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Abstract
The current paper is part of a series exploring how to link diversitymeasures (e.g., Gini-Simpson
index, Shannon entropy, Hill numbers) to a distribution’s original shape and to compare parts of a
distribution, in terms of diversity, with thewhole. This linkage is crucial to understanding the exact
relationship between the density of an original probability distribution, denoted by p(x), and the
diversityD in non-uniformdistributions, bothwithin parts of a distribution and thewhole.
Empirically, our results are an important advance sincewe can compare various parts of a distribution,
noting that systems found in contemporary data often have unequal distributions that possess
multiple diversity types and have unknown and changing frequencies at different scales (e.g. income,
economic complexity ratings, rankings, etc.). To date, we have proven our results for discrete
distributions. Our focus here is continuous distributions. In both instances, we do so by linking case-
based entropy, a diversity approachwe developed, to a probability distribution’s shape for continuous
distributions. This allows us to demonstrate that the original probability distribution g1, the case-
based entropy curve g2, and the slope of diversity g3 (c(a,x) versus the ( ) ( )c Alna x a x, ,* curve) are one-to-
one (or injective). Put simply, a change in the probability distribution, g1, leads to variations in the
curves for g2 and g3. Consequently, any alteration in the permutation of the initial probability
distribution, which results in a different form,will distinctly define the graphs g2 and g3. By
demonstrating the injective property of ourmethod for continuous distributions, we introduce a
unique technique to gauge the level of uniformity as indicated byD/c. Furthermore, we present a
distinctmethod to calculateD/c for different forms of the original continuous distribution, enabling
comparison of various distributions and their components.

1. Introduction

Aswe have explained elsewhere (Rajaram andCastellani 2020, Rajaram et al 2023), probability distributions are
often the first quantitative characteristics ofmany systems and datasets, which, as Sornette and others have
articulated (Newman 2010, Sornette 2009), makes themuseful ways to explore diversity, asmeasurements on a
wide range of systems and datasets arewell approximated by their shape, particularly as the sample size increases.
Given their value, we have developed a programof research exploring diversity within probability distributions.
Specifically, we have sought newways to link diversitymeasures (e.g., Gini-Simpson index, Shannon entropy,
Hill numbers) to a distribution’s original shape and to compare parts of a distribution, in terms of diversity, with
thewhole (Rajaram andCastellani 2020, Rajaram et al 2023). Aswe have shown across this research, this linkage
is crucial to understanding the exact relationship between the density of an original probability distribution,
denoted by p(x), and the diversityD in non-uniformdistributions, bothwithin parts of a distribution and the
whole—something the current field has yet to sufficiently address (Chao and Jost 2015,Hsieh et al 2016,
Jost 2006, 2018, Leinster andCobbold 2012, Pavoine et al 2016). This linkage is also empirically useful across the
natural and social sciences, given that, in terms of probably distributions,most real-world systems have unequal
distributions and consist ofmultiple diversity types with unknown and changing frequencies at different levels
of scale (e.g., income diversity, economic complexity indices, rankings). As part of our programof research, we
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have proven our results for discrete distributions. Our focus for this paper is continuous distributions. In both
instances, our strategy for establishing our diversity linkage is our engagement with the literature onHill
numbers (Jost 2018, Gaggiotti et al 2018, Jost 2006,macArthur 1965,Hill 1973, Peet 1974).

1.1. Research strategy
Aswe have explained in a series of papers,Hill numbers are defined by a parameter q that gives preference to
types with either lower or higher frequencies (Rajaram andCastellani 2020, Rajaram et al 2023). This depends on
whether 0< q< 1 or q> 1, respectively. Choosing q= 1means that each type is assigned aweight proportion to
its relative frequency by 1D.We also have that 1D= eH, whereH is the Shannon entropy of the distribution
(Leinster 2021). In terms of advancing our understanding of diversity within distributions,Hill numbers hold a
special place because they provide an all-encompassing structure to seize the various dimensions of diversity
(MacArthur 1965,Hill 1973, Peet 1974), which they do by unifying the principles of richness, evenness, and
dominance into a single numeric index. In doing so,Hill numbers enable the assessment and classification of
diverse systems across the natural and social sciences, including diversity in ecosystems, where they aremost
widely used (Alberdi andGilbert 2019, Gaggiotti et al 2018).

Still, the limitation ofHill numbers is that the precise relationship between the probability of each type
within a distribution and theHill number itself remains undeveloped.Moreover, the original concept of
diversity, as proposed byHill and Jost, is actually insensitive to permutations. Thismeans a shuffling of the
original probabilities in g1 will not change the diversity of the entire distribution.

Hence the purpose of our programof research. In (Rajaram andCastellani 2016)we introduced our new
measure, case-based entropyCcamodification of the ShannonWiener entropymeasureH.As a next step, in
(Rajaram andCastellani 2020)weproved a result relating the probability of each type pi and the total diversity
1DK for a discrete probability distributionwithK types. In amore recent paper (Rajaram et al 2023)we extended
the results by explicitly proving a one-to-one relationship between the original probability distribution g1, the
case-based entropy curve g2 and the slope of diversity curve g3.We also showed that the ratio of diversity of a part

to its cumulative probability denoted by D

c
P

P

1

is ameasure of the degree of uniformity of the partP. Lastly, we also

showed that the original probability distribution can be explicitly reconstructed by looking at the slopes of
secants in the slope of diversity curve g3.

In the current paper, wewill show that analogous results hold true for continuous distributionswith finite
entropy (differential entropy to bemore exact).Wewill show that the case-based entropy curve g2 and the c(a,x)
versus the ( ) ( )c Alna x a x, ,* curve g3, whichwe call the slope of diversity are one-to-one (or injective), i.e., a different
probability distribution g1 gives a different curve for g2 and g3. Thismeans that the graphs g2 and g3 are
determined uniquely by the original probability distribution. A proof of the injectivity will establish the
uniqueness of the degree of uniformity of parts asmeasured byDP/cP. It will also create a uniqueway to compute
DP/cP for arbitrary probability distributions.We also show that the original density p(x) can be reconstructed by
looking at the slope of tangents in the slope of diversity curve.We note once again, that analogous results have
been proven for discrete distributions in (Rajaram et al 2023). Hence, this paper is an extension of those results
for continuous distributionswhich have not been proven before.

We consider a general continuous probability distributionwithfinite entropywith a randomvariableXwith
support (a,b) (with a=−∞ and b=+∞ allowed) and probability density given by p(x).We ask the following
question: Is it possible to determine a connection (direct or indirect) between the probability density p(x) and the
case-based entropy curve (Cc versus c)?More to the point, does a connection exist between the shape of the case-
based entropy curve (Cc versus c) and the probability density p(x)?How canwe use the slope of diversity curve g3
(c(a,x) versus · (( ) ( )c Alna x a x, , ) to compute the degree of uniformity of a given part P and furthermore, how canwe
reconstruct the original probability distribution g1 from the slope of diversity curve g3?

2.Understanding diversity

As ameasure, diversity is used to evaluate the richness and evenness of diversity in probability distributions
(Jost 2006,MacArthur 1965,Hill 1973, Peet 1974). Richness refers to the quantity of types in a distribution;
evenness refers to the equal likelihood of each type of diversity occurring, as highlighted in various studies. Aswe
have explained elsewhere (Rajaram andCastellani 2020, Rajaram et al 2023), this concept of diversity is rooted in
the understanding that if all theK types in a discrete probability distribution have the same probability of
occurrence, then the diversity should be equivalent to the number of typesK. On the other hand, any departure
fromuniformity in probabilities will invariably lead to a decrease in the value of diversity.

Definition 2.1. (ShannonDiversity corresponding to q= 1 forHill numbers)Given a continuous random
variableXwith support (a,b) (with = -¥a and = +¥b allowed) and its probability density p(x), the diversity
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of the entire distribution ( )D a b
1

, is defined as the length of the support of an equivalent uniformdistribution that
yields the same value of Shannon entropyH.

Differential Shannon entropy for continuous distributionswith a density p(x) is defined as below:

( ) ( ( )) ( )( )
( )ò= -H p x p x dxln . 1a b
a b

,
,

Remark 2.1.To avoidmathematical pathologies, wewill only consider probability densities p(x) that have a
finite value for the Shannon entropy ( )H a b, As previously demonstrated by others (Jost 2006,MacArthur 1965,
Hill 1973, Peet 1974) that definition 2.1 suggests that the total diversity 1D(a,b) is given by:

( )( ) =D e . 2a b
H1

,

2.1. An example of biodiversity
In (Jost 2006) a comparison of species of butterfly in two communities was carried out to illustrate the purpose of
using diversity instead of entropy to study the similarities in the communities. A casewasmade that theHill
number 1D is a better index of diversity than Shannon entropy. Data from the canopy and understory
communities of fruit-feeding butterflies was used to illustrate the point of themultiplication principle. Instead
of repeating the same example, let us consider two communities of birds. Let us assume that the first community
has 8 species of birds and each species has 50 birds, and the second community has 10 species of birds each of
which has 50 birds as well. Let us assume furthermore, that the species in the two communities are distinct. The
diversity of the first community is intuitively 8 and that of the second community if 10.Whenwe pool the two
communities, the diversity of the pooled community should be 18 sincewewill then have 18 distinct species that
are uniformly distributed. This is exactly what happens if we use the diversity 1D instead of Shannon entropy if
the original distributions are not uniform. Then 1Dwill still be the right diversity index to use, where now each
species will be counted in amanner proportional to the relative abundance in the pooled community.We extend
this notion in this paper by proving results for general continuous distributions where different parts are being
pooledwith different relative abundances.We also definitively show that the notion of diversity 1D for
continuous distributions and its corresponding case-based diversity and slope of diversity curves are one-to-
one, and the slope of diversity curve can be used tomeasure the degree of uniformity of a continuous
distribution. This establishes for the first time, important results for continuous distributions that need a
separate consideration due to the intricacies involved in proving results using the probability density.

In this paper, we have four objectives:

1. Just like we showed in (Rajaram et al 2023) for discrete distributions, we show a similar way to compute the
ratio D

c
P

P
for arbitrary partsP from the graph of the slope of diversity curve (c(a,x) versus ( ) ( )c Alna x a x, ,* or g3) for

continuous distributions. This will be an important step towards calculating the extent of uniformity of parts
of a continuous distribution.

2. We prove that the slope of the secant ( )S x x,1 2
of the slope of diversity curve can be used to compute the degree of

uniformity of an arbitrary part P= (x1, x2) of the original continuous distribution denoted by
( )

( )

D

c

x x

x x

1, 2

1, 2

.

3. We show that the original continuous distribution g1 can be reconstructed using the slope of the tangent of
the slope of diversity curve g3.

4. Finally, we show that the naturalmap between the original continuous distribution g1, the case-based entropy
curve g2, and the slope of diversity curve g3 is one-to-one or injective, thereby establishing that two different
original distributions g1 will always lead to different curves g2 and g3. This will bridge the gap in connecting
theHill numbers to the formof the original continuous distribution.

In essence, this paper is an extension of (Rajaram et al 2023) for continuous distributions.
The paper is organized as follows: In section 3we prove the results in the first two objectives. In section 4, we

prove the third objective above. In section 5, prove the fourth objective. In section 6we demonstrate our results
for the example of the continuous exponential distribution. In section 7, wewill end the paperwith some
observations on our findings.

3
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3. Computing D

c
P

P
for partsP of a continuous distribution

Webegin by recalling two ‘parts-to-whole’ formulae for discrete distributions, whichwe proved in (Rajaram and
Castellani 2020).

Theorem3.1.Given a discrete probability distribution similar to table 1, the diversity of the distribution Dq
K for a

system or dataset (be it complex or otherwise), and the diversities of its disjoint parts Dq
Pi
and their respective

cumulative probabilities cPi
are associated as follows:

( )=
Î

D
D

c
, 3K

P

P

P

c
1

1

i

i

i

Pi

⎜ ⎟
⎛
⎝

⎞
⎠

and

( )
( )

å=
Î

- -

D c
D

c
. 4q

K
P P

P

q
P

P

q1

i

i
i

i

q
1

1

⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟

Wenote that equations (3) and (4) are simply theweighted geometric and arithmeticmeans (of order 1− q)

respectively of the ratio( )D

c

q
Pi

Pi

.We also note that = D DlimK q
q

K
1

1 . The following corollary can be easily proved

using the same technique as in the proof of theorem3.1 in (Rajaram andCastellani 2020).

Corollary 3.1.Given a discrete probability distribution similar to table 1, let the part ⋃=P Pi i be a disjoint union of
sub-partsPi. Then, the diversity of the part Dq

P and the diversities of disjoint sub-parts Dq
Pi
and their respective

cumulative probabilities cPi
are related as follows:

( )=
Î

D

c

D

c
, 5P

P

c

P P

P

P

c1 1P

i

i

i

Pi

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

and

( )
( )

å=
-

Î

-

c
D

c
c

D

c
. 6P

q
P

P

q

P P
P

q
P

P

q1 1

i

i
i

i

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Remark 3.1.We remark that in general, there is nomonotonic relationship between the diversity of continuous
and discrete distributions. For example, we could consider the uniform distribution in the discrete case wheren

=pi N

1 for i=1,K,N and its counterpart in the continuous casewhere ( ) =
-

p x
b a

1 on the interval (a,b). The
diversity of the discrete uniformdistribution isN and that of the continuous one is simply b− a. One can adjust
N or ( )-b a tomake the diversity of the discrete uniformdistribution to be equal to, less than or larger than the
diversity of the continuous uniformdistribution. In general, due to thewide variation in shapes of distributions,
theres no universal comparison that can bemade between all continuous and all discrete distributions.However,
given that the development of continuous distributions requires a separatemathematical treatment due to the
intricacies involved in using a probability density, the proofs of the results are different and need to bewritten
separately. For example, to reconstruct the original probability density from the slope of diversity curve in
theorem4.1, we have to use the slope of the tangent instead of the secant. Hence, thematerial in this paper for
continuous distributions requires a separate consideration fromdiscrete distributions.

Table 1.General dataset with complexity types xi each having a
probability pi and a frequency fi.

X P F

x1 p1 f1
x2 p2 f2
x3 p3 f3
M M M
xJ pJ fJ
M M M
xK pK fK
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Wenow state and prove themain theorem for continuous distributions. This is the first time that it has been
proven for continuous distributions.We note that wewill only consider the case q= 1 and hence omit the left
superscript in 1D and simply denote the diversity byD fromnowon.

Theorem3.2. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy andwith = -¥a and
= +¥b permitted. Let ⋃=P Pi i be a disjoint partition of a part ( )ÌP a b, . Then the following is true:

( )=
Î

D

c

D

c
. 7P

P

c

P P

P

P

cP

i

i

i

Pi

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

PROOF.Recall the following definitions.

( ) ( )
( )ò= -

=

H p x x dx

D e

ShannonEntropy: ln

Diversity:

a b

H

,

Let ( )ò=c p x dxP P
be the probabilitymass function ofP. Note that cPi

is defined in a similarmanner. Also,

( ) ( )=p x p x cP P Pi i i
is the normalized probability density for the part Pi (same definition forP).Thenwe have the

following:

{ }( ) ( ( ))

( ) [ ( ( )) ( )]

( ) ( ( )) ( ) ( )

( ) ( ( ))

ò

ò

ò ò

ò

= -

= - -

= - +

= -

=  

D p x p x dx

p x

c
p x c dx

c
p x p x dx c p x dx

c
c

p x p x dx

exp ln

exp ln ln

exp
1

ln ln

exp
1

ln .

P
P

P P

P P
P

P P
P

P
P

P
P P

1

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

Hence, we have { }( ) ( ( ))ò= - p x p x dxexp ln .D

c c P

1P

P P
Thus,

{ }( ) ( ( )) ( )ò= -
D

c
p x p x dxexp ln . 8P

P

c

P

P

⎜ ⎟
⎛
⎝

⎞
⎠

Note that following the same steps for the part Piwehave

( ) ( ( )) ( )ò= -
D

c
p x p x dxexp ln . 9P

P

c

P

i

i

Pi

i

⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨⎩

⎫
⎬⎭

Using information from the two equations above, and recalling thatUiPi is a disjoint partition

{ }( ) ( ( ))

( ) ( ( ))

( ) ( ( ))

( ) ( ( ))

ò

ò

ò

ò

å





= -

= -

= -

= -

=

È

D

c
p x p x dx

p x p x dx

p x p x dx

p x p x dx

D

c

exp ln

exp ln

exp ln

exp ln

.

P

P

c

P

P

i P

i P

i

P

P

c

P

i i

i

i

i

i

Pi

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

⎛
⎝

⎞
⎠

This proves the Theorem. ,
Wemake some definitions to establish some notation to prove our next theorem.

Definition 3.1.Wedefine

· ·
( )

( ) ( )
= =A

D

c D
A

D

c D
and 10P

P

P a b
P

P

P a b, ,
i

i

i

to be the average case-based entropy per unit cumulative frequency for the part P and the sub-partPi
respectively.
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Definition 3.2. Let ( )=P a x, be a part for a continuous probability distribution on (a, b), with = -¥a and
= +¥b allowed. The graph of ( )c a x, on the x-axis versus ( )( ) ( )c Alna x a x, ,* on the y-axis is defined as the slope of

diversity curve. Also, the slope of the secant joining the points ( ( ))( ) ( ) ( )c c A, lna x a x a x, , ,1 1 1
* and

( ( ))( ) ( ) ( )c c A, lna x a x a x, , ,2 2 2
* on the slope of diversity curve is denoted by ( )S x x,1 2

.

We next define the degree of uniformity of a part P= (x1, x2)

Definition 3.3. Let ( )=P x x,1 2 be a part for a continuous probability distribution on (a, b), with = -¥a and

= +¥b allowed. The ratio ( )

( )

D

c

x x

x x

1, 2

1, 2

is termed as degree of uniformity of the part ( )=P x x,1 2 .

Remark 3.2. In (Rajaram et al 2023), we have justified the usage of this terminology by showing the intuition
behind how the ratio D

c
P

P
is an accuratemeasure of the degree of uniformity of the part P in a discrete distribution.

The same intuition carries over for a continuous distributionwith a part ( )=P x x,1 2 .

Definition 3.4. Let p(x) be a probability density function (pdf) on (a, b)with = -¥a and = +¥b permitted.

Then the graph of ( )c a x, on the x-axis versus ( )
( )

(
=C a x

D

D,
a x

a b

,

,
on the y-axis is called the case-based entropy curve.We

denote these curves by g2. The graph of ( )c a x, versus · ( )( ) ( )c Alna x a x, , is called the slope of diversity curve. This is
denoted by g3.

We now state and prove a theorem that relates the slope of secant ( )S x x,1 2
and the degree of uniformity.

Theorem3.3. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy andwith = -¥a and
= +¥b permitted. Let ⋃=P Pi i be a disjoint partition of a part ( )ÌP a b, . Then the following are true:

⟺ ( )( )

( )

( )

( )
( ) ( )

<
=
>

<
=
>

D

c

D

c
S S . 11

x x

x x

x x

x x
x x x x

,

,

,

,
, ,

1 2

1 2

3 4

3 4

1 2 3 4⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( )

( )
( )=

D

c
De . 12

x x

x x

S,

,

x x1 2

1 2

1, 2

Proof 3.1 Recall that

( ) å= =
D

c

D

c
c c, with . 13P

P

c

i

P

P

c

P
i

P

P
i

i

Pi

i⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Thus,

( )=D D . 14c

i

cP Pi

Dividing both sides of equation (13) by the corresponding sides of equation (14),

( )=A A .P
c

i
P

cP
i

Pi

Taking the natural logarithmof both sides, we get

( ) ( )å=c A c Aln ln .P P
i

P Pi i

LetP= (a, x2); P1= (a, x1) andP2= (x1, x2)with a� x1� x2. Thenwe have,

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )= +c A c A c Aln ln ln .a x a x a x a x x x x x, , , , , ,2 2 1 1 1 2 1 2

Rearrangingwe get

( )
( ) ( )

( )( )
( ) ( ) ( ) ( )

( ) ( )
=

-
-

A
c A c A

c c
ln

ln ln
.x x

a x a x a x a x

a x a x
,

, , , ,

, ,
1 2

2 2 1 1

2 1

Noticing that the right-hand-side of this equation is the slope of the secant line ( )S x x,1 2
for the graph of c(a,x) versus

( )( ) ( )c Alna x a x, , as defined in definition 3.2. By the same development as in the discrete case, let ( )S x x,1 2
be the slope

of the secant line joining the points ( ( ))( ) ( ) ( )c c A, lna x a x a x, , ,1 1 1
and ( ( ))( ) ( ) ( )c c A, lna x a x a x, , ,2 2 2

. Thenwe have
( )( ) ( )=A Sln x x x x, ,1 2 1 2

, or

( ) ( )=A e ,x x
S

. x x
1 2

1. 2
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or,

( )

( )
( )=

D

c
De .

x x

x x

S,

,

x x1 2

1 2

1, 2

Thus,

⟺( )

( )

( )

( )
( ) ( )

<
=
>

<
=
>

D

c

D

c
S S ,

x x

x x

x x

x x
x x x x

,

,

,

,
, ,

1 2

1 2

3 4

3 4

1 2 3 4⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

which is the continuous version of the discrete result. ,

Remark 3.3.Theorem 3.1 relates the degree of diversity D

c
P

P
of a given part P of a continuous distribution as the

weighted geometricmean of the degree of diversity of
D

c

Pi

Pi

of its sub-partsPiwith the cumulative probabilities cPi

as theweights. Theorem 3.3means that when comparing the slopes of secants ( )S x x,1 2
of the slope of diversity

curve, we are also comparing the degrees of uniformity in the parts ( )x x,1 2 and ( )x x,3 4 . It alsomeans that we can

compute the degree of uniformity ( )

( )

D

c

x x

x x

1, 2

1, 2

of an arbitrary part ( )=P x x,1 2 directly from the slope of secant ( )S x x,1 2

of the slope of diversity curve. This is themain importance of the two results in this section.

4. Reconstruction of the original probability distribution using the slope of tangent sx of
the slope of diversity curve g3

So far, all of the results so far from the discrete case have carried over. In this section, we show that the slope of
the tangent in the slope of diversity curve allow us to reconstruct the original density p(x).We note that every
point on the slope of the diversity curve is of the form ( ( ))( ) ( ) ( )c c A, lna x a x a x, , , .

Definition 4.1.Given the slope of diversity curve, we define sx as the slope of the tangent of this curve at a general
point given by ( ( ))( ) ( ) ( )c c A, lna x a x a x, , , .

Theorem4.1. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy andwith = -¥a and
= +¥b permitted. Let sx represent the slope of the tangent at a general point on the slope of diversity curve denoted

by ( ( ))( ) ( ) ( )c c A, lna x a x a x, , , . Then the following is true:

( ) ( )
( )

=
-

p x
e

D
. 15

s

a b,

x

Proof 4.1 By the definition ofA(a,x), and by taking the natural log of equation (21), we have the following:

( ) ( ) ( )

( ) ( ( )) ( )

( )
( )

( ) ( )

( ) ( ) ( )
( )

( )
( ) ( )

( )
( ) ( )ò

=

 = -

=- -

A
D

c D

c A c
D

c
c D

p t p t dt c D

;

ln ln ln

ln ln .

a x
a x

a x a b

a x a x a x
a x

a x
a x a b

a x
a x a b

,
,

, ,

, , ,
,

,
, ,

,
, ,

Differentiate with respect to c(a,x). Recall that c(a,x) is the x-axis on the slope of diversity curve, using theChain
Rule, dividing, and employing the Fundamental theoremofCalculus, we have

[ ]
{ ( )}

( ) ( ( ))

( )
( )

( ) ( ( ))
( )

( )

( · ( ))

( )
( ) ( )

( )

( )

ò
= = -

= - -

= -

-

s
d

d c
c A

p t p t dt

c
D

p x p x

p x
D

D p x

ln

ln

ln

ln
ln

ln .

x
a x

a x a x

d

dx a x

d

dx a x,
, ,

,

,

⎧
⎨⎩

⎫
⎬⎭

Thus,

· ( ) ( )=  =-
-

D p x e p x
e

D
.s

s
x

x

,
Thismeans that the slope of the tangent of the slope of diversity curve at c(a,x) explicitly determines the value

of p(x) at x. Figure 1 illustrates the last two theorems.
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Remark 4.1.Wenote that the result in theorem 4.1 is the continuous analog of a similar result that was proven in
(Rajaram et al 2023)which states that the original discrete probability can be reconstructed using the slope of the
secant of the slope of diversity curve. The secant in the discrete version became the tangent in the continuous
version in theorem4.1. Furthermore, theorem4.1 explicitly relates the slope of tangent sx of the slope of diversity
curve g3 back to the original continuous probability distribution g1. This is themain importance of theorem 4.1.

Remark 4.2. In (Rajaram et al 2017) a direct comparison of the Boltzmann, Fermi andBose–Einstein
distributionswasmade using the case-based entropy idea. The celebrated Boltzmann distribution in one
dimension is given as follows:

( ) ( )b
= =

b
-p E

k T
e

e

1
16B D

B
E,1

E
kBT⎜ ⎟

⎛
⎝

⎞
⎠

where kB is the Boltzmann constant and ( )b =
k T

1

B
.We notice a striking similarity between equation (16) and

equation (15).More specifically, l b= =x E, and hence, b= -s E 1x . This shows an interesting relationship
between the slope of tangent sx and the energyE. Also, equation (15) resembles the general relationship between
theHamiltonian of the canonical ensemble and the probability of states, In general, for various choices of
ensembles in statisticalmechanics, it would be interesting to see if the slope of tangent sx for the distribution of
states can be related to theHamiltonian.Wewill try and explore this in future papers.

5. Injectiveness of the graphs g1, g2, and g3

In this section, we prove that there is a unique injective correspondence between the original density g1, the case-
based-entropy curve g2 and the slope of diversity curve g3. Thismeans that the shape of original continuous
distribution uniquely determines the shapes of both case-based entropy and slope of diversity curves.

Theorem5.1. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy andwith = -¥a and
= +¥b permitted. Also let 1 be the set of graphs of the original probability density p(x), 2 be the set of graphs of

the corresponding case-based entropy curves, and 3 be the set of graphs of the corresponding slope of diversity curves,
with g1, g2 and g3 denoting elements (graphs) in 1, 2 and 3 respectively. In addition, let Tj k be themap from the
graph j to the graph k where =j k, 1, 2, 3. Thenwe have the following:

( )
~

 T : 17j k j k

is injective (or one-to-one).

Remark 5.1.Wenote that themap 
~

 T :j k j k is taken to be themap between Î gj j and Î gk k with

points taken as they appear from left to right.

PROOF.

1. T1 2: Let Î g g,a b
1 1 1. It will be shown below that ( ) ( )= T g T ga b

1 2 1 1 2 1
implies that =g ga b

1 1
.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

=  = " Î 

= " Î  = " Î

 T g T g c C c C x a b

c c x a b p x p x x a b

, , ,

, , .

a b
a x
a

a x
a

a x
b

a x
b

a x
a

a x
b a b

1 2 1 1 2 1 , , , ,

, ,

Figure 1. Slope of tangent of the slope of diversity curve.
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( ) ( )=  = T g T g g gHence, .a b a b
1 2 1 1 2 1 1 1

This shows that themap T1 2 is injective.

2. Let Î g g,a b
2 2 2. It will be shownbelow that ( ) ( )= T g T ga b

2 3 2 2 3 2
implies that =g g .a b

2 2

( ) ( ) ( ( )) ( ( )) ( )

( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )

( )

( )

( )

( ) ( )

=  = " Î

 = = " Î

 =  =  = " Î

= " Î

 T g T g c c A c c A x a b

c c c A c A x a b

A A
D

D c

D

D c

D

D

D

D
x a b

C C x a b

, ln , ln , .

and ln ln ,

,

,

a b
a x
a

a x
a

a x
a

a x
b

a x
b

a x
b

a x
a

a x
b

a x
a

a x
a

a x
b

a x
b

a x
a

a x
b a x

a

a b a x
a

a x
b

a b a x
b

a x
a

a b

a x
b

a b

a x
a

a x
b

2 3 2 2 3 2 , , , , , ,

, , , , , ,

, ,
,

, ,

,

, ,

,

,

,

,

, ,

* *

* *

( ) ( )=  = T g T g g gHence, .a b a b
2 3 2 2 3 2 2 2

This shows that themap T2 3 is injective.

3. Let Î g g,a b
3 3 3.Wewill show below that ( ) ( )= T g T ga b

3 1 3 3 1 3
implies that =g g .a b

3 3

( ) ( ) ( ) ( ) ( )

· ( ) ( ( ))

· ( ) ( ( )) ( )

( )

( ( ) ( ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( )

( )
( )

( )

( )

( )
( )

( ) ( ) ( ) ( ) ( ) { }

ò

ò

=  = " = " Î

= -

= - = " Î

= = = " Î

= " Î

 T g T g p x p x c c x a b

D c
c

p x p x dx

c exp
c

p x p x dx D x a b

A
D

D c

D

D c
A x a b

c c A c c A x a b

, .

Also, exp
1

ln

1
ln , .

Hence, , ,

and , ln , ln , .

a b a b
a x
a

a x
b

a x
a

a x
a

a x
a

a x

a a

a x
b

a x
b a x

b b
a x
b

a x
a a x

a

K a x
a

a x
b

K a x
b a x

b

a x
a

a x
a

a x
a

a x
b

a x
b

k
b

3 1 3 3 1 3 , ,

, ,
, ,

,
, ,

,

,
,

,

,

,
,

, , , , , 1, 2
* *

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

( ) ( )=  = T g T g g gThus, .a b a b
3 1 3 3 1 3 3 3

This shows that themap T3 1 is injective.

Remark 5.2.Theorem 5.1 says that, just like in the discrete case, there is a one-to-one correspondence between
the original density g1, the case-based-entropy curve g2 and the slope of diversity curve g3. Thismeans that the
shape of g1 uniquely determines the shapes of both g2 and g3 curves.

6. Examples

6.1. Exponential distribution
In this section, we compute the slope of diversity curve for the general exponential distribution and show that we
can reconstruct the original distribution from the slope of diversity curve (and hence equivalently from the case-
based entropy curve).

Suppose that p(x)= λe−λ x; x ä (0,∞ ).
We calculate entropy as follows:
Entropy:

( ) ( ( ))

( ( ) )

( )

( ) ∣ ∣

( ) · · ∣

( )

( ) ò
ò

ò ò

ò

l l l

l l l l

l l
l

l
l l

l l
l l

l

= -

= - -

= - +

= - +
-

+

= - +

= -

l

l

l l
l

l

¥
-¥

¥

¥
-

¥
-

¥
-

-

¥

-
¥

¥
-

-

¥

H p x p x dx

e x dx

e dx xe xdx

e xe
e dx

e

ln

ln

ln

ln
1

ln
1

1 ln .

x

x

x x
x

x

0,

0

0

2

0

0 2
0

0

2 0

⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨⎩

⎫
⎬⎭
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Since ( )( ) l= -¥H 1 ln0, , we know that

( )
( ( ))( )

l
= = =l

¥
-¥D e e

e
.H

0,
1 ln0,

For x ä (0,∞ ), let’s consider (0, x) as an interval part. Then

( ) ( )( )
( )

( )
)ò l= Î = = -l l- -p

p t

c
t x c e, for 0, and 1 e .x

x
x

x
t dt x

0,
0,

0,
0

In other words,

(
( )( ) )

l
=

-
Î

l

l

-

-
p

e
t x

1 e
, for 0, ;x

t

x0,

( )
( ) ( )( ) ( ) ( )ò ò
l l

= - = -
- -

l

l

l

l

-

-

-

-
H p p dt

e

e

e

e
dtln

1
ln

1
.x

x

t t

x t

t

t

t0,
0

0, 0,
0

⎜ ⎟
⎛
⎝

⎞
⎠

Now,

( )
( · ( )( )

( )
)ò l l= -

-
-

l
l l l

-
- - -D

e
e e dt eexp

1

1
ln 1 .x x x

t t x
0,

0,

⎧
⎨⎩

⎫
⎬⎭

Evaluating the inside integral by parts, we have

( ) ( )( ) ( )

( ( ( )))

ò l l l l

l l

- = - - - + -

= - - -

l l l l l

l l

- - - - -

- -

e e dt xe e

e xe

ln ln 1 e 1

1 1 ln .

x
t t x x x

x x
0

So,

( )( )
( )

· ( )( )

( )

l l
=

- - -
-

-
l l

l
l

- -

-
-

  D
e xe

e
eexp

1 1 ln

1
1 .x

x x

x
x

c

0,

x0,

⎧
⎨⎩

⎫
⎬⎭

Dividing,

{ ( )} ·
( )

( )

( )

( )

( )

l
l

= - -
-

l

l

-

-

¥
  

  

D

c

xe

e
exp 1 ln exp

1
.

x

x

D x

x

c

0.

0,

x

0,

0,

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

Thus,

{ }( )

( ) ( )

( )

( )

l= - l

¥

-

  

D

c D
xe

1
exp .

x

x

A

c

x0,

0, 0,

x

x

0,

0,

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Taking the logarithmof both sides

( )( ) ( ) l= - l-c A xeln ,x x
x

0, 0,

where c(0,x)=(1− e−λ x) for xä (0,∞ ).
Note that

{ ( )}
{ }

( ) ( )
( )=s

d

dx
c A

d c

dx
ln ,x x x

x
0, 0,

0,

and

{ ( )}

( )

( ) ( ) l l

l l

= - +

= -

l l

l

- -

-

d

dx
c A e xe

e x

ln

1 ,

x x
x x

x

0, 0,
2

and

( )( ) l= l-d

dx
c e .x

x
0,
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So, sx= λx− 1, which implies that

( )( )
( )

l= = =
l

l

l
-

¥

- +
-p x

e

D

e
e .

s x

e
x

0,

1x

In other words this example illustrates our theoretical work.
Also from figure 2, and since sx= λx− 1 is an increasing function of x sinceλ> 0, it is clear that for disjoint

partitions (x1, x2) and (x3, x4)where x3> x2, the part (x3, x4) ismore uniformly distributed than (x1, x2).

6.2. Power law
In (Castellani andRajaram2016), an empirical comparison of diversity of power law distributions obtained
from real data for various systemswas done using case-based entropy.Here, we consider the power law froma
theoretical standpoint.We consider the power law distribution as below:

Definition 6.1.A continuous randomvariableX is said to follow a power law distribution if its probability
density function denoted by pz(x) satisfies the the following:

( ) ( )

( ) ( )

a
a

a

=
-

> Î ¥

= = -

a

a a

-

- -

p x
x

x

x
x x

Cx C x

1
; where 2; ,

; where 1 . 18

z
min min

min

min
1

⎜ ⎟
⎛
⎝

⎞
⎠

Theorem6.1.Given a power law distribution as in definition 6.1, its entropy is given by

( ) ( )
( )

a
a

a
=

-
+

-
H

x
ln

1 1
. 19min

⎜ ⎟
⎛
⎝

⎞
⎠

PROOF.

( ( )) ( ) ( )a= -p x C xln ln lnz

( ){ ( ) ( )}

( ) ( )

( ) · ( )
( )

( )
( )

· ( )

( )

ò

ò ò

a

a

a
a a

a
a a

= - -

= - +

= - +
+

-
- +

= - +
- +

-
- +

a

a a

a a

a a

¥
-

¥
-

¥
-

- + - + ¥

- + - +

  

H Cx C x dx

C Cx dx C x x dx

C C
x

x
x

C C
x x

x

ln ln

ln ln

ln
1

ln
1

ln
1 1

ln

x

x

p x

x

1 1

2
min

min
1

2
min

1

min

z

min

min min

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

According to howwe have definedCwe have

( ) ( ) ( ) ( )a a= - + -C xln ln 1 1 ln min

Figure 2. Slope of diversity curve for the exponential distribution.
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Using this fact, we can rewriteH as

( ) ·
( )

( )

( ) ( ) ( )
( )

( )

( ) ( )
( )

( ) ( )

a
a a

a a
a

a
a

a
a

a

a
a

a

= - +
- + - +

-

= - - - +
-

+

= - + +
-

=
-

+
-

a- +

H C C
x

x

x x

x

x

ln
1

1

1
ln

ln 1 1 ln
1

ln

ln 1 ln
1

ln
1 1

.

min
1

min

min min

min

min
⎜ ⎟

⎧
⎨⎩

⎫
⎬⎭

⎛
⎝

⎞
⎠

This proves the Theorem. ,

Wedenote the total diversity of the power law distribution ( )¥D x ,min
by the symbolD just for simplicity.

We can easily show that

( )

( )

ò=

= -

a

a

-

-

c C t dt

x

x
1 .

x x
x

x

,

min

1

min
min

⎜ ⎟
⎛
⎝

⎞
⎠

6.3. Slope of diversity curve for a power lawdistribution
In this section, we calculate an explicit formula for the slope of diversity curve of the power law distribution.

Theorem6.2.Given a power law distribution as in definition 6.1, the slope of diversity curve which plots ( )c x x,min
on

the x-axis and ( )( ) ( )c Alnx x x x, ,min min
* on the y-axis has the following explicit formula:

( )
( )

( ) ( ) ( )( ) ( ) ( ) ( )
a

a
=

-
- +

- -c A c cln
1

1 ln 1 . 20x x x x x x x x, , , ,min min min min

Also, the slope of the tangent sx of the slope of diversity curve at ( )c x x,min
is given by:

)
{ ( ) }

( )

( )
a

a

a
a

a

=
-

- - -

= -
-

s c

x

x

1
ln 1 1

ln
1

,

x x x,

min

min

⎜ ⎟
⎛
⎝

⎞
⎠

Proof 6.2 Fromour previous paperwe have

{ }( ) ( ( )) ( )ò= -
D

c
p x p x dxexp ln . 21P

P

c

P
z z

P

⎜ ⎟
⎛
⎝

⎞
⎠

Choosing ( )=P x x,min above, and remembering that )(
( )

( )
=A x,x

D

c D

x x

x x
min

min,

min, *
we get:

( )) ( ) ( ( )) · ( )( ) (
(

( )
)

ò= - - c A x p t p t dt c Dln , ln ln ,x x x
x

x x

H

, ,
x

min min
min,

min

with

( ) ( ( ))

( )( ( ) ( )

( ) ( ) ( )

( ) · ( )
( ) ( )(
(

(

ò

ò

ò ò

a

a

a
a a

-

= - -

= - +

= - +
- +

-
- +

a

a a

a a

-

- -

- + - +
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Substituting this into our expressionwe have
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which proves the Theorem. ,

Remark 6.1.Recall that

( ) ( ) ( )a= = -a a- -p x Cx C x; where 1z min
1

Weknow fromour previous paper that sx is given by:

( ( ) · ) ( ( ) ( )= - = - -s p x D p x Dln ln ln .x z z
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But,
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Hence, the slope of tangent sx can also be back-calculated from the probability density pz(x).We note that the
slope of tangent of the slope of diversity curve at ( )c x x,min

sx increases in a logarithmic fashionwith respect
to ( )c x x,min

.

Remark 6.2. Setting sx=0we can obtain aminimum. In fact, nomatter whatα is, - ( )( )- - =cln 1 1 0,x x,min

when sx=0. And this occurs when ( ) = - »-c e1 0.632x x,
1

min
, as shown infigure 3. Let ( )=x c x x,min
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slope of diversity curve for the power law distribution is
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7. Conclusion

Accurately quantifying the degree of uniformity of probability distributions or its parts is a fundamental idea
that is important due to its potential applications in the realmof studying inequality of resources.While the the
Hill numbers qD provide a good starting point of such a quantification, there exist several limitations. First, the
Hill numbers are insensitive to permutations and hence give the same value for a rearrangement of the original
distribution. This is problematic since the shape of the distribution provides a very important characteristic of
the distribution, namely the regions of abundance or scarcity. Second, theHill numbers in their traditional
sense, do not lend easily to comparison of degree of uniformity (or inequality) of parts of a distribution.

In this paper, we have shown thatmathematical diversity of a probability distribution is a tool that allows us
to quantify the degree of uniformity of a distribution or its parts for continuous distributions. In theorem3.1we

Figure 3. Slope of diversity for a power law distribution showing aminimumat ( ) =c 0.632x x,min .
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established an explicit relationship between the degree of uniformity of a partition P= UiPi and its sub-partsPi
for continuous probability distributions.We also established an explicit way to compute the degree of
uniformity of a given arbitrary part P= (x1, x2) of a continuous distribution using the slope of secant ( )S x x,1 2

of the
slope of diversity curve g3 in theorem 3.3.Wewere able to completely reconstruct the original probability
distribution using the slope of tangent sx of the slope of diversity curve g3 in theorem4.1. Finally, wewere also
able to show that there exists a one-to-one correspondence between the original continuous probability
distribution g1, the case-based entropy curve g2 and the slope of diversity curve g3 in theorem5.1. These results
are the continuous counterparts of the results proved in (Rajaram et al 2023).

Themain application of ourwork is in identifying regions of a given probability distribution that have the
same degree of uniformity (we call this Shannon Equivalent Equiprobable or SEE parts) in a large dataset, based
on our idea ofmathematical diversity derived from information theory (or Shannon entropy to bemore
specific). Once such regions are identified, this gives researchers a starting point to further investigate such sub-
sections of the original data to identify internalmechanisms or principles that led to such an equal degree of
uniformity. One could start by looking at a single variable (which perhaps is an important characteristic of the
dataset), and after identifying the SEE parts, can delve into the distribution of other variables of such parts to
meaningfully explain the SEE behavior. Conversely, given two ormore parts, we can compute and compare the
degrees of uniformity of the given parts and saywhich part ismore or less uniformly distributed compared to the
others.

Another application could be to derive amuch bettermeasure of equality (or inequality) or uniformity (or
non-uniformity) of a part or an entire distribution. For example, in the case of an income distribution, the slope
of diversity curve g3 can be used (by simply drawing secants of equal slope) to identify SEE parts of the
distribution.We can compare the slopes of secant of parts to identify and also quantify the degree of uniformity
of distribution of wealth. This ismuchmore information than theGINI coefficient which (a) is an overall
number and (b) is insensitive to the shape of the distribution. So in a sense, our techniquewill potentially prove
to bemore useful to analyze and quantify inequality in probability distributions by not only characterizing such
an inequality for entire distributions, but also systematically dividing the distribution into SEE parts that have
the same degree of uniformity of income.

In terms of where our programof research goes next, our goal is to advance these results to investigate
distributions such as the power law, which has beenwell known tomodel the tails of several distributions in
reality. For thatmatter, creating a quick toolbox thatwill quickly draw the three curves g1, g2 and g3, alongwith
the ability to draw the secants for g3 and automatically filter out the SEE parts of the original distributional data
for further investigationwill prove very useful.Wewill endeavor to create such a computational toolbox. Lastly,
we intend to apply ourwork to income distributions specifically to show that we can identify SEE parts of the
distribution that will systematically divide the original data into parts that are SEE equivalent (and not just study
the rich and poor parts).We strongly believe that this will lead to better policy formulation for the betterment of
society towards equity in distribution of resources by using our information theoretic approach of diversity.
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