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A B S T R A C T 

Supermassive black holes require a reservoir of cold gas at the centre of their host galaxy in order to accrete and shine as active 
galactic nuclei (AGN). Major mergers have the ability to drive gas rapidly inwards, but observations trying to link mergers with 

AGN have found mixed results due to the difficulty of consistently identifying galaxy mergers in surv e ys. This study applies 
deep learning to this problem, using convolutional neural networks trained to identify simulated post-merger galaxies from 

surv e y-realistic imaging. This provides a fast and repeatable alternative to human visual inspection. Using this tool, we examine 
a sample of ∼8500 Seyfert 2 galaxies ( L [ O III ] ∼ 10 

38 . 5 −42 erg s −1 ) at z < 0.3 in the Sloan Digital Sky Survey and find a merger 
fraction of 2 . 19 

+ 0 . 21 
−0 . 17 per cent compared with inactive control galaxies, in which we find a merger fraction of 2 . 96 

+ 0 . 26 
−0 . 20 per cent, 

indicating an o v erall lack of mergers among AGN hosts compared with controls. Ho we ver, matching the controls to the AGN 

hosts in stellar mass and star formation rate reveals that AGN hosts in the star-forming blue cloud exhibit a ∼2 × merger 
enhancement o v er controls, while those in the quiescent red sequence hav e significantly lo wer relati ve merger fractions, leading 

to the observed overall deficit due to the differing M ∗–SFR distributions. We conclude that while mergers are not the dominant 
trigger of all low-luminosity, obscured AGN activity in the nearby Univ erse, the y are more important to AGN fuelling in galaxies 
with higher cold gas mass fractions as traced through star formation. 

K ey words: galaxies: acti ve – galaxies: interactions – galaxies: Seyfert. 
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 I N T RO D U C T I O N  

t is well known that most galaxies host supermassive black holes 
SMBHs) at their centres. Physical models (e.g. Silk & Rees 1998 ;
ing 2003 ) show that galaxies and their SMBHs interact constantly. 
hen a galaxy has a reservoir of cold gas at its centre, the SMBH
ay accrete this gas rapidly, releasing a tremendous amount of energy 

s light and potentially even outshining the starlight of the galaxy 
s an active galactic nucleus (AGN). Some fraction of this energy 
s injected back into the gas surrounding the central region, either 
eating the gas or driving it out of the galaxy entirely. This in turn
s expected to eventually quench star formation in the galaxy and 
tarve out the AGN as the supply of cold gas required for both
 E-mail: msam23@bath.ac.uk 
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uickly disappears (Di Matteo et al. 2008 ; Hopkins et al. 2008 ).
ence galaxies and their black holes are expected to grow together,

s implied by the tight relationship between galaxy bulge mass and
MBH mass (Kormendy & Ho 2013 ). 
Being located at the centre of a galaxy, an AGN must draw its

upply of cold gas from within the g alaxy. Many g alaxies contain
arge reservoirs of such gas, but in order to reach the central
egion, gas orbiting at r ∼ 10 kpc must lose � 99.9 per cent of its
ngular momentum (Alexander & Hickox 2012 ). Mechanisms for 
estabilizing this gas may be environmental, such as gas-rich mergers 
Di Matteo, Springel & Hernquist 2005 ; Fontanot et al. 2015 ) or
idal interactions (Martig & Bournaud 2008 ), or internal, such as bar
ormation (Shlosman, Frank & Begelman 1989 ; Shankar et al. 2012 )
r wet compaction from violent disc instabilities at high redshifts 
Dekel & Burkert 2014 ; Zolotov et al. 2015 ; Lapi et al. 2018 ; Lapiner
t al. 2023 ). This work focuses on major mergers, which are known
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1 There is of course no ground truth to compare with for observations, but 
human classification is often seen as the gold standard, and most automatic 
classifiers have failed to agree with humans. It is important to note that the 
two methods of classification are looking for intrinsically different patterns, 
and galaxy morphology has historically been understood through the lens of 
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o drive large gas masses inwards particularly rapidly (Cox et al.
008 ; Teyssier, Chapon & Bournaud 2010 ). 
In a merger between two gas-rich galaxies, the intense tidal forces

nd changing gravitational potential drive the gas to the centre of
he system, where it may fragment and form stars or accrete on to
he SMBH(s) to form an AGN, possibly initially shrouded in dust
Sanders et al. 1988 ). As the AGN accretion and starburst continue,
he feedback from both will eventually shut both down as gas is either
eated or blown out. Meanwhile, the merger will have redistributed
tellar orbits into random orientations via violent relaxation (Lynden-
ell 1967 ), and what is left at the end is a gas-poor, ‘red and dead’
lliptical galaxy. 

Whilst this scenario represents one possible formation pathway
f an AGN, the question remains of how necessary mergers are
or triggering AGN compared with other, less violent processes.

odels indicate that some amount of merger triggering is necessary
o match observed AGN demographics (e.g. Draper & Ballantyne
012 ; Hopkins, Kocevski & Bundy 2014 ), but AGN have also
een observed to exist in host galaxies with only a gas-rich disc
e.g. Cisternas et al. 2011 ; Smethurst et al. 2019 ), whose lack of
 significant classical bulge component strongly suggests major-
erger-free mass assembly histories. This implies that secular gas

nflows from disc instabilities that build up o v er time can be sufficient
o fuel SMBH growth in many cases. 

A great deal of work has been done o v er the years seeking
o pinpoint the relative importance of galaxy mergers and secular
rocesses in triggering AGN activity, and results have been mixed.
any studies (Cisternas et al. 2011 ; Kocevski et al. 2012 ; Villforth

t al. 2014 ; Sabater, Best & Heckman 2015 ; Mechtley et al. 2016 ;
arian et al. 2019 ; Sharma et al. 2024 ) find no merger excess among
GN hosts compared with inactive control galaxies, suggesting that
ergers have no additional contribution to AGN triggering. Ho we ver,
any other studies (Ramos Almeida et al. 2011 , 2012 ; Ellison et al.

019 ; Marian et al. 2020 ; Pierce et al. 2023 ) find o v erall merger
xcesses between their AGN hosts and controls. This discrepancy
ould be explained by the different types of AGN studied, as it
as been suggested that mergers may only be the dominant trigger
f high-luminosity AGN while secular processes are sufficient at
ower luminosity (Somerville et al. 2008 ; Hopkins & Hernquist
009 ; Hopkins, Kocevski & Bundy 2014 ), which has been supported
y models (Marulli et al. 2008 ; Bonoli et al. 2009 ; Menci et al.
014 ; Steinborn et al. 2018 ), though observ ational e vidence remains
ix ed (Ale xander & Hickox 2012 ; Glikman et al. 2015 ; Mechtley

t al. 2016 ; Villforth et al. 2017 ). Further, the evolutionary model of
GN obscuration (Sanders et al. 1988 ) predicts that obscured AGN
ccur more recently after the triggering event and thus may be more
trongly associated with merger features, though again observations
nd mixed results (Urrutia, Lacy & Becker 2008 ; Satyapal et al.
014 ; Glikman et al. 2015 ; Kocevski et al. 2015 ; Donley et al. 2018 ;
illforth et al. 2019 ). Redshift may also play a role, as some models
ave suggested that mergers are more important for AGN triggering
n the earlier Universe, with the dominant mechanism switching
o secular processes at lower redshift (Draper & Ballantyne 2012 ;

enci et al. 2014 ). Conversely, cosmological surface brightness
imming means that for a fixed surface brightness limit in a survey,
aint merger features are less likely to be picked up at increasing
edshift. Indeed, Pierce et al. ( 2023 ) found a positive correlation
etween imaging depth and observed merger excess, suggesting that
nconsistent sensitivity in the images used to identify mergers may
o a long w ay tow ards explaining the inconsistent results found o v er
he years. 
NRAS 528, 6915–6933 (2024) 

h

A further issue lies in the methods used to identify mergers. For
he past century (Hubble 1926 ), many studies of galaxy morphology
ave relied on visual classification. The human eye is well suited
o identifying morphological features, including merger signatures,
ut this method is intrinsically subjective. While the basic Hubble
ypes of spheroid versus disc are relatively well defined, mergers
re particularly tricky to define consistently. Comparing a few of the
isual classification systems used in past studies gives a sense of the
ariety in the literature. Cisternas et al. ( 2011 ) used three flags of
ncreasing distortion level (none versus minor versus strong), which
re chosen subjectively by the classifiers. Ellison et al. ( 2019 ) used
inary, non-e xclusiv e flags marking disturbances and presence of
 neighbour, though only the disturbance flag was considered as
interacting’ in their analysis. Ramos Almeida et al. ( 2011 ) and
urther works from that group used the most complicated system
ith separate flags for different possible signatures (e.g. tidal tails,

hells, etc). Interestingly, these three examples exhibit a trend of
ncreasing observed merger fraction with increasing classification
ystem complexity. Perhaps having a larger variety of features
o consider may naturally lead the human brain to identify more
ccurrences. 
There is also the simple issue of visual inspection being time

onsuming, with the analysis of even a small data set taking up
any hours of an expert’s precious research time. Crowd-sourcing

rojects such as Galaxy Zoo (Lintott et al. 2008 ) mitigate this issue
and also a v oid some of the variation caused by subjectivity) by
preading the visual inspection work across thousands of citizen
cientists and combining their votes into final classifications, but
ccuracy can suffer due to the lack of professional training of
he volunteers (Galaxy Zoo classifiers were particularly hesitant to
lassify any galaxy as a merger; see Darg et al. 2010 ). Further,
s future surv e ys collect e xponentially increasing volumes of data
e.g. LSST; Ivezi ́c et al. 2019 ), even having an army of volunteers
roviding classifications is becoming increasingly impractical. 
Automatic morphological classification algorithms, on the other

and, are able to handle large volumes of data with ease, but
raditionally have been seen as less accurate compared with human
lassifiers. 1 This is due to the fact that until recently, most automatic
lassifiers have been based on measuring properties of the galaxy’s
hape and light distribution, such as concentration, asymmetry,
lumpiness, Gini coefficient, and M 20 . The galaxies are then divided
n parameter space, either by taking cuts on each parameter (e.g.
braham et al. 1996 ; Conselice 2003 ; Lotz et al. 2008 ) or using

imple machine learning algorithms (e.g. Scarlata et al. 2007 ;
uertas-Company et al. 2008 ; Rose et al. 2023 ). The values of these
roperties have been shown to vary with signal-to-noise (Huertas-
ompany et al. 2014 ), making their classifications inconsistent across

urv e ys and failing at high redshifts (Abruzzo et al. 2018 ). 
Over the last few years, deep learning, specifically with con-

olutional neural networks (CNNs), has seen much success in
lassifying general galaxy morphology (e.g. Huertas-Company et al.
015 ; Dom ́ınguez S ́anchez et al. 2018 ; Cheng et al. 2020 ; Spindler,
each & Smith 2021 ; Huertas-Company & Lanusse 2023 ) as well

s identifying galaxy mergers (e.g. Pearson et al. 2019 ; Bottrell et al.
uman perception. 
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Figure 1. BPT diagnostics of our AGN sample (red; Seyfert region) and 
the non-AGN galaxies in our sample with secure measurements of all four 
rele v ant emission lines (grey; other regions). Black points indicate the non- 
AGN selected as controls for this work (approximately half of the control 
sample, as the other half come from the set of galaxies without secure 
emission line detections and are not shown here). Galaxies are classified 
as star-forming below the Kauffmann et al. ( 2003b ) cutoff (dashed line), as 
composite between this and the K e wley et al. ( 2001 ) cutoff (solid line), and 
as Seyfert or LINER above this and split by a straight line of angle 25 ◦
(dot–dashed line; see fig. 2 of Kauffmann et al. 2003b ). 
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019b ; Ćiprijanovi ́c et al. 2020 , 2021 ; Wang, Pearson & Rodriguez-
omez 2020 ; Bickley et al. 2021 ; Koppula et al. 2021 ). As an

utomatic classification method, deep learning is easily repeatable 
nd able to handle large data volumes far better than any number of
uman volunteers. CNNs have also been shown to outperform older 
utomatic models based on previously measured features (Cheng 
t al. 2020 ), as they work by including image convolutions within
he deep layers, where the weights trained form the convolutional 
ernels. Hence, during training they learn not only which features 
orrespond to different labels but also what the features themselves 
re and where they are located in the images. 

This work aims to resolve some of the ambiguity around the 
GN-merger relationship through applying deep learning methods 

o study the merger status of a large sample of AGN host galaxies.
e focus here on Type 2 AGN to a v oid point source contamination,
hich hinders morphological analysis of the host (see Marian et al. 
019 ; Villforth et al. 2019 ). We also focus specifically on identifying
ost-mergers, which are thought to be the phase where black hole 
ccretion rates peak (Hopkins et al. 2008 ; Blecha et al. 2018 ), and
hich specifically require morphological (or kinematic) analysis (as 
pposed to pre-mergers, which can be identified as close pairs). We 
ake the approach of supervised learning, where the neural network 
s trained to recognize mergers in a set of images of galaxies whose
rue merger status is known. This makes use of the IllustrisTNG
osmological simulation (Weinberger et al. 2017 ; Pillepich et al. 
018a ), whose public data release includes merger trees, from which 
e assemble a catalogue of post-mergers and non-mergers, and 
isualization tools, with which we create surv e y-realistic mock 
bservations of galaxies in our catalogue. We then apply this classifier 
o a sample of Seyfert 2 host galaxies imaged by the Sloan Digital
k y Surv e y (SDSS; Abazajian et al. 2009 ), comparing their merger
ractions to a mass- and redshift-matched control sample of inactive 
alaxies. 

This paper is organized as follows. Section 2.1 describes our SDSS 

GN hosts and inactive control galaxies, while Section 2.2 introduces 
he simulated data we use to train the neural networks. Section 3
etails the methods used to generate the training images and train 
he CNNs, and Section 4 shows the results of applying the CNNs
o classify the SDSS galaxies. Section 5 interprets the results of
he CNN classification, comparing to other studies and discussing 
aveats of our approach. Finally, Section 6 concludes. Consistent 
ith IllustrisTNG, this paper assumes the Planck 2015 cosmology 

Planck Collaboration XIII 2016 ). 

 DATA  

.1 SDSS AGN hosts 

his work considers merger fractions in Type 2 AGN only, so as
o a v oid point source contamination from unobscured AGN. We 
se the MPA–JHU catalogue (Kauffmann et al. 2003a ; Brinchmann 
t al. 2004 ; Salim et al. 2007 ) of SDSS DR7 (Abazajian et al. 2009 ),
hich contains emission line data and derived stellar masses and 

tar formation rates of ∼800 000 galaxies, including AGN hosts. 
e consider all sources with well-constrained ( σ < 0.4 dex) stellar
asses greater than 10 9 M � that are not classified as BROADLINE

Type 1) by the SDSS pipeline. To select our AGN sample, we use
PT emission line diagnostics (Baldwin, Phillips & Terlevich 1981 ; 
 e wley et al. 2001 ; Kauf fmann et al. 2003b ) on galaxies with a signal-

o-noise ratio greater than 3 for their measurements of the H α, H β,
O III ] λ5007, and [ N II ] λ6583 emission lines. The possible classes
re star-forming, composite, Seyfert, and LINER as shown by Fig. 
 . We add to the Seyfert class galaxies with secure measurements of
 α, [O III ], and [ N II ] whose 3 σ upper limit on H β places them in

he Se yfert re gion. Of the 14 979 galaxies classified as Seyferts in
his way, 8492 have a sufficiently large angular size to consider them
ell-resolved, i.e. R 0.5Petrosian > 1.5 ×FWHM of the field PSF in the
 band. These comprise our AGN sample. 

We select control galaxies from the BPT star-forming and low S/N
assumed majority quiescent) galaxies, excluding both composites 
nd LINERs from the study. We match the control sample to the
GN sample by binning all well-resolved non-Seyfert galaxies (both 

hose with non-Seyfert BPT classifications and those with low S/N 

mission lines) in mass and redshift (bin width 0.2 dex in M ∗ and 0.02
n z, as shown in Fig. 2 ). Then, for each bin in the AGN sample, we
andomly select the same number of galaxies from the corresponding 
in in the parent control sample. This ensures matching distributions, 
ut individual AGN hosts do not have a single matched control
alaxy. In total, the control sample selected this way is comprised of
2 per cent star-forming galaxies and 68 per cent low S/N (quiescent)
alaxies. 

For the purpose of comparing observed merger fractions of 
ubpopulations of the AGN and control samples divided by galaxy 
roperties, we consider star formation rates and bulge-to-total 
ractions of our galaxies. Brinchmann et al. ( 2004 ) derived star
ormation rates for the AGN in the MPA–JHU catalogue based 
n D N (4000), which a v oids contamination from the AGN in the
mission lines used to derive the SFR of inactive galaxies. Fig.
MNRAS 528, 6915–6933 (2024) 
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M

Figure 2. Distribution of our primary AGN sample (Seyfert 2 galaxies) in 
stellar mass (top) and [O III ] luminosity versus redshift. The bin widths of the 
M ∗ and z histograms illustrate the bins used for control matching. Note that, 
the control sample is matched in M ∗ and z and therefore the histograms for 
the control are identical and not shown here. 

Figure 3. Distributions of specific star formation rates (Brinchmann et al. 
2004 ) of our AGN host sample (red; left slanted hatching) and their mass- 
and redshift-matched control galaxies (black; right slanted hatching). 
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 shows the distributions of specific star formation rates (derived
FR/ M ∗) of our AGN hosts compared with the controls. We see

hat the control galaxies follow the typical bimodal distribution of
tar-forming and quiescent galaxies, while the AGN hosts follow
 unimodal distribution peaking in the green valley. This is in line
ith observations that have shown AGN occupying galaxies at all

tages of star formation but most often green valley and star-forming
alaxies (Cardamone et al. 2010 ; Schawinski et al. 2010 ; Aird et al.
012 ; Mullaney et al. 2015 ). 
NRAS 528, 6915–6933 (2024) 
We also examine trends with bulge-to-total fraction derived by
imard et al. ( 2011 ), which may lend insight into the classification
rocess of the CNN. 
For merger identification, we create a cutout image of each galaxy

n the SDSS gri bands. The cutouts are scaled to have a width of
 times the Petrosian half light radius in the r band, so that each galaxy
ccupies approximately the same area within its cutout (images are
ater rebinned to a uniform number of pixels for ML). Fig. 4 shows
xample cutouts of AGN hosts and control galaxies. It is visually
vident that galaxies span a variety of morphological types, and
here is no obvious point source at the centres of the host galaxies. 

.2 IllustrisTNG training data 

o build a deep learning-based classifier of galaxy morphology, we
se a supervised learning approach with a training set drawn from
he IllustrisTNG cosmological magnetohydrodynamical simulations,
pecifically the TNG100-1 simulation (Weinberger et al. 2017 ;
illepich et al. 2018a , hereafter, referred to simply as TNG100). We
se TNG because it simulates galaxy evolution in a cosmological
ontext, including a variety of galaxies in different environments and
hus giving a reasonably realistic approximation of the population
f galaxies imaged in our SDSS sample. TNG has been shown
o reproduce well most observed scaling relations of the galaxy
opulation o v er cosmic time (Marinacci et al. 2018 ; Naiman et al.
018 ; Nelson et al. 2018 ; Springel et al. 2018 ; Pillepich et al.
018b ), as well as broadly representing the diversity seen in galaxy
orphology (Huertas-Company et al. 2019 ). TNG100 has a box size

f ∼100 Mpc and stellar particle resolution of ∼10 6 M ∗, which places
t in the middle of the TNG suite for both properties. This allows us to
reate a reasonably large set of reasonably realistic training images. 

TNG data are saved in snapshots capturing the simulation state
t specific times, which are unevenly sampled but spaced by ap-
roximately 100–200 Myr. For each snapshot, haloes (representing
alaxy groups or clusters) and subhaloes (representing galaxies)
re determined by running a friends-of-friends algorithm and the
UBFIND algorithm (Springel, Di Matteo & Hernquist 2005 ), respec-
ively. Subhaloes are then traced across snapshots via the SUBLINK

lgorithm (Rodriguez-Gomez et al. 2015 ), which produces merger
rees, linked lists where each subhalo’s entry links to its progenitor(s)
n the preceding snapshot and descendant in the following snapshot.
 galaxy having multiple progenitors indicates that a merger must
ave taken place since the previous snapshot. Hence, we assemble
 catalogue of post-mergers by looking backwards along the merger
rees of galaxies matching our observational sample in mass and
edshift, described in more detail in Section 3.1 . 

This approach is limited by the coarse time sampling in the
imulation, as we cannot image galaxies many times along the merger
rocess (as done by Bottrell et al. 2019b ; Koppula et al. 2021 ) nor get
ore precise than a several hundred Myr upper bound on the time

ince coalescence of the identified post-mergers. Ho we ver, making
he reasonable assumption that the exact time of coalescence for each
erger occurs at a random point between the last snapshot in which

UBFIND identifies two subhaloes and the first snapshot in which it
nds only one, a sample of galaxies selected for having undergone
 merger-tree-selected merger within a fixed time window can be
 xpected to co v er the full range of times since coalescence. The
oarse time sampling of TNG100 is the cost of the large diversity
f galaxies and cosmological context present in the simulation,
hich cannot be provided by higher-time-resolution simulations of

ndividual galaxy pairs colliding. 
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Figure 4. Example gri cutouts of SDSS Seyfert 2s (left) and control galaxies (right), sorted into most confident mergers (top) and most confident non-mergers 
(bottom), as identified by our CNN ensemble described in Section 3.3 . Here, ‘most confident mergers’ are galaxies classified as mergers by at least 84 per cent 
of the networks in the ensemble, while ‘most confident non-mergers’ are classified as non-mergers by 100 per cent of the networks. Images are logarithmically 
scaled to better appreciate faint features, and the brightest 1 per cent of image pixels are saturated. Some of the predicted mergers have visually clear merger 
signatures or close companions, while others appear smooth and elliptical. Conv ersely, man y of the predicted non-mergers are disc-dominated and some have 
asymmetries and features that could be interpreted visually as merger signatures or simply spiral arms. 
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 M E T H O D S  

e train an ensemble of neural networks to classify the merger state
f galaxies from their cutout images, using supervised learning with 
 training set of simulated galaxy images derived from IllustrisTNG. 
ection 3.1 describes the selection of the training set of post-merger 
nd non-merging galaxies from the simulation merger trees, while 
ection 3.2 describes how we generated realistic mock observations 
f these galaxies. Finally, Section 3.3 describes the neural network 
rchitecture, image pre-processing, and training procedure. All 
achine learning procedures are performed using the KERAS package 

Chollet et al. 2015 ) of the TENSORFLOW API (Abadi et al. 2015 ). 

.1 Training sample selection 

or our supervised learning model, we need a training set of
llustrisTNG galaxies that have lingering merger features and thus 
ave undergone a sufficiently recent and major merger (our ‘post- 
erger’ sample) and a matched control set that likely have no merger

eatures and thus have not undergone any significant mergers in a 
ong time (our ‘non-merger’ sample). To assemble this set, we begin 
y quantifying the merger state of each galaxy with M ∗ > 10 9 M � in
he last 22 snapshots of the TNG100 simulation ( z � 0.3). For each
alaxy, we search its merger tree for the most recent merger abo v e
tellar mass ratio μ = 0.01 (following Rodriguez-Gomez et al. 2015 , 
e define μ as the ratio of the progenitor galaxy masses at the

ime prior to coalescence at which the smaller progenitor reaches its
aximum stellar mass, thereby a v oiding μ decreasing due to mass
ransfer). If this merger exists, we also check the 5 snapshots before
oalescence for any higher-mass-ratio mergers so that e.g. a galaxy 
aving undergone a μ = 0.01 merger 200 Myr in the past and a μ =
 merger 400 Myr in the past will be labelled a major rather than a
inor merger. 
Using this catalogue, we select our post-merger sample to consist 

f all galaxies in the aforementioned mass and redshift range with
 major merger ( μ ≥ 0.25) found within the last 500 Myr, which
onsists of 1954 galaxies. We match the non-merger sample out of
alaxies which have not undergone a merger with μ > 0.01 within
he last 2 Gyr (chosen with the aim of a v oiding training images
ith intermediate-mass-ratio mergers, which may exhibit ambiguous 

eatures). The matching is performed by binning the post-mergers in 
ass (bin width 0.2 dex) and snapshot (bin width 2, corresponding

o �z ∼ 0.27) and drawing an equal number of controls from each
in, similarly to the binning of the observed sample detailed in
ection 2.1 . 
Fig. 5 shows the original stellar mass distribution of the training

alaxies (hatched histogram). As this is the innate distribution of 
alaxies without observational selection effects, the fraction of low 

ass galaxies is much higher than in the SDSS sample, which creates
ssues with neural network prediction accuracy on galaxies with M ∗
 10 10.5 M �. To correct for this, we artificially increase the number

f high-mass galaxy observations using image transformations in the 
4 dihedral group (mirroring and rotations by 90 ◦). Galaxies with
0 < log ( M ∗/M �) < 11 have their number of observations doubled,
MNRAS 528, 6915–6933 (2024) 
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M

Figure 5. Mass distribution of the IllustrisTNG training galaxies. The 
hatched histogram shows the original distribution, while the open histogram 

shows the final sample we used after boosting the number of high-mass galaxy 
images with random image augmentations as described in Section 3.3.2 . 
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hile galaxies with 11 < log ( M ∗/M �) < 11.5 have theirs tripled and
alaxies with log ( M ∗/M �) > 11.5 have theirs increased by a factor
f 8 (the maximum amount). This increases the ef fecti ve number of
raining galaxies by a factor of ∼3, yielding the final boosted training
ample whose mass distribution is shown in the open histogram of
ig. 5 . 
Fig. 6 shows the distribution of μ and � t in the merger training

ample, where � t refers to the time difference between the imaged
alaxy and the last snapshot where multiple progenitors are present.
hile the μ distribution falls off smoothly as expected, the � t

istribution is highly clustered around certain time differences. This
s due to the discrete time snapshots in the simulation data: the three
eaks in the distribution indicate the time differences associated with
ne, two, and three snapshots since the merger (with spread due to the
neven time spacing of snapshots). We emphasize that � t represents
he upper limit on time since coalescence, as it could happen at
ny point between the snapshot with multiple progenitors and the
napshot with a single descendant, and the true distribution of time
ince coalescence is likely far more even (see Section 2.2 ). 

.2 Mock obser v ations 

.2.1 Idealized ima g e g eneration 

mages of the training sample are generated using the IllustrisTNG
Visualize Galaxies and Halos’ online tool (Nelson et al. 2019 ). 2 

his tool projects all stellar particles associated with the galaxy
nd its parent halo within the field of view (including any other
alaxies within the same halo), which we set to a width of 8 times
he stellar half-mass radius R 0 . 5 M ∗ . It then uses the FSPS stellar
opulation synthesis model (Conroy, Gunn & White 2009 ; Conroy &
unn 2010 ) and SDSS filter response functions (Gunn et al. 1998 )

o generate an idealized mock observation of the galaxy. These
isualizations do not include the effects of gas and dust in the ISM
which are not necessary to reco v er good merger identification; see
ottrell et al. 2019b ). Each galaxy is imaged from three orthogonal
ie wing angles, gi ving three independent observ ations per galaxy
nd hence tripling our training sample size to a total of ∼17 000
mages. The top panels of Fig. 7 show example idealized images of
NRAS 528, 6915–6933 (2024) 

 https:// www.tng-project.org/ data/ vis 

4

a
b
c

he TNG training mergers (left) and control non-mergers (right) in
he SDSS gri bands. 

.2.2 Observational realism 

n order to train a machine learning algorithm on mock observations
f simulated galaxies and have confidence in its predictions on real
bservations, the noise and resolution properties of the training set
ust match the observed data set as closely as possible. To achieve

his, we apply the observational realism suite REALSIM (Bottrell et al.
017a , b , 2019a , b ) 3 to the idealized images of our TNG training
ample. The aim of this algorithm is to transform idealized stellar-
ap-based images of galaxies into images indistinguishable from

bservations in scale, noise, and field properties. To accomplish this,
he algorithm first rebins the image to the SDSS pixel scale, then
onvolves the idealized image with the PSF of a randomly chosen
DSS field, then adds Poisson noise based on the SDSS exposure

ime of 53.9 s, and finally inserts the image into an empty region of
he same SDSS field to add the sky background. Fig. 7 shows the
xample images after realism is applied. 4 

As with the SDSS galaxies, an appreciable fraction of the training
alaxies have radii too small to be well resolved by the SDSS
elescope. This becomes an issue when realism is applied, since low
esolution on images of mergers may lose identifying features and
ould bias the neural network to erroneously classify low-resolution
mages as mergers. In the interest of maintaining as large a training set
s possible, rather than removing undersized galaxies, we place them
t a lower redshift chosen to bring the image width up to the CNN
nput scale. While the IllustrisTNG galaxy visualization tool will
nly create mock images in the rest frame or at each galaxy’s original
edshift, a redshift change of up to 0.3 does not significantly affect
alaxy colour or the position of the 4000 Å break relative to the SDSS
ri bands. While in principle this could lower CNN performance on
ompact, higher-redshift galaxies, we note that similar galaxies were
emo v ed from the SDSS sample (see Section 2.1 ), so our training
alaxies continue to be representative of the science sample. 

.3 Neural network training and predictions 

.3.1 Neural network ar chitectur e 

e use a relatively simple convolutional neural network (CNN)
rchitecture, similar in complexity to other CNNs currently used in
he field (e.g. Dom ́ınguez S ́anchez et al. 2018 ; Bottrell et al. 2019b ;
´ iprijanovi ́c et al. 2020 ), but independently designed. A schematic
f the CNN is shown in Table 1 . The architecture consists of four
locks containing a convolutional layer with decreasing kernel sizes
nd increasing numbers of kernels, followed by batch normalization
nd dropout layers. The third block includes a 2 × 2 maximum
ooling layer, decreasing the image dimensions by half. The idea
ehind the varying convolutional kernel sizes and max pooling is to
apture features at different scales within the image, while the batch
ormalization and dropout layers are used to reduce o v erfitting. After
hese blocks follows a fully connected layer before the output layer,
hich is where classification is performed on the features extracted
 To test the ef fecti veness of REALSIM in creating mock images indistinguish- 
ble from observations, two of the authors (MSAM and CV) carried out 
lind visual inspection on a subsample of random training images and SDSS 
utouts. Neither could tell a difference in a majority of cases. 

https://www.tng-project.org/data/vis
https://github.com/cbottrell/RealSim
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Figure 6. Mass ratio ( μ; left panel) and time since merger coalescence ( � t ; right panel) distributions of the merger sample in the IllustrisTNG training set. 
Shaded and open regions represent the distributions before and after boosting the number of high-mass galaxies as described in Section 3.1 . 

Figure 7. Example images from our IllustrisTNG training set sorted by 
true merger status (left panels: mergers; right panels: non-mergers) and 
CNN-predicted merger status (top panels: predicted mergers; bottom panels: 
predicted non-mergers). The left-hand images in each column show the 
idealized images described in Section 3.2.1 , while the right-hand images 
show the same images after observational realism is applied (described in 
Section 3.2.2 ). Images are logarithmically scaled to better appreciate faint 
features, and the realistic images have the brightest 1 per cent of their pixels 
saturated. 

Table 1. Schematic table showing the layers of the CNN used, as explained 
in Section 3.3.1 . 

Layer Output shape # Parameters 

Input layer (36, 36, 3) 0 
Conv2D-1 (6 × 6) (31, 31, 32) 3488 
BatchNorm-1 (31, 31, 32) 128 
Dropout-1 (0.1) (31, 31, 32) 0 

Conv2D-2 (5 × 5) (27, 27, 64) 51 264 
BatchNorm-2 (27, 27, 64) 256 
Dropout-2 (0.1) (27, 27, 64) 0 

Conv2D-3 (4 × 4) (24, 24, 128) 131 200 
BatchNorm-3 (24, 24, 128) 512 
MaxPool-3 (2 × 2) (12, 12, 128) 0 
Dropout-3 (0.1) (12, 12, 128) 0 

Conv2D-4 (3 × 3) (10, 10, 128) 147 584 
BatchNorm-4 (10, 10, 128) 512 
Dropout-4 (0.1) (10, 10, 128) 0 

Flatten (12800) 0 
Dense (64) 819 264 

Output layer (2) 130 

Total parameters − 1154 338 
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y the convolutional layers. The exact sizes of the convolutional 
ernels and fully connected layer shown in Table 1 were chosen via
 hyperparameter search with KERASTUNER (O’Malley et al. 2019 ). 
he final output of the CNN is normalized to a merger probability,
hich we then convert to a binary prediction of mer ger/non-mer ger
y setting a decision threshold probability, which is explained in 
ore detail in Section 4.1 . 

.3.2 Ima g e pre-processing 

he realistic TNG mock images and observed SDSS cutouts are pre-
rocessed identically before being passed to the CNN for training and
rediction. Images are first rebinned to a uniform 36 × 36 pixel scale
o match the CNN input size. We estimate the sk y lev el in each band
y taking the median of pixels around the edge of the image (with a
 px border thickness) and sky-subtract each band individually, then 
escale the entire image cube logarithmically between 0 and 1 with
 uniform background of 0.1 added. This process preserves intrinsic 
olour information in each galaxy. 
MNRAS 528, 6915–6933 (2024) 
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Figure 8. Receiver Operating Characteristic (ROC) curves of CNN perfor- 
mance on the testing set of the TNG galaxies, composed of true positive 
rate and false positive rate plotted at varying threshold probabilities between 
predicting a merger versus non-merger (colour scale). The dashed black line 
represents a completely random classifier, while a ROC curve reaching the 
top left corner would represent a perfect classifier. 
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The simulated images are randomly split 80/10/10 into train-
ng/validation/testing sets. The training set is the sample seen by
he neural network during training, while the validation set is used
o e v aluate performance at each epoch and minimize o v erfitting.
fter training is complete, the testing set is used to judge the
 v erall performance of the neural network at classifying galaxies
nto mergers and non-mergers, and all plots of performance metrics
hown in this paper use the testing set. While the different viewing
ngles mean that the same galaxy may appear in both the training and
esting sets, the mass boosting described in Section 3.1 is applied only
o the training and validation sets after splitting them. Thus, the same
mage in different orientations will not be repeated in multiple sets,
nd the performance metrics shown in Section 4.1 and Appendix A
ccurately reflect the performance on the set of merging and non-
erging galaxies. 

.3.3 Training procedure 

e generate merger fraction predictions using 100 CNNs in an
nsemble, reducing the uncertainty arising from different random
eight initializations leading to different predictions between CNNs

rained on the same data set. We train each CNN for up to 500 epochs
ith a learning rate of 10 −5 , using the Adam optimizer (Kingma & Ba
014 ) and categorical cross-entropy as the loss function (quantifying
he difference between predicted merger probabilities and labels of
 or 1). To minimize o v erfitting, training images undergo random
eflections, rotations up to 15 ◦, and shifts up to a few pixels at
ach epoch. These augmentations performed at training time are
istinct from those performed to artificially increase the number
f images of higher-mass galaxies: not only are the augmentation
arameters different, but the aim here is to a v oid CNNs learning a
ependence on galaxy orientation, and training-time augmentations
hange randomly at each epoch. Training is also cut off if the loss
unction of the validation set fails to impro v e after 50 epochs, which
ypically indicates o v erfitting be ginning to happen. The av eraged
raining histories are shown in Fig. A1 . 

 RESU LTS  

he trained ensemble of CNNs form a classifier with the ability
o identify merger candidates and hence predict merger fractions
ithin SDSS galaxy populations, estimating the uncertainty of its
redictions arising from variations between different neural network
nstances. Section 4.1 describes the o v erall performance of this
lassifier on the testing subset of our IllustrisTNG mock images,
here the merger state of each galaxy is known and thus prediction

ccuracy can be assessed. Section 4.2 presents the results of applying
his classifier to our sample of Type 2 AGN hosts and their matched
ontrols, comparing merger fractions of the o v erall samples as well as
xamining potential trends with different galaxy and AGN properties.
ection 4.3 discusses caveats of our method and steps taken to
alidate the CNN predictions. 

.1 Neural network performance 

ach CNN outputs a merger probability P mg for each image.
e may measure the o v erall ef fecti veness of each CNN by its

eceiver operating characteristic (ROC) curve, which is calculated
y computing true positive rate [fraction of true mergers correctly
dentified; TP/(TP + FN)] and false positive rate [fraction of non-

ergers falsely identified as mergers; FP/(FP + TN)] and varying
NRAS 528, 6915–6933 (2024) 
he threshold probability below which a galaxy is classified as a non-
erger and abo v e which it is classified as a merger. Fig. 8 shows

he ROC curves for each of our 100 CNNs on the testing set of the
abelled TNG mock images. A completely random classifier would
av e a ROC curv e following the straight dashed line in Fig. 8 , while a
erfect classifier would reach the top left corner, with a true positive
ate of 100 per cent and a false positive rate of 0 per cent. Hence, we
an use the area under the curve (AUC) as a metric of performance:
ur CNNs achieve a median AUC of 0 . 893 + 0 . 005 

−0 . 008 . 
To convert the output probabilities to a predicted merger fraction,

 fixed P mg threshold must be set. Fig. 8 shows that most of the
NNs achieve the shortest distance to 100 per cent true positives
nd 0 per cent false positives with a classification threshold close
o 0.5, so taking this into consideration (along with the observation
hat the vast majority of the CNN P mg values are well separated, i.e.
lose to either 0 or 1; see Fig. A3 ), we set a uniform classification
hreshold of 0.5 for all CNNs. Repeating the measurements presented
n Section 4.2 with uniform thresholds between 0.4 and 0.6 showed
o qualitative change to the scientific results, only a change in overall
ormalization. Hence, given a set of galaxies (e.g. the AGN sample,
r galaxies separated into bins as in Figs 10 and 11 ), the merger
raction is calculated as 

 mg = 

#( P mg > 0 . 5) 

# galaxies in sample 
. (1) 

his is calculated separately for each CNN. Merger fractions quoted
n text and shown in figures are medians unless otherwise stated.
rror bars are calculated by combining 1 σ binomial confidence

ntervals calculated using the method of Cameron ( 2011 ) with
lassification variations between different CNNs, represented by 16th
nd 84th percentiles of the 100 CNN predictions. Errors are generally
ominated by the binomial term. 
With the classification threshold fixed, our CNNs perform gener-

lly well, reaching a median accuracy of 80 . 8 + 1 . 3 
−0 . 8 per cent. This is

omparable to performances achieved in other recent works using
NNs to identify simulated mergers in realistic images (Bottrell
t al. 2019b ; Wang, Pearson & Rodriguez-Gomez 2020 ; Ćiprijanovi ́c
t al. 2021 ). Precision [purity, fraction of true mergers out of galaxies
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Figure 9. False positive rate (FPR) of our CNN ensemble as a function of mass ratio μ (left) and time since merger � t (right). The TNG testing set is split into 
equally filled bins to create these plots: horizontal error bars represent the bin widths. Grey dashed lines show linear best fits. 
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dentified as such; TP/(TP + FP)] and recall [completeness, fraction 
f correctly-classified true mergers; TP/(TP + FN)] fall into similar 
anges of 80 . 9 + 1 . 2 

−1 . 2 and 81 . 1 + 2 . 6 
−2 . 4 per cent, respecti vely. Gi ven that our

ample here has been balanced to have an equal number of post-
er gers and non-mer gers, while in nature mergers are rare events,

t is important to keep in mind that the imperfect accuracy and
urity indicate that merger samples derived using these classifiers 
ill contain a large number of false positives. 
For the CNNs to reliably predict merger fractions for real galaxies, 

e must be sure they are basing their predictions on morphology 
nd not becoming biased by galaxy properties that are unrelated or
oosely correlated to merger state. To verify this, we bin the TNG
esting set galaxies in stellar mass, redshift, specific star formation 
ate, and half mass radius and compare both prediction accuracy 
nd predicted versus intrinsic merger fraction for each property. 
e find no correlations between false positive rate and any of

hese observables, indicating no regions with systematically higher 
ontamination rates. We do, ho we v er, observ e that post-mergers with
igher stellar masses and larger physical radii (both relatively rare) 
nd lower specific star formation rates have a higher chance of being
 false ne gativ e (see Figs A4 and A5 ). 

To understand how merger state affects the CNN predictions, we 
onsider true and false positive rate (TPR and FPR) as a function of
ass ratio μ and time since merger � t . A Pearson correlation test

ndicates that TPR shows no significant trends with either μ or � t
 p = 0.17 and 0.19, respecti vely): e vidently, the CNNs are equally
ood at identifying mergers o v er the μ and � t ranges adopted.
o we ver, FPR sho ws a positive correlation ( r = 0.61; p = 0.0046)
ith the mass ratio of the most recent merger with μ > 0.01 and
 ne gativ e one ( r = −0.85; p = 0.0016) with � t (see Fig. 9 ). This
hows that if a galaxy has undergone a major merger at any point, the
NNs are more likely to classify it as a post-merger. Further, the more

ecently a galaxy has undergone a merger of any mass ratio, the more
ikely it will be classified as a post-merger, a trend persisting even
 v er time-scales of several Gyr. This suggests that either merger-
pecific features linger in TNG for up to several Gyr (potentially 
epending on mass ratio), or the CNNs are basing classifications on 
eatures that linger for longer than asymmetry and tidal tails, such as
ulge dominance. 

.2 Merger fractions of Type 2 Seyferts and inactive galaxies 

ith an unbiased classifier that identifies mergers with � 80 per cent
ccurac y, we be gin our analysis of the merger-AGN relationship in
he observed SDSS sample by comparing overall predicted merger 
raction of the AGN hosts with the controls. We in fact find a decrease
f median merger fraction in AGN hosts relative to controls, with
 mg , AGN = 2 . 19 + 0 . 21 

−0 . 17 per cent and f mg , control = 2 . 96 + 0 . 26 
−0 . 20 per cent. 

To quantify the significance of this result, we calculate the 
robability of an enhancement (enh = f mg, AGN / f mg, control ) greater than
 as follows. For each CNN in the ensemble, we randomly sample
eta distributions based on the merger fraction measured by that 
NN, one for the AGN hosts and one for the controls. Each pair
f merger fractions drawn is divided to generate a distribution of
nhancements, which we sum o v er the CNNs in the ensemble to
reate a combined pdf. We integrate the pdf to obtain p (enh > 1). All
nhancement significances quoted in this paper are calculated using 
0 000 draws for each CNN. 
Using this method, we calculate that p (enh > 1) = 0.0105,

ndicating that our observation of a relative lack of mergers among
GN hosts o v erall is significant to just shy of the 3 σ level. Hence,
ur first observation is that on a global scale, we see no evidence
or mergers being the dominant trigger of all activity in obscured
ow-luminosity AGN in the nearby Uni verse. Ho we ver, the picture
ecomes more nuanced when we separate our AGN hosts and 
ontrols by galaxy properties and compare observed merger fractions 
t fixed values of these properties. Fig. 10 shows predicted merger
ractions of the two populations binned by properties of the stellar
opulations, bulge-to-total ratio, redshift, and AGN luminosity. For 
he comparison, we divide both AGN hosts and control galaxies into
ins containing equal numbers of objects. The rest of this section is
evoted to discussing the trends found. 

.2.1 Merger fraction and stellar populations 

anels a and b of Fig. 10 show predicted merger fractions of the
GN hosts compared with controls as a function of (a) stellar mass
nd (b) specific star formation rate. Comparing the binned data with
 Pearson correlation test, the controls show no significant evolution 
f merger fraction with stellar mass, while the AGN hosts exhibit
 correlation coefficient of r = −0.84 with high significance ( p =
.6 × 10 −3 ). These combined trends result in a potential enhancement 
n the lowest-mass bin and relative lack of mergers among AGN hosts
n the highest-mass bins. 

Both populations show significant ne gativ e trends of f mg with
SFR, though the trend for the AGN hosts is both flatter and of
ower significance ( r = −0.81; p = 0.005) compared with that of the
ontrols ( r = −0.92; p = 1.6 × 10 −4 ). Comparing the two trends in
ig. 10 panel b, this results in a merger enhancement among AGN
MNRAS 528, 6915–6933 (2024) 
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Figur e 10. Mer ger fractions of SDSS AGN hosts (red squares) and control 
galaxies (black circles) binned in (a) stellar mass, (b) specific star formation 
rate, (c) bulge-to-total ratio (Simard et al. 2011 ), (d) redshift, and (e) [O III ] 
luminosity (without controls as their [O III ] luminosities are dominated by 
star formation rather than nuclear activity). Bins are chosen such that the 
total number of galaxies per sample is equal in each bin. The points represent 
the median value of each galaxy/AGN property and median merger fraction 
calculated for each bin. Horizontal error bars represent bin width, while 
vertical error bars represent 1 σ confidence intervals on the merger fractions 
(as calculated from binomial errors and CNN variance; see Section 4.1 ). 
While the controls are matched in log M ∗ and z and thus these bins have 
equal edges, they are not matched in the other properties shown, notably 
sSFR (see Fig. 3 ). Note that, the most extreme bins in both panels represent 
the tails of each property’s distribution and hence are potentially very noisy. 

Figur e 11. Mer ger enhancement 〈 f mg, AGN 〉 / 〈 f mg, control 〉 of the sample in 
equally (logarithmically) spaced bins of stellar mass and star formation rate. 
Bins are only shown if they contain at least 50 AGN hosts and 50 control 
galaxies. Bins marked with a cross have p (enh > 1) or 1 − p (enh > 1) > 

0.68 (i.e. the bins where merger enhancement deviates from 1 by at least 1 σ ). 
The dashed line indicates our adopted divide between blue cloud and red 
sequence, determined by the parent galaxy population. 
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osts among galaxies with log (sSFR/yr −1 ) � −10.5, although the
erger fraction among all galaxies in this region is very low. 
Given that stellar mass and star formation rate are known to

eparate galaxies into the distinct populations of the star-forming
lue cloud and quiescent red sequence, the trends with M ∗ and sSFR
uggest an underlying difference between AGN triggering in these
wo populations. Fig. 11 investigates this by showing median merger
nhancement, f mg, AGN / f mg, control , of our sample binned in equally
paced bins in the log M ∗–log SFR plane. The merger enhancement
istributions compared in each bin are generated as described at the
eginning of this section, and crosses mark bins where p (enh > 1)
r 1 − p (enh > 1) > 0.68, i.e. where the enhancement differs from
nity by at least 1 σ . Here, we see a clear difference in the merger
ractions measured among the two populations, with significant
erger excesses among AGN hosts across the blue cloud and a

ignificant lack thereof in parts of the red sequence. The crosso v er
oint between these behaviours roughly follows the location of the
reen valley. 
To succinctly compare the differences in merger fractions in the

lue cloud and red sequence, we divide the populations by estimating
he location of the green valley in the log M ∗–log SFR plane for
ur sample. The dashed black line in Fig. 11 shows this by-eye
ivision, defined as log SFR = 0.83 log M ∗ − 8.96. Abo v e the
ivide, in the blue cloud, we find that the median merger fraction
mong AGN is f mg , AGN = 1 . 07 + 0 . 19 

−0 . 14 per cent compared to that of
ontrols, f mg , control = 0 . 52 + 0 . 14 

−0 . 09 per cent, for a median enhancement of
 . 03 + 0 . 92 

−0 . 63 . We find that p (enh > 1) = 0.953: the positive enhancement
s significant at the 2 σ lev el. Conv ersely, in the red sequence, we see
 deficit of mergers among AGN hosts, with f mg , AGN = 3 . 15 + 0 . 37 

−0 . 27 

nd f mg , control = 5 . 01 + 0 . 45 
−0 . 35 per cent and a median enhancement of

 . 65 + 0 . 10 
−0 . 09 . Here, we find that p (enh > 1) = 0.0041, so this lack of

ergers is highly significant. These results reflect the substantial
ecrease of detected merger fraction with sSFR seen in both AGN
osts and controls, but they also suggest a different relationship
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etween AGN activity and galaxy merger status depending on the 
tar formation properties and by extrapolation the cold gas fractions 
f the merging galaxies. 

.2.2 Merger fraction and bulge fraction 

n addition to stellar properties, we investigate trends of merger 
raction with a simple measure of o v erall galaxy morphology, bulge-
o-total ratios from the catalogue of Simard et al. ( 2011 ). The result
s shown in panel c of Fig. 10 . The correlation between f mg and B/T is
he strongest of any property we examined, with Pearson correlation 
oefficients of 0.95 (AGN; p = 2.8 × 10 −5 ) and 0.98 (controls; p =
.8 × 10 −7 ). This shows that the more bulge-dominated a galaxy 
s, the more likely it is to be identified as a post-merger by our
NN classifier, regardless of whether it hosts an AGN. This in and
f itself is hardly surprising, as it is generally believed that mergers
eorganize stellar orbits into bulges, so one might expect that very few
ost-mergers are disc-dominated. Ho we ver, this also brings up the 
oncern that bulge dominance may itself be a classification criterion 
or the CNNs rather than simply correlating with presence of post-
erger features. This possibility is further explored in Section 4.3 . 

.2.3 Merger fraction and redshift 

ue to cosmological surface brightness dimming and the fact 
hat merger detection typically relies on identifying low-surface- 
rightness features, it may be expected for identified merger fractions 
o decline with redshift and a speculated merger enhancement among 
GN hosts (or any specific subpopulation) to therefore be detected 
t a lower level or missed entirely (Pierce et al. 2023 ). Conversely,
ur finding in Section 4.2.1 of a merger enhancement among the 
GN hosts only in star-forming galaxies would predict an increase 

n o v erall enhancement with redshift, giv en that star formation on the
hole increases with redshift until cosmic noon ( z ∼ 2; Madau &
ickinson 2014 ). Panel d of Fig. 10 shows merger fractions of AGN
osts and controls in redshift bins. We observ e ne gativ e correlations
etween f mg and z for both samples, though neither is particularly 
ignificant (AGN: p = 0.081; controls: p = 0.018), likely due to the
attening of predicted f mg abo v e z ∼ 0.1. In fact, 84 per cent of the
alaxies with a majority of votes for merger lie at z < 0.1. 

Given that the bulk of the decline in observed merger fraction 
ccurs between z ∼ 0 and z ∼ 0.1, corresponding to a surface 
rightness dimming of at most 0.2 mag, it seems unlikely that the
edshift dependence of observed merger fraction is entirely due 
o cosmological dimming. Ho we ver, the redshift-dependent mass- 
nd L [O III ]-completeness (see Fig. 2 ) may play a role here, as
erger fraction is seen to decline with stellar mass, particularly 

mong AGN hosts (see panel a of Fig. 10 and Section 4.2.1 ),
s well as the difference seen between AGN abo v e and below
 [O III ] ∼ 10 40 erg s −1 (see panel e and Section 4.2.4 ). Given the
arrow redshift range of this study, our results here cannot be 
xtrapolated to higher redshift. 

.2.4 Merger fraction and AGN luminosity 

t has been suggested that the role of galaxy mergers in AGN trig-
ering may differ depending on AGN luminosity and accretion rate: 
erhaps mergers are only needed to trigger the most luminous, rapidly 
ccreting AGN (Hopkins & Hernquist 2009 ; Hopkins, Kocevski & 

undy 2014 ). This study is not well poised to make statements on
elationships with luminosity as our AGN are all at the lower end of
he luminosity function, but we nevertheless examine any possible 
rends within our luminosity range in panel e of Fig. 10 . We observe a

arginally significant ne gativ e correlation between merger fraction 
nd L [O III ] ( r = −0.65; p = 0.043), though the main source of the
rend comes from the three lowest-luminosity bins, which are below 

he AGN luminosity cuts used by many studies. In fact, if anything,
he slight uptick around L [O III ] ∼ 10 41 erg s −1 could be suggestive
f a trend to higher luminosities. 

.3 CNN validation and comparison with visual inspection 

hile it is a strength of CNNs that they learn what features to extract
t training time, this quality can lead to difficulty telling which aspects
f an image lead to the CNN’s classification. Are our CNNs picking
p on specific tidal features indicative of recent mergers, or are there
ther properties shared by the post-mergers in the training set, such
s being more bulge-dominated, driving the classifications? 

To get a more intuitive sense of the CNNs’ selection criteria, as
ell as compare the CNN to human classifiers, two of the authors

MSAM and CV) performed visual inspection on the 70 SDSS 

alaxies representing the most confident CNN-selected mergers ( P mg 

 0.5 for ≥ 84 per cent of CNNs; 24 AGN hosts and 46 controls).
e matched these to confident non-mergers in M ∗, SFR, and AGN

lassification to create a balanced sample for inspection. While these 
mall subsamples may not be fully representative of the scope of
NN-classified mergers and non-mergers, they should give us a sense 
f whether or not the CNN-selected mergers are visually identifiable. 
he galaxies were inspected blind to their merger classification and 
GN status, although the human classifiers were aware of the 50/50
er ger/non-mer ger split. 
The human classifiers inspected each image using the Zooniverse 5 

nterface, with a 2 × 2 grid sho wing vie ws of the image with two
if ferent saturation le vels and both the original and CNN-rescaled
ixel sizes. Classifiers were first asked to identify each galaxy’s 
orphology as bulge-dominated, disc-dominated, or unable to tell, 

s well as if they saw any merger features, which had to be specified
rom a list (asymmetry, tidal tail, shell, multiple cores, or interacting
ompanion). Classifiers were additionally asked whether they saw 

ny non-interacting galaxies in the field. Finally, comments were 
sed to indicate uncertainty in their merger classifications (e.g. 
mild asymmetry’ or ‘possibly a spiral arm’). These were used to
eparate the visually classified mergers into ‘possible’ and ‘certain’ 
ubcategories. 

The classifiers agreed with each other in 74 per cent of cases, with
2 per cent agreed as nonmergers, 21 per cent as certain mergers, and
n additional 11 per cent as at least possible mergers. We define our
isual merger classification as galaxies labelled as a certain merger 
y least one classifier (including those where the other classification 
as nonmerger). Fig. 12 shows the agreement between the visual 

lassifiers, with the collective ‘MSAM or CV’ classification indicated 
y text colour. 
Our visual classifications agree with the CNN classifications 

n only 43 per cent of cases. As shown in Fig. 13 , MSAM
nd CV collectively classified the CNN non-merger set as being 
0 ± 5 . 9 per cent mergers, while they only identified visual merger
eatures in 35 . 7 + 6 . 0 

−5 . 2 per cent of the CNN mergers (errors given by
eta distribution 1 σ intervals). Overall, there appears to be very 
ittle similarity between the CNN-identified mergers and what human 
isual classifiers deem as likely mergers. 
MNRAS 528, 6915–6933 (2024) 
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M

Figure 12. Confusion matrix showing agreement between the human visual 
classifiers, including both possible and certain mergers. Red text indicates 
classifications considered as visual mergers (anything in a ‘certain’ row or 
column), while black text indicates non-mergers (all other regions) . 
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Fig. 4 giv es e xamples of the visually classified images and hence
ntuitively demonstrates where the CNN and humans diverge in
erger classification criteria. While several of the CNN-predicted
ergers show strong tidal features and high levels of disturbance,
any appear smooth and featureless. We would expect high non-
erger contamination among these due to the rarity of mergers in

he parent sample. Conv ersely, man y of the CNN-predicted non-
ergers show features, particularly spiral arms, that could lead to
erger flags based on our visual criteria, but may well be due to

ther processes than mergers. Coupled with the observed positive
orrelation between predicted merger fraction and B / T (see Fig.
0 c), as well as the tendency of the CNNs to predict more false
ositives among galaxies with higher mass ratios of and less time
ince their most recent merger (ev en o v er time-scales of Gyr), this
oints to the CNNs identifying mergers by o v erall galaxy shape as
ell as a few very specific features, but asymmetry on its own is not

nough to merit a high merger probability. This interpretation also
rovides an explanation for why the human classifiers found a lower
raction of visual mergers among the CNN mergers in the control
alaxies compared with the AGN hosts (see the right columns of
he central and right panels of Fig. 13 ), since the control sample
ontains proportionately more of these bulge-dominated galaxies. In
ummary, while visual classification shows poor agreement with the
NN classification, this can be explained by the differing features

dentified by humans and the CNN. 
To better understand how well human classifiers can identify post-
ergers from images, MSAM and CV also inspected a subset of the
NG training images. They were shown mock images of 46 post-
ergers and 46 matched non-mergers, sampled across the M ∗ and z

istributions, with the knowledge that the data set was evenly split.
hey viewed the idealized and realistic images simultaneously and
ere asked which image, if either, showed merger features. 
Compared with the true merger state from the simulation,
SAM/CV were unable to consistently identify actual post-mergers,

ach correctly identifying merger status of 53/66 per cent of the
dealized images and 49/58 per cent of the realistic images. Both
lassifications from CV are consistent with random guessing, while
SAM achieved slightly higher accuracy at the cost of labelling
any (29 per cent for idealized and 36 per cent for realistic) false

ositiv es. Both classifiers sa w a slight but not significant increase
NRAS 528, 6915–6933 (2024) 
n accuracy comparing realistic to idealized images, indicating that
ven in the idealized stellar maps with no noise or sky added, mergers
re not visually distinguishable. Ho we v er, we do observ e a slight
ncrease of true positive rate with decreasing time since the merger
no trend was observed with mass ratio). Evidently post-mergers
n TNG100 do not all exhibit the features used to visually classify
alaxies as merging, though this appears more likely to be the case
mmediately after coalescence. 

The inconsistency between visual and CNN classification raises
he question: do galaxy mergers in cosmological simulations ac-
ually look like real galaxy mergers? Several previous works have
ssessed the suitability of TNG for comparisons to SDSS (also using
EALSIM ), though they do not focus specifically on mergers. Huertas-
ompany et al. ( 2019 ) showed that TNG100 produces a population of
alaxies whose morphological properties broadly agree with SDSS
t z ∼ 0.05, spanning the full range of morphological types and
eproducing global relations such as the size–mass relation. Ho we ver,
anisi et al. ( 2021 ) found that a neural network could identify
ifferences between the populations of galaxies in TNG compared
ith SDSS, calculating a distance metric between the simulated and

eal galaxy populations. Notably, when split into star-forming and
uiescent samples, the simulated star-forming population displayed
 smaller distance to its SDSS counterpart than the quiescent
opulation did, indicating that TNG reproduces more realistic star-
orming galaxies than quiescent. Eisert et al. ( 2023 ) sought to connect
mage realism with specific galaxy properties, using deep learning
o compare TNG galaxies with those observed by HSC They found
hat o v erall, ∼ 67 per cent of TNG100 galaxies reside within the
omain of visual appearances spanned by observations, while the
ther 33 per cent are ‘out of domain,’ which can be interpreted
s realistic/unrealistic. They connected a high out-of-domain score
implying poor realism) with larger radii and asymmetry, higher
oncentration, and lower ellipticity (see their Fig. 12 ), some of which
re features associated with red sequence galaxies, though they did
ot find similar trends with galaxy colour, B / T , or M ∗. We note that
e observe a decline of CNN performance with increasing physical

adius but not angular size (see Fig. A5 cd), though this may be easily
xplained by the decrease in number of galaxies above a certain size.

To summarize, visual inspection on subsets of both our science
ample and our training sample has shown that while many of the
NN-selected mergers show no visually obvious signatures, neither
o many of the actual post-mergers found in TNG. Conversely, while
any of the CNN-selected non-mergers show asymmetry and other

eatures suggestive of a merger, so do TNG galaxies that have not
nder gone a mer ger in several Gyr. While recent studies in the field
uggest that a substantial fraction of our training sample may be
unrealistic’ in terms of their resemblance to real galaxies, we cannot
ay for sure whether the discrepancy between simulated mergers and
hat humans identify as mergers is the result of poor simulation

ealism or an indication that visual classification is not as accurate at
dentifying true post-mergers as previously thought. 

 DI SCUSSI ON  

verall, we find no enhancement in merger fractions between
eyfert 2 hosts and mass- and redshift-matched control galaxies
 f mg , AGN = 2 . 19 + 0 . 21 

−0 . 17 per cent versus f mg , control = 2 . 96 + 0 . 26 
−0 . 20 per cent),

ndicating that mergers are not the dominant cause of most supermas-
ive black hole accretion in obscured, low-luminosity AGN in the
earby Universe, and secular processes must play an important role.
o we ver, when splitting our sample into star-forming and quiescent
opulations, we find a significant merger excess among AGN hosts in
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Figure 13. Confusion matrices showing (dis)agreement between the combined visual classifications (‘MSAM or CV’) and the CNN classifications, o v er all 
galaxies inspected (left), AGN hosts only (centre), and control galaxies only (right). 
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he blue cloud compared with controls, while there are significantly 
ewer mergers among AGN hosts than controls in the red sequence. 
his is seen when comparing merger fractions of AGN hosts with 
ontrols in bins of stellar mass and specific star formation rate (Fig.
0 panels a and b), as excesses in merger fraction of AGN hosts o v er
ontrols are seen at low M ∗ and high sSFR, and the divide becomes
lear when visualizing merger enhancements o v er the M ∗–SFR plane
Fig. 11 ). 

We note that due to the fact that major mergers are rare in
he general population, that even with high detection accuracy as 
chieved here, the final sample of mergers is expected to have low
urity. This is due to the fact that the false positives on the much
ar ger non-mer ger sample will be higher in number than the true
ositives on the much smaller number of major mergers. This also 
esults in the excess of mergers being underestimated. For example, 
ssuming the accuracy achieved here and a fraction of mergers in the
ull sample of 5 per cent (as observed here), the true excess would be
nderestimated by about a factor of ≈2. This means that the actual
xcess seen in the star-forming galaxies is likely higher, while the 
pper limit on the excess in the full sample is still consistent with an
nhancement of mergers in the AGN sample of a factor of ∼ 2. 

This result suggests that the ability of a merger to trigger an AGN
epends on the cold gas content of the galaxy, as higher sSFR in
he post-merger indicates the presence of cold gas. If there is no
as for a merger to drive to the centre, then the merger has no
ositi ve ef fect on the likelihood of an AGN to form, as we actually
bserv e a relativ e (low significance) lack of mergers among AGN
osts compared with controls in non-star-forming galaxies. This is 
roadly consistent with the conclusions of Sabater, Best & Heckman 
 2015 ), though our data and results differ somewhat. Studying a
ample drawn from the same MPA–JHU catalogue, Sabater, Best & 

eckman ( 2015 ) found a correlation between AGN fraction and 
ost galaxy interaction rate, but this correlation disappeared when 
ontrolled for central star formation. They concluded that the key 
equirement for AGN formation is availability of cold gas at the 
entre of the galaxy. This work finds an excess among AGN hosts
nly in galaxies with higher specific star formation over the entire 
alaxy , suggesting that mergers are a vehicle for moving this gas
nwards to the centre, when it is present in the outer regions. 

Unlike Ellison et al. ( 2019 ), who studied a similar sample of
ptically selected low-luminosity AGN hosts from SDSS, we find 
o significant correlation between [O III ] luminosity and merger 
raction. Our observation of a general decrease of f mg with stellar
ass also disagrees with their finding of an increase of f mg abo v e
 ∗ ∼ 10 10.6 M �. Ho we ver, the complete lack of agreement between
ur CNNs and expert human classifiers on our own galaxies (see
ection 4.3 ) indicates that the CNN classifications are probing a
ifferent population of galaxies from visual classifications. Ellison 
t al. ( 2019 ) based their merger classifications on visual inspection
nd included systems identified as both pre- and post-coalescence 
n their merger correlation calculations, compared with our CNN 

lassifier only looking for post-mergers, so it is likely that our two
tudies probe very different populations of galaxies both identified 
s ‘mergers.’ 

Ellison et al. ( 2019 ) additionally report much higher merger
ractions in both their AGN hosts and control galaxies than what we
nd here: ∼18 per cent of their total sample are identified as post-
ergers, compared to our ∼4 per cent. As they base their merger

dentification on imaging from CFIS, which they demonstrate to be 
eeper and of higher quality than SDSS imaging, it is likely that
ur images are missing low-surface-brightness features identifiable 
n CFIS images of the same galaxies. Further, as our CNN classifier
as been demonstrated to identify galaxies as post-mergers without 
he presence of human-identifiable merger signatures, the converse 
ay be true as well, as our visual inspection experiments identified a

umber of galaxies with asymmetries that none the less had confident
onmerger classifications by the CNNs. 
As star formation has generally declined from z ∼ 2 to z 

0 (Madau & Dickinson 2014 ), our observation of a merger
nhancement only among AGN hosts in the star-forming blue cloud 
uggests that the merger-AGN connection should be stronger at 
igher redshift, consistent with the models of Draper & Ballantyne 
 2012 ) and Hopkins, Kocevski & Bundy ( 2014 ). Our redshift window
f z ∼ 0–0.3 is too narrow to see sSFR increase appreciably with z in
ur sample, and we also see no increase of merger enhancement: in
act, we see the opposite, likely affected by both surface brightness
imming and the redshift-dependent mass and luminosity complete- 
ess of SDSS. While most higher-redshift studies of the merger-AGN 

elationship have focused on high-luminosity quasars, Cisternas et al. 
 2011 ) looked at host galaxy morphologies of AGN with L X (2–
0 keV) � 10 45 erg s −1 at z ∼ 0.3–1 in the COSMOS surv e y, which
epresent a similar luminosity range to ours. They found no o v erall
orrelation between merger features and AGN activity. They further 
ound no significant dependence of merger fraction on stellar mass 
ithin the AGN population, though they did not comment on star

ormation properties or gas fractions in their galaxies. For both their
GN hosts and their controls, they found 34–35 per cent to be bulge-
ominated and 65–66 per cent to be disc-dominated, compared to 
ur 74 per cent of AGN hosts and 69 per cent of controls being disc-
ominated ( B / T < 0.5). Their observation of no o v erall enhancement
MNRAS 528, 6915–6933 (2024) 
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s thus consistent with ours, though we cannot compare specifically
etween the blue cloud and red sequence populations. It is worth
oting that Cisternas et al. ( 2011 ) also found substantially higher
erger fractions than this work did, with 15 per cent of their AGN

osts and 13 per cent of their controls being classified with strong
istortions. As COSMOS is a much deeper surv e y than SDSS, it is
ifficult to say with certainty whether this difference is related to
he increased redshift and implied increased gas fractions and SFRs
r simply due to the increased sensitivity (though it may be noted
hat their observed merger fraction is consistent with the post-merger
raction found by Ellison et al. 2019 at z ∼ 0). 

Our results are also broadly compatible with theoretical predic-
ions. In both the EAGLE and Magneticum Pathfinder simulations,
ergers are found not to dominate black hole fuelling, but they

re most rele v ant at the highest luminosities ( L bol � 10 46 erg s −1 ),
ar outside the region examined in this work (Steinborn et al.
018 ; McAlpine et al. 2020 ). Both observe a decreasing merger
nhancement with stellar mass, with fewer mergers seen among AGN
osts than control galaxies at M ∗ � 10 11 M �. This is similar to our
esults in panel a of Fig. 10 , though we see the transition at the lower
ass of M ∗ ∼ 10 10.5 M �. 
In more general terms, hydrodynamical simulations have shown

hat galaxies with AGN are often characterized by a larger gas
ensity within the resolved accretion region around the central
MBH (e.g. Steinborn et al. 2018 , fig. 9). Whilst in all galaxies

hese central gas densities decrease with cosmic time, particularly
ollowing the o v erall g alactic cosmic starvation, g alaxies with evident
GN activity and larger SMBH masses have a tendency for higher
entral densities, a trend largely independent of their merger histories
ut possibly more related to the conditions of the larger scale gas
istribution. The same simulations also show that mergers tend to
rigger more AGN activity, but their frequency among the AGN
opulation remains limited to < 20 per cent , pointing to a contained
ole of mergers in boosting AGN. This also matches our results of
elati vely lo w-merger fractions. The simulations also clearly predict
hat the AGN are much more common in star forming galaxies,
ointing to a close and statistically sound correlation between AGN
ctivity and SFR, although the models also predict AGN fractions
ndependent of the AGN luminosity, matching our results of a higher
erger enhancement in star-forming galaxies (see Fig. 11 ). 
These theoretical predictions are in broad agreement with our

bservations that suggest a relatively small difference in the merger
ractions of active and inactive galaxies and a tendency for galaxies
ith larger sSFR to have more AGN activity. More recent studies

Smethurst et al. 2023 ) conducted on the AGN–Horizon simulation
ave shown that the BH mass–galaxy mass scaling relation is
reserved in all types of galaxies irrespective of their bulge-to-
otal ratio and level of merger activity, even in galaxies with
lmost quiescent assembly histories, further supporting the idea of
 loose link between mergers and AGN activity. Simulations with
agrangian hyper-refinement (Angl ́es-Alc ́azar et al. 2021 ), ho we ver,
ave also shown that although sub-pc inflow rates do correlate with
uclear star formation, they might decouple with the larger scale
FR in the host galaxy. Therefore, our results are consistent with a
icture in which the connection between mergers and AGN activity
epends on the galaxy’s gas fraction (see Fig. 11 ). 

 C O N C L U S I O N S  

he relative importance of galaxy interactions to the fuelling of
upermassive black holes has long been a subject of debate. While
ajor mergers have been shown to trigger the necessary gas inflows,
NRAS 528, 6915–6933 (2024) 
bserv ational e vidence remains inconclusi ve due to the dif ficulty
f consistently identifying merger features, particularly in galaxies
ontaining AGN. 

In this paper, we have approached this problem by using deep
earning techniques to detect galaxy mergers in a sample of ∼8500
ype 2 Seyferts at z < 0.3 compared with mass- and redshift-matched

nactive control galaxies. We have accomplished this by using super-
ised learning with an ensemble of convolutional neural networks
rained to identify post-mergers in the IllustrisTNG simulation, based
n images processed to mimic SDSS gri observations. Comparing
dentified merger fractions in our two samples, we find the following:

(i) There is no significant merger enhancement among low-
edshift Seyfert 2 galaxies compared with inactive galaxies at the
ame stellar mass and redshift, with our CNN ensemble finding
 mg , AGN = 2 . 19 + 0 . 21 

−0 . 17 and f mg , control = 2 . 96 + 0 . 26 
−0 . 20 per cent. This indi-

ates that galaxy mergers are not the dominant trigger of low
uminosity obscured AGN in the nearby Universe. 

(ii) The fraction of mergers among AGN hosts decreases with
tellar mass, while it remains constant for controls. AGN hosts with
 ∗ � 10 10.5 M � are more likely to have undergone a recent merger

han control galaxies at the same mass, while those with M ∗ �
0 10.5 M � are less likely. 
(iii) Merger fraction for both AGN hosts and controls decreases

ith specific star formation rate and increases with bulge-to-total
raction. The decrease with sSFR is less pronounced for AGN hosts
han for controls, and a merger excess is observed at sSFRs above

10 −10.5 yr −1 . 
(iv) When separated in the M ∗–SFR plane (Fig. 11 ), there is a

ignificant difference in merger activity of AGN hosts relative to
ontrols depending on the stellar populations of the galaxies. We
bserv e, relativ e to controls, both 

(a) a significant merger enhancement of 2 . 03 + 0 . 92 
−0 . 63 among

AGN hosts in the blue cloud ( f mg , AGN = 1 . 07 + 0 . 19 
−0 . 14 and

f mg , control = 0 . 52 + 0 . 14 
−0 . 09 per cent; p (enh > 1) = 0.953) and 

(b) a significant lack of mergers ( enh = 0 . 65 + 0 . 10 
−0 . 09 ) among

AGN hosts in the red sequence ( f mg , AGN = 3 . 15 + 0 . 37 
−0 . 27 and

f mg , control = 5 . 01 + 0 . 45 
−0 . 35 per cent; p (enh > 1) = 0.0041), 

uggesting that major mergers have very different impacts on black
ole accretion depending on the specific star formation rate, and by
mplication cold gas fraction, of the host galaxies involved. Mergers
ppear to have a positive impact on AGN formation in star-forming
 as-rich g alaxies, helping to drive g as from the disc to the centre.
onv ersely, mergers hav e no significant effect on AGN in galaxies

hat are o v erall gas-poor. 
(v) Convolutional neural networks trained on simulated galaxy
ergers agree very little with human classifiers when examining the

ame set of observations. Human classifiers are found to perform very
oorly at identifying simulated post-merger galaxies, suggesting that
hese galaxies actually look very different from the human notion of
 galaxy merger and that deep-learning approaches will be more
eliable identifiers of post-mergers going forward. 
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PPENDI X  A :  C N N  P E R F O R M A N C E  O N  T N G  

A L A X I E S  

his section provides additional details on the performance of the
NNs on TNG training data, illustrating the stability of merger pre-
ictions with regard to changes in classification threshold probability
s well as the possibility of merger prediction bias with different
alaxy properties. 

Fig. A1 shows the aggregated training histories of the CNN
nsemble. While the loss function continuously impro v es for the
raining galaxies, it le vels of f quickly for the validation galaxies.
raining is cut off after 50 epochs of no impro v ement to the validation

oss, thereby limiting the amount of o v erfitting. 
Figs A2 and A3 illustrate the effect of changing the threshold

etween merger and nonmerger classification. Precision and recall
also called purity and completeness as in Section 4.1 ) measure the
raction of correctly identified galaxies out of the set of identified
nd actual positi ves, respecti vely [i.e. precision = TP/(TP + FP) and
ecall = TP/(TP + FN)]. These vary with classification threshold
n a complementary way, as shown in the top panel of Fig. A2 . Our
dopted threshold of 0.5 is seen to balance both metrics. Overall CNN
ccuracy, seen in the bottom panel, is largely insensitive to prediction
hreshold within the central third of its range. This is due to the strong
imodality in P mg predictions for most of our CNNs, an example of
hich is shown in Fig. A3 . For our balanced testing set, small changes

n prediction threshold see more false positives balanced out by more
rue positives, or vice versa. For the observational data set in which
ergers are rare e vents, the tradeof f becomes more extreme, where

hanging the threshold to include one more true merger would be
xpected to add 10–20 false positi ves. Ho we ver, we note that the
rends seen in Fig. 10 persist o v er different choices of classification
hreshold, with the o v erall normalization being the only change. 

To check for potential biases in the CNN classifier, Figs A4 and
5 illustrate how CNN performance changes with galaxy properties.
ig. A4 compares predicted with true merger fractions in the training
alaxies binned in stellar mass, specific star formation rate, half mass
adius (physical and angular), and redshift, while Fig. A5 shows
rue- and false-positive rates over the same properties in addition
o merger mass ratio and time since merger. Table A1 lists the
earson correlation coefficients and their associated p −values for
PR, TPR, and, where applicable, f mg excess ( � f mg ; see Fig. A4 ).
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Figure A2. Precision and recall (top panel) and o v erall accurac y (bottom 

panel) as a function of threshold probability for our ensemble of 100 CNNs 
applied to the testing set of our IllustrisTNG training data. Each line represents 
a single CNN. 

Figur e A3. Predicted mer ger probabilities for the TNG testing set for one 
of our CNNs. The relative lack of highly confident post-mergers versus with 
highly confident non-mergers is typical, potentially due to the wider variation 
in appearance of post-mergers compared with non-mergers. 
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Figure A4. Predicted merger fraction of TNG training galaxies (blue 
squares) compared to actual merger fraction (black line) binned by (a) stellar 
mass, (b) specific star formation rate, (c) physical stellar half-mass radius, (d) 
angular stellar half-mass radius, and (e) redshift. Pink circles show residuals. 
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he correlations found among TPR suggest that the CNNs may be 
issing more true mergers at: 

(i) higher galaxy masses, which is unsurprising given the relative 
arity of high-mass galaxies in the training set (see Fig. 5 ). As the
GN and control samples are matched in stellar mass, this should not
reatly affect the merger enhancements and depressions measured. 
(ii) lower specific star formation rates. This suggests that the 

ecline of f mg with sSFR may be steeper than shown in Fig. 10 b. This
hould not greatly affect our main result of a merger enhancement 
MNRAS 528, 6915–6933 (2024) 



6932 M. S. Avirett-Mackenzie et al. 

M

Figure A5. True positive rate (green squares) and false positive rate (orange circles) on the TNG training galaxies binned in (a) stellar mass, (b) specific star 
formation rate, (c) intrinsic half-mass radius, (d) angular half-mass radius, (e) merger stellar mass ratio, and (f) time since merger. 
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Table A1. Pearson r correlation coefficients and their associated p –values for true positive rate 
(TPR), false positive rate (FPR), and f mg excess ( � f mg ; see Fig. A4 ). Values with p < 0.01 are bolded. 

Property TPR FPR � f mg 

r p r p r p 

log ( M ∗/M �) − 0.73 2.0 × 10 −3 −0.26 0.36 − 0.91 2.3 × 10 −4 

log (sSFR/yr −1 ) 0.86 3.8 × 10 −5 0.34 0.22 0.66 0.038 
log ( R 0 . 5 M ∗/ kpc ) − 0.75 1.3 × 10 −3 0.53 0.042 − 0.82 3.8 × 10 −3 

log ( R 0 . 5 M ∗/ 
′′ ) 0.07 0.81 0.64 0.01 0.20 0.59 

z −0.44 0.21 −0.43 0.22 − 0.77 8.8 × 10 −3 

log μ 0.47 0.17 0.65 9.1 × 10 −3 – –
log ( � t /Gyr) −0.45 0.19 − 0.86 1.6 × 10 −3 – –
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affect our results. 
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nly in the blue cloud: if anything, additional mergers at lower sSFR
ould increase the magnitude of the differences seen. 

(iii) larger physical radii. This correlation is hardly surprising 
iven that large-radius galaxies are rare, similar to high-mass galax- 
es, but it has a less obvious interpretation since we did not study f mg 

volution with physical size in the SDSS sample. As galaxy radius
oes correlate with stellar mass and o v erall SFR, we may expect
erger completeness to decline moving towards larger M ∗ and SFR 

n Fig. 11 . Ov erall, this trend seems unlikely to affect our o v erall
esults. 

In terms of possible contamination, the only galaxy properties 
ith which the merger predictions showed significant correlations 
ith FPR were merger mass ratio and time since merger, neither of
hich can be measured in our SDSS sample. As discussed in depth in
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
ection 4.3 , these trends (coupled with the observed increase of f mg 

ith B / T , Fig. 10 c may indicate that the CNNs base their predictions
ore on o v erall morphology than on specific small-scale features. 
The residuals of predicted and true f mg for the TNG testing set

ive a direct indication of where the CNNs may o v er or underpredict
erger fraction. Of the observable galaxy properties, the only 

roperty which significantly correlated with � f mg and had σ� f � 

f true , i.e. changes in � f mg at least as large as the scatter in f mg, true , was
tellar mass. Again, since the AGN hosts and controls are matched
n mass, a slight underprediction of mergers at high stellar mass
nd slight o v erprediction at low-stellar mass should not substantially
MNRAS 528, 6915–6933 (2024) 
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