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Abstract
Symmetry-breaking instabilities play an important role in understanding the mech-
anisms underlying the diversity of patterns observed in nature, such as in Turing’s
reaction–diffusion theory, which connects cellular signalling and transport with the
development of growth and form. Extensive literature focuses on the linear stabil-
ity analysis of homogeneous equilibria in these systems, culminating in a set of
conditions for transport-driven instabilities that are commonly presumed to initi-
ate self-organisation. We demonstrate that a selection of simple, canonical transport
models with only mild multistable non-linearities can satisfy the Turing instability
conditions while also robustly exhibiting only transient patterns. Hence, a Turing-
like instability is insufficient for the existence of a patterned state. While it is known
that linear theory can fail to predict the formation of patterns, we demonstrate that
such failures can appear robustly in systems with multiple stable homogeneous equi-
libria. Given that biological systems such as gene regulatory networks and spatially
distributed ecosystems often exhibit a high degree of multistability and nonlinearity,
this raises important questions of how to analyse prospective mechanisms for self-
organisation.
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1 Introduction

Nature exhibits diverse structures in the organisation of life across spatial and temporal
scales. Elaborate animal coat patterns (Koch and Meinhardt 1994), emergent territory
boundaries between predators (Potts and Lewis 2016), and complex spatiotemporal
arrangements of slime moulds (Höfer et al. 1995) are a few of the patterns researchers
have sought to understand. A key mechanism underlying such patterns are symmetry-
breaking (Turing) instabilities of spatially uniform equilibria, as explored in Turing’s
influential Chemical basis of morphogenesis (Turing 1952).

Typical analysis of these phenomena is often based on linear stability theory, which
attempts to ascertain the growth or decay of perturbations to homogeneous equilibria.
Due to the nature of the resulting linear equations, such analysis can often be carried
out very easily. In addition to its simplicity, a chief advantage to this approach is its
generality, as it makes minimal assumptions about the precise form of the underlying
system. In turn, this provides reasonably broad statements about the kinds of systems
that can exhibit such instabilities, as illustrated by the fact that Turing self-organisation
in a two-species reaction diffusion system requires a short-range (self)-activator and
a long-range (self)-inhibitor (Meinhardt and Gierer 2000). The simplicity of linear
stability analysis means that, even for many-species systems (Marcon et al. 2016),
one can typically classify parameters of the linearised system into those that exhibit
pattern-forming instabilities (the so-called ‘Turing space’), and those that cannot (Mur-
ray 1982, 2003). There is a large body of work aimed at understanding features of
these Turing spaces in various contexts (Klika and Gaffney 2017; Marcon et al. 2016;
Gaffney et al. 2023), but always using some form of linear stability theory, which is a
dominant feature of the pattern formation literature. Hence, a large number of studies
have focused on linear systems exclusively to make general claims about proposed
mechanisms (Satnoianu et al. 2000; Krause et al. 2020; Haas and Goldstein 2021)
or to design pattern-forming systems with certain properties (Vittadello et al. 2021;
Woolley et al. 2021).

However, when linear analysis identifies a pattern-forming instability, the output
is always a local result, in that transient symmetry-breaking patterns are expected to
form from perturbations of the homogeneous steady state. Beyond the formation of
an initial pattern, linear stability provides no guarantee of a long-time (i.e. stable)
patterned state. Notably, the existence of stable patterns can be guaranteed in the
case of supercritical Turing bifurcations, but only near the boundary of the Turing
space (Vastano et al. 1988). However, the emergence of large-scale, persistent self-
organisation is invariably presumed from the linear analysis (including by the authors),
often based on intuition and experience with simple examples of minimal complexity
(Murray 2003; Krause et al. 2021).

While this intuition has been seen to be correct formany textbook systems, extensive
recent examples highlight that linear stability theory cannot always capture the fun-
damental dynamics of pattern-forming systems, such as instabilities due to subcritical
bifurcations (Champneys et al. 2021; Villar-Sepúlveda and Champneys 2023). Unlike
in the supercritical case, subcritical bifurcations donot typically admit small-amplitude
stable patterned states, even in the weakly nonlinear regime except very near to the
codimension-2 point where the criticality of the bifurcation changes (Breña-Medina

123



Turing Instabilities are Not Enough to Ensure Pattern… Page 3 of 11 21

and Champneys 2014). Such subcritical bifurcations can lead to pattern formation out-
side of Turing space, as implicated in ecological work on resilience due to patterning
(van de Koppel and Rietkerk 2004; Bastiaansen et al. 2020), among other areas. Sub-
critical bifurcations can also lead to spatiotemporal oscillations and chaos (Painter
and Hillen 2011). Other secondary bifurcations can eliminate any stable patterned
branches, so that systems with multiple spatial homogeneous equilibria may form
only transient patterned states; see Figures 8 and 11 in Al-Karkhi et al. (2020) for an
example. Non-normality (in the sense of normal matrices/operators) can also lead to
different predictions from linear theory, as described by Klika (2017). Thus, classical
linear stability conditions are neither necessary nor sufficient for self-organisation.

Here, we demonstrate that this insufficiency of the classical Turing conditions can
occur generically in a range of systems. In particular, we exemplify that the presence of
multistability can robustly spoil typical predictions of patterning by driving a system
to a stable homogeneous equilibrium after the emergence of transient patterns via a
Turing instability. Multistability has become an increasingly prominent topic in gene
regulatory networks (Laurent and Kellershohn 1999; Siegal-Gaskins et al. 2009; Feng
et al. 2016; Bocci et al. 2023), ecology (Suzuki et al. 2021), and evolutionary biology
(Arnoldt et al. 2012), with growing evidence that multistable dynamics are ubiquitous
in biological systems. Here, we show that even bistability of reaction kinetics can alter
the prospect for pattern formation in a robust way, suggesting a need for better tools
to analyze more realistic models of pattern formation in biological systems.

The rest of the paper is organized as follows. In Sect. 2, we present and perform a
linear stability analysis of specificmodels from four distinct classes of pattern-forming
systems. In Sect. 3, we perform thousands of numerical experiments with random
parameters and demonstrate that these models void our long-established intuition for
pattern formation relying on linear stability theory, raising important issues regarding
the connection between textbook analyses and realistic biological systems, which we
discuss in Sect. 4.

2 Models and Dispersion Relations

We consider four models on the spatial domains � = [0, L] or � = [0, L] × [0, L],
with periodic boundary conditions. Parameters are assumed to take positive nonzero
values, with exemplars given in Table 1 for each model, which we will refer to as the
base parameters.

For each model, we perform a linear stability analysis around one of the spatially
homogeneous equilibria and record the growth rate of spatial perturbations corre-
sponding to the eigenvalues ρk of the negative Laplacian given by

∇2wk(x) = −ρkwk(x) (1)

with periodic boundary conditions, ordered via 0 = ρ0 < ρ1 ≤ ρ2 ≤ · · · , with
wk the corresponding eigenfunctions (these are just sinusoidal functions for these
domains and boundary conditions). We then write the maximal growth rate of linear
perturbations corresponding to eigenfunctionwk asλk , so that�(λ0) < 0 and�(λk) >
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Table 1 Base model parameters for the four different models

Model L D a b c d e

Reaction–diffusion 100 30 1.75 18 2 5 0.02

Keller–Segel 80 1 1 1 3 0.8 –

Biharmonic 100 1.45 5 0.9 1 – –

Nonlocal advection 30 1 1 0.45 0.5 20 –

0 for some k > 0 is our criterion for a Turing instability. Analysing the first three
models is standard (Murray 2003; Krause et al. 2021), whereas the linear stability
theory for the nonlocal advection model is given by Jewell et al. (2023). In each case,
we will focus on the linear stability of one equilibrium, but each model will also admit
one other stable equilibrium.

2.1 Reaction–Diffusion System

We first consider a two-component reaction–diffusion system of the form

∂u

∂t
= ∇2u + u − v − eu3,

∂v

∂t
= D∇2v + av(v + c)(v − d) + bu − ev3, (2)

which has a homogeneous equilibrium at (u0, v0) = (0, 0). For the parameters in
Table 1, this equilibrium is stable in the absence of diffusion. There are four further
real equilibria, only one of which is stable in the absence of diffusion. Linearising
Eq. (2) around (u0, v0) = (0, 0) gives perturbation growth rates

λk =
1 − acd − ρk(1 + D) +

√
(1 − acd − ρk(1 + D))2 − 4(ρ2

k D − ρk(D − acd) − acd + b)

2
.

(3)

For the base parameters, the equilibrium (u0, v0) = (0, 0) is Turing unstable (see the
plot of the dispersion relation in Fig. 1a).

2.2 Keller–Segel with Allee Demographics

We next consider a Keller–Segel (Keller and Segel 1970; Horstmann 2003) model of
chemotaxis:

∂u

∂t
= ∇2u − c∇ · (u∇v) + u(b − u)(u − d),

∂v

∂t
= D∇2v + u − av. (4)
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Fig. 1 a–d Plots of λk against the continuous spatial eigenvalue ρk in 1D, with orange dots corresponding
to discrete values ρk from the finite domains of size L given in Table 1, with the equilibrium being perturbed
given in the text. e–h Kymographs of u over time in each model following perturbations from their Turing-
unstable equilibria. Columns correspond to the models of Sect. 2

The system admits three spatially homogeneous equilibria, v0 = u0/a with u0 =
0, d, b. This is bistable in the absence of transport if b > d > 0, with stable equilibria
u0 = 0 and u0 = b. Linearising Eq. (4) around (u0, v0) = (b, b/a) gives perturbation
growth rates

λk =
TKS +

√
T 2
KS − 4QKS

2
, (5)

where TKS = −b(b − d) − a − ρk(1+ D), and QKS = ρ2
k D − ρk(cb − a − Db(b −

d)) + b(b − d)a. For the base parameters, the equilibrium (u0, v0) = (b, b/a) is
Turing unstable (see the plot of the dispersion relation in Fig. 1b).

2.3 Biharmonic Instability

Next, we consider a fourth-order model of self-organisation:

∂u

∂t
= −D∇2u − ∇4u + au(c − u)(u − b). (6)

The spatially homogeneous equilibria are u0 = 0, b, c, which exhibit bistability of
u0 = 0 and u0 = c in the absence of transport for c > b > 0. Linearising Eq. (6)
around u0 = c gives perturbation growth rates

λk = Dρk − ρ2
k + ac(b − c). (7)

For the base parameters, the equilibrium u0 = c is Turing unstable (see the plot of the
dispersion relation in Fig. 1c).
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2.4 Nonlocal Advection

Finally, we consider an integro-differential model of cell aggregation (Painter et al.
2015; Jewell et al. 2023):

∂u

∂t
= D∇2u + au(c − u)(u − b)

−d∇ ·
(
u(1 − u)

∫

�

s
‖s‖

e−‖s‖

2π
u(x + s)dsN

)
, (8)

where dsN is the volume element for N = 1 or N = 2 spatial dimensions. We require
c > b > 0 for stability of the spatially homogeneous equilibria u0 = 0, c in the
absence of transport, while u0 = b is unstable. Linearising Eq. (8) around the u0 = c
equilibrium gives perturbation growth rates

λk = −ac(c − b) − Dρk + c(1 − c)dρk

π2−N (1 + ρk)
N+1
2

. (9)

In 1D and 2D with the base parameters, the equilibrium u0 = c is Turing unstable
(see the plot of the 1D dispersion relation in Fig. 1d).

3 Results

Each of these systems admits a Turing instability for the parameters given in Table
1 for one of their equilibria, illustrated in the dispersion plots of Fig. 1a–d. Hence,
following commonplace reasoning, one might presume that a pattern (a stationary or
spatiotemporal solution bounded away from homogeneous solutions) will form from
perturbations of these equilibria. However, numerical simulations of these models in
1D in Fig. 1e–h and in 2D in Fig. 2 show transient pattern formation that then decays to
a different homogeneous equilibrium, all of which are linearly stable. Briefly, the three
local models are solved using finite differences, and the nonlocal model using a pseu-
dospectral method combined with finite differences. In all cases, implicit timestepping
algorithms are used, with initial data given by normally distributed perturbations of the
Turing unstable equilibrium (of standard deviation 10−2), as detailed in the repository
Krause et al. (2023).

Importantly, this decay to homogeneity occurs robustly across variation in all
parameters. To demonstrate this, we vary parameters and initial conditions as fol-
lows. For each model, we multiply every parameter given in Table 1, including the
domain length L , by a uniformly random number from the interval [0.95, 1.05]
using Latin Hypercube Sampling (Wyss and Jorgensen 1998). We then simulate
the system for t = 104 time units from a different random initial perturbation,
recording both if there is a Turing instability (by analysing the dispersion rela-
tion) and if the system is approaching a homogeneous state (assessed by checking
if maxx(u(104, x)) − minx(u(104, x)) > 10−5). From this, we can determine the
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Fig. 2 Snapshots of transient 2Ddynamicswith Turing instabilities. a–dThe evolution of u for themodels in
Sect. 2 from initial perturbations. Simulations continue to decay towards homogeneous equilibria for times
beyond those shown (see the Videos folder at Krause et al. (2023)). The dynamics of a–c can be explored
interactively using VisualPDE (Walker et al. 2023) at https://visualpde.com/mathematical-biology/Turing-
conditions-are-not-enough

proportion of simulations that exhibited a Turing instability but only patterned tran-
siently froma small randomperturbation of the homogeneous equilibrium.Weperform
104 simulations for all 1D models, and 103 simulations for the 2D models. We omit
the 2D nonlocal advection system from this analysis due to its numerical complexity.

We give results of this analysis in Table 2. For all but the reaction–diffusion model,
an overwhelming majority of cases converged to homogeneous equilibria after tran-
siently patterning via a Turing instability. All of these systems remained within the
Turing space of their corresponding equilibria. The reaction-diffusion model also
exhibited robust convergence to a homogeneous equilibrium, though as the base param-
eters of the reaction–diffusion model lie near the boundary of the Turing space, not
all simulations were Turing-unstable. A small proportion of the reaction–diffusion
and Biharmonic systems were attracted to patterned equilibria, some of which were
domain-fillingwhile others appeared spatially localised (Champneys et al. 2021). Both
the Keller–Segel and 1D nonlocal advection models only exhibited convergence to a
homogeneous equilibrium after transient patterning.

Sufficiently changing the parameters of themodels can give rise to other behaviours.
Rather than detail these observations, we encourage the reader to interactively explore
the three localmodelswithVisualPDE (Walker et al. 2023).1 For instance, by changing

1 https://visualpde.com/mathematical-biology/Turing-conditions-are-not-enough.
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Table 2 Column 2: Proportion of simulations unpatterned at the final time t = 104. Column 3: Proportion
of simulations that were Turing unstable at the initial homogeneous equilibrium. Column 4: Proportion of
the Turing-unstable simulations from Column 3 that decayed to a different homogeneous equilibrium

Model Final state
unpatterned (%)

Turing unstable (%) Turing conditions
insufficient (%)

Reaction–diffusion 1D 93.01 49.76 86.17

2D 99.0 46.5 98.75

Keller–Segel 1D 100 100 100

2D 100 100 100

Biharmonic 1D 99.43 100 99.43

2D 100 100 100

Nonlocal advection 1D 100 100 100

properties of the bistability, one can observe transitions between systems that form no
patterns, favour localised solutions, or admit domain-filling patterns. Indeed, exploring
the Keller–Segel equation interactively via VisualPDE is how we first observed this
behaviour, with the other three models designed to mimic the basic ingredients of
bistability and subcriticality.

4 Discussion

Across a range of models, parameter sets, and different initial conditions, we have
robustly observed that possessing a Turing instability is not sufficient for systems to
form spatial patterns that persist beyond transient timescales (the timescales observed
in the examples in Figs. 1 and 2 are plausibly too short to be compatible with many
examples of biological patterning, though this would depend on the details of nondi-
mensionalisation). Conversely, wave-pinning and other mechanisms can give rise to
spatially structured stable states without a Turing-like bifurcation (Champneys et al.
2021). Therefore, while linear theory can have value in detecting self-organisation, it
is perhaps not as generally valid as most of the textbook examples [e.g. every reaction–
diffusion system in the book (Murray 2003)] might indicate.

We suspect that the almost ubiquitous association between Turing instabilities and
pattern formation is largely because most research on patterning in reaction-transport
systems, including our own (Krause et al. 2021), focuses on small systems of at most
three or four components with relatively mild nonlinearities. Systems such as Eq.
(2) are still in this class of relatively simple systems, but the presence of bistability
might be more indicative of large and complex reaction networks, which likely exhibit
a high degree of multistability. Systematic analyses of such systems are relatively
unexplored, and the results we have shown underscore the importance of studying
them.Additionally, emphasis on supercritical bifurcationswith stable small-amplitude
patterns near the bifurcation point can fail to capture both systems exhibiting subcritical
bifurcations as well as systems far away from the original Turing bifurcation point.
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Among modern tools for far-from-equilibrium analyses, we note that there exist
several approaches for studying spike or pulse dynamics (Wei andWinter 2013; Doel-
man and Veerman 2015). Such approaches have shown the importance of even small
changes to the nonlinearity on the existence and stability of patterned states (Veerman
and Doelman 2013). Contemporary numerical continuation techniques, such as in the
pde2path software (Uecker et al. 2014) can be used to describe the loss of patterned
states we explored here, as shown in Figure 11 of Al-Karkhi et al. (2020). These
approaches, however, typically focus on studying specific models and parameter sets,
and do not lend themselves as easily to studying generic systems, especially those with
more than two components. In contrast, linear stability theory has been employed to
classify larger reaction-diffusion systems (Marcon et al. 2016; Scholes et al. 2019;
Landge et al. 2020). Recent approaches such as Local Perturbation Analysis (Holmes
2014; Holmes et al. 2015) overcome some of these limitations, at the cost of only
strictly applying in particular asymptotic regimes. An important avenue would be the
development of more powerful tools to understand complex and nonlinear systems
in the context of pattern formation without relying on the limitations of looking only
locally in the phase space or in the space of parameters/models. We view this as an
exciting and important frontier for future theoretical work.
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