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Abstract

The current paper is part of a series exploring how to link diversity measures (e.g., Gini-Simpson
index, Shannon entropy, Hill numbers) to a distribution’s original shape and to compare parts of a
distribution, in terms of diversity, with the whole. This linkage is crucial to understanding the exact
relationship between the density of an original probability distribution, denoted by p(x), and the
diversity D in non-uniform distributions, both within parts of a distribution and the whole.
Empirically, our results are an important advance since we can compare various parts of a distribution,
noting that systems found in contemporary data often have unequal distributions that possess
multiple diversity types and have unknown and changing frequencies at different scales (e.g. income,
economic complexity ratings, rankings, etc.). To date, we have proven our results for discrete
distributions. Our focus here is continuous distributions. In both instances, we do so by linking case-
based entropy, a diversity approach we developed, to a probability distribution’s shape for continuous
distributions. This allows us to demonstrate that the original probability distribution g;, the case-
based entropy curve g,, and the slope of diversity g5 (c(a,x) Versus the ¢(, v *In A, ) curve) are one-to-
one (or injective). Put simply, a change in the probability distribution, g;, leads to variations in the
curves for g, and g;. Consequently, any alteration in the permutation of the initial probability
distribution, which results in a different form, will distinctly define the graphs g, and g;. By
demonstrating the injective property of our method for continuous distributions, we introduce a
unique technique to gauge the level of uniformity as indicated by D/c. Furthermore, we present a
distinct method to calculate D/ c for different forms of the original continuous distribution, enabling
comparison of various distributions and their components.

1. Introduction

As we have explained elsewhere (Rajaram and Castellani 2020, Rajaram et al 2023), probability distributions are
often the first quantitative characteristics of many systems and datasets, which, as Sornette and others have
articulated (Newman 2010, Sornette 2009), makes them useful ways to explore diversity, as measurements on a
wide range of systems and datasets are well approximated by their shape, particularly as the sample size increases.
Given their value, we have developed a program of research exploring diversity within probability distributions.
Specifically, we have sought new ways to link diversity measures (e.g., Gini-Simpson index, Shannon entropy,
Hill numbers) to a distribution’s original shape and to compare parts of a distribution, in terms of diversity, with
the whole (Rajaram and Castellani 2020, Rajaram et al 2023). As we have shown across this research, this linkage
is crucial to understanding the exact relationship between the density of an original probability distribution,
denoted by p(x), and the diversity D in non-uniform distributions, both within parts of a distribution and the
whole—something the current field has yet to sufficiently address (Chao and Jost 2015, Hsieh et al 2016,

Jost 2006, 2018, Leinster and Cobbold 2012, Pavoine et al 2016). This linkage is also empirically useful across the
natural and social sciences, given that, in terms of probably distributions, most real-world systems have unequal
distributions and consist of multiple diversity types with unknown and changing frequencies at different levels
of scale (e.g., income diversity, economic complexity indices, rankings). As part of our program of research, we
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have proven our results for discrete distributions. Our focus for this paper is continuous distributions. In both
instances, our strategy for establishing our diversity linkage is our engagement with the literature on Hill
numbers (Jost 2018, Gaggiotti et al 2018, Jost 2006, macArthur 1965, Hill 1973, Peet 1974).

1.1. Research strategy

As we have explained in a series of papers, Hill numbers are defined by a parameter q that gives preference to
types with either lower or higher frequencies (Rajaram and Castellani 2020, Rajaram et al 2023). This depends on
whether 0 < g < 1 orgq > 1, respectively. Choosing g = 1 means that each type is assigned a weight proportion to
its relative frequency by ' D. We also have that ' D = e, where H is the Shannon entropy of the distribution
(Leinster 2021). In terms of advancing our understanding of diversity within distributions, Hill numbers hold a
special place because they provide an all-encompassing structure to seize the various dimensions of diversity
(MacArthur 1965, Hill 1973, Peet 1974), which they do by unifying the principles of richness, evenness, and
dominance into a single numeric index. In doing so, Hill numbers enable the assessment and classification of
diverse systems across the natural and social sciences, including diversity in ecosystems, where they are most
widely used (Alberdi and Gilbert 2019, Gaggiotti er al 2018).

Still, the limitation of Hill numbers is that the precise relationship between the probability of each type
within a distribution and the Hill number itself remains undeveloped. Moreover, the original concept of
diversity, as proposed by Hill and Jost, is actually insensitive to permutations. This means a shuffling of the
original probabilities in g; will not change the diversity of the entire distribution.

Hence the purpose of our program of research. In (Rajaram and Castellani 2016) we introduced our new
measure, case-based entropy Cca modification of the ShannonWiener entropy measure H. As a next step, in
(Rajaram and Castellani 2020) we proved a result relating the probability of each type p; and the total diversity
! Dk for a discrete probability distribution with K types. In a more recent paper (Rajaram et al 2023) we extended
the results by explicitly proving a one-to-one relationship between the original probability distribution g;, the
case-based entropy curve g and the slope of diversity curve g;. We also showed that the ratio of diversity of a part
to its camulative probability denoted by IC& is a measure of the degree of uniformity of the part P. Lastly, we also

showed that the original probability distribution can be explicitly reconstructed by looking at the slopes of
secants in the slope of diversity curve gs.

In the current paper, we will show that analogous results hold true for continuous distributions with finite
entropy (differential entropy to be more exact). We will show that the case-based entropy curve g, and the ¢, )
versus the ¢, *In A, ») curve g3, which we call the slope of diversity are one-to-one (or injective), i.e., a different
probability distribution g; gives a different curve for g, and gs. This means that the graphs g, and g; are
determined uniquely by the original probability distribution. A proof of the injectivity will establish the
uniqueness of the degree of uniformity of parts as measured by Dp/cp. It will also create a unique way to compute
Dp/cpfor arbitrary probability distributions. We also show that the original density p(x) can be reconstructed by
looking at the slope of tangents in the slope of diversity curve. We note once again, that analogous results have
been proven for discrete distributions in (Rajaram et al 2023). Hence, this paper is an extension of those results
for continuous distributions which have not been proven before.

We consider a general continuous probability distribution with finite entropy with a random variable X with
support (a,b) (witha = — 0o and b = + oo allowed) and probability density given by p(x). We ask the following
question: Is it possible to determine a connection (direct or indirect) between the probability density p(x) and the
case-based entropy curve (C, versus ¢)? More to the point, does a connection exist between the shape of the case-
based entropy curve (C, versus ¢) and the probability density p(x)? How can we use the slope of diversity curve g;
(Cayx) VEISUS C(a,x) * IN(A(y ) to compute the degree of uniformity of a given part Pand furthermore, how can we
reconstruct the original probability distribution g, from the slope of diversity curve g;?

2. Understanding diversity

As ameasure, diversity is used to evaluate the richness and evenness of diversity in probability distributions

(Jost 2006, MacArthur 1965, Hill 1973, Peet 1974). Richness refers to the quantity of types in a distribution;
evenness refers to the equal likelihood of each type of diversity occurring, as highlighted in various studies. As we
have explained elsewhere (Rajaram and Castellani 2020, Rajaram et al 2023), this concept of diversity is rooted in
the understanding that if all the K types in a discrete probability distribution have the same probability of
occurrence, then the diversity should be equivalent to the number of types K. On the other hand, any departure
from uniformity in probabilities will invariably lead to a decrease in the value of diversity.

Definition 2.1. (Shannon Diversity corresponding to ¢ = 1 for Hill numbers) Given a continuous random
variable X with support (a,b) (with a = —ocoand b = + o0 allowed) and its probability density p(x), the diversity
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of the entire distribution 'D, ;) is defined as the length of the support of an equivalent uniform distribution that
yields the same value of Shannon entropy H.

Differential Shannon entropy for continuous distributions with a density p(x) is defined as below:

Hp) = —j(; h)p(x)ln(p(x))dx. (1

Remark 2.1. To avoid mathematical pathologies, we will only consider probability densities p(x) that have a
finite value for the Shannon entropy H,,;)As previously demonstrated by others (Jost 2006, MacArthur 1965,
Hill 1973, Peet 1974) that definition 2.1 suggests that the total diversity ' D, , is given by:

ID(a‘b) = eH. (2)

2.1. An example of biodiversity
In (Jost 2006) a comparison of species of butterfly in two communities was carried out to illustrate the purpose of
using diversity instead of entropy to study the similarities in the communities. A case was made that the Hill
number ' D is a better index of diversity than Shannon entropy. Data from the canopy and understory
communities of fruit-feeding butterflies was used to illustrate the point of the multiplication principle. Instead
of repeating the same example, let us consider two communities of birds. Let us assume that the first community
has 8 species of birds and each species has 50 birds, and the second community has 10 species of birds each of
which has 50 birds as well. Let us assume furthermore, that the species in the two communities are distinct. The
diversity of the first community is intuitively 8 and that of the second community if 10. When we pool the two
communities, the diversity of the pooled community should be 18 since we will then have 18 distinct species that
are uniformly distributed. This is exactly what happens if we use the diversity ' D instead of Shannon entropy if
the original distributions are not uniform. Then ' D will still be the right diversity index to use, where now each
species will be counted in a manner proportional to the relative abundance in the pooled community. We extend
this notion in this paper by proving results for general continuous distributions where different parts are being
pooled with different relative abundances. We also definitively show that the notion of diversity ' D for
continuous distributions and its corresponding case-based diversity and slope of diversity curves are one-to-
one, and the slope of diversity curve can be used to measure the degree of uniformity of a continuous
distribution. This establishes for the first time, important results for continuous distributions that need a
separate consideration due to the intricacies involved in proving results using the probability density.

In this paper, we have four objectives:

1. Just like we showed in (Rajaram et al 2023) for discrete distributions, we show a similar way to compute the
ratio % for arbitrary parts P from the graph of the slope of diversity curve (¢, ) versus ¢4, *In A, ») or g3) for
continilous distributions. This will be an important step towards calculating the extent of uniformity of parts
of a continuous distribution.

2. We prove that the slope of the secant S, ) of the slope of diversity curve can be used to compute the degree of

. . . . . O Diere
uniformity of an arbitrary part P = (xy, x,) of the original continuous distribution denoted by —**2.

Cx1x2)

3. We show that the original continuous distribution g; can be reconstructed using the slope of the tangent of
the slope of diversity curve gs.

4. Finally, we show that the natural map between the original continuous distribution g, the case-based entropy
curve g, and the slope of diversity curve gs is one-to-one or injective, thereby establishing that two different
original distributions g; will always lead to different curves g, and g;. This will bridge the gap in connecting
the Hill numbers to the form of the original continuous distribution.

In essence, this paper is an extension of (Rajaram et al 2023) for continuous distributions.

The paper is organized as follows: In section 3 we prove the results in the first two objectives. In section 4, we
prove the third objective above. In section 5, prove the fourth objective. In section 6 we demonstrate our results
for the example of the continuous exponential distribution. In section 7, we will end the paper with some
observations on our findings.
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Table 1. General dataset with complexity types x; each having a
probability p; and a frequency f;.

X P F
X1 2 h
X3 P2 f
X3 ps 6
X Py 5
XK Pk fx

3. Computing Ij—‘ for parts P of a continuous distribution
>,

We begin by recalling two ‘parts-to-whole’ formulae for discrete distributions, which we proved in (Rajaram and
Castellani 2020).

Theorem 3.1. Given a discrete probability distribution similar to table 1, the diversity of the distribution 1D for a

system or dataset (be it complex or otherwise), and the diversities of its disjoint parts 9D p, and their respective
cumulative probabilities cp, are associated as follows:

IDp = H (E) Pi, 3)

and

1
(1—-q) \i—q
iD
QDK = Z Cp].( Pl) . (4)

Pep Cp;

i

We note that equations (3) and (4) are simply the weighted geometric and arithmetic means (of order 1 — ¢q)

Pi

respectively of the ratio (%) Wealso note that 'Dx = lim?_,, Dy The following corollary can be easily proved

using the same technique as in the proof of theorem 3.1 in (Rajaram and Castellani 2020).

Corollary 3.1. Given a discrete probability distribution similar to table 1, let the part P = | J;P, be a disjoint union of
sub-parts P;. Then, the diversity of the part 1Dp and the diversities of disjoint sub-parts 1D p. and their respective
cumulative probabilities cp, are related as follows:

1 cp 1 cp;

DP) Dp_)

it 2 I i) 5)
( cp PEIP ( Cp;

1—q (1-q)
Cp(ﬁ) — Z CP;(%) . (6)

p pep Cp;

and

Remark 3.1. We remark that in general, there is no monotonic relationship between the diversity of continuous
and discrete distributions. For example, we could consider the uniform distribution in the discrete case wheren
P = % fori=1,...,Nand its counterpart in the continuous case where p(x) = ﬁ on the interval (a,b). The
diversity of the discrete uniform distribution is N and that of the continuous one is simply b — a. One can adjust
Nor (b — a) to make the diversity of the discrete uniform distribution to be equal to, less than or larger than the
diversity of the continuous uniform distribution. In general, due to the wide variation in shapes of distributions,
theres no universal comparison that can be made between all continuous and all discrete distributions. However,
given that the development of continuous distributions requires a separate mathematical treatment due to the
intricacies involved in using a probability density, the proofs of the results are different and need to be written
separately. For example, to reconstruct the original probability density from the slope of diversity curve in
theorem 4.1, we have to use the slope of the tangent instead of the secant. Hence, the material in this paper for
continuous distributions requires a separate consideration from discrete distributions.

4
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We now state and prove the main theorem for continuous distributions. This is the first time that it has been
proven for continuous distributions. We note that we will only consider the case g = 1 and hence omit the left
superscript in ' D and simply denote the diversity by D from now on.

Theorem 3.2. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy and with a = —oo and
b = +oc permitted. Let P = | J; B, be a disjoint partition of apart P C (a, b). Then the following is true:

Dp\” Dp \"
=l = - . 7
(CP) Pl,-;[P(CPi) 7

PROOF. Recall the following definitions.
ShannonEntropy: H=-— L/(j b p(x)In(x)dx
Diversity: D=l

Let¢p = fp P (x)dx be the probability mass function of P. Note that cp, is defined in a similar manner. Also,
Pp(x) = pp(x)/cp,is the normalized probability density for the part P; (same definition for P).Then we have the
following:

Dp = exp {—L pP(x)ln(pP(x))dx}
=exp1— [ {22 )in(px)) — Incapla

P Cp

1 —_——
=exp {—;j;p(x)ln(p(x))dx—&— ln(cP)]I;pP(x)dx }
:Cpexp{—i fP p(x)ln(p(x))dx}.

Hence, we have % = exp { fcip j};p(x)ln(p(x)) dx } Thus,

Dp)”
(—P) = exp {f I p(x)ln(p(x))dx}. ®
Cp P
Note that following the same steps for the part P; we have
Dp )"
(—P) = exp { | p(x)ln(p(x))dx}. ©)
Cpi P;

Using information from the two equations above, and recalling that U;P; is a disjoint partition

(&)P = exp {—f p(x)ln(p(x))dx}

cp P
= exp {—valp(x)ln(p(x))dx}
= exp {—Z Lp(x)ln(p(x))dx}
=IT e {—fp_p(x)ln(p(x))dx}

_ DPi N
1?[ (Cpi) .

This proves the Theorem. O
We make some definitions to establish some notation to prove our next theorem.

Definition 3.1. We define

D
Ap = _Dr Ap =—28 (10)

cp * Da,p) cp, " Da,p)

to be the average case-based entropy per unit cumulative frequency for the part P and the sub-part P;
respectively.
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Definition 3.2. Let P = (a, x) be a part for a continuous probability distribution on (g, b), with a = —ooand
b = o0 allowed. The graph of ¢(,, ) on the x-axis versus ¢, x)*In(A, x)) on the y-axis is defined as the slope of
diversity curve. Also, the slope of the secant joining the points (c(a, x> C(a,x) (A ) and

(Cam) Cax)IN(A(,))) on the slope of diversity curve is denoted by Sy, ).

We next define the degree of uniformity of a part P = (x;, x5)

Definition 3.3. Let P = (x;, x,) be a part for a continuous probability distribution on (a, b), with a = —oo and

. Diper + . .
b = +ooallowed. The ratio % is termed as degree of uniformity of the part P = (x;, %).
(x1,%2)

Remark 3.2. In (Rajaram et al 2023), we have justified the usage of this terminology by showing the intuition

behind how the ratio % is an accurate measure of the degree of uniformity of the part Pin a discrete distribution.
)

The same intuition carries over for a continuous distribution with a part P = (x;, %).

Definition 3.4. Let p(x) be a probability density function (pdf) on (a, b) with a = —ooand b = 400 permitted.

. Do ey
Then the graph of ¢(,, ) on the x-axis versus C,,x) = # on the y-axis is called the case-based entropy curve. We
(a,b

denote these curves by g». The graph of ¢(, ) versus ¢, x)- In(A(, 1)) is called the slope of diversity curve. This is
denoted by g;.

We now state and prove a theorem that relates the slope of secant S, ,,, and the degree of uniformity.

Theorem 3.3. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy and with a = —oc and
b = +oc permitted. Let P = | J; P, be a disjoint partition of apart P C (a, b). Then the following are true:

D (<) D =
(xl””)(:) (x3’x4)<=>5(x1,xz)(: Stes (1D
Clxxa) \ >/ Clxzxg) >
M = DeSer, (12)
Clxxz)

Proof 3.1 Recall that

(&) = H (13—:) ” with ¢ = ZCPX. (13)

Thus,
D =[] D (14)

1

Dividing both sides of equation (13) by the corresponding sides of equation (14),
Af =] @Ap).

Taking the natural logarithm of both sides, we get
e In(Ap) = cpIn(Ap).

Let P = (a, x,); P; = (a, x;) and P, = (x;, x,) with a < x; < x,. Then we have,
ClaxyIN(Ax) = ) IN(Ax) + Connn IN(A,x)-

Rearranging we get

ClanIN(Ax) = Cax)In(A,x))

In(Ag ) =
(o) (C(a,xz) - C(a,xl))

Noticing that the right-hand-side of this equation is the slope of the secant line S, ,,) for the graph of ¢, ,, versus
Ca,x)IN(A(4,x)) as defined in definition 3.2. By the same development as in the discrete case, let S, ,,) be the slope
of the secant line joining the points (¢(a,x)> C(a,x)1N(A(4,x))) AN (C(a,1)> C(a) IN(A(4,x,)))- Then we have

ln(A(xth)) = S(Xbxz)’ or

A(xl-xz) = es(xmz)’
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or,
D,
Zox) DeSwix,
Clx,x2)
Thus,
D, D(x x0) <
— > S(X1ax2) = S(X3)X4)’
C(thz) C(X3,x4) >
which is the continuous version of the discrete result. O

Remark 3.3. Theorem 3.1 relates the degree of diversity & of a given part P of a continuous distribution as the

weighted geometric mean of the degree of diversity of — of its sub-parts P; with the cumulative probabilities cp,

as the weights. Theorem 3.3 means that when comparlng the slopes of secants S, ,,) of the slope of diversity
curve, we are also comparing the degrees of uniformity in the parts (x;, x,) and (x3, x,). It also means that we can

Dieyx)

compute the degree of uniformity =2 of an arbitrary part P = (x;, %) directly from the slope of secant S, )

Cax)

of the slope of diversity curve. This is the main importance of the two results in this section.

4. Reconstruction of the original probability distribution using the slope of tangent s, of
the slope of diversity curve g;

So far, all of the results so far from the discrete case have carried over. In this section, we show that the slope of
the tangent in the slope of diversity curve allow us to reconstruct the original density p(x). We note that every
point on the slope of the diversity curve is of the form (c( x), C(a,x)IN(A(4,x)))-

Definition 4.1. Given the slope of diversity curve, we define s, as the slope of the tangent of this curve at a general
point given by (c(g,x)» ¢(a,x)1N(Ag,x)))-

Theorem 4.1. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy and with a = —oo and
b = o0 permitted. Let s, represent the slope of the tangent at a general point on the slope of diversity curve denoted
by (c(ax) Ca,x)In(A,x))). Then the following is true:

—Sx

px) = (15)

Doy’
Proof 4.1 By the definition of A, ), and by taking the natural log of equation (21), we have the following:
D

Ar) = ———;
Ca,)Dia by

_ Da,x)
=Ca,0In(A@,x) = a0 In( ) = CaInD,p)

Cla,x)

— f( OOt~ 0D

Differentiate with respect to ¢, ). Recall that ¢, is the x-axis on the slope of diversity curve, using the Chain
Rule, dividing, and employing the Fundamental theorem of Calculus, we have

; —d{ J. ax)p(t)ln(p(t))dt}
Sx = d[C ] {C(a x)ln(A(a x))} - . Pl - lll(D)
(a,x) ;(C(a,x))
__p@he) o
p(x)
= ~In(D - p(x)).

Thus,

D-px)=e*= px) =

O
This means that the slope of the tangent of the slope of diversity curve at ¢, ., explicitly determines the value
of p(x) at x. Figure 1 illustrates the last two theorems.

7
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’a: . Slope of secant between x;and Xz = St x,) )
S *,  can be used to determine the degree of uniformity =222
. ¥ C(x1,x2)
5 *
B N
*

s, = slope of tangent at x can be used to e
determine the value of the original density p,

Figure 1. Slope of tangent of the slope of diversity curve.

Remark 4.1. We note that the result in theorem 4.1 is the continuous analog of a similar result that was proven in
(Rajaram et al 2023) which states that the original discrete probability can be reconstructed using the slope of the
secant of the slope of diversity curve. The secant in the discrete version became the tangent in the continuous
version in theorem 4.1. Furthermore, theorem 4.1 explicitly relates the slope of tangent s,. of the slope of diversity
curve g; back to the original continuous probability distribution g;. This is the main importance of theorem 4.1.

Remark 4.2. In (Rajaram et al 2017) a direct comparison of the Boltzmann, Fermi and Bose—FEinstein
distributions was made using the case-based entropy idea. The celebrated Boltzmann distribution in one
dimension is given as follows:

1\ _: B
Ppip(E) = (kB_T)e o= (16)

1
ksT
equation (15). More specifically, A = (3, x = E and hence, s, = BE — 1. This shows an interesting relationship
between the slope of tangent s, and the energy E. Also, equation (15) resembles the general relationship between
the Hamiltonian of the canonical ensemble and the probability of states, In general, for various choices of
ensembles in statistical mechanics, it would be interesting to see if the slope of tangent s, for the distribution of
states can be related to the Hamiltonian. We will try and explore this in future papers.

where kg is the Boltzmann constantand 8 = ( ) We notice a striking similarity between equation (16) and

5. Injectiveness of the graphs g, ¢,,and g3

In this section, we prove that there is a unique injective correspondence between the original density g;, the case-
based-entropy curve g, and the slope of diversity curve g;. This means that the shape of original continuous
distribution uniquely determines the shapes of both case-based entropy and slope of diversity curves.

Theorem 5.1. Let p(x) be a probability density function (pdf) on (a, b) with finite entropy and with a = —oo and
b = +oo permitted. Also let G, be the set of graphs of the original probability density p(x), G, be the set of graphs of
the corresponding case-based entropy curves, and G be the set of graphs of the corresponding slope of diversity curves,
with g;, g, and g3 denoting elements (graphs) in G, G, and Gs respectively. In addition, let T;_\ be the map from the
graph G to the graph Gy where j, k = 1, 2, 3. Then we have the following:

Tk G =G 17)
is injective (or one-to-one).
Remark 5.1. We note that the map T, _1: G; = Gy istaken to be the map between g € Giand g, € Gy with
points taken as they appear from left to right.

PROOF.

L T Letgl glb € Gi. Itwillbe shown below that T; ,(g") = 7]_,2(g1b) implies that g* = glb.
T-2(g") = T-2(g)) = (o) Cliny) = (clony» Coowy) Y € (a, b)=
by = oy ¥X € (a,b) = p(x) = pP(x) Vx € (a, b).
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Hence, Ti2(g) = T-2(g)) = &' = g~
This shows that the map T; _,, is injective.

2. Letg), gzh € G,.Itwillbe shownbelow that T, _.3(g,)") = T2H3(g2b) implies that g, = gzb.
T-3(89) = Tr3(8)) = (Cap oo I (A1) = (s Clae I (Afo) Vx € (a, b).
=Clax) = c(bm) and ¢ *In (AG ) = c(l;‘x)*ln (A(l;,x)) Vx € (a, b)

Diax) Do Diax)

Db
:>A(6;,x) = A(Z,x) = - 2 = b = = e Vx € (a, b)
Dap)Caxy  Dab)Cuxy  Pab  Dab

C(a x) — C(a x) Vx € (a, b)

Hence, T,.5(g)) = T2_>3(g2h) =g = gzh.
This shows that the map T, is injective.
3. Letg), ng € G;. Wewillshowbelow that T3 ., (g;") = ;. 1(g3b) implies that g} = g3b.

To1(8Y) = To1(g)) = po(x) = pb(x) V=l sy = €y VX € (a, b).

ﬁ)wwm@wm%

Also, D ) = Clax) " €XP——
Cax)

= c(ba,x) . exp{ f p b(x)In (p (x))dx} = D(l;,x) Vx € (a, b).
(a X)

D¢ Dt
Hence, AG ) = @y - ey A(ba x Vx € (a, b),
> D Ca D Cb >
K¢(a,x) K C(a,x)

b b b
and (x> G I (A)) = (€@ Can ™I (A1) Vx € (@ b).

Thus, Ti1(g") = T1(g)) = g = gl.
This shows that the map T;_, is injective.

Remark 5.2. Theorem 5.1 says that, just like in the discrete case, there is a one-to-one correspondence between
the original density g;, the case-based-entropy curve g, and the slope of diversity curve g;. This means that the
shape of g; uniquely determines the shapes of both g, and g; curves.

6. Examples

6.1. Exponential distribution
In this section, we compute the slope of diversity curve for the general exponential distribution and show that we
can reconstruct the original distribution from the slope of diversity curve (and hence equivalently from the case-
based entropy curve).

Suppose that p(x) = Xe” ** x € (0,00).

We calculate entropy as follows:

Entropy:

Hg,o0) = —fj:c p()In(p(x))dx

_ _foc Ae M (In(\) — Ax)dx

“Aln()) f Mgy 4 N2 f " e Axdx

—Ax 1 0
= —)\ln()\)( )I0 + )\2{ 15+ Xn/:) e’\xdx}
1 e—)\x
— ) F N
n(A) Y |
—1 - In(\).
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Since Hip,o) = 1 — In(A), we know that

Diooe) = et = 1= = £

Forx € (0, 00 ), let’s consider (0, x) as an interval part. Then

= —p(t) f 0 d _ Ae—\dt — 1 s
Pox = > ort € (0, x) an Cox) = ) e — 1 — e

()

In other words,

)\e—/\t

p(O,X) = m, fOI’ t e (0) x);

x x /\e—)\t )\e—/\t
Hox = 7»fo Po,nIn(pg,)dt = 7f0 (1— e ln((1 — e”))dt

Now,

1

ﬁ )\e_’\t ln()\e_)‘”dt} . (1 — e_)"‘).
— e ) Jox

D,x) = exp{ -
Evaluating the inside integral by parts, we have

—fx Ae MIn(e M)dt = —In(A\)(1 — e ™) — dxe ™ 4+ (1 — )
0
=(1 — e ™ (1 — In(\)) — Ixe ™.

So,
=X _ _ —Ax
Doy = exp 1 —e™MA —1In)) — Ixe (1 — e,
(1 — e M) R
€0,
Dividing,
D, ——————D —Ax
(0.x) _ exp{l — ln(/\)} 000 expl— Axe _
€0,x) (I —e ™)
-~ 2
€0,
Thus,

€(0,x)

Doy 1

= exp{—\xe M},
€0,x) D(0,50)
00 0,00),

Aoy
Taking the logarithm of both sides
c0,0In(A,x) = —Axe ™,

where ¢ y=(1 — ¢~ A% for x € (0, 00).

Note that
d d{cox
Sx = E{C(O,X)IH(A(O,X))}/%,
and
d Y 2y p— A
—{conIn(Apx)} = —Ae™™ + XNxe ™
dx
:)\ef)\x(Ax — 1,
and

d
—(cox) = e ™,
dx( ©.x))

10
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Sy =»x — 1, since » > 0 this means
that s, is an increasing function

g
R
e
<
S
£ 02
H
3
o
04 ==
From the graph, it is clear that for disjoint partitions C e
(x1,%;), (3, x,), where x3 > x;, the part (x3,x,) (0.x)

is more uniformly distributed than (xy, x;)

Figure 2. Slope of diversity curve for the exponential distribution.

So, s, = Ax — 1, which implies that

px) = e e = de M,

Doy 5)
(0,00) ( 3
In other words this example illustrates our theoretical work.

Also from figure 2, and since s, = Ax — 1 isan increasing function of x since A > 0, it is clear that for disjoint
partitions (x1, x,) and (x3, x,) where x3 > x,, the part (x3, x,) is more uniformly distributed than (x;, x,).

6.2. Power law
In (Castellani and Rajaram 2016), an empirical comparison of diversity of power law distributions obtained

from real data for various systems was done using case-based entropy. Here, we consider the power law from a
theoretical standpoint. We consider the power law distribution as below:

Definition 6.1. A continuous random variable X is said to follow a power law distribution if its probability
density function denoted by p,(x) satisfies the the following:

p(x) = @ I(L) ; where av > 2; x € (Xppin, 00)

Xmin Xmin

min

= Cx~% where C = (o« — D)x% L (18)

Theorem 6.1. Given a power law distribution as in definition 6.1, its entropy is given by

H:ln( Xmin )+ @ (19)
(a—1) (a—1)

PROOF.

In(p,(x)) = In(C) — aln(x)

H=— f " (G {In(C) — aln(x)}dx
~ p,(x) o
= fln(C)f Cx dx + aCf x~%In(x)dx
oo+l x—atl R
= —In(C) + aC cln(x) - ——
( ) {a + 1 ( ) (—O{ + 1)z}min
x—.a-ﬁ—l X_'(H_l
= —In(C) + aC mn — ——— - In(Xmin
n(C) + «a {(a+ 12 a1 n(x )}

According to how we have defined Cwe have

In(C) = In(a — 1) + (@ — DIn(xmin)

11
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Using this fact, we can rewrite H as

P 1
H= —-In(C) + aC - —22 — In(xmin)
—a+1l(=a+1
=In(a — 1) = (@ = DIn(in) + ——— + &I (Xmin)
(=1
o
=1 -1 +1 min) +
n(x ) N (Xmin) @—D
Xmin (¢4
=In + .
((Oé - 1)) (a—1)
This proves the Theorem. O

We denote the total diversity of the power law distribution D, ) by the symbol D just for simplicity.
We can easily show that

X
Clxminx) = Cf todt

Xmin
(1-a)
X
:1 - ( ) ‘
Xmin

6.3. Slope of diversity curve for a power law distribution
In this section, we calculate an explicit formula for the slope of diversity curve of the power law distribution.

Theorem 6.2. Given a power law distribution as in definition 6. 1, the slope of diversity curve which plots ¢, x) on
thex-axis and ¢y, *In(Ax,,,.,x) 01 they-axis has the following explicit formula:

C(xmimx)ln(A(xmimx)) = (1 - C(xminax))ln(l - C(xminax))' (20)

e
(—a+1)
Also, the slope of the tangent s, of the slope of diversity curve at c,, x) is given by:

o
Sx = ) {—In(1 — C(xmin,x)) -1}

X «
=aln - R
(xmin) (O[ - 1)

Proof 6.2 From our previous paper we have

(&) = exp {—fppz(x)ln(pz(x))dx} (21)

cp

Deminv)

Choosing P = (xmin, x) above, and remembering that A, , x) = 5 Weget:

Cxminx)
i) N (A0 X)) = _j(‘ PO In(p(®)dt — ¢y - In(D),
X min,x) Y

H
with
" oy

_ f ©(CrY(n(C) — aln()dt

min

—In(C) f T (Croydt + aC f T aln(ndr

min min

Cxmin

(—a+1 —a+1 X
= —In(C) - e + aC{t In() ¢ }

(—a+1)  (—a+ 1)

min

12
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Therefore,
C(xmimx)ln(A(min’ x))
p-a+1 ln(t) (ot }x
= —C X minsX (ln(C) + H) + aC —
) { (—a+1) (—a + 1)? .
where
In(C) + H = In(ex — 1) + (@ — DInCemin) + In(min) — In(ex — 1) + ( @ 5
a —
(6]
= aln(xmin) + )
(%min) @-D
Now,
)
(—a+1) (—a + 1)2 .
(—a+1) x
= L{t(_oﬁ—l)ln(t) _ t }
(—a+1) (—a+1D),
(—a+1)
= > (a0 — )xlg‘llr?+1) (x("ﬂ)ln(x) _ xi)
(za+D (—a+1)
(( JinGo — 2 )
—|(—a+ Dln(x) — —
(—a+1)
(—a+1) (—a+1)
= -« x In(x) — b [=
Xmin (—a + 1) Xmin
1
ln(-xmln)
[ (—a+1) ]}
(-a+1) (—a+1)
= ( ) + « ln(xmm) X ln(x) — @ x
Xmin (Oé — 1) Xmin
(—at1) (—a+1)
= u + Oéln(xmin -« X ln(x)
(Oé - 1) Xmin Xmin
€(xminx)
So,
6]
Ctmin) (A (i) = = Cxpn) | 1N (Kmin) +
(a—-1)
% (—a+1)
Cltmimx) T @ IN(Xmin) — a( ) In(x)
(Oé -1 Xmin
A\ (—a+1) )
= Q(M) ln(m)
X X
(—a+1)
Xmin Xmin
Recall that

x (—a+1)
Cltmimx) = 1 — — .
min

R Rajaram et al
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So,

i ( a+1) x
d xmm Xmin
S
* aly (oo
dx Xmin

=p,(x)

d x \oth x
Eli(xmin) ln(xmin):l

=Ta (a=1) .—a
(o — Dxpin %

We now exploit the derivative.

d x (—a+1) x
— In
dx (xmin) (xmin)
(—a) (—a+1)
:m(i)((_aﬂ)(i) ;)+(L) 1
Xmin Xmin Xmin Xmin X

*Oé X xfa
= a+1 In| — |+ ———
( )(x(a 1)) ( . ) x(fowrl)

min Xmin min

Thus,
x «
sx = aln -
(xmin) (a - 1))

We can also examine this by recalling that

x (—a+1)
Cltpmimx) = 1 — . .
min

x (—a+1)
=1 = Clepinx)
Xmin

ln(i) = ;ln(l — Cltpmx)

or

—a+1)

Xmin

Substituting this into our expression we have

x (—a+1) X
C(Xmimx)ln(A(mim X)) = _a( ) ln( )
Xmin Xmin

e
(—a+1)

(1 = i) IN(1 = i)

Differentiating ¢y, . ) In(Amin, X)) with respectto ¢, . ), we have

(0%
= 1 {_ln(l - C(xmin,x)) - 1}

Sy =

(&% X

X o
=aln| —| — _—
(xmin) (Oé - 1)

which proves the Theorem.

Remark 6.1. Recall that
p,(x) = Cx~*; where C = (a0 — 1)xr(rﬁn D

We know from our previous paper that s, is given by:
sy = —In(p,(x) - D) = —In(p,(x) — In(D).

14
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(i\_ w)

Figure 3. Slope of diversity for a power law distribution showing a minimum at ¢(,;, x) = 0.632.

But,
D = ¢H,
)
—In(D) = —H.
Therefore,

Se=—In(p,(x) - H

=—In(a — 1) — (¢ — DIn(xmin) + aln(x) — In(xpin) + In(a — 1) — @

a—1
:aln(i)— .
Xmin a—1

Hence, the slope of tangent s, can also be back-calculated from the probability density p,(x). We note that the
slope of tangent of the slope of diversity curve at ¢, ) Sxincreases in alogarithmic fashion with respect

10 Capyx)-
Remark 6.2. Setting s,=0 we can obtain a minimum. In fact, no matter what avis, -In(1 — ¢(,, ) — 1 = 0,

when 5,=0. And this occurs when ¢, ) = 1 — e~ ! & 0.632,asshown in figure 3. Let x = ¢(,,, x)and
Y = € (A ))- Then

y=—2(1 - 0h - x)
a—1

Differentiating and setting y’ = 0 we again find thata minimum occursatx = 1 — e"L. But,atx = 1 — ¢!

we have
«

= ———¢lln(e™!
y @_0 )
= — L671
(=1
Thus, the slope of the secant line joining the points (0, 0) and the minimum point (1 — e~!, — (ao‘%l)e’l) on the

ae™!

slope of diversity curve for the power law distribution is — =

7. Conclusion

Accurately quantifying the degree of uniformity of probability distributions or its parts is a fundamental idea
that is important due to its potential applications in the realm of studying inequality of resources. While the the
Hill numbers D provide a good starting point of such a quantification, there exist several limitations. First, the
Hill numbers are insensitive to permutations and hence give the same value for a rearrangement of the original
distribution. This is problematic since the shape of the distribution provides a very important characteristic of
the distribution, namely the regions of abundance or scarcity. Second, the Hill numbers in their traditional
sense, do not lend easily to comparison of degree of uniformity (or inequality) of parts of a distribution.

In this paper, we have shown that mathematical diversity of a probability distribution is a tool that allows us
to quantify the degree of uniformity of a distribution or its parts for continuous distributions. In theorem 3.1 we
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established an explicit relationship between the degree of uniformity of a partition P = J;P; and its sub-parts P;
for continuous probability distributions. We also established an explicit way to compute the degree of
uniformity of a given arbitrary part P = (x;, x,) of a continuous distribution using the slope of secant S, ., of the
slope of diversity curve g; in theorem 3.3. We were able to completely reconstruct the original probability
distribution using the slope of tangent s, of the slope of diversity curve g; in theorem 4.1. Finally, we were also
able to show that there exists a one-to-one correspondence between the original continuous probability
distribution g, the case-based entropy curve g, and the slope of diversity curve g; in theorem 5.1. These results
are the continuous counterparts of the results proved in (Rajaram et al 2023).

The main application of our work is in identifying regions of a given probability distribution that have the
same degree of uniformity (we call this Shannon Equivalent Equiprobable or SEE parts) in a large dataset, based
on our idea of mathematical diversity derived from information theory (or Shannon entropy to be more
specific). Once such regions are identified, this gives researchers a starting point to further investigate such sub-
sections of the original data to identify internal mechanisms or principles that led to such an equal degree of
uniformity. One could start by looking at a single variable (which perhaps is an important characteristic of the
dataset), and after identifying the SEE parts, can delve into the distribution of other variables of such parts to
meaningfully explain the SEE behavior. Conversely, given two or more parts, we can compute and compare the
degrees of uniformity of the given parts and say which part is more or less uniformly distributed compared to the
others.

Another application could be to derive a much better measure of equality (or inequality) or uniformity (or
non-uniformity) of a part or an entire distribution. For example, in the case of an income distribution, the slope
of diversity curve g can be used (by simply drawing secants of equal slope) to identify SEE parts of the
distribution. We can compare the slopes of secant of parts to identify and also quantify the degree of uniformity
of distribution of wealth. This is much more information than the GINI coefficient which (a) is an overall
number and (b) is insensitive to the shape of the distribution. So in a sense, our technique will potentially prove
to be more useful to analyze and quantify inequality in probability distributions by not only characterizing such
an inequality for entire distributions, but also systematically dividing the distribution into SEE parts that have
the same degree of uniformity of income.

In terms of where our program of research goes next, our goal is to advance these results to investigate
distributions such as the power law, which has been well known to model the tails of several distributions in
reality. For that matter, creating a quick toolbox that will quickly draw the three curves g, g, and g3, along with
the ability to draw the secants for g; and automatically filter out the SEE parts of the original distributional data
for further investigation will prove very useful. We will endeavor to create such a computational toolbox. Lastly,
we intend to apply our work to income distributions specifically to show that we can identify SEE parts of the
distribution that will systematically divide the original data into parts that are SEE equivalent (and not just study
the rich and poor parts). We strongly believe that this will lead to better policy formulation for the betterment of
society towards equity in distribution of resources by using our information theoretic approach of diversity.
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