriptions. However, this
approach for figures was seldom practical. The
questions were organized into three distinct cat-
egories: numerical, where calculations such as
‘find the acceleration’ were required; multiple
choice, involving selection from a list of options;
and written descriptive answers, where textual
responses were needed. The sources of the ques-
tions are detailed in table 1.

Building on the extensive research focusing
on university-level physics exam questions [8],
the current study narrows its scope to intro-
ductory level questions. The textbooks from
which these questions were sourced are shown
in table 1. To ensure fair evaluation, the scor-
ing procedures for these questions were stand-
ardized across the different educational levels.
For GCSE and A-Level questions, we adhered
to the respective mark schemes provided. On
the other hand, university-level questions, being
derived from textbooks, lacked a standard mark
scheme. To address this, a customized scoring
rubric was developed. Specifically, questions from
University physics with modern physics were
found to be more elaborate and were consequently
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Table 1. Question sources used for the evaluation.

Level Source Number of questions

GCSE OCR physics A—Gateway physics 2017–2021 263
OCR physics B—21st Century physics 2017–2021 91

A-Level OCR physics A 2017–2021 244
OCR physics B (Advancing physics) 2017–2021 130

University University physics with modern physics 15th Ed. 175
Physics for scientists and engineers 4th Ed. 180
College physics 2e 2nd Ed. 112
Physics principles with applications 7th Ed. 142

Total 1337

marked on a 2-point scale. A score of 2/2 was
awarded for completely accurate answers, 1/2
for answers demonstrating an understanding of
the physics concept being tested but with minor
numerical or procedural errors, and 0/2 for all
other responses. For questions sourced from the
other university textbooks, a simpler 1-point scale
was utilized, wherein each question was marked
as either correct or incorrect. This approach aimed
to strike a balance between accommodating the
inherent complexity of questions from different
sources and maintaining an equitable evaluation
framework.

2.2. Generating the AI answers

We utilized the OpenAI API, specifically the
gpt-3.5-turbo language model, to generate AI
responses from an array of message objects [21].
By altering the format of the message object array,
we implemented various interaction techniques:
Zero Shot, ICL and Confirmatory Check. Each
message object has a role of either system, user,
or assistant. The systemmessage objects guide the
behavior of the LLM. The OpenAI default sys-
tem message is ‘You are a knowledgeable assist-
ant’ [22], which was retained for the Zero-shot
prompting interactions. It was followed by a sys-
temmessage reading ‘Please answer the following
question.’ to ensure the question was answered,
and then a user message containing the actual
question content.

For the ICL prompt implementation, the sys-
tem messages were modified to include a series of
example question-answer pairs before the target
question, as shown in figure 1. These examples

served to establish the context for the expected
responses. Studies have shown that beyond five
examples, the benefits of additional examples
become negligible [23].We found the LLMwould
often provide lengthy responses, so the examples
were deliberately concise. Although a word-based
example was initially included, it was determined
to be unnecessary since the model is trained prin-
cipally on long text passages.

The confirmatory check techniquewas imple-
mented by sending the ICL message object to
the API with the ICL response appended as an
assistant message. It was followed by a user mes-
sage reading, ‘Please check the previous answer
to ensure you are happy with it. If you feel that
you can express it more succinctly, then please do
so. For reference, this was the original question:
<question inserted>’. This approach allowed the
LLM an opportunity to refine its ICL answer.

While the OpenAI API does not directly
provide a confidence score or probability with
each response, the ‘temperature’ parameter was
set at 0 to eliminate randomness in the generated
responses [24]. The ‘max tokens’ parameter was
set at 2000, suitable for extensive answers. After
processing each question, the result was saved
with the new answers in an excel workbook to pre-
vent data loss in case of program termination. The
grading and interpretation of the AI’s responses
are discussed in the subsequent sections.

2.3. Automated grading

To assess the LLM’s capability in evaluat-
ing its own responses, the answer from each
question—spanning different prompting styles—
was submitted to the API. This submission
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Figure 1. Message array used to implement the Few-shot prompting via ICL, illustrating how context is provided
to guide the language model’s responses.
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included the solution, marking guidance, avail-
able marks, and the original question2. Tasking
the LLM with marking its answers emulates a
human marker’s role. Subsequent comparisons
between LLM-assigned scores and human evalu-
ations provided insights into the LLM’s efficacy.
Given the potential for the LLM to assign improb-
able scores, like values below zero or exceeding
available marks, checks were put in place. If an
invalid score was provided thrice consecutively, it
was recorded as ‘−1’ signifying a marking fail-
ure. Due to the comprehensive marking guidance
availability, only GCSE andA-Level sources were
utilized.

2.4. Mathematical capabilities

Answering physics questions often requires math-
ematical calculation, something LLMs are not
trained on. To evaluate the LLM’s utility in phys-
ics problem-solving, where mathematical calcu-
lations are often essential, we assessed its com-
putational accuracy through two datasets total-
ing 5000 numbers. The first dataset, with 2500
integer pairs ranging from 1 to 5 digits, tested
basic arithmetic operations. The second dataset
involved single operand operations (like squar-
ing or calculating natural logarithms) on 2500
integers. This approach aimed to understand the
LLM’s potential errors in numerical computa-
tions often encountered in physics questions. The
accuracy was judged based on perfect match
criteria, with a focus on the LLM’s ability to
handle numerical complexity relevant to physics
applications.

3. Analysis and results

3.1. Overview

Figure 2 illustrates the overall scores achieved
by different AI prompting techniques across
three academic levels: GCSE, A Level, and
Introductory University. The three techniques rep-
resented are Zero Shot (blue), ICL (red), and con-
firmatory check (green). It shows that the perform-
ance of the three prompting techniques remains

2 A overview of the prompt instructing the AI to mark its own
work can be found in the appendix figure A1.

relatively consistent across the three academic
levels, while the overall performance decreases
as the academic level increases. Although there
are slight variations in the percentage of correct
answers, none of the techniques consistently out-
performs the others across all levels.

To determine if these observed differences
were statistically significant, an analysis of vari-
ance (ANOVA) test was conducted, with the res-
ults summarized in table 2. ANOVA is particu-
larly apt for this analysis as it allows for a com-
parison of means across more than two groups.
The null hypothesis for the ANOVA test states
that there is no significant difference between
the group means. The alternative hypothesis pos-
its that at least one group mean is different. For
the GCSE, A Level, and introductory university
levels, the p-values were 0.5429, 0.1310, and
0.8828, respectively, indicating that we fail to
reject the null hypothesis for all three academic
levels. This suggests that the choice of prompting
technique does not play a pivotal role in the AI’s
performance.

For a more nuanced analysis, each question
was categorized as either multiple choice, numer-
ical, or word-based. However, at the introduct-
ory university level, the dataset is overwhelmingly
composed of numerical questions (>99%). This
dominance renders a detailed, segregated analysis
by question type challenging for this academic
level. Nevertheless, the ANOVA test results for
the GCSE and A Level, as showcased in table 2,
indicate a statistically significant difference in the
performance of the three prompting techniques
across the various question types. Yet the differ-
ences are not consistent between academic levels
with the LLM performing best on numerical ques-
tions at GCSE but best on word based at A-Level.
Further word based questions were the worse per-
forming type for the LLM at GCSE. The nature of
the question can notably affect the LLM’s accur-
acy. For example, in multiple choice questions,
the LLM frequently settled on an answer that was
not among the provided options. In these scen-
arios, it either refrained from answering altogether
or selected the option that was closest to its often
incorrect answer. Beyond these question types, it
was observed that questions with tables scored
similarly to those without, indicating that tables
do not hinder LLM performance.
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Figure 2. Comparative analysis of overall scores achieved by different AI prompting techniques (Zero Shot, Few
Shot, confirmatory check) across three academic levels: GCSE, A Level, and introductory university.

Figure 3. A detailed breakdown of the AI’s performance in terms of percentage correct for various question types
(multiple choice, numerical, word-based) at different academic levels, highlighting areas of success and potential
improvement.

3.2. Example question answer

Looking at specific examples offers a clear per-
spective on the influence of prompt engineer-
ing. As depicted in figure 4, the nuances of

different prompting styles can lead to varied
responses. Given the physics question ‘Write a
decay equation in terms of a quark model for
beta-minus decay’ the Zero-Shot prompt failed
to appreciate the question asked about the quark
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Table 2. ANOVA results for different prompting techniques and question types.

Category F-statistic p-value

Overall ANOVA Results

GCSE Level 0.6111 0.5429
A Level 2.0366 0.1310
Introductory University Level 0.1246 0.8828

GCSE Level ANOVA Results for Different Question Types

Zero Shot 80.7864 1.3781× 10−29

In Context Learning 88.5268 7.4370× 10−32

Confirmatory Check 92.3540 5.9499× 10−33

A Level ANOVA Results for Different Question Types

Zero Shot 46.5909 8.8761× 10−19

In Context Learning 57.8985 1.3057× 10−22

Confirmatory Check 41.2386 6.7268× 10−17

model instead detailing β− in a nucleus. The ICL
prompting got the question completely correct but
confirmatory check approach lost marks due to it
stating an electron neutrino rather than an elec-
tron antineutrino in the answer. Interesting this
may have been because a actual ν character was
returned instead of the words ‘anti-v’ but ν̄ is not
available in the Latin-1 character set.

The Zero-shot approach, while thorough,
often yielded verbose answers, averaging 427
characters in length. In contrast, the ICL method
trimmed responses to an average of 405 charac-
ters. The confirmatory check approach stood out
as the most concise, with answers averaging just
228 characters. Additionally, while some math-
ematical content in the responses mirrored con-
ventional formats, there were instances where the
representations, though appearing correct, were
mathematically inaccurate.

3.3. AI marking

For this evaluation, only instances where both
human and the LLM successfully assigned a grade
were included. Out of 3486 AI-generated answers
to 1162 questions3, the LLM only successfully
graded 2209 instances, achieving a 63.4% rate of

3 Questions from University physics with modern physics had
a separate solutions booklet so could not be marked by the AI.

successful evaluations. All scores were normal-
ized to facilitate a fair comparison across ques-
tions with different maximum marks. Human and
LLM evaluation showed a concordance in scores
for Zero-shot, ICL, and confirmatory checking
with rates of 49.82%, 51.96%, and 50.54%,
respectively. This means that for approximately
half of the questions, the LLMgave the same score
as the human markers. Among these 2209 graded
instances, human markers assigned an average
normalized score of 0.515, with a standard devi-
ation of 0.448. The LLM’s average normalized
score was a lot higher at 0.952 but had a lower
standard deviation of 0.167.

The observed correlations in table 3 show that
human markers often grade ICL and confirmat-
ory checks in a correlated manner, evidenced by
a strong internal correlation of 0.913. In contrast,
AI markers displayed a slightly weaker internal
correlation of 0.662 between these same methods.
Comparing human and AI grading reveals a mod-
erate level of agreement, particularly for ICL and
confirmatory checking (CC) with correlation val-
ues of 0.241 and 0.257, respectively. Zero-shot
prompting shows a weaker correlation of 0.189.

Understanding these correlation values
alongside the concordance rates suggests that
the agreement is higher for straightforward ques-
tions with single correct answers. Meanwhile,
more complex questions are likely sources of
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Figure 4. Comparison of responses for the given question based on different prompting styles in response to the
question ‘Write a decay equation in terms of a quark model for beta-minus decay’.

Table 3. Correlation matrix for grades assigned by humans and the LLM. Human-ZS: Zero-shot prompted
answers; human-ICL: In context learning prompted answers; human-CC: confirmatory check prompted answers;
LLM-ZS, LLM-ICL, and LLM-CC are analogous for the LLM.

Human-ZS Human-ICL Human-CC LLM-ZS LLM-ICL LLM-CC

Human-ZS 1.000 0.800 0.754 0.189 0.156 0.139
Human-ICL 0.800 1.000 0.913 0.110 0.241 0.201
Human-CC 0.754 0.913 1.000 0.102 0.197 0.257
AI-ZS 0.189 0.110 0.102 1.000 0.334 0.284
AI-ICL 0.156 0.241 0.197 0.334 1.000 0.662
AI-CC 0.139 0.201 0.257 0.284 0.662 1.000

disagreement. These discrepancies may arise
from the LLM’s different interpretation of the
marking guidance or its emphasis on different
parts of the response. The LLM-assigned scores
also have a lower standard deviation, indicating
a more consistent but potentially less nuanced
grading approach.

3.4. Mathematical capabilities

In assessing the LLM’s mathematical abilities
for physics applications, it achieved a 52.3%
exact accuracy rate in basic arithmetic operations

(addition, subtraction, multiplication, division)
with two integers. This accuracy improved to
75.8% when allowing a ±5% margin of error.
Notably, the LLM performed better in addition
and subtraction than in multiplication and divi-
sion, particularly with larger numbers. For single
operand operations, such as squaring and cal-
culating logarithms, the LLM’s exact accuracy
was 38.1%, rising to 63.2% within a 5% error
margin. Its performance was relatively weaker
in handling trigonometric functions with multi-
digit numbers. These findings indicate the LLM’s
varying proficiency in mathematical calculations
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commonly encountered in physics, suggesting
careful consideration for tasks requiring high
numerical precision.

4. Discussion and conclusion

4.1. Overview

AI, especially in the realm of LLMs, continues
to draw attention in academic circles. Within this
landscape, this study set out to evaluate the pro-
ficiency of AI in physics education. The results
presented in this study and elsewhere allow us to
make general conclusions about LLM use within
physics education and to provide recommenda-
tions for educators.

For the characteristics of LLM output, one
notable aspect is that without a specific syl-
labus to adhere to, LLMs often introduced innov-
ative methods, leading to novel approaches in
answering. While this can be a fresh perspect-
ive, it does not always align with the traditional
academic evaluations. Contrary to prior work
emphasizing the importance of good prompting
[25, 26], our investigation revealed statistically
insignificant difference between different inter-
action techniques. We found that AI struggles
with harder physics, as shown in figure 3. As
the academic level increased, the amount of cor-
rect responses decreased. Previous research has
highlighted how AI can often struggle with more
complex physics; beyond introductory textbooks,
Yeadon and Halliday [8] demonstrated how GPT-
3.5 typically fails to pass most physics exams at
Durham university. However the latest founda-
tion model GPT-4 consistently outperforms GPT-
3.5 and often scores nearly 50% on exams, this
is shown in figure 5. Given these results, and as
highlighted at the end of [6], the current poten-
tial threat of AI in non-invigilated online exams at
university level seems to be relatively contained.
In fact, it would be prudent to warn students that
AI performance at GCSE and A Level may not
transfer to university assessments. This leads to
the conclusion that whilst non-invigilated GCSE
and A-Level assessments should be wary of how
good the latest foundational AI models are, at uni-
versity level the threat is not as dire. The score of
the best AI systems seems to, on average, peak at

around 50% for physics questions meaning cur-
rently only the weaker students would benefit.

As a part of a physics degree, often there
are written elements and computational work.
Here the threat to assessment fidelity is more pro-
nounced. There are LLMs specifically trained on
coding examples which can excel at complex cod-
ing tasks found in a computer science focused
degree where the complexity would typically be
beyond that found in a physics degree [27, 28].
Further, research looking at physics essays spe-
cifically found AI excels here [11]. It is import-
ant that educators are aware of the capabilities in
these areas and it is recommended that for cod-
ing and essay work, if the assessment is non-
invigilated educators should enter their assign-
ments into GPT-4 and see the capabilities them-
selves. The wide availability and capability of
modern LLMs may be irreconcilable with with
take home short essays or typical physics coding
tasks.

LLMs often produce verbose outputs, the
AI’s proclivity to produce extensive responses,
often not proportional to the question’s complex-
ity, is not only a hallmark but seems to be an integ-
ral part of quality answers. Whilst not statistically
significant, there was a decline in performance
with the confirmatory checking raises concerns
about the AI’s current capacity for iterative, con-
versational interaction, resonating with the obser-
vations by [10]. Interestingly, looking at the lin-
guistics of the output much prior research has
highlight how AI generated content is both diffi-
cult to detect [29, 30] and potentially bias against
non-native english speakers [31]. Curiously there
are simple techniques to get the AI to reveal itself
such as asking ‘Do you agree with this statement?’
will often get the LLM to state ‘As an AI assistant
I do not have personal opinions, emotions, or pref-
erences’. Similarly the use of zero-width spaces or
hidden prompt injection attacks [32] within ques-
tions can also foil LLM effectiveness.

The present work also highlighted howLLMs
can struggle with mathematical computations as
the lengths of digits involved increases. Of the
5000 mathematical questions asked only 45.2%
were answered correctly. The difference here
however is that modern computers already have
sophisicated mathematical capabilities meaning it
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Figure 5. Performance of GPT-4 and GPT-3.5 on different physics exams as presented by Yeadon and Halliday
[8]. The black crosses indicate the average student mark from 2018 to 2021 on the modules for the exam and the
dashed black line shows the 40% score required to pass the exam. Critically, these exams were marked by the same
academics who mark student exams. Acronym definitions are provided below. Reproduced with permission from
[8]. The modules acronyms are for: ACMP : advanced condensed matter physics, FoP1 : foundations of physics 1,
FoP2A : foundations of physics 2A, FoP3A : foundations of physics 3A, MMP : mathematical methods in physics,
MAOP3 : modern atomic and optical physics 3, P&C : planets and cosmology, TA : theoretical astrophysics, TP2:
theoretical physics 2, TP3: theoretical physics 2.

would be inapt to use a LLM to work out the
cosine of a number when calculators are available.
The AI’s grading capability further supports this
viewpoint, when marking multiple choice ques-
tions the AI often struggled to do this simple task
correctly, a case of over engineering / using the
AI for the wrong task. In fact when extending the
marking to all questions a congruence rate of only
50.8% with human evaluations was found, indic-
ating clear limitations in certain areas.

On a positive note, during our interactions,
the AI maintained a respectful tone without dis-
playing any abusive or exclusionary language,
reflecting advancements in ethical AI design.
While premium versions of some technologies
might be inaccessible to some due to cost, educat-
ors should ensure that no student is mandated to
use paid resources. To summarize, while AI has
made significant strides, limitations persist in its

application to physics. The key conclusions from
our study are outlined in figure 6.

4.2. Recommendations

The swift progress in AI technology raises
numerous ethical dilemmas, especially regard-
ing its potential misuse in academia, its inherent
biases, and its overarching societal repercussions.
Echoing the concerns raised by [33], the incorpor-
ation of AI into the educational realm warrants a
balanced mix of skepticism and meticulous scru-
tiny. AsAImodels continuously advance, a shared
responsibility falls upon educators, developers,
and policymakers to maintain vigilance, ensur-
ing that AI tools are harnessed ethically and judi-
ciously. In light of the current state of affairs, spe-
cific recommendations are posited, as depicted in
figure 7.
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Figure 6. Key conclusions derived from this study’s assessment of LLM responses to physics questions.

We also express caution about the limits of
what this research shows. This study specific-
ally looks at AI’s ability to solve physics prob-
lems but there is a wider context of digitization
of education. We echo the themes highlighted by
Timmis et al [36] in their review of assessment in
a digital age, where digital tools have the poten-
tial to provide bespoke education that adapts to
student needs, but this comes with risks. The two
principle risks applicable to this study are the mis-
use of student data, a risk that depends on the exact
AI resource used, and the exacerbation of the
‘digital divide’ in the age of AI. Celik identified
that ‘computational thinking’ (the skill of solving
problems in a similar way to how computers work)
and the access to information and communication
technologies as key determinants of AI literacy
[37]. We thus stress educators should be wary of
recommending the use of commercial generative

AI systems where the use of confidential inform-
ation is required or state-of-the-art AI capabilities
are required.

As previously mentioned, it is important
to view the impact of AI in the broader con-
text of increased digitization over the past dec-
ades. The effects of AI in education may be
more extreme, but they can be viewed as sim-
ilar to earlier technological advancements that
have transformed educational practices. Just as
earlier innovations brought their own challenges
and opportunities, the integration of AI and digital
tools in education continues this trend. It demands
a careful consideration of the balance between
technological potential and ethical responsibil-
ity, ensuring that advancements in educational
technology contribute positively to the learn-
ing experience without compromising equity or
privacy.
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Figure 7. Recommendations for educators in addressing AI.

4.3. Concluding thoughts

AI is set to change how we approach education.
Drawing from the findings of this study and the
broader literature, it is clear that within the realm
of physics education, AI presents a spectrum of

threats and opportunities that vary based on con-
text. Assessments at earlier educational stages,
such as GCSE and A-Level, are notably sus-
ceptible when they are open-book. In contrast,
when addressing advanced topics—especially at
the university level and in textbook work—AI
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does not consistently provide correct answers,
regardless of the prompting style. Moreover, stu-
dents producing a high volume of quality work
should not be unwelcome. The primary concern
should be the active and meaningful involvement
of students in creating such work. The path ahead
remains uncertain; forthcoming foundation mod-
els might bring about marginal enhancements or
represent substantial breakthroughs in capabil-
ities. With sustained research, assessment, and

collaboration, the academic community has the
opportunity to channel the potential of AI, ensur-
ing it enhances, rather than diminishes, physics
education.

Data availability statement
All data that support the findings of this study are
included within the article (and any supplement-
ary files).

March 2024 15 Phys. Educ. 59 (2024) 025010



WYeadon and T Hardy

Appendix. AI Marking Prompt

Figure A1. Condensed system prompt for AI self-marking. The AI was programmed to return a numerical score
based on the question’s solution and guidance. The full prompt, with multiple detailed examples, is abbreviated
here for brevity. The AI accurately marked questions 58.8% of the time.
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