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A B S T R A C T 

Conventional galaxy mass estimation methods suffer from model assumptions and degeneracies. Machine learning (ML), which 

reduces the reliance on such assumptions, can be used to determine how well present-day observations can yield predictions 
for the distributions of stellar and dark matter. In this work, we use a general sample of galaxies from the TNG100 simulation 

to investigate the ability of multibranch convolutional neural network (CNN) based ML methods to predict the central (i.e. 
within 1 −2 ef fecti ve radii) stellar and total masses, and the stellar mass-to-light ratio ( M ∗/ L) . These models take galaxy images 
and spatially resolved mean velocity and velocity dispersion maps as inputs. Such CNN-based models can, in general, break 

the de generac y between baryonic and dark matter in the sense that the model can make reliable predictions on the individual 
contributions of each component. For example, with r -band images and two galaxy kinematic maps as inputs, our model predicting 

M ∗/ L has a prediction uncertainty of 0.04 de x. Moreo v er , to in vestigate which (global) features significantly contribute to the 
correct predictions of the properties abo v e, we utilize a gradient-boosting machine. We find that galaxy luminosity dominates 
the prediction of all masses in the central regions, with stellar velocity dispersion coming next. We also investigate the main 

contributing features when predicting stellar and dark matter mass fractions ( f ∗, f DM 

) and the dark matter mass M DM 

, and discuss 
the underlying astrophysics. 
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 I N T RO D U C T I O N  

chieving a full understanding of galaxy evolution requires accurate
easurements of the ‘unseen’ matter. This is why, among the
any areas in astrophysical measurements and modelling, galaxy

ynamics and gravitational lensing play unique roles, as they pro-
ide meaningful constraints on dark matter. On the other side of
hese measurements lies the distribution of the stellar component.
roperties, such as stellar mass-to-light ratio ( M ∗/ L ) and initial
ass function (IMF), are essential properties to solving the galaxy

volution puzzle. Therefore, a fundamental task in this regard comes
own to accurate determinations of the different contributions of
ark matter and baryons – a central goal of galaxy dynamics and
ravitational lensing studies. 
In this regard, recent integral field spectroscopic observations

av e pro vided good data sets to study the dynamical properties of
alaxies for a large sample of galaxies across a wide range of Hubble
ypes, both in the nearby Univ erse, for e xample, those from the
TLAS 

3D (Cappellari et al. 2011 ), MaNGA (Bundy et al. 2015 ),
nd SAMI (Fogarty et al. 2014 ) surveys, and at high redshifts, e.g.
he KMOS Galaxy Evolution Surv e y (KGES, Turner et al. 2017 ).
istorically, people hav e dev eloped various dynamical modelling
ethods (e.g. Jeans 1922 ; Schwarzschild 1979 ; Syer & Tremaine
 E-mail: zjn20@mails.tsinghua.edu.cn (JC); hongmingt@tsinghua.edu.cn 
HT) 
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l  
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996 ), which typically combine a single-band image of a galaxy
ith stellar Integral Field Unit (IFU) kinematic maps to constrain
atter distributions across the galaxy . Specifically , these methods

outinely split the total matter distribution into dark matter and
aryonic matter components with each described by a pre-specified
ensity profile. Modelling is then concerned with disentangling
he individual contributions from both components, with specific
bjectives often set on estimating the central dark matter fraction or
he IMF of the galaxy. The latter objective is often accomplished
n combination with stellar population synthesis (SPS) utilizing
ultiband photometry or spectroscopic data. Such models have

een widely applied to existing IFU galaxy surveys, for example,
hu et al. ( 2018a ) adopted the orbit-based Schwarzschild modelling

echniques (Schwarzschild 1979 ) to the stellar kinematic data of 300
alaxies in the CALIFA surv e y (S ́anchez et al. 2012 ). Long & Mao
 2012 ) applied the made-to-measure (M2M, Long & Mao 2010 )
ynamical modelling technique to the Spectrographic Areal Unit
or Research on Optical Nebulae (Cappellari et al. 2006 ) galaxies.
ecently, Zhu et al. ( 2023 ) applied the Jeans anisotropic modelling

JAM, Cappellari 2008 , 2020 ) to the complete MaNGA sample (o v er
0K nearby galaxies with different morphologies) and obtained their
quality-assessed’ dynamical properties. 

One must be aware that even for the most sophisticated modelling
echniques, there exist assumptions and approximations, which may
ead to biased estimates on different levels. In terms of galaxy
ynamical modelling, as full six-dimensional phase-space data can
© 2024 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0009-0008-6513-0427
http://orcid.org/0000-0002-7300-9239
http://orcid.org/0000-0002-6726-9499
http://orcid.org/0000-0002-8559-0067
mailto:zjn20@mails.tsinghua.edu.cn
mailto:hongmingt@tsinghua.edu.cn
https://creativecommons.org/licenses/by/4.0/


Galaxy mass estimation using ML 6355 

n
p
A
p  

S
t
Z  

m
a
o  

m
i
F  

t
s
t
N
t
J
s
a
b

a  

b  

r  

c  

e
T  

e
m  

a
p  

D  

e  

f  

t
t
a
s
t  

p
D  

B  

t  

h
f

i  

e  

A
M  

p  

e  

c
f
d  

e
e  

b
a  

t  

t
p  

g
b
o  

r  

d  

a  

s  

m
t  

d
s  

r  

a
(

t
e
m
a
t
a
p  

2  

H  

(
g  

&  

p
e  

s  

T  

2  

2  

c
o  

(  

u  

m
J  

s
(  

P  

n  

a  

p
W  

T  

s  

r
w  

p  

E  

e
w  

(  

b
p

1 www.tng-project.org 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/4/6354/7603397 by guest on 12 M
arch 2024
ot be obtained with current observational capabilities, dynamical 
roperties are only inferred from projected light and kinematics. 
s a result, faithful estimation of dynamical, spatial, and orbital 
roperties is not achie v able o v er a wide range of cases. F or e xample,
chwarzschild-based dynamical studies show that edge-on projec- 

ions are preferred as more kinematic information is available (e.g. 
hu et al. 2018b , 2020 ), and inclined galaxies are more difficult to
odel accurately. In all cases, one must first make assumptions about 
 galaxy’s matter geometry (e.g. spherical, elliptical, axisymmetric, 
r triaxial, etc.). In the case of Jeans-based methods, one must also
ake assumptions on the shape of velocity dispersion ellipsoid. The 

nferred results may then differ under different model assumptions. 
 or e xample, as shown in fig. 10 of Xu et al. ( 2017 ), radial isotropy

ends to underestimate the logarithmic slope of a galaxy’s total den- 
ity distribution in the inner region, while tangential isotropy tends 
o give overestimated results, when testing with simulated galaxies. 
ote that there are limitations introduced by Jeans modelling and by 

he weighting schemes used in the Schwarzschild and M2M methods. 
eans modelling may produce non-physical models (Cappellari 2008 , 
ection 3.1.1) while the weighting schemes determine weights that 
re numerically satisfactory in an optimization context but may not 
e so astrophysically. 
In addition, one must also take into account that information about 

 galaxy’s light distribution does NOT directly equate to that of the
aryonic mass distribution, unless it is known exactly how one is
elated to the other. An av erage conv erting factor, the baryonic M ∗/ L ,
ould be obtained from the stellar M ∗/ L with a correction for gas, for
xample, via an assumed stellar mass-to-gas mass scaling relation. 
he stellar M ∗/ L , therefore, is a fundamental attribute, upon which
stimates of many other properties may depend, for example, the dark 
atter fraction. As we know, M ∗/ L is neither a fixed value across
 single galaxy nor some universal distribution across the galaxy 
opulation (e.g. van Dokkum & Conroy 2010 ; Li et al. 2017 ; van
okkum et al. 2017 ; Oldham & Auger 2018a ; Zhou et al. 2019 ; Lu

t al. 2023 ). It depends on many galaxy properties such as IMF, star
ormation history, and so on, which may v ary spatially, e volve with
ime, and depend on galaxy types. From observations, estimating 
he 3D stellar mass distribution from the light distribution may be 
ttempted using SPS with 2D spatially resolved, spectroscopic data 
uch that IMF-sensitive absorption-line features can help indicate 
he underlying stellar population and help constrain the stellar M ∗/ L
rofile and thus approximate the stellar mass distribution (e.g. van 
okkum & Conroy 2010 ; Spiniello et al. 2014 ; Parikh et al. 2018 ;
ernardi et al. 2023 ). Ho we ver, such analyses are not straightforward

o achieve at low cost for the majority of galaxies at all redshifts and
ave their own degeneracies and shortcomings, for example, arising 
rom lack of 3D observational data. 

In conventional dynamical modelling, people commonly approx- 
mate M ∗/ L with a constant value across a galaxy (e.g. Cappellari
t al. 2011 ; Zhu et al. 2023 ), though not al w ays (e.g. Oldham &
uger 2018b ). Unsurprisingly, observations indicate that constant 
 ∗/ L may not be a universally good assumption across the galaxy

opulation (e.g. Tortora et al. 2011 ; Garc ́ıa-Benito et al. 2019 ; Ge
t al. 2021 ; Lu et al. 2023 ). Some studies, in particular those which
ombine stellar kinematics with gravitational lensing measurements 
or galaxies at higher redshifts, have adopted a power-law model to 
escribe an imposed radial dependence of M ∗/ L , and attempted to
stimate the power-la w inde x from the observed data (e.g. Sonnenfeld 
t al. 2018 ; Oldham & Auger 2018b ; Shajib et al. 2021 ). The situation
ecomes even more complicated when the choice of different light 
nd dark matter density models is taken into account. As neither of
hese M ∗/ L assumptions (neither constant nor power law) represents
he true distribution, model fitting under such assumptions lacks the 
ower to select the right density model that is truly responsible for
enerating the observational data. This leads to model degeneracies 
eing artificially broken, and causes the results to sensitively depend 
n the specific choice of light and/or dark matter density model,
eaching biased estimates on either the stellar mass and thus the
erived IMF or the central dark matter fraction. What is more, the
bsence of 6D data means we know nothing about the precise 3D
patial distribution of matter in a galaxy. This bias has been indeed
anifested when tested against simulation galaxies for which ground 

ruth values are known (e.g. Li et al. 2016 ), or when tested against
ifferent model implementations on the same observational data (e.g. 
ee fig. 12 of Zhu et al. 2023 ), and in some cases even by contradicting
esults obtained for similar galaxy populations (under the same M ∗/ L
ssumption), but through different choices of the light model adopted 
see Sonnenfeld et al. 2018 ; Shajib et al. 2021 ). 

Machine-learning provides an alternative way to start tackling 
he galaxy evolution problem, and has the advantage of making 
stimates of galaxy properties while eliminating many of the previous 
odelling assumptions. In addition, it has also been widely used 

s a powerful tool to understand the significant physical properties 
hat link to cosmic structure formation and galaxy evolution. More 
nd more studies have taken such approaches, from simply making 
redictions to certain properties (e.g. for galaxies, by Bonjean et al.
019 ; for galaxy clusters, by e.g. Armitage, Kay & Barnes 2019 ;
o et al. 2019 ), to inferring cosmological models and parameters

e.g. Arjona & Nesseris 2020 ), from emulating cosmic structure 
rowth (e.g. He et al. 2019 ; Man et al. 2019 ; Chen et al. 2021 ; Tabor
 Loeb 2021 ) to searching for physical connections between the

redicted properties and input observational features (e.g. Dobbels 
t al. 2019 ; Lucie-Smith, Adhikari & Wechsler 2022 ). In a recent
tudy by Angeloudi et al. ( 2023 ), galaxy populations from the
NG100 1 (Genel et al. 2018 ; Marinacci et al. 2018 ; Naiman et al.
018 ; Nelson et al. 2018 ; Pillepich et al. 2018 ; Springel et al.
018 ) and EAGLE simulations (Schaye et al. 2015 ) were used to
alibrate an ML approach, which successfully predicted the fraction 
f accreted stars in galaxies from IFU-like observations. Gomer et al.
 2023 ) trained a neural network as an emulator, massively speeding
p likelihood e v aluation for sophisticated and e xpensiv e dynamical
odelling (around 200 times faster than similar emulations using 

AM). In Hern ́a ndez, Gonz ́alez & Padilla ( 2023 ), the stellar mass and
tar formation rate (SFR) of galaxies from the TNG300 simulation 
Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson et al. 2018 ;
illepich et al. 2018 ; Springel et al. 2018 ) were predicted using a
eural network, which took as input 12 properties of galactic haloes
nd their nearby environments. It was found that certain merger tree
roperties contribute significantly to the results from their ML model. 
u et al. ( 2023 ) used a random forest (RF) based ML algorithm on

NG100 to predict the total and dark matter masses of galaxies with
everal simple observables as input, and then tested their approach on
eal galaxies. The results of their RF-based algorithm are consistent 
ith the dynamical masses of real samples, and show the great
otential of ML to make realistic estimates of galaxy masses. The
uclid Collaboration et al. ( 2023 ) explored the potential of ML to
stimate galaxy properties such as redshift, stellar mass, and SFR 

ith data from the Euclid (Laureijs et al. 2011 ) and Rubin/LSST
Ivezic et al. 2008 ) surveys. They found that their models performed
etter in accuracy than spectral energy distribution modelling when 
redicting these properties. 
MNRAS 528, 6354–6369 (2024) 
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Our goal in this study is not to develop any specific models to be
pplied to observational data, but to address the particular question
s to whether existing or future observations might provide us with
ufficient information for us to correctly disentangle individual mass
ontributions from baryons and dark matter. If yes, what are the
easons for such achievement; if no, again, what are the reasons?
o do so, we take galaxies from the state-of-the-art cosmological
ydrodynamical simulation – the TNG100 simulation, and make
ock observations of photometric images and IFU-like velocity
aps for these galaxies. We utilize a convolutional neural network

CNN; Fukushima & Miyake 1982 ; Lecun et al. 1998 ; Krizhevsky,
utskever & Hinton 2012 ; He et al. 2016 ) model to predict the stellar
ass M ∗ and total mass M tot of galaxies that are enclosed within one

alf-stellar-mass spherical radius R hsm 

, as well as the stellar M ∗/ L .
e note that the detailed stellar and total mass density distributions

f TNG100 galaxies are not precisely consistent with those observed
e.g. Lu et al. 2020 ; Romeo, Agertz & Renaud 2020 ). Therefore, we
nly employ the ML methods investigated in this study purely on
he simulation data set as a proof-of-concept study. Implementation
o real observational data will also require further investigations
xamining observational effects, selection rules and so on. 

Results from our GPU-based CNN models suggest that the ML
pproach, for our simulated galaxies, is able to untwine the individual
ontributions from both dark and baryonic matter, from input maps
f a galaxy’s surface brightness distribution and its first and second
ine-of-sight velocity moments. To reveal any k ey f actors which lead
he CNN model to be able to make successful predictions, we use
ummary statistics from the images and maps as input to a gradient-
oosting decision tree model (GBDT; Friedman 2001 ; Ke et al. 2017 )
o predict the values of the same galaxy properties. 

The structure of the rest of this paper is as follows. In Section 2 ,
e introduce the IllustrisTNG galaxy sample that we use for this

tudy, and how we build the data sets suitable for ML model training,
esting, and interpretation. In Section 3 , we give detailed descriptions
f the two ML methods (CNN and GBDT) that we use. We show our
esults in Sections 4 (for CNN) and 5 (for GBDT). Finally, we present
iscussions of our results and our o v erall conclusions in Section 6 . 

 SAMPLE  SELECTION  A N D  DATA  SET  

O U N DAT I O N  

s mentioned in Section 1 , this work aims to test the feasibility
nd fidelity of two supervised ML methods (CNN and GBDT) in
redicting the stellar , dark-matter , and total masses of galaxies,
nd the galaxies’ M ∗/ L s. In order to do this, we require a galaxy
ample where these properties are kno wn. Gi ven that observ ations
f real galaxies may suffer from various systematic biases, we
hoose to extract observationally equivalent data values from realistic
alaxy simulations. In Section 2.1 , we introduce the simulation-
ased galaxy sample used in this study. In Sections 2.2 and 2.3 ,
e describe how we organize the necessary input data and targets

uitable for CNN and GBDT modelling. 

.1 Sample selection 

ur galaxy sample comes from the TNG100 simulation (Genel
t al. 2018 ; Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson
t al. 2018 ; Pillepich et al. 2018 ; Springel et al. 2018 ), which is a
et of magnetohydrodynamical (MHD) cosmological simulations of
alaxy formation and evolution, using the AREPO software (Springel
010 ). The simulation has been shown to broadly agree with many
bserved galaxy properties and general scaling relations, including
NRAS 528, 6354–6369 (2024) 
he bimodal colour distribution (Nelson et al. 2018 ), the mass–size
elation (Genel et al. 2018 ), the galaxy mass density profiles (Wang
t al. 2019 , 2020 ), the fundamental plane relation (Lu et al. 2020 ),
he dark matter fractions (Lo v ell et al. 2018 ), as well as the stellar
rbit compositions (Xu et al. 2019 ). Specifically, the simulation has
 box volume of (110 . 7 Mpc) 3 , a mass resolution of 1 . 4 × 10 6 and
 . 5 × 10 6 M � for baryons and dark matter, respectively, and a force
oftening length of 0 . 5 h −1 kpc. The SUBFIND algorithm (Springel
t al. 2001 ; Dolag et al. 2009 ) is used to identify galaxies and their
ark matter haloes. General galaxy properties are available from
elson et al. ( 2019 ). 
We take all galaxies at redshift z = 0 which have stellar mass

ithin 30 kpc greater than 5 × 10 9 M �, and total subhalo mass (as
alculated by SUBFIND ) less than 10 14 M � The lower limit is to
uarantee sufficient resolution, and the upper limit is to exclude
ystems in galaxy cluster environments, which are beyond the
 alaxy–mass range investig ated in this study. To mimic the random
rientation effect of observed galaxies, we just use the orientation of
alaxies in the simulation. We project individual galaxies along the
hree principal axes of the simulation box, and take each projection
s an independent galaxy in our sample. This projection operation
nlarges our sample size, balancing data set complexity (Barella et al.
021 ) and model complexity (Hu et al. 2021 ). The final z = 0 data
et contains a total of 28 110 galaxies (i.e. 9370 unique galaxies with
hree different projections of each). 

.2 Data input, target generation, and pr e-pr ocessing for CNN 

or CNN modelling, our input data for a galaxy comprises its r -band
mage, its g – r colour map, the spatial distributions of stellar line
f sight (along the direction of projection, i.e. the simulation axes)
ean velocity and velocity dispersion for a given projection as they

ll contribute to the estimation of galaxy masses and stellar M ∗/ L
Binney & Tremaine 2008 ; Dobbels et al. 2019 ). Note that the first
nd second moments of line-of-sight velocities are directly calculated
rom stellar particles in the simulated galaxies. In this sense, these
uantities do not have the same kinds of measurement errors as those
erived from spectral line fittings. For simplicity, we do not consider
he third and fourth velocity moments ( h 3 and h 4 ). We note that all
he data used in this work were extracted using pipelines developed
or v arious pre vious studies by the authors (Xu et al. 2017 , 2019 ; Lu
t al. 2020 , 2021 , 2022 ). In particular, the spatial range and resolution
f the kinematic maps of the simulated galaxies generally resemble
ypical SDSS and MaNGA–IFU observations. For MaNGA galaxies,
he IFU observations for the stellar kinematic maps typically have
 spatial co v erage within 1.5 −2.5 ef fecti ve radii from the galaxy
entre (Bundy et al. 2015 ). For all images and maps of the simulated
alaxies, the spatial range was set to be within ±3 R hsm 

from the
alaxy centre, where R hsm 

is the 3D half-stellar-mass radius of the
alaxy, roughly equi v alent to the ef fecti v e radius for an observ ed
alaxy . Here below , we give a brief recapitulation of the techniques
sed to extract the data for the simulated galaxies. 
For the g - and r -band images of the simulated galaxies, the

uminosities of the stellar particles were processed for dust at-
enuation effects. This was carried out through a simple semi-
nalytical approach (see Xu et al. 2017 for details). Specifically,
he r -band images and colour maps were produced in a mesh of
00 × 300, corresponding to 0.02 R hsm 

per pixel. This high spatial
esolution allows the adoption of a cubic spline kernel as used
n the smoothed particle hydrodynamics (SPH; Monaghan 1992 ;
ultman & Pharasyn 1999 ). The dust-attenuated luminosities are

hen assigned and smoothed via the SPH scheme into mesh pixels,
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Figure 1. From left to right panels, the four panels present the r -band image, the g – r colour map, the line-of-sight mean v elocity map, and v elocity dispersion 
map of an example galaxy (subhalo-ID: 501761). All images and velocity maps are produced in the range of ±3 R hsm 

from the galaxy centre. They are the basic 
input data set fed to our CNN-based model as Fig. 3 shows. 
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Table 1. Feature inputs of our GBDT model. 

input description 

M r SDSS r -band absolute AB magnitude 
g – r SDSS g – r colour 
SFR Star-forming rate o v er the past 1 Gyr within 

a projected radius of 2 R hsm 

from the galaxy centre 
n Ser S ́ersic index from a S ́ersic profile (S ́ersic 1963 ) fitting 

to the light distribution within a projected radius of 5 R hsm 

c / a Shortest-to-longest axis ratio c / a of the stellar mass distribution, 
calculated using the inertial tensor method (Allgood et al. 2006 ), 
through an iterative approach started within a 3d radius of 3 R hsm 

(see Emsellem et al. 2007 for detailed definition) 
σ v The the r -band luminosity weighted line-of-sight 

velocity dispersion within a projected radius of 2 R hsm 

λ dimensionless spin calculated within projected 2 R hsm 

(see Emsellem et al. 2007 for detailed definition) 
B / T A kinetic bulge-to-total ratio within 2 R hsm 

, defined as 
two times the mass fraction of stellar particles with ne gativ e 

circularity, i.e. ε < 0 (see Xu et al. 2019 for definition) 
f cold Mass fraction of stellar particles with cold orbits ( ε > 0.8) 

within a 3d radius of 2 R hsm 

(see Xu et al. 2019 for definition) 
f hot Mass fraction of stellar particles with hot orbits ( | ε| < 0.25) 

within a 3d radius of 2 R hsm 

(see Xu et al. 2019 for definition) 
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ith a smoothing length that encloses the nearest 32 neighbouring 
tellar particles. For our CNN resolution tests, the original SPH- 
moothed images are re-binned to resolutions of 150 × 150 and 
0 × 60. The last setting matches the median resolution for the SDSS
alaxy surv e y. 

For the kinematic maps, instead of adopting a Voronoi binning 
cheme, for simplicity, we directly projected stellar particles on 
o a mesh using the near-grid-point (NGP) scheme. These velocity 
aps have dimensions of 48 × 48 pixels, corresponding to a spatial 

esolution of 8 pixel per R hsm 

, which corresponds to resolving a
ypical MaNGA galaxy at redshift z = 0.05, and is slightly below
he median value of 14 pixel per R hsm 

for the entire MaNGA galaxy
ample (derived from Bundy et al. 2015 ). Fig. 1 shows the abo v e-
entioned images and maps for one example galaxy in our data set.
ote that we do not add any observational errors to the generated

mages and maps. 
For the training process on our CNN network, we must provide 

arget galaxy data values for the properties we wish our network 
odel to predict. In our case, we provide the central stellar mass ( M ∗),

otal mass ( M tot ), and M ∗/ L ( M ∗/L ≡ M 

2 D 

∗ /L , where L is the r -band
ust-attenuated luminosity). For modelling real galaxies, estimating 
hese values has al w ays been the goal for conventional studies in
PS, stellar kinematics, and gravitational lensing. In particular, the 
tellar mass (or the stellar M ∗/ L ) and total mass are the two most
ommonly derived basic quantities. Once they are obtained, the dark 
atter fraction f dm 

can, in principle, be further derived. Here, the 
ass values are determined using particles of the corresponding 

ype, located within a 3D sphere of radius R hsm 

from the galaxy
entre. The M ∗/ L value is a projected quantity and is calculated using
he r -band luminosity and stellar mass of stellar particles projected 
ithin a radius of R hsm 

for a given line of sight. 
Prior to using the data in CNN modelling, the data are cleaned

for example, to ensure it does not contain any spurious values) and
ormatted according to the requirements of the modelling software 
eing used (PyTorch in our case). To ensure auto-diff (automatic 
ifferentiation) functions properly, we perform a normalization 
peration, which is to linearly scale all pixels of images and maps to
nsure the numerical value of the pixels is between 0 and 1. In our
odels, we split our galaxy samples into three parts: a training set

16000 samples), a validation set (4000 samples), and a test set (8110
amples). Operationally, it is convenient, for comparison purposes, to 
nsure that the sets al w ays contain the same galaxies. This is achieved
y setting a random seed to the same value in all modelling runs. 

.3 Data input and target generation for GBDT 

or GBDT modelling (Friedman 2001 ), the model inputs are a 
umber of summary statistics extracted from the particles of the 
imulated galaxies. We use the following quantities: the r -band 
bsolute magnitude M r and g – r colour of a galaxy, the star-formation 
ate, the S ́ersic index n Ser , the stellar axis ratio c / a , the velocity
ispersion σ v , the dimensionless spin attribute λ (quantifying the 
egree of stellar rotation, see Emsellem et al. 2007 for a detailed
efinition), the kinetic bulge-to-total ratio ( B / T ), and the cold and hot
rbital fractions f cold and f hot . Notice that orbit fractions can not be
irectly obtained without dynamical modelling. and are only used in 
BDT tasks. Detailed descriptions of the quantities can be found in
able 1 . 
Using the abo v e-mentioned quantities, we make predictions on 

he stellar mass M ∗, dark matter mass M DM 

, and total mass M tot of
ur galaxies, as well as on the M ∗/ L and dark matter fraction f dm 

.
or training purposes, all these quantities are determined within one 
 hsm 

. 
We exclude galaxies whose S ́ersic index n Ser is larger than 100 and

hose B / T is larger than 1. Such galaxies only make ∼ 3 per cent of
he total sample size. 

 M E T H O D O L O G Y  

he workflow for our modelling is displayed in Fig. 2 . Section 2
o v ers the galaxy sample selection and data-processing aspects of the
orkflow. In this section, we introduce the model architecture and 
MNRAS 528, 6354–6369 (2024) 
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Figure 2. Workflow of this study: data, pre-processing, and model tasks from 

top to bottom (left panel: CNN; right panel: GBDT). 

t  

i
 

v  

(

M

w  

g

3

C  

o  

d  

(  

2  

C  

i  

t  

f  

a
 

i  

a  

m  

e  

t  

r  

(  

o  

n  

i  

t  

R  

C  

a  

Figure 3. Structure of multibranch ResNet in this work: g – r map, r -band 
image, and velocity maps are processed by normal ResNet-18 backbone 
independently until the last fully connected layer. At last, all intermediate 
outputs are combined to give predictions via a fully connected layer. 

(  

W  

i  

h  

b  

‘
 

f  

o  

m  

m  

n  

i  

t  

l  

(  

a  

a  

I  

i  

f  

c
 

t  

i  

m  

b  

s  

o
 

p  

a  

Z  

t  

2  

b  

G  

s

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/4/6354/7603397 by guest on 12 M
arch 2024
raining setup of the two ML algorithms we use: CNN is described
n Section 3.1 and GBDT in Section 3.2 . 

Given that we make use of both algorithms to predict numerical
alues, we utilize the same mean square error (MSE) loss function
equation 1 ) when training our models. 

SE = 

1 

N 

N ∑ 

i 

( y pred 
i − y true 

i ) 2 , (1) 

here y pred 
i and y true 

i are the predicted and the true values of the
alaxy attributes, and N is the sample size. 

.1 Convolutional neural network: multibranch ResNet 

NNs are a type of artificial neural network (ANN) making use
f convolution filters (kernels) that enable them to capture features
irectly from input images, and are widely used in image processing
Arena et al. 2003 ; Bialopetravi ̌cius & Narbutis 2020 ; Han et al.
020 ; Nishimoto et al. 2022 ; Shi et al. 2022 ). In practice, a typical
NN would follow a top-down structure: some convolutional layers

n linear sequence first extract features from model inputs, squeeze
hese features into a linear format, and forward them to sequenced
ully connected layers for further feature abstraction and then make
 model prediction. 

A common technique to impro v e a CNN model’s performance is to
ncrease the number of layers in the model. Ho we ver, it was found that
 model cannot al w ays impro v e its performance by simply adding
ore network layers. Model classification accuracy may saturate and
 ventually suf fer from rapid degradation (He et al. 2016 ). To resolve
his so-called ‘degradation problem’, He et al. (2016) proposed deep
esidual networks. This architecture introduced a ‘residual block’
see schematic in fig. 2 of He et al. 2016 ) – instead of optimizing the
utput of a stacked two-layer block F (x), a ‘residual block’ asked the
etwork to optimize the combination of block output F (x) and block
nput x, which gives H (x) = F (x) + x. This optimization was believed
o be easier to achieve (He et al. 2016 ). Such an innovation helped
esNet win the 2015 ImageNet Large Scale Visual Recognition
hallenge (Russako vsk y et al. 2015 ). ResNet has been used in earlier
stronomical studies such as finding g alaxy–g alaxy strong lenses
NRAS 528, 6354–6369 (2024) 
Lanusse et al. 2018 ), and classifying galaxy clusters (Su et al. 2020 ).
ith both model performance and computation power limitations

n mind, we chose a modified version of ResNet-18 (ResNet-18
ereafter for simplicity; He et al. 2016 ; Su et al. 2020 ) as our CNN
ackbone: The backbone contains one convolutional layer and 8
residual blocks’. 

While a classic top-down CNN structure can extract features
rom a single image or map and make predictions, it cannot solve
ur requirement to use multiple images and maps with different
esh sizes. An approach to address such a requirement is to use a
ultibranch neural network (Al Rahhal et al. 2018 ). Multibranched

etwork architectures allow one to simultaneously utilize multiple
nput data sets in one model for feature extraction and model predic-
ion. Multibranched networks have previously been used to identify
ensed supernovae (Morgan et al. 2022 ) and giant radio galaxies
Tang et al. 2022 ). Tang et al. ( 2022 ) suggested implementing such
rchitectures could boost model performance. In this work, we adopt
 multibranched network architecture for our CNN-based models.
t can be seen from Fig. 3 that our input images and maps are
ndividually fed into ResNet-18 backbones. These backbones extract
eatures from images/maps, and forward their outputs to a fully
onnected layer to produce a model prediction. 

When training models, we determine model hyperparameters
hrough a manual selection process (Bergstra & Bengio 2012 ). This
s achieved by training our model using the training data set, and
anually selecting model hyperparameters by looking at the model’s

ehaviours when making predictions using samples in the validation
et. The model’s ability to generalize is e v aluated using the test set
f samples, as may be seen in Section 4 . 
After experimentation, we choose the Adam optimizer, which

erforms better than the stochastic gradient descent optimizer. To
 v oid o v erfitting, we utilize a cosine learning rate scheduler (Schaul,
hang & LeCun 2013 ) ( lr = 0.0001cos ( n /200), where n is the

raining epoch number) instead of a constant learning rate. Table
 lists all the hyperparameters of our multibranch ResNet. A training
atch size of 40 was chosen after consideration of the available
PU memory. As is common practice, we shuffle our sample input

equences before each model training epoch. 
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Table 2. Hyperparameters of our multibranch ResNet model. 

Hyperparameter Setup 

Batch size 40 
Initial learning rate 0.0001 
Learning rate step 200 
Training epoch 200 
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Table 3. Hyper parameters of our GBDT model. 

Hyperparameter Setup 

num leaves 5 
num boost round 500 
objective regression 
min data in leaf 20 (default) 
max depth No limit 
Evaluation metrics MAE and MSE 
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The CNN-based model implementation in this work uses the 
YTORCH python library, 2 where ResNet backbones (i.e. ResNet- 
8 and ResNet-50) are inbuilt and ready to use. 

.2 Gradient-boosting machine: Light–GBM 

 GBDT is an ML method with an efficient catalogue data- 
rocessing capability and high model interpretability. It builds a 
eries of decision trees to address either classification or regression 
roblems, and has been used in recent astronomical studies (e.g. 
oronado-Bl ́azquez 2022 ; Sahak yan, Vardan yan & Khachatryan 
023 ). GBDT attempts to build a ‘strong’ model using multiple 
weak’ models (i.e. decision trees). The general procedure for GBDT 

raining is as follows: 

(i) The first tree is formed to fit the given training data and make
redictions. 
(ii) A second tree is then formed to fit the residuals between the

rst tree’s predicted values and the truth values. 
(iii) The next step is iterative where successive trees are trained to 

t the residuals of the previous one. 
(iv) The model training process stops when some customized 

topping criteria have been met. 

Although GBDT has been widely implemented, training a GBDT 

odel can be time-consuming when the training data set has a large
ample size or a considerable number of features. This is because 
he classic GBDT needs to scan all data points and estimate the
nformation gain for every possible split point (Ke et al. 2017 ). A
epresentative approach that tackled this time issue is LightGBM (Ke 
t al. 2017 ). This is an impro v ed v ersion of GBDT with two no v el
echniques introduced, gradient-based one-side sampling (GOSS) 
nd e xclusiv e feature bundling (EFB) (see Ke et al. ( 2017 ) for full
echnical details). In short, GOSS allows LightGBM to estimate 
he information gain at its split points using those data samples 
ith larger gradients, and EFB bundles mutually e xclusiv e features 

o decrease the number of features. Compared with the original 
BDT, LightGBM speeds up the model training process by up 

o 20 times and achieves similar accuracy Ke et al. ( 2017 ). Here,
e implement LightGBM to predict the attributes of our galaxies 

 M ∗, M tot , M DM 

, M ∗/ L , f ∗ and f DM 

). We also investigate which sum-
arized image or map features have contributed to the prediction 

f which attributes by performing feature importance e v aluations of
hese LightGBM models (see Section 5 ). 

To train and test LightGBM-based models, we split our samples 
nto two parts: the training set (18833 samples) and the test set
9277 samples). We do not consider validation sets or model 
ross-validation as these models are developed for proof-of-concept 
urposes. Rather than emphasizing model accuracy and stability, 
e w ould lik e to investigate its ability to (a) break the de generac y
etween baryonic and dark matter in galaxies, and (b) explore why 
ifferent galaxies have different properties. 
 https://pytorch.org 

s  

t  

w

Instead of tuning hyperparameters, we conduct experiments with 
ifferent input and output combinations, while maintaining the same 
et of hyperparameter values, to help us evaluate the behaviour of our
BDT models and to understand what summary statistics of images 

nd maps have specific physical meanings. By comparing model 
ehaviours trained with inputs of different ranges with fixed model 
raining hyperparameters, we find that when using input features 
t 2 R hsm 

apertures instead of 1 R hsm 

, the resulting mass prediction
ncertainty decreased by 9 per cent. This is why our inputs are mainly
alaxy properties from 2 R hsm 

apertures, while our outputs are all at
 R hsm 

apertures. 
Table 3 lists the hyperparameters we use (after experimentation) 

n our LightGBM models. We use 500 trees for training, with the
aximum number of leaves in any node (the num le ave s parameter)

et to 5. We do not include further constraints on the minimum data
ample number in any one leaf, the maximum depth of a tree (the
ypical depth in this work is 4), or apply other regularization methods
s we do not observe any sign of model overfitting. Notably, we have
 v aluated MAE and MSE loss functions to understand whether model
obustness is affected by possible outliers in our data samples. We
nd that training algorithms in this work behave well when looking
t both loss curves (see Fig. 4 for an example). 

 CNN-BA SED  M O D E L  RESULTS  

n this section, we present the results from our CNN-based modelling. 
n all our models, we train the network using the multibranch
esNet taking some combination of r -band images (300 × 300 
PH-smoothed images within ±3 R hsm 

) and the two velocity maps
48 × 48 NGP-smoothed maps within ±3 R hsm 

) for mean velocity
nd dispersion simultaneously as input, and a variety of galaxy mass
nd light quantities as targets. 

As an example, Fig. 5 shows the model training and validation loss
urves using galaxy stellar mass M ∗ as the target. As can be seen,
hile the model validation loss is high and oscillates considerably 

nitially, it gradually decreases and becomes stable after ∼ 140 
raining epochs. We train our model for a total of 200 epochs and
elect the epoch where the validation loss minimizes our model. 
oing so prevents a model from o v erfitting the data. We sav e this
odel and e v aluate its performance using the test data set. Instead of

sing MSE loss to e v aluate our model performance, we use 1 – σ of
og y pred / y true to e v aluate the uncertainty of the prediction, which can
e understood as the scatter of the prediction. Here, the uncertainty
s intended to describe the performance of the model prediction, and
s not related to observational errors. 

Table 4 summarizes all the CNN models we run, and indicates the
ubsections in which the results are described. We wish to point out
hat some of the tests are concerned with predicting attribute values
ithin 2 R hsm 

rather than just the 1 R hsm 

we usually employ. 
MNRAS 528, 6354–6369 (2024) 

https://pytorch.org


6360 J. Chu et al. 

M

Figure 4. Loss curves of LightGBM-based model as a function of training iterations with known M ∗/ L [left panel: mean absolute error (MAE) loss; right panel: 
mean square error (MSE) loss]. In each panel, the red and blue curves indicate the training and testing losses, respectively. 

Figure 5. MSE loss (see Section 4.1 ) curve of CNN-based model with 
known M ∗ as function of training epoch. The black and red curves indicate 
the training and validation loss, respectively. 
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.1 Training CNN on galaxies with known stellar mass as target

sing observations, the stellar mass can be estimated through many
ethods, including SPS analysis through spectrum or SED fitting,
ulticomponent modelling with stellar kinematics, and gravitational

ensing measurements. In our CNN model, we train a multibranch
esNet using r -band images and two velocity maps as input, and
sing known stellar mass M ∗ ( � R hsm 

) (i.e. the stellar mass enclosed
ithin a 3D sphere with radius of R hsm 

) as target. This specific
etup is to imitate the situation where we only have good knowl-
dge about stellar mass M ∗ for the training sample. For instance,
alaxies in the southern sky may lack high-quality spectroscopic and
NRAS 528, 6354–6369 (2024) 
ultiwaveband photometric data, lowering SED estimated galaxy
tellar mass reliability. The top panel of Fig. 6 shows the CNN-
redicted stellar mass M ∗ ( � R hsm 

) versus the true values for the
est set. As shown in Table 4 , the 1 – σ scatters in the predicted
og M 

pred 
∗ /M 

true 
∗ values, either within R hsm 

or within 2 R hsm 

, are
.04 dex (i.e. ∼ 10 per cent ). Under the default image and map
onditions, if only r -band images, or g - and r -images combined, or
olely two velocity maps are used as input, the uncertainties become
lightly larger, of 0.06 (i.e. 13 −15 per cent ), 0.05, and 0.05 dex,
espectively. We note that changing the image resolution also affects
he 1 – σ scatters. Uncertainties increase to 0.06 and 0.07 dex (i.e.
5 −17 per cent ) when only using r -band images with resolutions of
50 × 150 and 60 × 60 (MaNGA-like), respectively. 
It is interesting to ask, when making a prediction, whether the

NN model simply picks up some general scaling relation between
 galaxy’s stellar mass and some summary statistics, such as total
uminosity, or has it actually used higher order information encoded
n the light and kinematic maps? As a simple test, we fit a power-law
elation to the stellar mass and luminosity of galaxies in the training
ample and use the best-fitting log M ∗−log L relation to predict stellar
asses for the test set luminosities. The relationship is shown at the

ottom panel of Fig. 6 . The scatter in log M 

pred 
∗ /M 

true 
∗ is 0.16 dex

n this case, significantly larger than the scatter of our CNN-based
esults (see the top panel of Fig. 6 ). In addition, a decision-tree based
egression method, which takes the total luminosity L and velocity
ispersion σ v as input, also results in a scatter of 0.05 dex (details
re presented in Section 5 ). The much smaller uncertainty from our
ultibranch ResNet CNN model indicates that the network has ac-

ually made better predictions using spatial distributions of light and
inematics. This is similar to the findings of the Euclid Collaboration
t al. ( 2023 ), where they also found that their model predictions of
tellar masses impro v ed with the inclusion of image data. 

Since 3D stellar mass can not be obtained in observation without
ynamical modelling, we also use 2D cylindrical/projected masses
s targets. As shown in Table 4 , the 1 – σ scatters in the predicted
og M 

2D , pred 
∗ /M 

2D , true 
∗ values are similar to cases where targets are

D spherical stellar mass. 
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Table 4. Results of CNN-based models, where multibranch ResNet takes r -band images and two velocity maps simultaneously as input (see Section 4 for 
details). 

Section Input Training on/output Prediction 
Mean ± 1 – σ

(dex) 

4.1 r image M ∗ M ∗ 0.00 ± 0.06 
4.1 r image M 

2D ∗ M 

2D ∗ −0.01 ± 0.07 
4.1 g , r image M ∗ M ∗ 0.00 ± 0.05 
4.1 g , r image M 

2D ∗ M 

2D ∗ 0.00 ± 0.06 
4.1 2 V maps M ∗ M ∗ 0.00 ± 0.05 
4.1 2 V maps M 

2D ∗ M 

2D ∗ 0.00 ± 0.05 
4.1 r image + 2 V maps M ∗ M ∗ 0.00 ± 0.04 
4.1 r image + 2 V maps M 

2D ∗ M 

2D ∗ 0.00 ± 0.05 
4.1 r image + 2 V maps M ∗( ≤ 2 R hsm 

) M ∗( ≤ 2 R hsm 

) 0.00 ± 0.04 
4.1 r image + 2 V maps M 

2D ∗ ( � 2 R hsm 

) M 

2D ∗ ( � 2 R hsm 

) 0.00 ± 0.04 
4.2 r image M tot M tot 0.00 ± 0.07 
4.2 g , r image M tot M tot 0.00 ± 0.07 
4.2 2 V maps M tot M tot 0.00 ± 0.09 
4.2 r image + 2 V maps M tot M tot 0.00 ± 0.06 
4.2 r image + 2 V maps M tot ( ≤ 2 R hsm 

) M tot ( ≤ 2 R hsm 

) 0.00 ± 0.06 
4.3 r image + 2 V maps M ∗, M tot M ∗ 0.01 ± 0.04 
4.3 r image + 2 V maps M ∗, M tot M tot −0.01 ± 0.06 
4.3 r image + 2 V maps M ∗, M tot f DM 

0.02 ± 0.05 
4.3 r image + 2 V maps M ∗, M tot f DM 

of ETGs −0.02 ± 0.04 
4.4 r image M ∗/ L M ∗/ L 0.01 ± 0.10 
4.4 2 V maps M ∗/ L M ∗/ L 0.01 ± 0.11 
4.4 r image + 2 V maps M ∗/ L M ∗/ L 0.01 ± 0.07 
4.4 g , r image M ∗/ L M ∗/ L 0.01 ± 0.05 
4.4 g , r image + 2 V maps M ∗/ L M ∗/ L 0.00 ± 0.04 

Notes. The fifth column indicates the mean and standard deviation of the logarithmic ratio between the predicted and the true values for quantities given in the 
fourth column. All properties are e v aluated within a radius of R hsm 

from the galaxy centre, except for those explicitly specified with parentheses. 
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Having obtained stellar masses M ∗ from CNN-based models, 
e can make further predictions on stellar M ∗/ L s by utilizing r -
and luminosities L 

true directly calculated from images (within the 
ame aperture radius) assuming that the luminosity can be well 
easured. In this case, the uncertainties in log [( M ∗/ L ) pred /( M ∗/ L ) true ]

re then dominated by the uncertainties in CNN-based stellar mass 
redictions. Note that in Section 4.4 , we compare between the M ∗/ L
redictions made by CNN models which take M ∗ as the target (as
resented here) and the predictions made by CNN models that 
irectly take M ∗/ L as the target. We find that the latter has larger
ncertainties than the former. 

.2 Training CNN on galaxies with known total mass as target 

alaxies live in dark matter haloes. The total mass M tot is a
undamental property of a galaxy. From a dynamical modelling 
erspective, unlike stellar mass, where the results are degenerate with 
hat of dark matter, the total mass can be more reliably determined
hrough dynamical or lensing modelling approaches (e.g. Treu 2010 ; 
i et al. 2016 ; Zhu et al. 2020 ). This specific CNN model is to mimic

he situation where total masses M tot (i.e. the total mass enclosed 
ithin a 3D sphere with a radius of R hsm 

) are known and available in
he training sample, together with their r -band images and IFU-like 
inematic maps. The predictions on M tot ( � R hsm 

) for the test set
re given in Fig. 7 . As shown in Table 4 , the 1 – σ uncertainties in
og M 

pred 
tot /M 

true 
tot , as predicted within R hsm 

and 2 R hsm 

, are both 0.06
ex ( ∼ 15 per cent ). It is important to realize that taking images and
elocity maps together works better than if individual input maps 
re used alone. Specifically, if only 2D photometric information 
s used, either taking r -band images or taking both r - and g -band
mages together, the scatter is 0.07 dex ( ∼ 17 per cent ). If only
tellar kinematic maps are used, the scatter is larger at 0.09 dex
 ∼ 23 per cent ). 

We note that singleband or multiband images and velocity maps, 
aking each kind on their own, contain information about the stellar

ass and the total mass. Ho we ver, it is hard for us to answer which
ind of map has actually provided more information. This is because
he input image and velocity maps have different spatial resolutions. 
s recorded in Li et al. ( 2016 ), higher resolution maps result in

maller uncertainties in the estimated dynamical masses of galaxies. 
ere, without carrying out a further resolution test, we cannot make
 concrete assessment on this point. Ho we ver, as we will see in
ection 5 , a decision tree-based method helps us to address this
uestion to the first order, revealing that, by comparison with other
alaxy properties, luminosity plays a dominant role in predicting the 
tellar and total masses. 

It is also interesting that, given the same input, the uncertainty
n predicted stellar masses is al w ays smaller than in the predicted
otal masses. This essentially reflects a tighter correlation between 
 galaxy’s stellar mass and its morphology and kinematics, by 
omparison with the total mass. 

.3 Training CNN on galaxies with known stellar and total 
asses as targets 

rom observations, we can obtain both the stellar mass M ∗ and
he total mass M tot for a galaxy, either through individual estimates
s mentioned abo v e, or jointly through multiple dynamical tracers.
lternatively, such information can be acquired by using galaxy 

ormation and evolution models. This specific CNN model is to 
mitate this situation, where both quantities are available in the 
raining sample. The top panels in Fig. 8 show the performance
MNRAS 528, 6354–6369 (2024) 
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Figure 6. Top panel: central M ∗ prediction of our CNN-based model ( r -band 
image and two velocity maps as input, trained by known central M ∗), as a 
function of their true value. Bottom panel: central M ∗ prediction through 
power-law fitting, as a function of their true value. In both panels, the red line 
indicates the prediction equals ground truth, and the green dots are the test 
set of our samples. The contours indicate the density distribution of the green 
dots. The histogram in the lower right of each panel shows the distribution of 
M ∗ prediction o v er ground truth ratio, respectiv ely, with the red-dashed lines 
indicating the 1 − σ range. 
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Figure 7. Central M tot prediction of our CNN-based model ( r -band image 
and two velocity maps as input, trained by known central M tot ), as a function 
of their true value. The symbols are the same as Fig. 6 . 
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f the trained multibranch ResNet in simultaneously predicting 3D

pherical M ∗( ≤ R hsm 

) and M tot ( ≤ R hsm 

) for the test set. The 1
σ uncertainties in log M 

pred 
∗ /M 

true 
∗ and log M 

pred 
tot /M 

true 
tot are 0.04

nd 0.06 de x, respectiv ely. Howev er, some biases of ±0.01 dex are
oticed in this model. It is interesting to note that employing both
uantities at the same time as targets in the model does NOT increase
rediction accuracy significantly, by comparison with only utilizing
ne type of target at a time (see Sections 4.1 and 4.2 ). 
When reliably quantified observational systems are used as

raining data, the o v erall model performance cannot exceed the
ccuracy on the training data. Ho we ver, it is interesting to make
omparisons between model predictions and conventional estimates
 v er a generalized statistical population. As the latter suffer from
arious systematics that vary differently from galaxy to galaxy (as
lready discussed in Section 1 ), here, we compare the mass estimation
NRAS 528, 6354–6369 (2024) 
ccuracy between CNN-based models and JAM-based models, given
hat the same kinds of input information are used, i.e. single-band
mages and IFU-like kinematic maps. Li et al. 2016 e v aluated the
erformance of JAM using galaxies from the Illustris cosmological
imulations (Nelson et al. 2015 ), assuming MaNGA-like image and
FU observational conditions. The typical scatter of JAM-based total
asses is about 11–16 per cent, i.e. the scatter on total mass estimates

rom the two approaches is comparable. While CNN models in
eneral predict stellar masses with higher accuracies ( ∼10 per cent)
han total masses, JAM-based predictions are the opposite. The stellar

asses predicted by JAM modelling often suffer from much larger
ncertainties with ∼30 per cent scatter due to model degeneracies
etween the stellar component and dark matter. Zhu et al. ( 2023 )
dopted six different composite models describing dark matter and
aryon distributions and fitted the models to the MaNGA galaxies
or which reliable measurements for IFU kinematics are available.
he mean standard deviation in predicted stellar masses across the
ix models o v er the full galaxy sample is 0.19 dex ( ∼ 50 per cent ).
e treat this scatter between different models as possible model

ncertainties due to unknown degeneracies and hidden systematics.
y comparison, our CNN models predict stellar masses with an
ncertainty of 0.07 dex (15 ∼ 17 per cent ) for the entire population.
ur superiority on CNN stellar mass accuracy might be as a result of

he complexity of the neural network which encodes knowledge of
he stellar masses for the training sample. We note that, ho we ver, a fair
omparison between conventional methods and our CNN methods
hould be made with the same data sample in order to draw more
oncrete conclusions. 

We calculate dark matter fractions f DM 

( � R hsm 

) based on our
NN model predictions for M ∗ and M tot , and compare the fractions
ith their true values. Here, we assume that the dark matter

raction is simply given by f DM 

= 1 − f ∗, where f ∗ ≡ M ∗/ M tot . As
xpected, such an approximation on the dark matter faction would
e an o v erestimate for galaxies with a significant amount of central
as. This is manifested by log f pred 

dm 

/f true 
dm 

∼ 0 . 02 ± 0 . 05 dex for the
 v erall sample. When we select only early-type galaxies (as defined
n Wang et al. 2020 ) and carry out the same estimate (but without re-
raining the CNN model), as can be seen in the bottom panels of Fig.
 , the scatter becomes markedly narrower by comparison with the
 v erall sample. In this latter case, ho we ver, the dark matter fraction
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Figure 8. Central M ∗ (top left panel), M tot (top right), f DM 

(bottom left panel), and f DM 

of selected early-type galaxies (bottom right panel) predictions of our 
CNN-based model ( r -band image and two velocity maps as input, trained by known central M ∗ and M tot ), as a function of their true values. Here, f DM 

is the 
dark matter fraction, calculated by f DM 

= 1 − M ∗/ M tot . The symbols are the same as Fig. 6 . We note that the bottom panels present f DM 

in linear scales and 
therefore the distributions appear wider than those for logarithmic masses in the upper panels. 
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or this sub-sample is underestimated by 0.02 dex. This is because 
he model-predicted M tot was underestimated by 0.02 dex for these 
alaxies. 

.4 Training CNN on galaxies with known stellar mass to light 
atio as target 

 recent study by Dobbels et al. ( 2019 ) using an ML approach
howed that morphological information from galaxy g -band images 
an noticeably impro v e the determination of galaxies’ M ∗/ L s, by
omparison with those obtained from only one or two colours. Specif- 
cally, they used CNNs to learn key morphological features in the 
 -band images, which were then fed into a gradient-boosting model 
o predict the stellar M ∗/ L s. This two-step algorithm was trained on a
ample of more than 80 000 galaxies from the GALEX-SDSS-WISE 

e gac y Catalogue v ersion 2 (GSWLC; Salim et al. 2016 ; Salim,
oquien & Lee 2018 ). The ground-truth M ∗/ L s were determined by
lobal spectral energy distribution fitting. The uncertainty in M ∗/ L s
or the observed galaxy sample was ∼ 0.15 dex. Their investigation 
as already shed light on a feasible way to use ML to find connections
etween M ∗/ L and galaxy 2D mass and light distributions. 
In this work, we train a CNN model to directly predict M ∗/ L s in
he case where both r -band images and IFU-like kinematic maps
re available. In this case, M ∗/ L is defined as the ratio between
he projected 2D stellar mass and r -band luminosity within a given
adius. Our results are given in Fig. 9 . As can be seen, the scatter
n log [( M ∗/ L ) pred /( M ∗/ L ) true ] is about 0.07 dex ( ∼ 15 per cent , for
ithin both R hsm 

and 2 R hsm 

). By comparison, the scatter is about
.1 dex if we only take r -band images, or only tak e tw o velocity
aps, as input. 
The scatters in log [( M ∗/ L ) pred /( M ∗/ L ) true ] we obtain are generally
uch larger than those estimated via M ∗ in the previous sections (see
ections 4.1 and 4.3 ). This indicates that, under the input conditions
sed and with the same network complexity, using M ∗ as the CNN
odel target yields better predictions on M ∗/ L than directly using
 ∗/ L as the target. 
An additional investigation is to add images in another band such

hat colour information is also available to the model network. As
ell & de Jong ( 2001 ) reveal, galaxy M ∗/ L strongly correlates with

he galaxy’ s colour . Indeed, as is shown in Section 5.3 , our GBDT
esults also reveal that a galaxy’s colour is a key contributing factor
MNRAS 528, 6354–6369 (2024) 
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M

Figure 9. Central M ∗/ L prediction ( r -band image and two velocity maps as input, trained by known central M ∗/ L ; left panel) and central M ∗/ L prediction ( g - and 
r -band images and two velocity maps as input, trained by known central M ∗/ L ; right panel) of our CNN-based model, as a function their true v alue, respecti vely. 
The symbols are the same as Fig. 6 . 
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Table 5. Results of GBDT mode. 

Section Input Predictions Mean ± 1 – σ (dex) 

5.2 Default M ∗ 0.00 ± 0.05 
5.2 Default w/o mag M ∗ 0.00 ± 0.08 
5.2 Default M DM 

0.00 ± 0.13 
5.2 Default w/o mag M DM 

0.00 ± 0.15 
5.2 Default M tot 0.00 ± 0.08 
5.2 Default w/o mag M tot 0.00 ± 0.11 
5.3 Default f ∗ 0.01 ± 0.08 
5.3 Default f DM 

0.00 ± 0.06 
5.3 Default M ∗/ L 0.00 ± 0.06 

Notes. Performance of GBDT methods. The fourth column indicates the 
mean and standard deviation of the logarithmic ratio between the predicted 
and the true values for quantities given in the third column. All properties are 
e v aluated within a radius of R hsm 

from the galaxy centre. 
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n making a correct prediction for M ∗/ L . We took a galaxy’s g -band
mage as an additional input to our multibranch ResNet. When both g -
nd r -band images are used, the scatter in log [( M ∗/ L ) pred /( M ∗/ L ) true ]
s reduced to 0.05 dex. If the colour information is further combined
ith two velocity maps, the scatter then reduces to 0.04 dex. In both

ases, the scatters are significantly smaller than 0.1 dex when only
 -band images, or only kinematic maps, were used, or smaller than
.07 dex when r -band images and kinematic maps combined were
sed. 

 L I G H T – G B M  R ESULTS  

aving demonstrated in the previous section the abilities of our
NN models to predict galaxy masses, we apply a GBDT method

o investigate the driving factors in making successful predictions
ased on spatially resolved light and kinematic distributions. To do
o, we take a gradient boosting machine (Light–GBM), and train a
odel to compute feature importance. We use ‘gain’ importance –

he total gains of conditions in the model which use a feature. 3 In
ase any pair of linearly correlated features/targets might bias the
eature importance e v aluation, we also compute linear correlation
oefficients between features and targets (Section 5.1 ). Fig. 2
ummarizes our GBDT training workflow, starting from calculating
nput summary statistics (listed in Table 1 ) from images and maps,
o model training and final property predictions. Table 5 shows the
ean and standard deviation (uncertainty) of the predicted properties

rom different GBDT models. Detailed results are presented below. 

.1 Linear correlation between features and targets 

efore assessing non-linear feature importance using the Light–
BM algorithms when predicting masses (Section 5.2 ) and ra-

ios/fractions (Section 5.3 ), we first e v aluate possible linear correla-
ions between pairs of features or targets. Similarly to von Marttens
t al. ( 2022 ), we compute the Pearson correlation coefficient ( R ). In
tatistics, computing R (ranging from –1 to 1) between two variables
NRAS 528, 6354–6369 (2024) 

 https:// lightgbm.readthedocs.io/ en/ latest/ pythonapi/ lightgbm.Booster. 
tml#lightgbm.Booster.feature importance 

c
 

a  

0  
n a sample can help assess if there exists a linear correlation between
hem. The two variables are more likely to be positively linearly
orrelated if the R is close to 1, or ne gativ ely correlated when close
o –1. The results of such computations can be seen as a correlation
atrix in Fig. 10 . 
Looking at the input features, we find that pairs of features share

easonably strong linear (anti) correlations ( | R | > 0.75) including
v – luminosity, λ – B / T , λ – f cold , λ – f hot , B / T – f hot and f cold 

f hot . The R value between B / T and f cold is also close to 0.75
 R = 0.74). In other words, B / T , λ, f cold and f hot are generally
ntercorrelated with each other. Physically, a fast-rotating galaxy
s expected to have a higher stellar spin λ as well as a higher
old-orbit fraction f cold . The galaxy would also have a smaller
inematic B / T and a smaller hot-orbit fraction f hot . The strong
orrelation between σ v and luminosity essentially reflects the Tully–
isher relationship and the Faber–Jackson relationship obeyed by the
imulated galaxies (see Lu et al. 2020 for a detailed discussion on
he fundamental plane properties of TNG100 galaxies). As can be
een in Fig. 10 , other features do not show strong evidence of linear
orrelations. 

When we look at targets and features together, we find luminosity
nd σ v are generally strongly correlated (mostly with their | R | >
.75, though R for σ v – M DM 

equals 0.74) with the masses ( M ∗,

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html#lightgbm.Booster.feature_importance
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Figure 10. The correlation matrix of features and targets we used for LightGBM-based model training (Section 3.2 ) and e v aluation (Section 5 ). A v ariable-pair 
on the diagram would have a higher possibility of being linearly correlated if the absolute value of its correlation coefficient is closer to 1. 
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 DM 

, and M tot ), indicating they play a dominant role in predicting
hese mass v alues. Ho we ver, as stated in von Marttens et al. ( 2022 ),
 can only indicate a linear relationships between two variables. The 
 v aluation of the non-linear relationships requires other methods, 
hich are discussed in the following section. 

.2 Dependencies of the total, stellar, and dark matter masses 

e train our GBDT model to predict separately the 3D spherical M ∗,
 DM 

, and M tot values within a radius of R hsm 

from the galaxy centre.
he outcome is shown in the left column of Fig. 11 . The scatter for

he stellar and total masses are 0.05 and 0.08 de x, respectiv ely. F or
ark matter mass, the uncertainty is about 0.13 dex. It is interesting
o note that, among all the properties investig ated, g alaxy luminosity
magnitude) contributes the most to all three mass predictions. 
aving trained the GBDT model without using magnitude as input, 

he results are presented in the right column of Fig. 11 . As can be
een, the second most significant feature that contributes to mass 
redictions is velocity dispersion. 
.3 Dependencies of ratios and fractions: M 

∗/ L , f ∗, and f DM 

e train GBDT models to predict M ∗/ L , f ∗, and f DM 

within a radius
f R hsm 

from the galaxy centre. Fig. 12 shows the results from the
est-trained models on the test set. For the stellar and dark matter
ass fractions f ∗ and f DM 

, the uncertainties are 0.08 and 0.06 dex,
nd the uncertainty of the M ∗/ L is 0.06 dex. It is important to note
hat CNN model predictions are much more accurate than GBDT 

redictions as produced in this study. This is unsurprising because 
he former provides information on the spatial distribution of galaxy 
roperties, while the latter only takes low-order summary statistics 
nto account. 

In our models, feature importance shows that the contributions are 
omplicated. Unlike mass predictions, there is no dominant feature 
n the ratio predictions. Generally, velocity dispersion contributes 
he most, ∼ 37 per cent in predicting M ∗/ L and ∼ 28 per cent in
 DM 

, with the other features having smaller contributions. For f ∗
nd M ∗/ L , velocity dispersion and a galaxy’s colour are the top two
ontributing features. The stellar spin parameter λ, which reflects 
MNRAS 528, 6354–6369 (2024) 
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M

Figure 11. From top to bottom panels: central M ∗, M tot , and M DM 

predictions (trained by known M ∗, M tot , and M DM 

, respectively), as function of their true 
value. In each row, the left panel has taken r -band magnitude as one of the input features, while the right panel has not. In all six panels, our GBDT models 
are trained independently. The red line indicates that the prediction equals ground truth, and the blue dots are the samples of our test set. The histogram at the 
lower right of each panel shows the distribution of mass prediction o v er the ground truth ratio, respectively, with the red-dashed line indicating 1 σ range. The 
bar graph at the upper left of each panel shows the important features and their contributions to the GBDT predictions. 
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Figure 12. From top to bottom panels: central M ∗/ L , f ∗, and f DM 

predictions 
(with r -band magnitude and other summary statistics as input, trained by 
known M ∗/ L , f ∗, and f DM 

, respectively), as a function of their true value. The 
symbols are same as Fig. 11 . 
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he dynamical status of a galaxy, is the second most important
eature in predicting f DM 

. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

n this study, we use a general sample of galaxies from the TNG100
imulation to investigate the ability of our CNN-based models to 
redict the central (i.e. within 1 − 2 R hsm 

) stellar mass, total mass,
tellar M ∗/ L , and to estimate the dark matter fraction. Specifically,
e take galaxy images, spatially resolved mean velocity and velocity 
ispersion maps as input to our multibranch ResNet CNN models 
see Section 2.2 for detailed data input and target generation; the
etailed method is given in Section 3.1 ). In particular, the IFU-like
inematic maps have spatial resolution typical of the MaNGA galaxy 
ample, and co v er a square region of [ −3 R hsm 

, 3 R hsm 

] 2 around the
alaxy centre. The CNN-based models, with the help of the training
ata set, can in general break the de generac y between the baryon
nd dark matter distributions and make reliable mass predictions. In 
rder to understand which (global) features contribute the most to 
ur predictions, we utilize a gradient-boosting machine Light-GBM, 
hich takes global galaxy properties as input, including luminosity, 

olour, SFR, Sersic index, axis ratio, stellar velocity dispersion, spin 
arameter, kinetic B/T, and orbital fractions (see Section 2.3 for 
etailed data input and target generation; the detailed method is 
iven in Section 3.2 ). 
Our main results are listed as follows: 

(i) Our multibranch ResNet CNN models can predict (central) 
tellar and total masses of galaxies with 1 – σ uncertainties of 
.04 and 0.06 de x, respectiv ely, when taking r -band images and
wo velocity maps as input. Under such conditions, the prediction 
or M ∗/ L has an uncertainty of 0.07 dex. Ho we ver, when combined
ith galaxy colour information, for example, taking both g - and r -
and images together with kinematic maps as input, the uncertainty 
ecreases to 0.04 dex (for more details, see Table 4 in Section 4 ). 
(ii) Given the default input to the GBDT models, the stellar and

otal masses of galaxies can be reproduced with uncertainties of 
.05 and 0.08 de x, respectiv ely. The predicted dark matter mass
ncertainty is somehow larger at 0.13 dex. The uncertainties on 
he central stellar ( f ∗) and dark matter ( f DM 

) fractions are 0.08 and
.06 de x, respectiv ely; while that for M ∗/ L is 0.06 dex (for more
etails see Table 5 in Section 5 ). 
(iii) We find from our GBDT models that galaxy luminosity is 

he dominating feature (contributed > 50 per cent) in predicting all
asses in the central 1 − 2 R hsm 

regions (see the left column of Fig.
1 ). When galaxy luminosity is not considered as an input of our
BDT models, the dominating feature is velocity dispersion. In the 

ase of f ∗, f DM 

, and M ∗/ L predictions, we do not observe the existence
f a dominating feature (see Fig. 12 ). Velocity dispersion and galaxy’s 
olour are the top two contributing features when predicting f ∗
nd M ∗/ L . Regarding f DM 

prediction, we find velocity dispersion
ontributed the most. At the same time, stellar spin parameter λ
hould also be v alued, gi ven it ranked as the second most important
eature on the diagram (the bottom panel of Fig. 12 ). 

We note that a galaxy’s luminosity is the dominant feature in
redicting all masses. In particular, the correlation between lumi- 
osity and stellar mass is even tighter than that with the total
ass. This can be seen from both the CNN and GBDT model

esults such that predictions on the stellar mass al w ays have smaller
ncertainties than those on the total mass. The tighter connection 
etween the luminosity and the stellar mass can be understood as a
onsequence of a straightforward conversion through the stellar M ∗/ L
MNRAS 528, 6354–6369 (2024) 
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atio, which is go v erned by stellar evolution physics and typically
pans less than one order of magnitude in value. The connection
o the total mass can be understood as a consequence of the fact
hat observed galaxies obey a certain fundamental plane relation,
nd, through successful simulation calibration, the galaxy sample
as thus implicitly reinforced a correlation between the luminosity
nd the total mass, which additionally is further subtly influenced by
he dynamical interplay between baryons and dark matter. 

Predictions on fractional masses ( f ∗ and f DM 

) and on the M ∗/ L s
how a significant dependence on stellar velocity dispersion (as the
eading feature), which reflects the fact that the detailed balance
etween baryons and dark matter and among different stellar popu-
ations, to the first order, have a mass dependence – a consequence
f the hierarchical galaxy assembly history. We also found colour
ignificantly contributed to the stellar predictions ( f ∗ and M ∗/ L ) and
he stellar spin parameter (which reflects the dynamical nature of a
alaxy) to the central f DM 

prediction, essentially reflect the different
hysical mechanisms that shape the target properties of the baryonic
nd dark matter components. 

The investigation in this study is in a way reassuring that galaxy
mages and stellar kinematic maps can provide sufficient information
o disentangle the individual dynamical effects from baryons and
ark matter. Ho we v er, one must note that an y training sample-based
NN, in principle, cannot reach an accuracy that exceeds that for the

raining set itself. It is not only hard to obtain an observational galaxy
ample with unbiasedly estimated properties, but also impossible to
each accurate predictions for a given sample of observed galaxies
y directly applying models that are trained using simulation data,
nd without taking observational effects and selection rules into
ccount. In addition, data uncertainties and uncertainties in the IMF
nd galaxy formation physics may cause biases and systematics when
aking predictions. One potential way to help bridge the gap between

imulations and observations may be to test models trained on one
imulation with another simulation where different galaxy formation
hysics have been implemented, though this is yet to be considered
n any detail. In this regard, great efforts are still required to find ML
odels that can unbiasedly estimate matter composition for observed

alaxies, especially for those ML methods using image data as input.
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