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Abstract. One way to make decisions under uncertainty is to select an optimal option from a

possible range of options, by maximizing the expected utilities derived from a probability model.

However, under severe uncertainty, identifying precise probabilities is hard. For this reason, im-
precise probability models uncertainty through convex sets of probabilities, and considers decision

rules that can return multiple options to reflect insufficient information. Many well-founded de-
cision rules have been studied in the past, but none of those standard rules are able to control

the number of returned alternatives. This can be a problem for large decision problems, due to

the cognitive burden decision makers have to face when presented with a large number of alterna-
tives. Our contribution proposes regret-based ideas to construct new decision rules which return

a bounded number of options, where the limit on the number of options is set in advance by the

decision maker as an expression of their cognitive limitation. We also study their consistency and
numerical behaviour.

1. Introduction

Consider a decision problem where a decision maker wants to choose the best option from a set
of available options, but where there are some uncertain variables that also influence the value of
the decision. Such problems are routinely met in machine learning, where a classifier will typically
return an uncertainty model over the possible classes (see [5, Ch. 10] and [22]); in structure design,
where the quality of each design depends on multiple uncertain factors [12, 4, 6, 23]; in agronomy
where the weather and soil qualities are uncertain by nature [21]; etc. A classical way to model such
a situation is to associate a reward with each option assumed to be expressed in numerical utility
scale and that depends on the uncertain state of nature. In this way, we can view an uncertain
reward, and thereby, each decision, as a bounded real-valued function on the set of states of nature.
Such function is commonly called an act [2] or a gamble [26] in decision theory.

If uncertainty is described by precise probabilities for all events, a classical approach is to select
the act that yields the highest expected utility [2]. However, such precise probabilities may not
always be obtainable in a reliable way, particularly when we only have little information about the
states of nature and their chance to happen. One way to handle this situation is to relax the need
for a unique, precise probability and to consider imprecise probability theory, in which uncertainty
is modelled by sets of probabilities [5]. This theory includes as special cases many commonly used
uncertainty models, such as precise probabilities, possibility distributions, and belief functions. In
this paper, we assume that our knowledge about the true state of nature is represented by a closed
convex set of probability mass functions.
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Using sets of probabilities then requires to generalize the classical expected utility criterion. This
is usually done either by proposing decision rules that return a single1 option as optimal such as
Γ-maximin, Γ-maximax or Hurwicz, or decision rules that can return multiple incomparable options
as optimal, such as interval dominance, maximality and E-admissibility [24]. Nevertheless, these
criteria can return any subset of options, from a single optimal act to the whole set of acts [18].
This may be problematic, as it is conceivable that even if decision makers are keen to consider
multiple options, they still may wish to limit the number of returned options, for example because
of cognitive or monetary constraints. Such requirements are natural in many settings, such as
set-valued classification [14, 7] or recommendation problems [25].

However, such budgeted decision rule that limits the number of returned decisions still remains to
be defined and explored within the imprecise probabilistic setting. This paper aims to propose and
study such rules, using a regret criterion and expressing the rule either as a minimax or maximin
problem. More precisely, we define the value of a given subset (of limited size) as the regret one
would feel if an adversary was to pick an alternative from outside the retained subset. Note that
we already studied the minimax version of this rule in a previous conference paper [20]. This
paper provides extended proofs, examples and numerical simulation of this minimax criterion, and
introduces the maximin version, which was not studied before.

The paper is organised as follows. In section 2, we present necessary notations and basic concepts
for regret-based budgeted decision rules. We devote section 3 to review regret-based budgeted
decision rules by recalling the minimax criterion from our previous study. In section 4, we introduce
the new maximin criterion and study their properties and consistency with classical imprecise
probability decision criteria and provide an algorithm for the maximin criterion. In section 5,
we perform some computational experiments of these two regret-based budgeted decision rules.
Section 6 provides two illustrative applications of the proposed rules. Finally, section 7 concludes
the paper.

2. Preliminaries and definitions

We denote by Ω a finite set of possible states of nature about which we are uncertain. We will
consider decision problems where a subject can choose a finite number of acts from a set of acts A.
For each act a ∈ A, if ω ∈ Ω turns out the be the true state of nature, then a(ω) will represent the
reward obtained by the subject (an end-user, a decision maker, . . . ). We assume that the subject
can specify a utility for each reward. Therefore, an act a can be viewed as a real-valued function
on Ω representing an uncertain reward expressed on a utility scale.

In order to select an act, the subject can take their beliefs about the true state of nature into
account. If their beliefs can be expressed through a probability mass function p, then they can
simply select an act that maximizes their expectation Ep(a) :=

∑
ω∈Ω p(ω)a(ω). However, when

information is lacking, they might only be able to represent their knowledge about the unknown
true value ω via a closed convex set of probability mass functions on Ω. Such a set P of probability
mass functions is called a credal set [11].

Let A denote the set of all finite non-empty sets of acts. Mathematically, we can then define:

Definition 1. A decision rule is a function D : A → A such that D(A) ⊆ A for every A ∈ A.
In the case of a precise probability mass function, the classical decision rule isD(A) = argmaxa∈A Ep(a).

Given a credal set P, there are several decision rules that extend expected utility. Some can return
a single act, e.g. Γ-maximin (or Γ-maximax) which maximizes the worst case (or minimal) expected

1Or multiple indifferent options.
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utility of acts in A, and others a set of multiple acts, e.g. interval dominance and maximality [24].
In this study, we will compare our budgeted decision rules to maximality, which is induced by a
partial ordering as follows: for any acts a and a′, we say that an act a dominates a′, denoted a ≻ a′,
whenever E(a − a′) > 0, where E(f) := minp∈P Ep(f) is the lower bound of the expectation of a
function f taken over all probabilities of P; observe that a− a′ is the point-wise difference between
two acts, and is therefore a real-valued function over Ω. Note that E(a − a′) > 0 is equivalent to
requiring that Ep(a) > Ep(a

′) for all p ∈ P, and is therefore equivalent to a robust version of the
classical expectation-based decision rule where a dominates a′ if Ep(a) > Ep(a

′).
The set of maximal acts in A with respect to ≻ is then defined by:

(1) DM (A) := {a ∈ A : ∄a′ ∈ A s.t. a′ ≻ a}
which contains all undominated acts in A with respect to ≻. In other words, a is a maximal element
in A if and only if

(2) min
a′∈A

E(a− a′) ≥ 0,

where E(f) := maxp∈P Ep(f) is defined as the upper expectation operator, which is dual to the

lower expectation since E(f) = −E(−f). Note that maximality can return any non-empty subset
of A, from a single act up to the whole set A [18]. If most or all elements of A are returned by
maximality, this may not be helpful to a decision maker, especially when A is very large or when
checking alternatives is costly.

To address this issue, we introduce a so-called budgeted decision rule.

Definition 2. A decision rule D is said to be k-budgeted if |D(A)| ≤ k for all A ∈ A.

In the above, |D(A)| denotes the cardinality of D(A) (i.e. the number of elements of D(A)). The
parameter k is therefore an upper bound on the number of returned alternatives. In practice, its
value can be settled accordingly to the application constraints, i.e., the number of alternatives that
can be realistically inspected, for instance by a decision maker or by a second automatic processing
step. It may also depends on the cardinality |A|, e.g., passing on at most 10% of A to the next
processing step.

Next, we consider whether a k-budgeted decision rule preserves maximality. Specifically, we
define consistency properties with respect to maximality as follows:

Definition 3. A decision rule D is said to be strongly consistent (with DM ) if for all A ∈ A, we
have

(3) D(A) ⊆ DM (A)

Definition 4. A decision rule D is said to be weakly consistent (with DM ) if for all A ∈ A
(4) D(A) ∩DM (A) ̸= ∅

Strong consistency ensures that a rule selects maximal acts only. Weak consistency ensures that
it selects at least one maximal act, though it may also select non-maximal acts. Clearly, strong
consistency implies weak consistency. One can easily adapt those definitions to other decision rules
possibly returning multiple elements, but we will focus here on maximality.

Example 1. Consider the state space Ω = {ω1, ω2, ω3} and the acts of table 1. Suppose furthermore
that the credal set is specified as

(5) P = {p ∈ P : p(ω3) ≤ p(ω1), p(ω3) ≤ 0.3}
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p(ω1)

p(ω2)p(ω3)

p(ω3) = 0.3

p(ω3) = p(ω1)

Figure 1. Credal set of example 1 in barycentric coordinates (in green)

ω1 ω2 ω3

a1 6 3 1
a2 2 7 4
a3 5 1 8
a4 5 4 3
a5 1 2 6

Table 1. Acts of example 1

j
i

1 2 3 4 5

1 - 4.0 2.0 1.0 5.0
2 4.0 - 6.0 3.0 5.0
3 1.4 3.3 - 1.5 4.0
4 1.0 3.0 3.0 - 4.0
5 −0.4 −0.1 1.0 −1.1 -

Table 2. Values of E(aj − ai)

where P denotes the set of all probability mass functions on Ω. The corresponding credal set is
displayed in fig. 1.

Table 2 gives the values of E(aj−ai) = −E(ai−aj) where j ̸= i. The set of maximal elements of A
is DM (A) = {a1, a2, a3, a4}, as only row 5 of table 2 contains negative values. For instance, we have
that a5−a1 = (−5,−1, 5), and the upper expected value E(a5−a1) = −0.4 is obtained by considering
the distribution p(ω1) = 0.3, p(ω2) = 0.4, p(ω3) = 0.3 (the extreme point of the credal set that is the
intersection of the dotted lines in fig. 1), which gives E(a5−a1) = −5× 0.3+(−1)× 0.4+5× 0.3 =
−0.4.

In the next section, we will construct k-budgeted decision rules based on the idea of regret. We
introduce first the notion of regret we will consider in our decision rules, before proposing and
studying its minimax and maximin versions to obtain recommendations with a limited budget.

3. Minimax criterion

3.1. Regret. Let a and a′ be acts in A. Then E(a′ − a) = maxp∈P Ep(a
′ − a) = −E(a− a′) is the

maximal expected gain if we exchange a′ for a, in other words, the worst possible expected loss, or
regret, to us if we keep a instead of replacing a for a′. If a has a better expected utility than a′

under all p ∈ P, then this value will be negative. Consider an act a and any set of acts S′ which
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does not contain a. The maximal loss, or worst reget, of not replacing a for any act a′ ∈ S′ is
therefore

(6) ML(a, S′) := max
a′∈S′

E(a′ − a).

where we take the maximum to be −∞ if S′ = ∅. If we had to pick a single alternative from A, a
natural choice would be to minimize our worst regret given by eq. (6) for S′ = A \ {a}.

3.2. Review minimax criterion. In this section, we recall the main results from [20], with some
additional elements and illustrations here for the sake of completeness, and to enable comparison
to the maximin approach that will be introduced later.

We now consider a set-valued criterion based on eq. (6). Consider any set S of acts such that
∅ ≠ S ⊆ A. In this first minimax scenario, we first have to choose an element a within the set
S, and for each a ∈ S, the opponent can then pick a′ ∈ S′ := A \ S yielding the highest gain to
them (the maximal loss to us), maxa′∈S′ E(a′ − a). The minimax regret of choosing a given set S
is then [20, eq. (3)]:

(7) mML(S,A) := min
a∈S

ML(a, S′) = min
a∈S

max
a′∈S′

E(a′ − a).

Note that mML(A,A) = −∞, because for S = A we have S′ = ∅.
Next, we recall some basic properties of mML(S,A). First, eq. (7) is monotone with respect to

set inclusion (the bigger the set we can select from, the lower our loss) [20, Lemma 1]:

Lemma 1. For any ∅ ≠ S ⊆ T ⊆ A ∈ A, we have that mML(S,A) ≥ mML(T,A).

Proof. Recall S′ := A \ S and T ′ := A \ T . Indeed,
mML(T,A) = min

a∈T
ML(a, T ′)(8)

≤ min
a∈S

ML(a, T ′) (since S ⊆ T )(9)

= min
a∈S

max
a′∈T ′

E(a′ − a)(10)

≤ min
a∈S

max
a′∈S′

E(a′ − a) (since T ′ ⊆ S′)(11)

= mML(S,A)(12)

□

Next, if mML(S,A) is negative, then S is a superset of the set of maximal elements [20, Theorem
1]:

Theorem 1. For ∅ ≠ S ⊆ A, mML(S,A) < 0 if and only if there is an a ∈ S such that for all
a′ ∈ S′ := A \ S we have that a ≻ a′.

Proof. By the definition, we have

mML(S,A) < 0 ⇐⇒ min
a∈S

max
a′∈S′

E(a′ − a) < 0(13)

⇐⇒ ∃a ∈ S, max
a′∈S′

E(a′ − a) < 0(14)

⇐⇒ ∃a ∈ S, ∀a′ ∈ S′, E(a′ − a) < 0(15)

⇐⇒ ∃a ∈ S, ∀a′ ∈ S′, E(a− a′) > 0(16)

□
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Corollary 1. If mML(S,A) < 0 then DM (A) ⊆ S.

Proof. By theorem 1, if mML(S,A) < 0 then all a′ ∈ S′ are dominated by some a ∈ S, and
therefore, no a′ ∈ S′ can be maximal. Consequently, it must be that S contains all maximal
elements. □

Given the fact that a decision maker wants to choose S so as to minimize its regret, an optimal
subset S ⊆ A with respect to the mML criterion can be defined as

(17) S∗
k(A) := arg min

∅̸=S⊆A
|S|≤k

mML(S,A).

As the argmin may not be unique, but may contain sets of alternatives that are indifferent from a
regret viewpoint, we assume one set is picked at random if need be. The minimum value is denoted
by

(18) mML∗
k(A) := mML(S∗

k(A), A).

By lemma 1, S∗
k(A) will always be either A if |A| ≤ k, or a set containing exactly k elements if

|A| > k, and by corollary 1, DM (A) ⊆ S∗
k(A) if mML∗

k(A) < 0. In particular, we know that
DM (A) ⊆ S∗

k(A) if mML∗
k(A) < 0 or |A| ≤ k. Therefore, it makes sense to define an mML

budgeted decision rule as follows:

(19) Dk
mML(A) :=

{
DM (A) if mML∗

k(A) < 0 or |A| ≤ k

S∗
k(A) otherwise

In [20], we provided an example to show that S∗
k(A) is not unique, and that we can have S∗

k(A) ̸⊆
S∗
k+1(A). The latter fact shows in particular that the solution of eq. (17) cannot always be obtained

incrementally by gradually increasing k, i.e., that a greedy approach will generally be sub-optimal.
Fortunately, there is an efficient algorithm [20, Algorithm 1] to obtain S∗

k(A) and mML∗
k(A)

without evaluating all possible sets S of size k, of which there are
(|A|

k

)
. This algorithm is represented

in algorithm 1. Note that this algorithm is polynomial. Loop 2-4 requires computing a quadratic
number of upper expectations (which can be done by linear programming), and loop 6-10 is a
sorting procedure.

The next example continues example 1, illustrating the new decision rule and the algorithm to
obtain S∗

k(A) [20, Example 1]. It also illustrates a case where S∗
k(A) ̸⊆ S∗

k+1(A).

Example 2. Consider the credal set given by example 1, then the optimal sets given by eq. (17)
and obtainable through algorithm 1 are

• S∗
1 (A) = {a4} with mML∗

1(A) = 3,
• S∗

2 (A) = {a1, a2} with mML∗
2(A) = 1.4,

• S∗
3 (A) = {a1, a2, a3} or {a2, a3, a4} with mML∗

3(A) = 1 and
• S∗

4 (A) = {a1, a2, a3, a4} with mML∗
4(A) = −1.1.

Note that S∗
1 (A) ̸⊆ S∗

2 (A). Let us detail how algorithm 1 works to get S∗
2 (A). Line 7 gives S[1] =

{2, 3} as the two largest elements of column 1 in table 2 are in 4.0 (row 2) and 1.4 (row 3). For
the other columns, we get S[2] = {1, 3}, S[3] = {2, 4}, S[4] = {2, 3}, and S[5] = {1, 2}. We then
get M [1] = 1.4, M [2] = 3.3, M [3] = 3, M [4] = 1.5, and M [5] = 5 (of which the minimum is 1.4
at i∗ = 1), as well as J [1] = 3, J [2] = 3, J [3] = 4, J [4] = 3, and J [5] = 1. From this, we obtain
S∗
2 (A) = {1} ∪ {{2, 3} \ {3}} and the corresponding mML value 1.4. In the case of S∗

3 (A), the rule
would return one of the two sets {a1, a2, a3} or {a2, a3, a4}, picking one at random.



REGRET-BASED BUDGETED DECISION RULES UNDER SEVERE UNCERTAINTY 7

Algorithm 1 Finding S∗
k(A)

Require: A = {a1, a2, . . . , an}, P, k
Ensure: S∗

k(A), mML∗
k(A)

1: for i = 1: n do
2: for j = 1: n, j ̸= i do
3: compute eij := E(aj − ai)
4: end for
5: end for
6: for i = 1: n do
7: S[i]← set such that {eij : j ∈ S[i]} are the k largest elements of {eij : j ̸= i}
8: M [i]← minj∈S[i] eij
9: J [i]← argminj∈S[i] eij

10: end for
11: i∗ ← argminni=1 M [i]
12: return {aj : j ∈ {i∗} ∪ S[i∗] \ {J [i∗]}}, M [i∗]

We previously gave some properties of the mML(S,A) function. Next are some properties of
S∗
k(A) [20, Theorem 2]:

Theorem 2. For all k ≥ 1,

(20) S∗
k(A) ∩DM (A) ̸= ∅.

Proof. For brevity, define S := S∗
k(A) and S′ := A \ S∗

k(A). If |A| ≤ k then S = A by lemma 1 and
therefore S∩DM (A) = DM (A) ̸= ∅. If mML(S,A) < 0 then the statement follows from corollary 1.
So, suppose that |A| > k and mML(S,A) ≥ 0. Let

ai∗ := arg min
ai∈S

max
aj∈S′

E(aj − ai),(21)

aj∗ := arg max
aj∈S′

E(aj − ai∗).(22)

Note that

0 ≤ mML(S,A) = min
ai∈S

max
aj∈S′

E(aj − ai) = E(aj∗ − ai∗),(23)

and it follows that

E(aj∗ − ai∗) ≥ 0,(24)

∀aj ∈ S′, E(aj − ai∗) ≤ E(aj∗ − ai∗)(25)

∀ai ∈ A, ∀j ∈ S[i], E(aj − ai) ≥ E(aj∗ − ai∗)(26)

where S[i] is defined as in algorithm 1. Equation (26) holds because, from the algorithm, we know
that

(27) M [i] = min
j∈S[i]

E(aj − ai) ≥M [i∗] = E(aj∗ − ai∗)

We have now everything in place to show that ai∗ is maximal, i.e. E(ai∗ −aℓ) ≥ 0 for all aℓ ∈ A.
Fix any aℓ ∈ A and consider the set

(28) B := {am : E(am − aℓ) ≥ E(aj∗ − ai∗)}
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This set has at least k elements by eq. (26) and the definition of S[i]. If ai∗ ∈ B, then we are done,
by eq. (24). Otherwise, B must contain at least one element outside of S and thus in S′, since S
has exactly k elements and ai∗ ∈ S. Choose am ∈ B ∩ S′. Then

E(ai∗ − aℓ) ≥ E(am − aℓ)− E(am − ai∗)

= E(am − aℓ)− E(aj∗ − ai∗)︸ ︷︷ ︸
non-negative by eq. (28)

+E(aj∗ − ai∗)− E(am − ai∗)︸ ︷︷ ︸
non-negative by eq. (25)

≥ 0.

and thus, in this case, the desired inequality also holds. □

From this theorem follow two simple corollaries [20, Corollaries 2 and 3]:

Corollary 2. For all k ≥ 1, S∗
k and Dk

mML are weakly consistent with DM .

Corollary 3. S∗
1 and D1

mML are strongly consistent with DM .

We conclude this section by noting that algorithm 1 gives us an efficient way to compute the
decision rule Dk

mML, which is weakly consistent with the usual maximality criterion by theorem 2.
However, we will see in the empirical experiment that the observed consistency is indeed kind of
weak, and in any case weaker than for the maximin criterion, studied in the next section.

4. Maximin criterion

4.1. Definition. In the previous formulation of the problem, the minimax criterion is expressed as
the fact that given a subset S to us, for each possible a ∈ S we select, the adversary is then free to
choose a′ among the remaining options S′ = A \ S for which it will bring the highest possible gain
to him (or the highest possible loss to us). It then makes sense to look for the set that minimizes
this possible loss.

Conversely, given a subset S ⊆ A, we could consider that the adversary first picks any action
within S′ := A \ S, knowing that we are then free to choose any action within S to limit our loss
as much as possible. This is expressed as a maximin criterion as follows:

(29) MmL(S,A) := max
a′∈S′

min
a∈S

E(a′ − a).

Note that MmL(A,A) = −∞ because for S = A we have S′ = ∅, and as before we take the
maximum over the empty set to be −∞. For any S ⊆ A, the following relation holds:

(30) max
a′∈S′

min
a∈S

E(a′ − a) ≤ min
a∈S

max
a′∈S′

E(a′ − a).

Thus, MmL(S,A) ≤ mML(S,A). We will show further that this inequality can be strict, but first
we will explore some properties of MmL(S,A).

4.2. Properties of MmL(S,A). We can show that the maximin criterion satisfies properties that
are very similar to those of the minimax criterion.

Lemma 2. For any ∅ ≠ S ⊆ T ⊆ A ∈ A, we have that

MmL(S,A) ≥MmL(T,A).
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Proof. Recall S′ := A \ S and T ′ := A \ T . Then

MmL(T,A) = max
a′∈T ′

min
a∈T

E(a′ − a)(31)

≤ max
a′∈T ′

min
a∈S

E(a′ − a) (since S ⊆ T )(32)

≤ max
a′∈S′

min
a∈S

E(a′ − a) (since T ′ ⊆ S′)(33)

= MmL(S,A).(34)

□

The next property shows that MmL(S,A) is negative if and only if every element in S′ is dom-
inated by some maximal element in S. This is similar but not quite the same as the corresponding
property for the minimax criterion in theorem 1: the quantifiers are swapped.

Theorem 3. MmL(S,A) < 0 if and only if for all a′ ∈ S′ := A \ S, there is an a ∈ S such that
a ≻ a′.

Proof. By the definition, we have

MmL(S,A) < 0 ⇐⇒ max
a′∈S′

min
a∈S

E(a′ − a) < 0

⇐⇒ ∀a′ ∈ S′, ∃a ∈ S, E(a′ − a) < 0

⇐⇒ ∀a′ ∈ S′, ∃a ∈ S, E(a− a′) > 0

□

So, contrary to theorem 1, the act a ∈ S dominating a given a′ ∈ S′ in theorem 3 can be different
for each a′. This has an important practical impact, as will be confirmed in further experiments.
Theorem 3 also leads to the following corollary.

Corollary 4. If MmL(S,A) < 0 then DM (A) ⊆ S.

Proof. By theorem 3, each a′ ∈ S′ is dominated by a maximal element in S. Therefore, S′ contains
no maximal elements, so consequently all maximal elements must be in S. □

Similar to the minimax criterion, we can define an optimal maximin subset of a given size as

(35) S+
k (A) := arg min

∅≠S⊆A
|S|≤k

MmL(S,A)

and we denote the minimum value by

(36) MmL+
k (A) := MmL(S+

k (A), A).

Note that S+
k (A) is also not guaranteed to be unique. If this occurs, we assume one set is picked at

random, as these are indifferent sets. This can be employed as a budgeted decision rule as follows:

(37) Dk
MmL(A) :=

{
DM (A) if MmL+

k (A) < 0 or |A| ≤ k

S+
k (A) otherwise.
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ω1 ω2 ω3

a1 6 4 2
a2 7 1 4
a3 10 4 8
a4 2 7 2
a5 7 1 9
a6 7 8 2

Table 3. Acts of example 4

j
i

1 2 3 4 5 6

1 - 3.0 0.0 4.0 3.0 −0.7
2 1.3 - −3.0 5.0 0.0 0.6
3 4.6 3.3 - 8.0 3.0 3.9
4 3.0 6.0 3.0 - 6.0 −1.0
5 2.8 1.5 −1.8 5.6 - 2.1
6 4.0 7.0 4.0 5.0 7.0 -

Table 4. Values of E(aj − ai)

4.3. Computing S+
k (A). Let us now deal with the problem of computing S+

k (A). A first question

that arises is then to know whether S+
k (A) and S∗

k(A) do not coincide in general, in which case one
could use algorithm 1 to solve the problem in polynomial time. Let us first give the solution for
our previous example.

Example 3. Consider the same situation as in example 1. For this situation and various values
of k, we have that

• S+
1 (A) = {a4} with MmL(S+

1 , A) = 3.0,
• S+

2 (A) = {a1, a2} with MmL(S+
2 , A) = 1.4,

• S+
3 (A) = {a1, a2, a3} or {a2, a3, a4} with MmL(S+

3 , A) = 1.0 and
• S+

4 (A) = {a1, a2, a3, a4} with MmL(S+
4 , A) = −1.1,

Again, in the case of S+
3 (A), the rule would return one of the two sets, picking one at random.

In the above example, we get the same results for S+
k (A) and values MmL+

k (A) as for the

minimax criterion. This shows, among other things, that S+
k (A) ̸⊆ S+

k+1(A) and that a greedy
approach applied to maximin will generally result in sub-optimal solutions. The next example
however shows that such equalities do not hold in general, and experiments will later confirm that
this is often the case.

Example 4. Suppose that we have the same space Ω, the credal set specified by eq. (5) with the set
of acts listed in table 3.

According to values E(aj − ai),∀j ̸= i in table 4, we see that all maximal elements of A are
DM (A) = {a3, a6} (only lines 3 and 6 of table 4 are non-negative for every column) and the
optimal solution S∗

k(A) for each k are given as follows:

• S∗
1 (A) = {a6} with mML∗

1(A) = 3.9,
• S∗

2 (A) = {a3, a6} with mML∗
2(A) = 2.1,

• S∗
3 (A) = {a3, a4, a6} with mML∗

3(A) = 0,
• S∗

4 (A) = {a1, a3, a4, a6} with mML∗
4(A) = −1.8 and

• S∗
5 (A) = {a1, a3, a4, a5, a6} with mML∗

5(A) = −3.0.
For S+

k (A), we have

• S+
1 (A) = {a6} with MmL+

1 (A) = 3.9,
• S+

2 (A) = {a3, a6} with MmL+
2 (A) = −0.7,

• S+
3 (A) = {a1, a3, a6} with MmL+

3 (A) = −1.0,
• S+

4 (A) = {a1, a3, a4, a6} with MmL+
4 (A) = −1.8 and

• S+
5 (A) = {a1, a3, a4, a5, a6} with MmL+

5 (A) = −3.0.
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This example confirms that mML∗
k(A) ̸= MmL+

k (A) is possible, even when S∗
k(A) = S+

k (A)

(see k = 2 and k = 3 in example 4), and that it is possible to have S∗
k(A) ̸= S+

k (A) (see k = 3 in

example 4). This confirms that our previous algorithmic solution cannot be applied to find S+
k (A)

in general. Notable exceptions where the two criteria will always coincide are when k = 1 and
k ≥ |A| − 1, as show the next two results.

Theorem 4. For k = 1 and all k ≥ |A| − 1 we have that

(38) S∗
k(A) = S+

k (A) and mML∗
k(A) = MmL+

k (A).

Proof. For k ≥ |A|, by lemmas 1 and 2,

(39) S∗
k(A) = S+

k (A) = A and mML∗
k(A) = MmL+

k (A) = −∞.

For k = 1, it holds because

S∗
1 (A) = arg min

S∈A1

mML(S,A)

= argmin
a∈A

max
a′∈A\{a}

E(a′ − a)

= argmin
a∈A

max
a′∈A\{a}

min
a′′∈{a}

E(a′ − a′′)

= arg min
S∈A1

MmL(S,A)

= S+
1 (A)

and note that the minima are achieved at the same values in each of the above steps so mML∗
1(A) =

MmL+
1 (A).

For k = |A| − 1, it holds because (with n := |A|)
S∗
n−1(A) = arg min

S∈An−1

mML(S,A)

= arg min
S∈An−1

(
min
a∈S

max
a′∈A\S

E(a′ − a)

)
and now, writing S ∈ An−1 as S = A \ {a′} for a′ ∈ A,

= arg min
a′∈A

(
min

a∈A\{a′}
max

a′′∈A\(A\{a′})
E(a′′ − a)

)
= arg min

a′∈A

(
min

a∈A\{a′}
E(a′ − a)

)
,

and

S+
n−1(A) = arg min

S∈An−1

MmL(S,A)

= arg min
S∈An−1

(
max

a′∈A\S
min
a∈S

E(a′ − a)

)
and again, writing S ∈ An−1 as S = A \ {a′} for a′ ∈ A,

= arg min
a′∈A

(
max

a′′∈A\(A\{a′})
min

a∈A\{a′}
E(a′′ − a)

)
= arg min

a′∈A

(
min

a∈A\{a′}
E(a′ − a)

)
.
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and again note that the minima are achieved at the same values in each of the above steps so
mML∗

n−1(A) = MmL+
n−1(A). □

Let us now consider the problem of finding S+
k (A) as well as the corresponding MmL+

k (A). In
order to explain our algorithm, we first consider another question: given a value α, can we find an
S ⊆ A of size k such that MmL(S,A) ≤ α? Finding S+

k (A) then amounts to find the lowest α

for which the answer is yes. Denoting as before by eij := E(aj − ai) the upper expectation, let us
first notice that MmL(S,A) can only take as value negative infinity (if S = A), or one of the finite
values eij .

Assume we choose α = ei′j′ . We should then put within S elements ai such that those elements
can be responses to the adversary choices leading to losses eij lower than α. The set Cα[i] of
adversary choices for which a given element ai is an adequate response is given as

(40) Cα[i] := {j : eij ≤ α}.

Consider for instance table 4, the value α = −1.0 and i = 3, then C−1.0[3] = {2, 5} corresponding
to the values −3 (e32) and −1.8 (e35). This means that if a3 ∈ S, then it is a response to adversary
choices a2, a5 (if those are not in the set S) leading to a value lower than α = −1.0. Note that we
can do this operation for any i and any α. Given this, there is a subset S having k elements leading
to MmL(S,A) ≤ α only if we can find k elements whose union of sets Cα[i] includes all elements
in A \ S, or formally if we can find a set S such that

(41) ∪i∈S(Cα[i] \ S) = A \ S.

This equation means that for every act aj in S′ = A\S that the adversary can pick (right hand-side
of the equation), there is at least one element ai in S (the union of the left-hand side) we can pick
such that E(aj − ai) ≤ α, i.e. one for which j ∈ Cα[i].

Lemma 3. Let α ∈ R ∪ {−∞}, and ∅ ≠ S ⊆ A. Then eq. (41) implies

(42) MmL(S,A) ≤ α.

Proof. For every a ∈ S, define

(43) C ′
α(S, a) := {a′ ∈ S′ : E(a′ − a) ≤ α}.

By Definition,

(44) ∀a ∈ S, ∀a′ ∈ C ′
α(S, a) : E(a′ − a) ≤ α.

Consequently,

∀a′ ∈ ∪ã∈SC
′
α(S, ã), ∃a ∈ S : E(a′ − a) ≤ α(45)

Since ∪a∈SC
′
α(S, a) = S′ by assumption, equivalently,

∀a′ ∈ S′, ∃a ∈ S : E(a′ − a) ≤ α(46)

or equivalently,

max
a′∈S′

min
a∈S

E(a′ − a) ≤ α(47)

which is what we had to show, by eq. (29). □

Lemma 4. Let 1 ≤ k ≤ |A|. If eq. (41) holds for some α ∈ R ∪ {−∞} and S ⊆ A with |S| = k,
then MmL+

k (A) ≤ α.
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Proof. Since |S| = k, by definition of MmL+
k (A) we have

MmL+
k (A) ≤MmL(S,A)(48)

Now use lemma 3. □

Lemma 5. Let 1 ≤ k ≤ |A|. Then eq. (41) holds for α = MmL+
k (A) and S = S+

k (A), where

|S+
k (A)| = k.

Proof. That |S+
k (A)| = k follows from lemma 2 and eq. (35).

For brevity of notation, throughout the rest of the proof, we write S for S+
k (A) and α for

MmL+
k (A). It now suffices to show that

(49)
⋃
a∈S

C ′
α(S, a) = S′

Since each C ′
α(S, a) is a subset of S′, equivalently, it suffices to show that

(50) ∀a′ ∈ S′, ∃a ∈ S : a′ ∈ C ′
α(S, a)

Since C ′
α(S, a) = {a′ ∈ S′ : E(a′ − a) ≤ α}, equivalently, we must show that

(51) ∀a′ ∈ S′, ∃a ∈ S : E(a′ − a) ≤ α

or equivalently,

(52) max
a′∈S′

min
a∈S

E(a′ − a) ≤ α

But this translates to MmL(S,A) ≤ α, and we know that MmL(S,A) = α by choice of S and α,
so the condition is satisfied. □

These last two lemmas tell us that we need to find the lowest α ∈ R∪{−∞} for which there is a
set S of size k such that eq. (41) is satisfied. While the search can be performed across all values in
R ∪ {−∞}, we will in practice (see algorithm 2 below) restrict it to the finite set of distinct values
eij (and −∞), as MmL(S,A) can only take one of these values.

Finally, note that eq. (41) can be rewritten as follows:⋃
i∈S

(Cα[i] \ S) = A \ S(53)

⇐⇒

(⋃
i∈S

Cα[i]

)
\ S = A \ S(54)

⇐⇒

(⋃
i∈S

Cα[i]

)
∪ S = A(55)

The next question is: what should be a range of α that we are looking for? According to eq. (30),
we know that for |A| = n and 1 ≤ k ≤ |A|,
(56) MmL+

k (A) ≤ mML∗
k(A),

where mML∗
k(A) can be obtained by algorithm 1, therefore, mML∗

k(A) will be an upper bound
of α. For a lower bound, we notice that if we set α as the (n − k)th lowest value of all eij , then
there are at least n − k values of eij that are lower or equal to α. Thus, the corresponding set
∪i∈S(Cα[i] \ S) may contain n− k = |A \ S| elements for A \ S, and this is not true for any value
lower than that.
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j

i
1 2 3 4 5 6

1 - 3.0 0.0 4.0 3.0 −0.7
2 1.3 - −3.0 5.0 0.0 0.6

3 4.6 3.3 - 8.0 3.0 3.9

4 3.0 6.0 3.0 - 6.0 −1.0

5 2.8 1.5 −1.8 5.6 - 2.1

6 4.0 7.0 4.0 5.0 7.0 -

Table 5. Representation of C−1.0[i] = {j : eij ≤ −1.0} in example 5

j

i
1 2 3 4 5 6

1 - 3.0 0.0 4.0 3.0 −0.7

2 1.3 - −3.0 5.0 0.0 0.6

3 4.6 3.3 - 8.0 3.0 3.9

4 3.0 6.0 3.0 - 6.0 −1.0
5 2.8 1.5 −1.8 5.6 - 2.1

6 4.0 7.0 4.0 5.0 7.0 -

Table 6. Representation of C−0.7[i] = {j : eij ≤ −0.7} in example 5

Let us illustrate this notion on our previous example, before formalizing it into an algorithm.

Example 5. Consider example 4, together with the value α = −1 and k = 2. The obtained sets
C−1.0[i] are pictured in table 5, with the α value circled, and the values lower than it squared. We
do have C−1.0[3] = {2, 5}, C−1.0[6] = {4} and C−1.0[i] = ∅ for all other i’s. At best, we have
for S = {3, 6} that C−1.0[3] ∪ C−1.0[6] = {2, 5, 4} which is different from A \ S = {1, 2, 5, 4}. We
therefore cannot find a set S of two elements such that MmL(S,A) ≤ −1.0. Note that −1.0 is not
the 4th (or (n − k)th) lowest value of all eij, but it is the 3rd lowest value of all eij. Therefore,
there are only three values lower or equal to −1.0, and the set ∪i∈S(C−1.0[i] \S) cannot include, by
definition, 4 elements for A \ S as we want.

The next value after −1.0 in table 4 is −0.7, which is the 4th lowest value of all eij for which
there are 4 values lower or equal to −0.7. Therefore, the corresponding set ∪i∈S(C−0.7[i] \ S) will
have a potential to be a set of 4 elements for A \ S. Specifically, the corresponding sets C−0.7[i] are
represented in table 6 and are C−0.7[3] = {2, 5}, C−0.7[6] = {1, 4} and C−1.0[i] = ∅ for all other i’s.
This time, we do have for S = {3, 6} that C−0.7[3] ∪ C−0.7[6] = {1, 2, 5, 4} = A \ S, meaning that
we can find an S with MmL(S,A) ≤ −0.7, and since this is the lowest value for which we can, we
have S+

2 = {3, 6}.
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We are now ready to put these ideas into a corresponding algorithm. Algorithm 2 provides the
iterative strategy to find S+

k (A) and MmL+
k (A), by finding the lowest value for which the condition

of eq. (41) is satisfied. Algorithm 3 simply checks that this condition can be satisfied.

Algorithm 2 Finding S+
k (A)

Require: A = {a1, a2, . . . , an}, P, k
Ensure: MmL+

k (A), S+
k (A)

1: for j = 1: n do
2: for i = 1: n, i ̸= j do
3: compute eij := E(aj − ai)
4: end for
5: end for
6: S+

k (A)← ∅
7: m← n− k
8: while S+

k (A) = ∅ do
9: e′ ← ei′j′ such that ei′j′ is the mth lowest value of all eij

10: for i = 1: n do
11: C[i]← Ce′ [i] := {j : eij ≤ e′}.
12: end for
13: S+

k (A)← result of algorithm 3 with C[i] and e′

14: m← m+ 1
15: end while
16: MmL+

k (A)← e′

17: return S+
k (A),MmL+

k (A)

Algorithm 3 Reachable value α

Require: Cα[i] for i = 1, . . . , n, k
Ensure: A non-empty subset S if there is a solution, ∅ if not
1: S ← ∅
2: for every subset T ⊆ {1, . . . , n} with |T | = k do
3: if ∪i∈T (Cα[i] \ T ) = A \ T then
4: S ← T break for
5: end if
6: end for
7: return S

Looking at the algorithms, it is clear that algorithm 3 has a combinatorial nature, and represents
a bottleneck in our approach. The next result indicates that this part of the Algorithm is indeed a
computational barrier.

Theorem 5. Checking whether the condition of eq. (41) can be satisfied is NP-complete.

Proof. To show this, we will show that it is equivalent to solving a dominating set problem, which
is a known NP-complete problem. We can rephrase the problem we try to solve as having a set
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1 2 3

4 5 6

Graph for α = −1.0

1 2 3

4 5 6

Graph for α = −0.7

Figure 2. Corresponding graphs of example 5

[n] = {1, . . . , n} of integer indices, to which are associated (possibly empty) subsets Ai ⊆ [n] such
that i ̸∈ Ai. For a given k ≤ n, we want to solve the following optimisation problem:

Find a subset B ⊆ [n] of indices such that

|B| = k(57)

∪i∈BAi = {1, . . . , n} \B(58)

In the above reformulation, the subset B corresponds to S, and the subsets Ai to the subsets Cα[i].
We can then consider the directed graph G = (V,E) where the vertices are V = {1, . . . , n}, and
where there is an edge (i, j) ∈ E whenever j ∈ Ai (Ai are the out-neighbours of i). Now, there is
straightforward reduction of our problem to a dominating set problem, in the sense that taking i
in the dominating set is equivalent to taking Ai in B ⇒ Ai “dominates” i and every index in Ai.

So, identifying whether there is a dominating set of size k in G is equivalent to identify whether
there is a solution to our problem, hence the two problems have the same complexity. □

Figure 2 illustrates the equivalent graphs of the sets used in example 5. One can easily see that
for α = −1.0, there is no way to pick a cover for k = 2, i.e., two vertices i, j such that all other
vertices except i, j are their direct neighbours (one would need to pick at least three vertices). In
contrast, this is possible in the graph corresponding to α = −0.7.

Such a result clearly goes against trying to find the maximin approach rather than the minimax
one, at least in terms of computability and with the algorithms we have presented. However, if k
remains of low value (which we expect to be the case in most applications of a budgeted rule), the
computational burden will remain limited. Also, we will see in the experiments that the maximin
approach is very often (but not always) strongly consistent with DM and the maximality decision
rule in practice, which is not the case for the minimax one. Before that, we will show that the
maximin rule is also always weakly consistent with DM

4.4. Weak Consistency of maximin criterion. Similarly to S∗
k , we will show that S+

k is weakly

consistent with maximality. Weak consistency for A such that MmL+
k (A) < 0 is ensured by

corollary 4, therefore we now look at the case MmL+
k (A) ≥ 0.
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Theorem 6. For any S ⊆ A with cardinality k, there is a T ⊆ A with cardinality k such that
T ∩DM (A) ̸= ∅ and MmL(T,A) ≤MmL(S,A).

Proof. If S ∩ DM (A) ̸= ∅ then we can take T = S and we are done. For the remainder of the
proof, we can therefore assume that S ∩DM (A) = ∅. It suffices to construct a subset T of A with
cardinality k such that T ∩ DM (A) ̸= ∅ and MmL(T,A) ≤ MmL(S,A), establishing the desired
result.

For brevity, define S′ := A \ S. If S ∩DM (A) = ∅, then MmL(S,A) ≥ 0 by theorem 3. There
are a+ ∈ S and a′+ ∈ S′ such that

0 ≤MmL(S,A) = E(a′+ − a+)(59)

Since S ∩ DM (A) = ∅, and a+ ∈ S, we know that a+ is non-maximal in A. Therefore, a+ must
be dominated by a maximal element of A, which is by assumption guaranteed to belong to S′. In
other words, there is a b ∈ S′ ∩DM (A) such that

E(a+ − b) < 0(60)

Define T := (S \ {a+}) ∪ {b}. Clearly, T has the same cardinality as S, since a+ ∈ S and b ̸∈ S
by construction, and T ∩DM (A) ̸= ∅ since b ∈ DM (A). Since MmL(S,A) = E(a′+ − a+), also by
construction, it suffices to show that

(61) MmL(T,A) = max
a′∈T ′

min
a∈T

E(a′ − a) ≤ E(a′+ − a+)

to finish our proof. In other words, we are left to prove that

∀a′ ∈ T ′, ∃a ∈ T : E(a′ − a) ≤ E(a′+ − a+).(62)

Indeed, by the definition of MmL(S,A) we already know that

∀a′ ∈ S′,∃a ∈ S, E(a′ − a) ≤ E(a′+ − a+)(63)

First note that we have E(b − a+) > 0, due to eq. (60) and the duality relation E(f) = −E(−f).
From this we can deduce

(64) E(b− a) ≥ E(b− a+) + E(a+ − a) > E(a+ − a)

so when a′ = b in eq. (63), we can replace a′ with a+ whilst still respecting the inequality. Therefore,

∀a′ ∈ T ′, ∃a ∈ S : E(a′ − a) ≤ E(a′+ − a+).(65)

Now fix any a′ ∈ T ′. If the a ∈ S in the above condition is not equal to a+, then a ∈ T and we
are done. Otherwise, if a = a+, note that again we can replace it with b whilst still respecting the
inequality, because, since E(a+ − b) > 0,

(66) E(a′ − b) ≤ E(a′ − a+) + E(a+ − b) < E(a′ − a+)

This concludes the proof. □

Theorem 6 tells us that whenever we have a set of k elements without any maximal ones, we can
add a maximal ones and improve the solution by decreasing its MmL value. This is sufficient to
prove that at least one set S+

k (A) contains a maximal element. Consequently, we have the following
corollaries from theorem 6 and corollary 4.

Corollary 5. S+
k and Dk

MmL are weakly consistent with DM .

Corollary 6. S+
1 and D1

MmL are strongly consistent with DM .
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After investigating the properties of our two budgeted regret-based rules, as well as the com-
putational methods to obtain them, we are ready to proceed to some experiments to test some of
their behaviours.

5. Computational experimentation

In this section, we will perform some experiments to compare S∗
k and S+

k with their greedy

approximations Sg∗
k and Sg+

k , obtained as follows: given a set of actions A, we compute Sg∗
1 (A) =

S∗
1 (A). Then, for k ≥ 2, we compute Sg∗

k (A) = Sg∗
k−1(A) ∪ S∗

1 (A \ S
g∗
k−1(A)) and determine

mML(Sg∗
k , A). Similarly, we compute Sg+

1 (A) = S+
1 (A) and determine MmL(Sg+

k , A). Then,

for k ≥ 2, we can compute Sg+
k (A) = Sg+

k−1(A) ∪ S+
1 (A \ Sg+

k−1(A)) and determine mML(Sg+
k , A).

Recall that the greedy algorithms are not optimal and will usually not result in S∗
k and S+

k , as
already shown in examples 2 and 4.

We aim to compare S∗
k and S+

k with their greedy approach for consistency with respect to

maximality. Basically, we want to find out how much S∗
k , S

g∗
k , S+

k and Sg+
k can capture maximal

elements in the set DM . This can measure the quality of the greedy approximations with our
proposed algorithms to find S∗

k and S+
k . Since S∗

1 and S+
1 are weakly and strongly consistent with

DM by corollaries 2 and 3 and corollaries 5 and 6 respectively, we will not consider case k = 1.
We fix |A| = 20, |Ω| = 5, |P| =20. We generate p ∈ P by sampling a probability mass func-

tion p uniformly from the unit simplex as follows. For each ω, we sample q(ω) uniformly from

(0,1) and then for each ω, we assign p(ω) := ln q(ω)∑
ω ln q(ω) . This ensures that generated distributions

p(ω1), . . . , p(ωn) follow a Dirichlet Dir(1, . . . , 1) distribution which has uniform density over the
unit simplex [8]. Note that the convex hull of P may have less than twenty extreme points, as
some generated probabilities may be convex combinations of the others. Next, we generate a set of
elements A on Ω for which |DM (A)| = 6 by using algorithm 6 in [19]. We will compute S∗

k , S
g∗
k ,

S+
k and Sg+

k for the cases k ∈ {2, . . . , 6}. To do so, for all ai ̸= aj ∈ A, we compute E(aj − ai) with

respect to the credal set P as an input to our algorithms and compute S∗
k , S

g∗
k , S+

k and Sg+
k with

respect to A. Next, we check whether S∗
k , S

g∗
k , S+

k and Sg+
k are weakly consistent (having only one

maximal element in the set) or strongly consistent (having all elements in the set being maximal)

with DM or not. We also compute the proportion of elements in S∗
k , S

g∗
k , S+

k and Sg+
k that are

in DM . We repeat this process 500 times and summarise the result in table 7. The percentages
of these sets that satisfy weakly and strongly consistent properties and the average percentages of
elements in these sets which are in DM are showed in the 3rd-5th columns of table 7.

According to the results, we see that S∗
k and S+

k and their greedy approach are weakly consistent

with DM . Interestingly, only S+
k is likely to be strongly consistent while the rest of the sets are

rarely strongly consistent with DM (the numbers in the fourth column quickly drop for all sets as
k increase, while they actually increase for S+

k ). Moreover, the average percentages of maximal

elements in S∗
k and S+

k are higher than in their greedy approximations Sg∗
k and Sg+

k .

By theorem 4 and the procedure of construct Sg∗
k and Sg+

k , we have Sg∗
k = Sg+

k for all k.

Therefore, the percentages of Sg∗
k and Sg+

k that are weakly and strongly consistent with DM are

equal. In addition, to see how close those greedy approximations are to S∗
k and S+

k , we compare the
optimal solutions with the greedy approach solutions. To do so, we record the number of S∗

k = Sg∗
k

and the number of S+
k = Sg+

k and present the averages percentages of these sets that satisfy these

conditions in the column 6th. In the column 7th, we calculate the average of proportion of elements
in Sg∗

k that are in S∗
k and and the proportion of elements in Sg+

k that are in S+
k .
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Dk k w.c. s.c.
|Dk ∩DM |
|Dk|

S∗
k

2 100% 100% 100%

S∗
k = Sg∗

k

|Sg∗
k ∩ S∗

k |
|Sg∗

k |

3 100% 90.2% 96.7%
4 100% 73.8% 92.7%
5 100% 57.0% 89.8%
6 100% 44.0% 88.4%

Sg∗
k

2 100% 94.8% 97.4% 32.2% 64.3%
3 100% 78.6% 92.5% 13.0% 61.4%
4 100% 58.2% 87.8% 9.2% 65.9%
5 100% 37.0% 82.9% 7.0% 69.4%
6 100% 15.8% 77.9% 9.4% 73.6%

S+
k

2 100% 99.2% 99.6%

S+
k = Sg+

k

|Sg+
k ∩ S+

k |
|Sg+

k |

3 100% 99.8% 99.9%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%

Sg+
k

2 100% 94.8% 97.4% 32.6% 63.0%
3 100% 78.6% 92.5% 18.6% 65.8%
4 100% 58.2% 87.8% 16.4% 71.1%
5 100% 37.0% 82.9% 15.2% 74.9%
6 100% 15.8% 77.9% 15.8% 77.9%

Table 7. Percentages averages of S∗
k , S

g∗
k , S+

k and Sg+
k that satisfy different conditions.

As we can employmML andMmL as budgeted decision rules as in eqs. (19) and (37), we want to
find out how fast S∗

k and S+
k will become supersets of DM (or mML∗

k(A) < 0 and MmL+
k (A) < 0)

so that we can simply return DM instead of S∗
k or S+

k . To do so, we regenerate a set of elements

A on Ω such that |DM | = m for m ∈ {2, 5, 10}. Next, we compute mML∗
k(A) and MmL+

k (A)
for k = m + i, where i ∈ {0, 1, 2, 3}. We repeat this process 100 times and present the result in
table 8. The average percentages of mML∗

k(A) < 0 and MmL+
k (A) < 0 are presented in the 2nd

and 3rd columns while the average percentages of mML∗
k(A) = MmL+

k (A) is presented in the 4th

column of table 8. According to the result, we found that S+
k becomes a superset of DM much

faster than S∗
k as the average percentages of MmL+

k (A) < 0 are much higher than the average
percentages of mML∗

k(A) < 0. If the cardinality of DM is increasing, then the average percentages
of mML∗

k(A) = MmL+
k (A) tend to be decreasing.

All those numbers show that, in practice, the maximin approach has a quite stronger consistency
with maximality, and its negativity can be used as a quite reliable signal that we have captured all
the maximal elements. In contrast, the minimax rule shows a much weaker consistency, and will of-
ten contain non-maximal elements. As maximality rests on very strong theoretical foundations, our
conclusion is that the maximin rule should be preferred whenever its computational burden remains
affordable, and that one should resort to the minimax rule only when computational efficiency is a
key issue.
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|DM | k mML∗
k(A) < 0 MmL+

k (A) < 0 mML = MmL

2

2 54% 100% 46%
3 76% 100% 51%
4 89% 100% 51%
5 96% 100% 54%

5

5 33% 100% 23%
6 64% 100% 25%
7 85% 100% 31%
8 96% 100% 34%

10

10 28% 100% 15%
11 66% 100% 22%
12 84% 100% 19%
13 97% 100% 24%

Table 8. Percentages averages of S∗
k and S+

k that satisfy different conditions.

ω1 ω2 ω3 ω4 ω5

a1 37 25 23 73 91
a2 50 67 2 44 94
a3 60 4 96 1 83
a4 16 24 31 26 100
a5 3 86 76 85 11
a6 12 49 66 56 14
a7 39 10 92 88 57
a8 62 52 80 71 42
a9 90 8 74 70 38
a10 63 68 36 69 9

Table 9. Payoffs for the acts of the financial application example from [10].

6. Two illustrative use cases

In this section, we demonstrate how our method can be applied in practice. The first example
is inspired from Jansen et al. [10], but adapted to provide more than 3 maximal acts, while the
second one concerns a situation where we must predict binary vectors over a set of labels, which is
the situation encountered in multi-label learning, a specific multi-task machine learning problem.

6.1. Financial investment example. We follow the financial application example in [10], where a
subject wants to invest her money in some stocks. An act corresponds to investing in a specific stock.
Suppose that a financial agent offers her ten different stocks, so we have A = {a1, . . . , a10}. There
are five possible states of nature Ω = {ω1, . . . , ω5} corresponding to different economic scenarios
that are uncertain to the agent. The payoff for each stock under each possible scenarios is given in
table 9.

In addition, based on the decision maker’s experience in the financial market, she specifies her
credal set through probability bounds as follows (note these are slightly wider than the ones from
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j
i

1 2 3 4 5 6 7 8 9 10

1 - 11.65 25.0 23.5 22.85 29.35 2.9 4.7 9.8 19.5
2 5.0 - 21.6 20.7 21.5 28.4 6.9 3.0 9.6 14.3
3 4.05 7.3 - 15.95 20.8 26.35 −3.0 −1.4 0.3 16.65
4 −7.4 −4.25 6.5 - 8.95 15.0 −7.4 −11.2 −3.0 4.35
5 16.2 22.0 33.1 34.8 - 19.8 2.6 2.6 10.6 12.2
6 −3.6 2.2 13.3 15.0 −5.55 - −16.2 −17.2 −9.2 −3.1
7 16.15 26.3 30.5 37.75 23.8 30.4 - 8.7 10.6 26.95
8 19.0 23.45 32.3 34.95 23.1 28.7 8.0 - 8.6 18.5
9 18.9 26.95 30.3 39.25 27.0 32.85 5.8 4.6 - 20.25
10 10.0 11.6 27.2 27.2 8.5 19.5 2.7 −4.8 −0.5 -

Table 10. Values of E(aj − ai).

k S∗
k(A) mML∗

k(A) S+
k (A) MmL+

k (A)
1 a7 8 a7 8
2 a7, a8 4.7 a7, a8 4.6
3 a1, a7, a8 4.6 a7, a8, a9 3
4 a2, a7, a8, a9 2.9 a2, a7, a8, a9 2.9
5 a1, a2, a7, a8, a9 2.6 a1, a2, a7, a8, a9 2.6
6 a1, a2, a5, a7, a8, a9 −1.4 a1, a2, a5, a7, a8, a9 −3.0

Table 11. S∗
k and S+

k for different values of k.

Jansen et al. [10] to better demonstrate the benefits of our method):

(67)
P = {p ∈ P : 0.1 ≤ p(ω1) ≤ 0.3, 0.05 ≤ p(ω2) ≤ 0.2,

0.1 ≤ p(ω3) ≤ 0.2, 0.2 ≤ p(ω4) ≤ 0.4, 0.1 ≤ p(ω5) ≤ 0.3}.

From these bounds, the values of E(aj−ai), for all j ̸= i, can be calculated by linear programming.
They are provided in table 10.

We see that while our information can discard some items as being non-maximal, we still have
{a1, a2, a5, a7, a8, a9} for the set of maximal acts, which may be judged too high if these represent
complex financial portfolios. Results of our algorithms are shown in table 11. In this case, the two
approaches only differ slightly, and are completely consistent with the notion of maximality, as all
selected examples for k ≤ 6 are maximal.

6.2. Multi-label example. To demonstrate our approach in machine learning, we consider multi-
label classification [13], a sub-category of multi-task learning where one first observes an input x
and then has to predict binary vectors over a set of labels ℓ := (ℓ1, . . . , ℓn) with ℓi ∈ {0, 1}. A value
ℓi = 1 usually means that the label is present in the instance x, while a zero means that the label is
absent. There are many learning schemes to solve this problem, including imprecise ones [3, 17, 1],
as well as many commonly used loss functions.

As is classically done in machine learning, our sets of acts and of states will coincide, acts being
prediction of the possible ground truth when observing x. We will therefore have Ω = A = {0, 1}n,
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[000] [001] [010] [011] [100] [101] [110] [111]
[000] 0 −1 −1 −2 −1 −2 −2 −3
[001] −1 0 −2 −1 −2 −1 −3 −2
[010] −1 −2 0 −1 −2 −3 −1 −2
[011] −2 −1 −1 0 −3 −2 −2 −1
[100] −1 −2 −2 −3 0 −1 −1 −2
[101] −2 −1 −3 −2 −1 0 −2 −1
[110] −2 −3 −1 −2 −1 −2 0 −1
[111] −3 −2 −2 −1 −2 −1 −1 0

Table 12. Example of multi-label utility based on Hamming distance for n = 3.

p([000]) p([001]) p([010]) p([011]) p([100]) p([101]) p([110]) p([111])

p1 0.432 0.048 0.108 0.012 0.288 0.032 0.072 0.008
p2 0.144 0.336 0.036 0.084 0.096 0.224 0.024 0.056
p3 0.216 0.024 0.324 0.036 0.144 0.016 0.216 0.024
p4 0.072 0.168 0.108 0.252 0.048 0.112 0.072 0.168
p5 0.144 0.016 0.036 0.004 0.576 0.064 0.144 0.016
p6 0.048 0.112 0.012 0.028 0.192 0.448 0.048 0.112
p7 0.072 0.008 0.108 0.012 0.288 0.032 0.432 0.048
p8 0.024 0.056 0.036 0.084 0.096 0.224 0.144 0.336

Table 13. Extreme probabilities of multi-label example.

with an exponentially increasing size of sets of alternatives as a function of the number of labels n.
We will also consider here the utility version of the standard Hamming loss function, which means
that if ℓ̂ is the predicted vector (i.e., the act, in our setting), and ℓ the true one (i.e., the state, in
our setting), then

ℓ̂(ℓ) = −
n∑

i=0

Iℓ̂i ̸=ℓi
,

where IA denotes the indicator function of event A. Table 12 illustrates the obtained utility matrix
when n = 3. As a model, we will consider in this example an imprecise version of the classical
binary relevance scheme, where the probability mass of a given vector ℓ is the product of label-wise
probability masses, i.e.,

(68) p(ℓ) =

n∏
i=1

pi(ℓi)

Here, the pi’s values are outputted by classifiers. We will consider here that instead of having
precise label-wise estimates, we have imprecise ones given as follows:

p1(ℓ1 = 1) ∈ [0.4, 0.8], p2(ℓ2 = 1) ∈ [0.2, 0.6], p3(ℓ3 = 1) ∈ [0.1, 0.7].

By robustifying the product in eq. (68), we get a set of extreme probabilities obtained by considering
all the combinations of interval bounds. Those are summarised in table 13.

All is left to do now is to compute the pairwise matrix of upper expectations, which is summarised
in table 14. From this table it is clear that all alternatives are maximal, hence using a robust decision
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[000] [001] [010] [011] [100] [101] [110] [111]
0.0 0.8 0.6 1.4 0.2 1.0 0.8 1.6
0.4 0.0 1.0 0.6 0.6 0.2 1.2 0.8
0.2 1.0 0.0 0.8 0.4 1.2 0.2 1.0
0.6 0.2 0.4 0.0 0.8 0.4 0.6 0.2
0.6 1.4 1.2 2.0 0.0 0.8 0.6 1.4
1.0 0.6 1.6 1.2 0.4 0.0 1.0 0.6
0.8 1.6 0.6 1.4 0.2 1.0 0.0 0.8
1.2 0.8 1.0 0.6 0.6 0.2 0.4 0.0

Table 14. Upper pairwise expectations for the multi-label example.

rule such as maximality is not helpful at all to select an alternative. In general, we would expect
the number of maximal vectors to be quite large but not equal to Ω. Also note that due to the
simplicity of the model and the highly structured form of the utility matrix in table 12, upper
expectations only take a limited number of values. This would however not be the case in actual
applications, where an analyst would probably consider more complex models, as well as utility or
loss functions that would be different for different label mistakes.

Assuming that we want to return only two vectors, let us first consider the minimax criterion.
Applying algorithm 1 to table 14, we get that the minimal second largest element is obtained for
column [100] (the only one for which it is below 1), with S∗

2 = {[100], [011]} and mML(S∗
2 ) = 0.6.

Considering now the maximin criterion, if we fix α = 0.4 (from the mML value, we already know
it is equal or lower than 0.6), we get C0.4([100]) = {[000], [010], [101], [110]} and C0.4([101]) =
{[001], [011], [111]}, that do provide a dominating set, and one can check S+

2 = {[100], [101]} and
MmL(S+

2 ) = 0.4. Despite the high structure of the problem, the two approaches deliver distinct,
unique solutions. They also seem to adopt different strategies, the minimax recommending very
diverse, complementary vectors, while the maximin sends back two similar vectors, that differ only
by the label that is the most uncertain (ℓ3).

7. Discussion and conclusion

In this study, we have studied k-budgeted regret-based decision rules that return an optimal
subset of size k with respect to some value function. To do so, we recalled minimax criteria which
minimizes the maximal gain to the adversary on a given set of alternatives and proposed a new
regret-based decision rule called maximin criteria which swaps the order of selecting alternatives by
the decision maker and the adversary. We also provided algorithms for both criteria and discussed
their properties with respect to maximality. Note that our framework can be extended straightfor-
wardly to continuous spaces as long as one can compute upper expectations over it, while extending
it to an infinite set of acts would be trickier.

From the experimental perspective, we compared the minimax and maximin criteria and their
greedy approximation on generated sets. Overall, both algorithms perform better than their greedy
approximation. We also observed that the maximin criteria can capture all maximal elements faster
than the minimax criteria and is more consistent with the maximality decision rule. However, the
computational complexity of our proposed algorithm for maximin criteria is much harder than for
the minimax criteria, as we showed that the former requires to solve an NP-complete problem, while
the latter can be solved in polynomial time. This drawback is however of limited importance for



24 NAWAPON NAKHARUTAI, SÉBASTIEN DESTERCKE, AND MATTHIAS C. M. TROFFAES

small values of k. So, one should clearly prefer the maximin approach as long as it is computationally
affordable, and otherwise take the minimax approach.

Note that whilst we are not aware of other works considering the specific problem of delivering
at most k alternatives when modelling uncertainty as a credal set, some works provide methods and
ideas that could easily be leveraged to do so. A first strand of works in this direction would consist
in considering nested models where the imprecision is controlled by some parameter, allowing one to
go from a precise probability mass function (and having a unique optimal action) to the full credal
set. Jansen et al. [9] consider such a parametric model for imprecisely defined utility functions (that
we assume here well-defined), further discussed by Miranda et al. [16] in combination with credal
set approximation. Those same authors also discuss the notion of centroid for credal sets [15], and
it would be easy to go from this to the idea of a nested sequence. A second proposal is to associate
an evaluation to each possible maximal and/or E-admissible (a concept we did not consider here)
alternatives [10], to rank-order them according to this evaluation and to take the top-k alternatives.
Such approaches also appear legitimate to solve the issue considered in this paper, with a different
philosophy. In particular, they would consider alternatives individually, rather than offering an
evaluation for a whole set of alternatives. One risk is then that potential interactions between
alternatives would be ignored, and that similar alternatives could be selected in the k retained ones
(or, in the case of E-admissibility degrees, that none of a collection of similar alternatives would
be retained, while it would probably be desirable to retain at least one of those). On the other
hand, one advantage over our approach is that such approaches makes it easier to be coherent
with existing decision rules, and some of them can be solved efficiently. Finally, we also think that
regret formulations are well-known and appealing to many researchers, which is also an argument
to develop such methods in addition to others. One of our future endeavour would be to compare
those various approaches, both from theoretical and practical perspectives, yet this would require
to discuss desirable properties of credal budgeted decision rules, something that is out of the scope
of the current paper.

In other future work, we can look at a more practical perspective, for example, we may apply
these proposed budgeted rules to actual decision problems such as machine learning with structured
outputs or system design, where the decision maker is limited by human cognitive limits or where
inspecting more closely the different proposed options can lead to a high monetary cost.

Acknowledgement

This project is funded by National Research Council of Thailand (NRCT). This research was
supported by Chiang Mai University. NN would like to thank Assoc. Prof. Manad Khomkong for
his support. We also thank Tom Davot for discussions about the complexity proof.

References
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[17] Seraf́ın Moral-Garćıa and Sébastien Destercke. Partial calibrated multi-label ranking. In In-
ternational Conference on Soft Methods in Probability and Statistics, pages 287–294. Springer,
2022.

[18] Nawapon Nakharutai. Algorithms for generating sets of gambles for decision making with lower
previsions. In Van-Nam Huynh, Tomoe Entani, Chawalit Jeenanunta, Masahiro Inuiguchi, and
Pisal Yenradee, editors, Integrated Uncertainty in Knowledge Modelling and Decision Making,
pages 62–71, Cham, 2020. Springer International Publishing.

[19] Nawapon Nakharutai, Matthias C. M. Troffaes, and Camila C. S. Caiado. Improving and
benchmarking of algorithms for decision making with lower previsions. International Journal
of Approximate Reasoning, 113:91–105, October 2019. doi:10.1016/j.ijar.2019.06.008.
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