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A B S T R A C T

There is a massive growth in the rate of heterogeneous devices configured in the Internet of Things (IoT)
environment for efficient communication. The IoT devices are limited in resources, and there are no defined
protocols in terms of security during communication in the IoT-based platforms. Several solutions are framed to
make communication secure in the IoT ecosystem. However, the existing schemes need to be more reliable to
handle the cyber threats and unwarranted incidents (such as intrusions, anomalies and attacks) coming from
IoT endpoints owing to the unstructured patterns of IoT data and dynamic network conditions. Moreover,
heavy cryptographic primitives have their deployment challenges due to the resource constraints of the IoT
ecosystem. The dynamic nature of IoT traffic requires flexible and varied rules to handle the threats in different
deployment scenarios. Therefore, a programmable interface enabled through Software-defined Networking
(SDN) can handle heterogeneous threats and incidents in the IoT cyber world. Thus, in this paper, we have
designed a novel framework, SecureFlow, an intrusion detection and dynamic rule configuration system based
on the knowledge-based and data-driven ensemble. The proposed framework is robust and fault tolerant owing
to dual-layer Intrusion Detection System (IDS) and rule configuration modules that can work without one of
them. SecureFlow validated through several experiments performed through emulations in Mininet. The results
depict that the proposed framework is effective and promising.
1. Introduction

Internet of Things (IoT) is a network of dedicated physical objects
(things) that contain embedded technology to communicate and sense
or interact with their internal states or the external environment [1].
Since its inception, IoT has expanded as a revolution, breaking all the
barriers and entering the broader era of smart applications not limited
to just healthcare or smart cities. The growth in IoT technologies led
to expanding the research dynamics in this field. Fig. 1 shows how the
research dynamics related to IoT technologies have matured since its
inception. IoT encompasses a wide range of smart communities (like
smart factories, power systems, etc.) wherein the generated data need
to be guaranteed semantic-aware or logic-based or intent-based [2]
processing and provisioning. Such applications are anticipated to gen-
erate data, send it to the processing systems, receive back the decision
or outcome based on the generated data, and circulate it within the
environment to materialise a specific goal or anticipated activity. It is
anticipated that by 2025, around 75.44 billion things will connected
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across the globe to form a web of data generated at an unprecedented
rate [3]. However, the generated data (i.e., big data) is expected to pose
several challenges for the underlying network paradigms. The volume
and dynamic patterns of the IoT data make it tedious for conventional
network architectures to provide dynamic traffic management policies
and broader flexibility.

The low latency requirements, unstructured patterns of IoT data,
and dynamic network conditions pose a crucial challenge for providing
ultra-reliable services in a connected IoT ecosystem [4]. Any delay or
unwarranted incident or attack can result in functional incorrectness
alongside failing to achieve the temporal guarantees [5,6]. There are
many definitions of unwarranted incidents (or an attack), but we con-
sider an incident as an event (any observable activity) that negatively
affects environments/systems and impacts the business. An incident
can be planned or unplanned and can cause an interruption to a
service or a reduction in the quality of a service. Although there are
several solutions to cope with the challenges caused by unwarranted
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Fig. 1. Ecosystem phases of IoT technologies.

incidents or attacks in connected IoT systems, legitimate and malicious
parties can access the open communication medium, the Internet. Thus,
securing connected IoT systems is vital to the success of any other
performance verticals.

Although IoT requires robust cyber-security primitives, the low
latency requirements and limited computational resources make it
challenging to rely on hard-coded or conventional cryptographic mech-
anisms. In line with this requirement, several existing researchers have
proposed numerous intrusion detection systems (IDS) to handle un-
warranted incidents or attacks in IoT-based environments. Most of
these IDSs are categorised as knowledge-based systems or data-driven
approaches. Knowledge-based IDS needs a knowledge repository that
provides the legitimate network profile, and any activity (or action) de-
viating from the legitimate network profile is termed as an intrusion [7–
9]. For instance, Kreibich and Crowcroft [10] proposed a mecha-
nism to generate the attack signatures for network IDS automatically.
The proposed system adopts pattern-matching methods and applies
compliance checks at several layers in the honeypot system. Meiners
et al. [11] proposed a hardware-based regular expression matching
mechanism that uses Ternary Content Addressable Memories for deep
packet inspection. However, given the modern-day IoT environment,
the proposed systems were not designed to meet their requirements.
Garg et al. [12] proposed a probabilistic approach using a set of data
structure signatures to design an anomaly detection system for the
Internet of Vehicles. However, this system uses signature verification
to detect malicious nodes only.

The data-driven IDS use machine learning models to extract knowl-
edge from a large dataset based on functions, rules or policies. These
help to understand/extract varied data patterns and predict the ma-
licious or anomalous behaviours in the data traffic [13]. In another
work, Verma et al. [14] explored the benefits of integrating machine
learning classification algorithms to secure the various attacks in the
IoT environment. Eskandari et al. [15] introduced an intelligent IDS
named Passban to safeguard the IoT devices configured in the smart
cities. Similarly, Kumar et al. [16] proposed a novel unified IDS to
protect the IoT-based environment from four attacks: exploit, Denial-
of-Service, probe, and generic. The authors used the UNSW-NB15 data
set to detect malicious activities. In another work, Ferrag et al. [17]
introduced a new approach named RDTIDS for IoT based on classifier
techniques such as decision tree and rule-based approaches. Singh
et al. [18] proposed a deep learning-based approach to filter intrusions
in IoT-edge ecosystems. The authors used deep belief networks to
improve the accuracy of intrusion filtration. Garg et al. [19] adopted
Restricted Boltzmann Machine and Unscented Kalman Filter to under-
stand the profile of normal and abnormal behaviour. Yang et al. [20]
proposed a neural network for an IDS that uses fast optimisation speed
characteristics.
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1.1. Research gaps and motivation

Existing proposals do not consider varied ranges and types of unwar-
ranted incidents (or attacks). Most of the above-discussed approaches
focused on small-scale networks and homogeneous traffic patterns.
However, the increase in the number of IoT devices and heterogeneity
of data patterns increases the chances of attacks or incidents in the
network. Some approaches opted for data-driven solutions, while others
opted for knowledge-driven methods. They have their benefits, but
these systems are limited in their nature and scope, i.e., they focus only
on detecting specific attacks or intrusions rather than on responding to
them (once they are detected) through dynamic reconfiguration. It may
be seen that a majority of the existing proposals do not provide a uni-
fied framework that can respond to unwarranted incidents (or attacks),
help recover the network to pre-attack performance, and report/record
the impact of recovery/mitigation policy or rule for future use. Thus,
we need to devise a broader solution that can provide real-time and
long-time attack (or intrusion) detection that uses a knowledge base
and data capabilities while considering IoT traffic’s dynamic patterns
and characteristics. Moreover, it must ensure a deep intrusion analysis
and root cause diagnosis to decide a remedial policy or a way to restore
the performance of the underlying system to normal at the earliest.

Most existing solutions are static and fixed-function and unsuit-
able for dynamic network paradigms. Conventional networks limit
their capabilities due to stringent fixed-function rules and complex
reconfiguration capabilities. Even if the solution supports dynamic
reconfiguration for responding to unwarranted incidents (or attacks),
the conventional network architecture limits its adaption and appli-
cation. However, Software-defined Networking (SDN) has been widely
anticipated as an alternative to the fixed-function conventional network
technologies for ensuring dynamic reconfiguration and responses to un-
warranted incidents (or attacks) scenarios [21]. SDN provides flexibility
and openness to network management by decoupling the control from
the forwarding devices. Most of the network management and control
tasks are performed at the control plane, making it the network’s brain.
SDN has the potential to meet the dynamic requirement of processing
the data packets generated from the IoT ecosystems [22]. The SDN’s
programmable characteristics help control the network as per require-
ment. The SDN provides real-time visibility of the configured network.
To handle the unwarranted security incidents and attacks in the IoT en-
vironment, Wani et al. [23] proposed SDN-based IDS integrating deep
learning approaches to detect the various anomalies. In another work,
Ashraf et al. [24] presented an SDN-based anomaly detection system
in an IoT-based environment. The authors focused on support vector
machine, k-nearest neighbour, and multiplayer perception approaches
for detecting anomalous traffic.

1.2. Contributions

For this reason, we have designed a novel system known as Secure-
Flow to handle the concerns related to IoT security by leveraging SDN
as a core network architecture. The main contributions of this work are
listed below.

• An ensemble IDS is designed that considers SNORT and Support
Vector Machines (SVM) working in tandem to provide an alert
regarding intrusions and anomalies in IoT traffic.

• An incremental host rating system is designed to forecast the
status of malicious hosts in an IoT network.

• An SDN-based dynamic rule configuration (generation, verifica-
tion and implementation) system is designed to respond to any
unwarranted incidents or attack scenarios.

• A rule impact calculator is designed to score the effectiveness of
the dynamic rule generated by the SDN controller.
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Fig. 2. A SDN-based flow management system.
2. Proposed SecureFlow system architecture

SecureFlow is a two-tier system designed to secure the IoT envi-
ronment by responding to security incidents via SDN-based adaptive
flow rule generation. The proposed approach leverages the benefits of
knowledge-driven and data-driven approaches at two levels, i.e. IDS
and rule generation levels, to ensure the designed system is robust
and tolerant to faults. The critical idea leverages the benefits of both
knowledge-driven and data-driven approaches to determine an appro-
priate response rule for security incidents once detected by IDS. The
key advantages and unique features of this two-tier methodology are
manifold. However, the top five advantages are listed below.

• We can incorporate domain knowledge in the knowledge-driven
models whilst also taking advantage of the dynamic nature and
continuous improvement of data-driven models. By not focusing
on one specific approach, we can build a system that could take
benefits of both approaches simultaneously.

• As two approaches can be used together, but they are not de-
pendent on each other, we can produce results without one
approach’s needs. For example, in the absence of relevant data,
response rules to security incidents can be decided by focusing
on a knowledge-driven approach.

• This hybrid approach can resolve both known and unknown
incidents. Known incidents can be resolved through a knowledge-
driven approach that could implement signature-based, rule-
based, and policy-based intrusion response methodologies, and
a data-driven approach can resolve unknown incidents.

• We can automatically construct a large-scale knowledge base
from the results of the data-driven approach, which can be used
for incident response rule generation. A data-driven approach can
help shorten the ‘‘Knowledge Gap’’ for new incidents and address
the problem of ambiguous knowledge.

• Incidents informed from SDN-enabled environments can be anal-
ysed and resolved by a hybrid approach.

Looking into the above benefits, SecureFlow can address various intru-
sion types in SDN-IoT systems. SecureFlow could respond to two types
of incidents: anomalies and attacks. This feature not only resolves the
attacked systems but also helps to avoid any future attacks that may
3

cause adverse effects on the system. Fig. 2 presents the architecture of
SecureFlow, which consists of the following components:

• IoT Environment Information: Here, an organised collection of
data related to IoT environment performance and device statistics
is done. It consists of two subsystems:

– Database: It stores information the IoT environment pro-
vides related to its devices and the network.

– Data Classifier: It differentiates data per the requirements
of various system components. For example, data required
by a System Verifier differs from data required by a detec-
tion engine or rule generator.

• Anomaly/Intrusion Detection: This layer performs all the net-
work intrusion and anomaly detection activities and generates
the list of infected hosts or hosts with a high probability of
being attacked. We can use log, traffic, and content analysis
tools developed by researchers and Industry to detect intrusions
and anomalies in the IoT environment. These systems include
IDSs, Network Address Translation (NAT), Security Information
and Event Management (SIEM), Privileged Access Management
(PAM), User and Entity Behavior Analytics (UEBA), and Snort. In
the proposed work, we have used two two-tier IDS that consider
Snort-driven and SVM-driven IDS.

• Rule Generation: This component generates the rules for the
informed malicious hosts. It takes information (and) or data
about incidents and past responses and then analyses to identify
relationships among them based on a knowledge-driven reasoner
or data-driven classifier. It consists of the following components.

– Knowledge Engineering: It is imitating how a human ex-
pert in a specific domain would act and make decisions.
It refers to all technical, scientific, and social aspects of
building, maintaining, and using knowledge.

– Knowledge Repository: A knowledge repository is a facil-
ity that stores obtained knowledge. It systematically cap-
tures, organises, and categorises obtained knowledge.

– Rule Selection: The appropriate rule is selected for the
hosts informed as malicious by two-tier IDS using a hybrid
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approach where knowledge-driven and data-driven method-
ologies can be used simultaneously and independently. It
consists of two components:

∗ Knowledge-driven Reasoner: This component is cru-
cial and takes real-time incidents (converted to knowl-
edge instances) as inputs and then performs causal
reasoning – a decision-making process to derive an
appropriate rule for a reported incident. The reasoner
is a complex, computationally expensive software sys-
tem that operates on knowledge within the knowledge
repository and outputs recommended rule(s) to the
rule deployment subsystem.

∗ Data-driven Classifier: This module applies various
models to select an appropriate rule for a reported
incident from the anomaly detection subsystem. It
correlates the information from ML/DL-based model
training components and passes appropriate rules to
the rule deployment subsystem.

– Machine Learning (ML)/Deep Learning (DL)-based Mode
This module uses data to incrementally improve the model’s
ability to select a better response by training on available
data.

• Rule Deployment: This component performs all the activities
related to flow rules needed to direct/change the network flow
according to the informed host status. It consists of three compo-
nents: Rule verification, prioritisation, and implementation.

– Rule Verification: Rule verification checks that the gen-
erated rule is appropriate for the reported host incident.
It is a valuable feature that evaluates the rule effective-
ness, calculated after response deployment as a rule impact
score. The selected rule can be evaluated by an analyst for
confirmation if required.

– Rule Prioritisation: The rule prioritisation feature ranks
response rules according to a function that depends on
various factors, such as the incident severity, deployment
time, and impact benefits, which help decide the rule’s de-
ployment time. This step also allows for human intervention
so analysts can prioritise rules based on their experience.

– Rule Implementation: This component launches the rules
to the SDN controller. Various techniques can be used to im-
plement the rule appropriate for the host incident reported
as per 1 rule 1 host, 1 rule n hosts, n rule 1 host or n rule n
host relation. The implementation technique can be checked
by an analyst for confirmation if required.

• Human Intervention: It allows experts to check and alter the
rules before deployment.

• Rule Impact Calculator: Rule Impact Calculator feature verifies
the status of the environment through quality checks and counts
impactful response rules for better rule selection for the future.
This component calculates a value to evaluate the effectiveness
of a rule deployed within an IoT environment. It can be calcu-
lated based on various factors defined by domain experts. The
impact score helps to update the knowledge base, which in turn
helps to improve the overall performance of the proposed hybrid
system. For example, by checking if the system performance is
improved/degraded after we have deployed the rule, we can
determine the impact of that rule on that attack. The impact
score is a supplementary input to our system. It consists of three
subsystems:

– Benign Traffic Rule Score: It calculates the score for the
rules deployed for benign traffic.

– Rule Impact Score: It calculates the score for the rules
4

deployed for anomalous traffic, i.e., for informed attack.
Table 1
Notation table.

Notation Abbreviation

𝐀𝐇 Anomaly header
𝐀𝐓 Traffic alert
𝐀𝐃 Domain
𝐁𝐃 Co-domain
𝐁𝐌 Buffer memory
𝐃𝐊𝐃 Decision based on Knowledge-based Model
𝐃𝐃𝐃 Decision based on Data-driven Model
𝐇𝐌𝐀𝐂 Host MAC
𝐇𝐑

𝐌𝐀𝐂 MAC address of rated Host
𝐌𝐀𝐂 Medium Access Control
𝐐𝐆𝐀𝐈𝐍 Quality Gain
𝐐𝐃𝐈, 𝐐𝐀𝐑 Quality During Incident, After Recovery
𝐐𝐁𝐈 Quality Before Incident
𝐑𝐃 Vector Space with 𝐃 dimensions
𝐑𝐌 Vector Space with 𝐌 mapped dimensions
𝐒𝐑 Snort rule
𝐓 Incoming Traffic
𝐓𝐇 Packet header
𝐓𝐊𝐃
𝐋 Malicious Traffic Label

||𝑤||

2 Euclidean Distance
𝐗 Feature Vector

– Host Status: It records the status of the IoT devices (hosts).
If the host was detected as attacked or had a high probabil-
ity of being attacked, the status will be updated accordingly.
Rules that were deployed and the score of each rule for the
host are recorded.

. Proposed ensemble IDS

An ensemble IDS forms the first major component of the proposed
ecureFlow architecture. It forms a two-tier system that coordinates
he Knowledge-based IDS and Data-driven IDS to detect anomalies,
ntrusions and attacks. The incoming traffic from different ports is
assed through these two IDS and according to the collaborative rank-
ng received from both IDS, the traffic is labelled as false or true. The
orking of Knowledge-based IDS and Data-driven IDS is described in

he subsequent sections. The notations used throughout the proposed
ork are highlighted in Table 1.

.1. Knowledge-based IDS

The knowledge-based IDS, also known as Signature-based mech-
nism helps to detects the anomalies and attacks by comparing the
ncoming traffic patterns with the stored patterns in the database
stored in the forms of rules). In the proposed work, Snort,1 one of the

most popular signature-based IDS is used to filter the incoming traffic
using pre-defined set of rules. This model fetch the incoming traffic and
forwards it to the detection engine that generates the alerts according to
the identified malicious activity in the network traffic. The architecture
of Snort-based IDS is shown in Fig. 3.

Snort-based IDS comprises of several components, i.e., packet de-
coder, packet pre-processors, detection engine, and alert GeL (generator
and Logger). These components are described below.

• Packet Decoder: The packet decoder collects the incoming traffic
packets from the network and forwards them to the other com-
ponents for pre-processing. It determines the data packet profile
including the underlying network protocols, size of the packet,
and location. This packet profile is used bu other components
of snort as required. Decoder also checks the packet header to
identify any anomalies (e.g., invalid size) and raise an alert if
required.

1 https://www.snort.org.

https://www.snort.org
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Fig. 3. Snort-driven IDS.

• Packet Pre-processors: The pre-processors receives the packets
from the packet decoder and initiates packet sniffing. The pre-
processor fragments the packets, arrange the data, and modifies
the packets as desired. They enable various services with corre-
sponding pre-processors that match and verify anomalies in the
respective service.

• Detection Engine: The most critical component of Snort is the
detection engine as it is responsible to identify if any unwarranted
activity or intrusion signature exists in data packet. Detection
engine applies a series of rules chained together in configura-
tion files on each packet. If the rules are matched, the action
corresponding to that rule is initiated or the suspicious packet is
dropped. This may also impact the network performance in real
time as it can result in additional latency.

• Alert GeL (generator and Logger): If the detection engine iden-
tifies an intrusion, i.e., a rule is matched, this component logs it
and generates an alert that is configured through a configuration
file.

The workflow of Knowledge-based IDS shown in Algorithm 1. The
incoming traffic packet (𝐓) from a specific host (𝐇) is forwarded to
snort configured environment to check if it is malicious or normal.
Packet decoder generates the information profile of 𝐓. It extracts the
packet header (𝐓𝐇) checks and verifies it for anomalies. If an anomaly
is found in 𝐓𝐇, an header anomaly alert (𝐀𝐇) is generated and a
log is stored in 𝐁𝐌𝐊𝐃

𝐒 . An intimation is sent to the SDN controller
for executing dynamic configuration system (Section 5). If the 𝐓𝐇 is
normal, the information profile is forwarded to the corresponding pre-
processor (based on the type of service). The pre-processor fragment 𝐓,
arrange the data in 𝐓 as required, and modify it so that the detection
system cannot be fooled. The detection engine match profile of 𝐓 with
the configured snort rules (𝐒𝐑). If 𝐓 matches with 𝐒𝐑, an alert (𝐀𝐓) is
generated and an intimation is sent to the SDN controller for executing
dynamic configuration system (Section 5). The Medium Access Control
(𝐌𝐀𝐂) of the host and malicious traffic label (𝐓𝐊𝐃

𝐋 ) is stored in 𝐁𝐌𝐊𝐃
𝐒 .

3.2. Data-driven IDS

Due to the rapid rate of data generation and varied patterns of the
IoT environment, a regular updates are required to add new anomalous
signatures, i.e., knowledge base. This process is time-consuming and
tedious. Thus, a data-driven IDS that uses machine learning must
develop a trustful way to label data packets as malicious or intrusive.
Under this spectrum, the machine learning-based IDS comprises data
pre-processing, classification of packets to find malicious data patterns
5

Algorithm 1 Snort-driven IDS
INPUT: Traffic packet (𝐓), Packet header (𝐓𝐇), Rule: (𝐒𝐑)
OUTPUT: Alerts: (𝐀, 𝐀𝐇), Buffer Memory: (𝐁𝐌𝐊𝐃

𝐒 ), Traffic Label (𝐓𝐊𝐃
𝐋 )

1: while (𝐓 ≠ null) do
2: DECODE → 𝐓
3: CHECK → 𝐓𝐇
4: if 𝐓𝐇 == ANOMALOUS then
5: GENERATE ALERT → 𝐀𝐇
6: CALL SDN Controller
7: EXECUTE → Dynamic Configuration System
8: STORE Host MAC and 𝐓𝐊𝐃

𝐋 → 𝐁𝐌𝐊𝐃
𝐒

9: else
10: PROCEED to next step
11: end if
12: PRE-PROCESS → 𝐓
13: MATCH 𝐓 → 𝐒𝐑
14: if (TRUE) then
15: GENERATE ALERT → 𝐀𝐓
16: CALL SDN Controller
17: EXECUTE → Dynamic Configuration System
18: STORE Host MAC and 𝐓𝐊𝐃

𝐋 → 𝐁𝐌𝐊𝐃
𝐒

19: else
20: FOLLOW Flow Table; FORWARD to next hop
21: end if
22: end while

Fig. 4. SVM-based IDS.

and evaluation/recognition of abnormal behaviour. This work config-
ures SVM to classify the traffic into two defined classes (Normal and
malicious). Fig. 4 depicts a working model of SVM-based IDS.

SVM will help to sort the incoming data packets into two cate-
gories, i.e., normal and anomalous/incident, by differentiating between
their similar features and characteristics. The proposed SVM-based IDS
involves several phases. The work of each phase is discussed below.

3.2.1. Learning phase
The learning phase of the model is defined in the steps mentioned

below.

• The domain (𝐀𝐃), i.e., the values that go into the function and
co-domain (𝐁𝐃), i.e., the values that may possibly come out of
a function, are identified as the possible inputs and outputs. A
function (f) is defined to map 𝐀𝐃 → 𝐁𝐃 to extract the model’s
actual output, i.e., range.

𝑓 ∶ 𝐀𝐃 → 𝐁𝐃 (1)

• The provided input data to be classified using SVM is represented
with a feature vector, 𝐗 as below.

𝐗 ∈ 𝐑𝐃 (2)

where, 𝐑𝐃 is the vector space and 𝐃 represents the dimension of
the input domain.
Now, the transformed feature space for each input feature is
mapped to a transformed vector. This is defined as below.

𝑓 (𝐗) ∶ 𝐑𝐃 ↦ 𝐑𝐌 (3)
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where 𝐌 is the mapped dimension of the vector space.
• The points are represented in the space; now, they need to be sep-

arated according to their features using the hyperplane equation
defined below.

𝐇 ∶ 𝑤𝑇 (𝐗) + 𝑏 = 0 (4)

• For better segregation of the points in the space, the error rate
of miss-classification must be minimal. Calculate the distance
between the data points and the hyperplane line to minimise the
error rate. The equation to find the distance is mentioned below:

𝑑𝐇(𝑓 (𝐗0)) =
|𝑤𝑇 (𝑓 (𝐗0)) + 𝑏|

‖𝑤‖

2
(5)

The euclidean distance ‖𝑤‖

2 for length 𝑤 is calculated by:

‖𝑤‖

2 =
√

𝑤2
1 +𝑤2

2 +𝑤2
3 +⋯ +𝑤2

𝑛 (6)

• Eq. (5) is iterated till the data points are not saturated and the
generated data points are categorised.

3.2.2. Classification phase
• The generated data points in the learning phase are invoked with

the testing file that contains the test data to check the accuracy
of the trained model.

• This phase creates a prediction file used in post-processing activ-
ities.

3.2.3. Post-processing phase
• The generated prediction file contains information on the positive

and negative results of the classification.
• By using positive and negative classifications, the precision and

recall of the trained model are generated.

The working of SVM-driven IDS is depicted using Algorithm 2. After
training the SVM model described in the learning phase, 𝐓 (Traffic)
from various hosts is forwarded to the trained model for verification.
The trained model label 𝐓 as Normal (𝐍) or Malicious (𝐌). If the label
f the traffic is 𝐍, it follows the flow table and moves to the next hop.
f the label of the traffic is 𝐌, an alert flag is raised, and the dynamic
onfiguration system is triggered to generate an appropriate flow rule.
he 𝐌𝐀𝐂 address of the host and malicious traffic label (𝐓𝐃𝐃

𝐋 ) is stored
n the buffer memory (𝐁𝐌𝐃𝐃

𝐒 ).

Algorithm 2 Data-driven IDS
INPUT: Traffic: 𝐓
OUTPUT: Alert: (𝐀), Buffer Memory: (𝐁𝐌𝐃𝐃

𝐒 ), Traffic Label (𝐓𝐃𝐃
𝐋 )

1: while (𝐓 ≠ null) do
2: DECODE → 𝐓
3: PRE-PROCESS → 𝐓
4: MAPPING 𝐓 ⇔ Trained model
5: FETCH Class of 𝐓: {𝐀, 𝐁}
6: if (𝐓 == 𝑀) then
7: GENERATE ALERT → 𝐀𝐓
8: CALL SDN Controller
9: EXECUTE → Dynamic Configuration System
0: STORE Host MAC and 𝐓𝐃𝐃

𝐋 → 𝐁𝐌𝐃𝐃
𝐒

1: else
2: FOLLOW Flow Table; FORWARD to next hop
3: end if
4: end while

4. Host status rating mechanism

In this section, the reliability of the traffic forwarding host is verified
according to the rating provided by the two-tier IDS framework. After
receiving the decisions from Snort-driven and Data-driven IDSs, three
cases can be possible, i.e., (Malicious-Malicious, Normal-Malicious,
and Inconclusive results). The ranking categories and severity labels
6

Table 2
Ranking and severity based on decisions by IDS.

Snort-based IDS SVM-driven IDS Decision Severity

M M Identical (M) H
N M Conflict S
M N Conflict S
N N Identical (N) L
INC N Inconclusive conflict S
N INC Inconclusive conflict S
INC M Inconclusive conflict S
M INC Inconclusive conflict S

M: Malicious; N: Normal; INC: Inconclusive; H: High; S: Suspicious; L: Low.

are defined based on the decision from both categories of IDS. Ta-
ble 2 shows the possible cases and severity defined accordingly. The
non-conflicting decisions are highly severe, whereas the conflicting
decisions are labelled suspicious, requiring further intervention from
a security expert. These cases are described under three categories,
i.e., Identical decisions, Conflicting decisions, and Inconclusive results.
These three cases are described below.

4.1. Case 1: Identical decisions

In this case, after analysing the traffic, the ensemble IDS declared
the incoming traffic as malicious traffic or normal, i.e., knowledge-
driven and data-driven IDS make the same decision. The host 𝐌𝐀𝐂
(𝐇𝐌𝐀𝐂) and generated labels 𝐓𝐊𝐃

𝐋 and 𝐓𝐃𝐃
𝐋 are stored in the 𝐁𝐌𝐊𝐃

𝐒 and
𝐁𝐌𝐃𝐃

𝐒 , respectively. For example, if 𝐇(00∶1𝐵∶44∶11∶3𝐴∶𝐵7) host generated
ten packets and they are forwarded to the configured network. The
ensemble IDS declared all ten packets generated by 𝐇(00∶1𝐵∶44∶11∶3𝐴∶𝐵7)
are malicious; then it is blacklisted.

4.2. Case 2: Conflicting decisions

In this case, the decisions provided by both IDS are conflicting,
i.e., one IDS declared the traffic as 𝐌 (Malicious) and the other IDS
declared it as 𝐍 (Normal). The previous n packets from the host are
inspected in this case. The final decision is taken based on the status
of the previous n packets. Here, the host rating (𝐇𝐑

𝐌𝐀𝐂) is calculated
based on the following equation.

𝐇𝐑
𝐌𝐀𝐂 =

𝐃𝐊𝐃 + 𝐃𝐃𝐃
2

(7)

If 𝐇𝐑
𝐌𝐀𝐂 > 0, the selected 𝐇𝐌𝐀𝐂 is suspicious, it is blocked and

referred for further inspection by a security expert.
Let us take an example where we inspect the previous ten packets (n

= 10) sent by 𝐇(00∶1𝐵∶44∶11∶3𝐴∶𝐵7). Let us say that 𝐈𝐃𝐒1 declared all ten
packets malicious, whereas 𝐈𝐃𝐒2 declared just three packets malicious.
So, the 𝐇𝐑

𝐌𝐀𝐂 is calculated below.

𝐇𝐑
𝐌𝐀𝐂 = 10 + 3

2
= 6.5 (8)

Now, both IDS are saying that at least some of the packets sent by
𝐇(00∶1𝐵∶44∶11∶3𝐴∶𝐵7) are malicious and 𝐇𝐑

𝐌𝐀𝐂 > 0. Thus, the decision will
e that 𝐇(00∶1𝐵∶44∶11∶3𝐴∶𝐵7) is malicious, should be blacklisted.

There can be another case in the conflicting decision where one
DS can provide an inconclusive output (e.g., an error). Let us say that
𝐃𝐒1 declared all ten packets as malicious, whereas 𝐈𝐃𝐒2 provided an
nconclusive decision. Here, we consider the inconclusive decision as 0
nd proceed based on Eq. (avg12). So, the 𝐇𝐑

𝐌𝐀𝐂 is calculated below.

𝐑
𝐌𝐀𝐂 = 10 + 0

2
= 5 (9)

Now, 𝐇𝐑
𝐌𝐀𝐂 > 0. Thus, the decision will be that 𝐇(00∶1𝐵∶44∶11∶3𝐴∶𝐵7)

is malicious, should be blacklisted. Thus, even if one IDS does not
work, provide decisions or provide inconclusive decisions, the proposed
SecureFlow framework can provide a final decision. This proves the
robustness and fault-tolerant capabilities of SecureFlow.
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Fig. 5. Flow table architecture.

Fig. 6. Flowchart of dynamic rule generator.

5. Dynamic rule configuration system

The flow rules are the backbone of SDN architecture and help to
route incoming traffic to the desired destination. The flow rules are
generated, verified, prioritised and installed on the flow table by the
SDN controller. The Flow table contains the information for packet
lookup, forwarding, and blocking. Each flow entry in the flow table has
twelve tuple components related to the packet. These flow entries are
shown in Fig. 5. Whenever a data packet from IoT devices is forwarded,
the packet header matches the flow entry in the flow table to find a
feasible action. The configured switch activates the lookup key to match
the flow entry in the switch flow table. The action key value directs
the packet to the underlying network if a match is found. If a match is
not found, the 𝐏𝐀𝐂𝐊𝐄𝐓_𝐈𝐍 key is generated and forwarded to the SDN
controller to generate a suitable flow rule. SDN controller generates
a new flow entry/rule and forwards 𝐏𝐀𝐂𝐊𝐄𝐓_𝐎𝐔𝐓 to the configured
switches. Accordingly, the packet is directed to the destination. The
proposed dynamic rule configuration system comprises several steps:
rule generation, verification, prioritisation and implementation. The
proposed system is described in the following sections.

5.1. Hybrid and dynamic rule generation

The incoming traffic from various input devices is forwarded to
the connected switches in the configured network. The integrated
knowledge-based and data-driven IDSs analyse the incoming traffic and
update the traffic label parameter accordingly. The packet matches the
flow rules stored on the configured switches in the underlying network.
The mandatory elements of the flow rule are mentioned in Table 3.

The traffic label parameter can depict several anomalies/intrusions
or unwarranted incidents. If a specific type of anomaly/intrusion or un-
warranted incident is found, an ensemble flow rule generator
(knowledge-based and data-driven flow rule generator) generates a new
flow rule. The working of the proposed model is highlighted in Fig. 6.

The two types of flow rule generators proposed in this work are
described below.
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Fig. 7. Knowledge-based rule generation workflow.

Table 3
Flow rule header format.

Category Elements

Rule header

Action
Protocol
Source address
Source port
Direction
Destination address
Destination port

Table 4
Knowledge-based dynamic rule generator.

Traffic label (𝐓𝐋) Action (𝐀𝐜)

Suspicious payload size (𝐓1) Port number of Honeypot (𝐀𝐜1)
𝑅 ≥ 80% (𝐓2) Block (𝐀𝐜2)
Denial of service (𝐓3) Enqueue (𝐀𝐜3)
TT = Multi-cast (𝐓4) Modify field (𝐀𝐜4)

5.1.1. Knowledge-based rule generation
The traditional rule generation method is based on the knowledge

base. There are several components involved in knowledge-based rule
generation. The rule engineering provides domain knowledge, and the
knowledge repository ( Tables 3 and 4) integrates to select an appropri-
ate rule for all the reported incidents. The reported incident is matched
with the action field based on the traffic label. These components are
shown in Fig. 7.

If a match is found, the 𝐏𝐀𝐂𝐊𝐄𝐓_𝐈𝐍 key is generated and forwarded
to the configured controller to generate the new rule as per the traffic
label. The 𝐀𝐜𝐭𝐢𝐨𝐧 value is fetched from the Table 4 according to the
traffic label, and 𝐏𝐀𝐂𝐊𝐄𝐓_𝐎𝐔𝐓 is generated to define the newly gen-
erated rule. It is forwarded to the configured switches in the underlying
network. For example, if the traffic analyser finds an unexpected packet
size, the traffic is forwarded to the connected Honeypot. In case of
flooded messages from the same host, the messages are en-queued
for further investigation, and the payload of the packets is matched.
Accordingly, suitable action is generated to avoid the denial of service
attack in the network. Suppose the same message is multi-casted on
several destinations. In that case, the packets are put on hold, and the
priority of en-queue messages is verified, and accordingly, the traffic is
forwarded to the configured network.

5.1.2. Data-driven rule generation
The modern-day method is driven by data collected from previous

incident scenarios. This data is used to train a machine/deep learning
model. The trained models provide the suitable flow rule entry for any
reported intrusion or unwarranted incident. The proposed data-driven
rule generation approach is shown in Fig. 8.

Once the ML/DL model is trained, the reported incidents (by en-
semble IDS) are used to predict new flow rules in the flow table. The
action about the selected flow entry is selected, and after that, further
processing is initiated.
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Fig. 8. Data-driven rule generation workflow.

Table 5
Rule prioritisation categories.

Severity level Priority

Critical High priority
Minor Guaranteed
Low Best effort

5.2. Rule verification

In the proposed scheme, the rules defined in Table 4 are verified
before implementation. First, the syntax and semantics of the generated
rules are checked and verified if they meet the required criteria and
comply with the proper structure. The traffic label (𝐓𝐋) and Action (𝐀𝐜)
shown in Table 4 are labelled as 𝐓1,𝐓2,𝐓3,𝐓4 and 𝐀𝐜1,𝐀𝐜2,𝐀𝐜3,𝐀𝐜4,
and they are mapped against each other. A wrong match can also lead
to unsuccessful verification. Initially, the flow rule header (𝐅𝐑𝐇) is
fetched to ensure that mandatory header credentials are verified. The
traffic label is mapped with the action label if the header is verified
and compliant. If mapping is correct, the selected rule is labelled as
‘‘Verified Successfully’’ (𝐕𝐒). If mapping is incorrect, the output says
‘‘Verification Failed’’ (𝐕𝐅). If a rule fails verification, the SDN controller
is notified, and the said rule is removed from the record. The SDN
controller initiates the rule implementation process if the rule clears
verification. The above described working of the verification process is
depicted in Algorithm 3.

Algorithm 3 Rule Verification Algorithm
INPUT: 𝐓, 𝐓𝐋, 𝐀, 𝐅𝐑𝐇.
OUTPUT: 𝐕𝐒, 𝐕𝐅
1: while (T ≠ null) do
2: FETCH 𝐓𝐋 → (T1,T2,T3,T4)
3: if (𝐅𝐑𝐇 ⊃ (∀ Elements)) then ⊳ (Refer Table 3)
4: if 𝐓𝐋 ↦ 𝐀 then
5: RETURN 𝐕𝐒
6: else
7: RETURN 𝐕𝐅
8: end if
9: else
10: RETURN 𝐕𝐅
11: end if
12: end while

5.3. Rule prioritisation and implementation

The packet forwarding decision using SDN is a flow-based rather
than a destination-based approach used in the traditional schemes. The
sensitivity of the flow decides the priority of the flow rule implementa-
tion according to the severity of intrusion/incident reports by IDS. If the
severity level is ‘‘CRITICAL’’, the flow is labelled as ‘‘High Priority’’. If
the severity level is ‘‘AVERAGE’’, the flow is labelled as ‘‘Guaranteed’’.
In case the level is ‘‘LOW’’, the flow is labelled as ‘‘Best Effort’’. The
criteria for rule prioritisation is described in Table 5.
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Table 6
Rule impact score.

Gain (𝐐𝐆𝐀𝐈𝐍) Impact Score (𝐑𝐈𝐒)

≥0.75 Very high 1
≥0.5 & <0.75 High 0.75
≥0.25 & <0.5 Average 0.5
<0.25 Low 0.25

According to the priority of the flow rule, the SDN controller
implements the rule as per 1 rule 1 host, 1 rule n hosts, n rule 1 host
or n rule n host relation.

5.4. Rule impact calculator

Introducing new rules in the existing system may affect the system’s
performance. Quality of Service (QoS) helps verify the underlying
system’s performance. In the proposed work, the QoS is calculated at
three stages, i.e., before the incident, during the incident and after
implementing the rule response. For example, the QoS for a specific
metric related to network performance was 100% before an incident.
However, after being subject to the incident, QoS dropped to 10%.
Now, the proposed scheme ensures a response to the incident by
generating a new flow rule. So, the SDN controller generates a new rule
and implements it to restore the network performance. After using the
new rule is implemented, the QoS is re-recorded. If the QoS witnessed a
gain compared to its value before the incident, then the generated rule
has an impact. The performance gain (𝐐𝐆𝐀𝐈𝐍) is calculated as below.

𝐐𝐆𝐀𝐈𝐍 =
𝐐𝐀𝐑 −𝐐𝐃𝐈

𝐐𝐁𝐈
(10)

where 𝐐𝐃𝐈, 𝐐𝐀𝐑, and 𝐐𝐁𝐈 represent quality metric value (in %) during
the incident, after rule response, and before the incident, respectively.

For example, if QoS before the incident was 90%, during the inci-
dent it dropped to 10%, and after response, it raised to 80%, then the
performance gain is calculated as below.

𝐐𝐆𝐀𝐈𝐍 = 80 − 10
90

= 77.78 (11)

Based on the value of 𝐐𝐆𝐀𝐈𝐍, an impact score (𝐑𝐈𝐒) is provided
to the rule under consideration. The category of rule impact score is
highlighted in Table 6.

The effectiveness of the generated rule is calculated to check the
impact of the rule in future decisions. The newly gained impact score
is added to the overall impact score of the rule and varies as per its
performance over its lifetime. The overall impact score (𝐑𝐎

𝐈𝐒) for a
specific rule is calculated as below.

𝐑𝐎
𝐈𝐒 = 𝐑𝐂

𝐈𝐒 ± 𝐑𝐈𝐒 (12)

where 𝐑𝐂
𝐈𝐒 represents the current impact score of a rule.

6. Results and discussion

The proposed SecureFlow framework helps to detect any unwar-
ranted incidents in the incoming IoT traffic using ensemble IDS. Then,
it generates a flow rule through the SDN controller to reconfigure
the network to restore performance. So, to validate the effectiveness,
various experiments have been performed for different subsystems of
SecureFlow. We have segregated the experiments into three parts: (a)
Knowledge-based IDS, (b) Data-driven IDS, and (c) Rule configuration
system. The details about the simulation setup, dataset, and obtained
results are provided in the subsequent section. The proposed system
uses the Linux-based platform to evaluate the performance of Secure-
Flow. Table 7 details the tools/systems used to design the simulated
scenario.

A floodlight controller is deployed in the system design to extract
the real-time outcomes. The topology design included five connected
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Table 7
Simulation design elements.

Platform/Tools Description

Linux (Ubuntu) 18.04
java 1.8.0_312
Apache ant 1.10.5
Apache Maven 3.6.0
Snort 2.9.7.0
Controller Floodlight
Python 3.9.1
Honeypot Server IDS –

Fig. 9. Topology layout.

Fig. 10. Experimental dashboard.

IoT endpoints and one centralised controller, as shown in Fig. 9.
The IoT endpoints connect with the OpenFlow switch for efficient
centralised network supervision in the configured topology. The exper-
imental dashboard of controller accessed on the local-host address is
shown in Fig. 10.

6.1. Knowledge-based IDS

In the first phase of the experimentation, the knowledge-based IDS
uses Snort to detect unwarranted incidents in the incoming IoT traffic.
The signatures/rules of the particular IoT traffic are defined and logged
in a specific file. Further, as per the type of application, the specified
rule files are included in the main snort configuration file for the
filtration process. After this phase, the alerts for intrusion detection are
generated and forwarded to the SDN controller for further action based
on the rule configuration system.

The Snort-based IDS system has been visualised when it is activated
and deactivated. Fig. 11(a) and (b) depict the command system visuali-
sation showing the snort-enabled and standard environments. Here, we
computed the execution time for the proposed Snort-based IDS, depict-
ing minimum, maximum, and average times for the deployed scenario.
Moreover, the snort-based IDS and standard environments are com-
pared based on the computation time, as shown in Fig. 12. Fig. 12(a)
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Fig. 11. Console-based filtration.

Table 8
Dataset statistics.

Features Max. Min. Mean Median Count

duration 57 715 1 218.86 0 22 577
protocol_type tp icmp – – 22 577
service whois IRC – – 22 577
src_bytes 62 825 648 20 10 395.45 54 22 577
dst_bytes 1 345 927 20 2056.02 46 22 577
urgent 3 0 0.0007 0 22 577
num_root 878 1 0.11 0 22 577
srv_count 511 1 211.212 0 22 577
dst_host_count 255 1 101.2356 0 22 577
dst_host_srv 255 1 132.75 0 22 577

shows the minimum execution time the configured environment takes
to handle the generated IoT traffic. In Fig. 11(a), the minimum execu-
tion time (msec) of different packets in both environments is compared,
and the execution time of the snort-based environment is higher as
the extra filtration phase is included. The Snort-enabled environment
consumes additional time to execute the provided traffic, as the traffic
header must be matched with the defined rules to analyse the type
of incoming traffic (Normal/Anomalous). Thus, Fig. 12(b) reflects the
maximum time to evaluate the incoming IoT traffic. The configured
rules in the Snort-enabled environment for anomalous traffic alert
generation increase the overall time consumption. Fig. 12(c) and (d)
show the average time consumption and maximum deviation in time
consumption to process the incoming traffic. Fig. 12(b) and (c) reflect
higher maximum and average execution times for snort-based IDS as
compared to the standard environment.

6.2. Data-driven intrusion detection

Data-driven IDS uses a supervised learning approach, i.e., SVM, to
analyse unwarranted incoming traffic packets’ incidents. The statistical
information about the considered dataset2 is used during training the
SVM model. There are 22 577 entries in the dataset. The details of
the selected parameters during training of the SVM model and the
statistical representation of the dataset are represented in Table 8. The
SVM-based model is trained for anomalous traffic detection on the
Jupyter Notebook platform. The performance of the SVM-based IDS
is measured based on various performance metrics (accuracy, recall,

2 https://www.unb.ca/cic/datasets/nsl.html.

https://www.unb.ca/cic/datasets/nsl.html
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Fig. 12. Experimental results.

precision, and F1 score). The accuracy comes out to be 99.5% for
the deployed model. Similarly, the F1 score, precision and recall are
calculated as 96%, 94% and 98.6%, respectively. Fig. 13(a) depicts
the results obtained for the deployed scenario for SVM-based IDS. We
have performed a protocol-based traffic analysis (tcp, udp, and icmp) by
segregating the dataset for further validation. The accuracy measured
10
Fig. 13. Results obtained for SVM model.

while detecting intrusions in the protocol-wise traffic is shown in
Fig. 13(b).

6.3. Flow rule generation

The ensemble IDS analyses the incoming traffic and alerts the SDN
controller if any incident is detected. The SDN controllers respond
to the incident by generating a flow rule. The flow rule is selected,
verified, prioritised, and implemented for action. The proposed rule
configuration system was set up on Mininet emulator.3 The proposed
topology is deployed, and all the host statistics are implemented as
depicted in Fig. 14(a). After this, the packet transmission is initiated
based on various traffic packets. Fig. 14(b) depicts the icmp packets
transmitted over the deployed scenario. After this, when the incidents
are detected, the alert is generated. For instance, Fig. 14(c) depicts the
alert ‘‘BAD TRAFFIC’’. The priority is set, and a rule is generated based
on which the further action or destination for the packet is decided. The
generated rule is implemented, and the results show that four packets
were transmitted. The rule suggested dropping the packets, and all
four packets were dropped. Fig. 14(c) shows 100% packet loss. The
computation time was 3054 ms, as shown in Fig. 15.

The proposed rule configuration system was also compared for
its performance to the conventional controller (Floodlight). The time
consumption is measured in contrast to an increase in the number of
flow rules generated by the controller. The results (as shown in Fig. 15)
depict an increase in time consumption, but this increase is negligible.
This proves the effectiveness of the proposed system.

3 http://mininet.org.

http://mininet.org
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Fig. 14. Implementation of flow rule configuration system.

Fig. 15. Time consumption.
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7. Conclusion

This paper introduces SecureFlow, an ensembled framework for in-
trusion detection and dynamic rule configuration for IoT environments.
The proposed framework integrates knowledge-based and data-driven
IDS to provide a dual-level detection system that generates alerts and
rates the malicious hosts accordingly. After this, the dual-layer rule
configuration module generates a response in the form of new rules,
verifies the generated rules, prioritises them, and finally implements
them to restore the affected IoT network. The SDN-enabled environ-
ment allows customising the rules according to the detected incidents
and responding dynamically. The proposed framework was validated
in a simulated environment, and the performance was measured for
various sub-systems: Snort-based IDS, data-driven IDS, and rule config-
uration module. The proposed scheme provides promising results based
on standard performance metrics (such as execution time, deviation
time, accuracy, and many more). The scenario to depict the bad traffic
in the configured IoT network and the working of the rule configuration
modules is also depicted. This work includes limited attack scenarios
and rules for validation. So, the future work can include validations at
scale considering diverse range of attacks/incidents and data quality
concerns for real-time applications.
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