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A B S T R A C T   

Cave entrances on Mars, formed from lava tube collapses, are key to the future exploration of the planet. They 
represent valuable exploration targets for signs of life and could provide shelter for prospective human en-
deavours. In this survey, a convolutional neural network (CNN), trained to identify potential cave entrances 
(PCEs) from images of the Martian surface, is used to locate new potential caves. Five regions were targeted for 
search, totalling around 1.1% of the Martian surface. Region A (latitude: -20o N to -8o N, longitude: -120o E to 
-132o E, centre: -14o N, − 126o E), Region B (latitude: 0o N to -12o N, longitude: -108o E to -120o E, centre: -6o N, 
− 114o E), Region C (latitude: 0o N to 12o N, longitude: -100o E to -112o E, centre: 6o N, − 106o E), Region D 
(latitude: -28o N to -40o N, longitude: 88o E to 100o E, centre: -34o N, 94o E) and Region E (latitude: 20o N to 32o 

N, longitude: 140o E to 152o E, centre: 26o N, 146o E). Each region selected either contains a high abundance of 
previously identified PCEs or is known to contain volcanic surface features. The network identified 61 new and 
24 previously identified PCEs out of 10,834 positive outputs (0.78%). This accounted for ~7.0% of the 341 
previously identified PCEs present in the five regions surveyed. Four newly identified PCEs are highlighted as 
promising candidates for future research, including a very large (~700 m diameter) PCE (‘Marvin’; following 
previous convention, PCEs are informally named for ease of reference (Cushing et al., 2007)), as well as a PCE 
whose low altitude could enable exploration via remote controlled drone (‘Emily’). Twelve PCE-dense sub-re-
gions capable of facilitating rapid exploration were also identified. Of these, sub-region B2 contains the largest 
number of PCEs suggesting the most promise for future research. Overall, the network’s 0.78% success rate of 
PCE detection is approximately 37 times more effective than random selection of locations (estimated as a 0.02% 
chance of detection). This suggests that there is great potential for cave discovery with this method, although 
improvements in the size and quality of the training dataset are required prior to planet-wide application. Ad-
vancements in current exploration technologies are also necessary before confirming any PCE identified as an 
actual cave entrance.   

1. Introduction 

Remote identification of potential cave entrances (PCEs) is crucial 
for future direct exploration of caves on Mars. Additionally, Martian 
caves represent unique opportunities for identifying biosignatures of 
extra-terrestrial microbial life. Their stable environmental conditions 
enhance both secondary mineral precipitation and microbial growth 
(Léveillé and Datta, 2010). On Earth, many caves are found to sustain 
abundant microbial growth, by providing protection from seasonal 
climate effects, extreme weather, UV radiation, and the grazing of other 
organisms (Boston et al., 2001; Barton, 2006). Cave discoveries are also 
significant for future human exploration of Mars, providing shelter from 

a range of harsh surface conditions, such as micrometeoroid impacts, 
dust storms, extreme temperature variations, and high fluxes of solar 
radiation (Boston, 2004). Moreover, they provide easy access to 
geological materials of potential practical and economic value. There-
fore, locating Martian caves is more than an academic matter as these 
findings may yield evidence of life on Mars and/or provide ideal bases 
for human habitats. 

Knowledge of Martian geology has greatly improved over the past 
50 years following successful rover and lander missions (Viking 
(1976–1982); Pathfinder and Sojourner (1997–1997); Opportunity 
(2004–2018); Spirit (2004–2010); Phoenix (2008–2008); Curiosity 
(2012-); InSight (2018–2022); Perseverance (2021-); Zhurong (2021-)) 
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as well as numerous advancements in satellite imaging capabilities (e.g., 
2001 Mars Odyssey; Mars Reconnaissance Orbiter; Emirates Mars 
Mission). Despite this, the obvious accessibility restrictions greatly 
complicate geological study, limiting confirmation of theories. Current 
research aims to refine our understanding by improving the mobility of 
Martian robotics (e.g., Petrovsky et al., 2022), expanding surface 
exploration via flight (e.g., Biswal M and Kumar, 2021), and ultimately 
achieving crewed missions to the planet (e.g., Aprovitola et al., 2022; 
Dede, 2022). 

Over its 4.6 Gyr history, Mars has experienced extensive volcanism, 
likely only ceasing a few tens of millions of years ago (Neukum et al., 
2004). Much of this volcanic record is preserved due to low rates of 
erosion and a lack of plate tectonics, meaning that no recycling of the 
lithosphere has occurred (Carr, 1973). This lack of plate tectonics makes 
Martian volcanoes analogous to terrestrial mid-plate volcanoes on Earth, 
possibly forming over stationary mantle plumes (Carr and Head III, 
2010). 

The highest concentrations of volcanoes on Mars are found in the 

Fig. 1. Elevation map of Martian surface with five survey regions highlighted. The Tharsis and Elysium Bulges and the Hellas Basin are also highlighted. Map created 
using MOLA Shaded relief/ colorized digital elevation map from JMARS. 

Fig. 2. Examples of PCEs and their assigned category from the Mars Global Candidate cave Catalogue (MGC3) (Cushing, 2015). Examples include deep irregular pits 
(A1&A2), a-typical pit craters (APCs) (B1&B2), skylights (C1&C2), small rimless pits (SRPs) (D1&D2) and pinholes (E1&E2). This does not include all categories of 
PCE included in the MGC3. All images were captured at the same scale and orientation, on the CTX Global Mosaic (NASA/JPL/MSSS/The Murray Lab.). 
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Fig. 3. Visualisation of a convolutional neural network (CNN). Image data, represented as an empty number matrix (left), is condensed to a column vector, as it 
moves from left to right. This vector is then inputted into the connected network (right) before being outputted with an associated classification. (Image modified 
from Saha, 2018). 

Fig. 4. Example of an MGC3 PCE image before (left) and after (right) VGG16 pre-processing. All images underwent VGG16 pre-processing prior to being inputted to 
the network. 

Fig. 5. Diagram detailing CaveFinder’s architecture.  
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Tharsis and Elysium regions (Fig. 1). The Tharsis region covers almost 
25% of the planet’s surface and was primarily accumulated during the 
Noachian (4.1–3.7 billion years ago) (Phillips, 2001). The geology of this 
region consists mostly of basaltic deposits from shield volcanoes (Rossi 
and Van Gasselt, 2010). The comparatively smaller Elysium province is 
located east of Tharsis (Fig. 1) and contains three major shield vol-
canoes: Elysium Mons, Hecates Tholus, and Albor Tholus. Both regions 
experienced considerable lava flows which, due to the relatively reduced 
gravity, have travelled up to six times further than those found on Earth 
(Wilson and Head, 1994). This has created many volcanic surface fea-
tures, possibly including extensive cave systems in the form of lava 

tubes. 
Lava tubes are formed when a roofed conduit of flowing lava is 

drained or plugged, leaving behind a hollow ‘tube’ beneath the surface 
(Gunn, 2004). On Earth, lava tubes vary from only a few meters to tens 
of kilometres, such as the 65 km-long Kazumura Cave in Hawaii (Allred 
and Allred, 1997). They can form at depths of a few centimetres to tens 
of metres beneath the surface, with typical tube diameters ranging be-
tween 0.5 and 30 m (Sauro et al., 2020). During prolonged eruptions, 
several tubes often merge focusing lava flow along a primary path. This 
focused flow enlarges and entrenches the conduit due to its high thermal 
erosion potential (Kemp, 2019) leaving behind an open, trench-like 

Table 1 
Performance metrics of training versus validation accuracy after six rounds of training with 
augmented datasets. The mean accuracy after each round is also given. The best performing 
round (achieved by CaveFinder), in terms of both training and validation accuracy, is 
highlighted in green. 

Training Round Training Accuracy Validation Accuracy Average Accuracy 

1 1.0000 0.8333 0.91665

2 0.9540 0.8889 0.92145

3 0.9829 0.8889 0.9359

4 (CaveFinder) 0.9955 0.9375 0.9665
5 0.9738 0.9236 0.9487

6 0.8847 0.8145 0.8496

Fig. 6. Top panel: Location of all known PCEs in region A (latitude: -20o N to -8o N, longitude: -120o E to -132o E), visualised on the CTX Global Mosaic (NASA/JPL/ 
MSSS/The Murray Lab.). PCE-dense subregions are outlined in yellow. Bottom panel: Location of all known PCEs between 45o N and -45o N shown on a colourised 
elevation map of Mars. Includes the locations of all the survey regions, with region A highlighted green. PCEs identified in this study are in red whereas those 
included in the MGC3 are shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tube. 
Ceiling collapses represent the main surface expression of lava tubes 

and can occur due to flow overpressure during formation or because of 
gravitational burden when the tube drains. Ceiling collapses often occur 
in chains along the length of the cave system. Two commonly identified 
collapse types on Earth are proper ‘jameos’ which involve the collapse of 
the whole tube width, forming steep detrital slopes, and skylights, where 
the opening is much smaller than the width of the tube below (Sauro 
et al., 2020). Lava tubes and their associated ceiling collapses have been 
studied extensively on Earth and may also exist on other planetary 
bodies such as the Moon and Mars (Cushing, 2012; Haruyama et al., 
2009; Leone, 2014; Wagner and Robinson, 2014). 

Features that may be associated with Martian caves have been 
observed for the past 60 years, often recorded as sinuous rilles and 
sinkholes in volcanic terrains (Quaide and Oberbeck, 1969). Because of 
the logistical issues associated with exploration, surface geomorpho-
logical features alone imply their existence. Consequently, the potential 
entrances are referred to as ‘PCEs’. 

Given that the gravitational field on Mars is 37% of that on Earth, the 
forces acting on the roofs of Martian lava tubes are comparatively 
weaker. This has allowed cave entrances to form significantly larger 
diameters than terrestrial equivalents, with some reaching up to 400 m 
(Sauro et al., 2020). The increased size of these skyward facing en-
trances, coupled with the lack of vegetation, facilitate visible detection 
of PCE’s via satellite imagery (e.g., Cushing et al., 2007; Cushing et al., 
2015; Hodges and Moore, 1994). Thermal signatures are also used for 

cave detection on Mars; however, the ability to identify caves from 
temperature variations alone is challenging (Jung et al., 2014). 

Most detections of Martian PCEs come from a manual review of 
visible satellite imagery. The Mars Global Candidate Cave Catalogue 
(MGC3) contains the coordinates and brief descriptions of over one 
thousand identified PCEs on Mars (Cushing, 2015). Entries were iden-
tified from images taken by the Mars Reconnaissance Orbiter’s (MRO) 
Context Camera (CTX) and High-Resolution Imaging Science Experi-
ment (HiRISE) cameras. Only sky-facing entrances larger than 25 m 
across are identifiable with the resolution of these cameras (Murchie 
et al., 2007). Most PCEs were recorded as either skylights or a type of 
atypical pit crater (APCs), equivalent to proper ‘jameos’ (Fig. 2). Manual 
review of satellite imagery for Martian cave detection is far from effi-
cient on a planet-wide scale, due to the time constraints associated with 
reviewing such a large dataset (Cushing, 2015). Machine learning pre-
sents an intriguing solution to this problem, reducing the dataset to only 
include imagery computationally determined to contain a PCE. 

Here, our primary objective is to extend the existing database of PCEs 
on Mars by using a convolutional neural network trained to identify 
PCEs in visible light imagery (VLI) of the Martian surface. 

2. Methods 

2.1. Machine learning – neural networks 

Machine learning is increasingly utilised for the remote classification 

Fig. 7. Top panel: Location of all known PCEs in region B (latitude: 0o N to -12o N, longitude: -108o E to -120o E), visualised on the CTX Global Mosaic (NASA/JPL/ 
MSSS/The Murray Lab.). PCE-dense subregions are outlined in yellow. Bottom panel: Location of all known PCEs between 45o N and -45o N shown on a colourised 
elevation map of Mars. Includes the locations of all the survey regions, with region B highlighted green. PCEs identified in this study are in red whereas those 
included in the MGC3 are shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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of Mars’ geological features (e.g., Nagle-McNaughton et al., 2020; Pal-
afox et al., 2017; Shozaki et al., 2022; Wang et al., 2018). Convolutional 
neural networks (CNNs) are a popular choice for this as, compared to 
other classifiers, they have the best performance metrics for image 
recognition (Graham, 2015). CNNs are loosely inspired by studies of 
central nervous systems in mammals (O’Shea and Nash, 2015), and 
comprise layers of interconnected neurons (nodes) that transfer signals 
(fire) when certain inputs are received (Fig. 3). Each node consists of a 
weight and a bias, randomly assigned prior to training. To input a signal 
to the CNN, images first undergo convolution, padding and pooling, 
which extract the image’s dominant features to save computational time 
(Saha, 2018). The images are then ‘flattened’ to their corresponding red- 
green-blue (RGB) colour value vector (Fig. 3). When a signal (for PCE 
images, an RGB vector) arrives at a node, it is multiplied by the node’s 
weight (for vector inputs, the dot product is taken) and then summed 
with the bias. An activation function is then applied, commonly ReLU 
(Rectified Linear Unit), which prevents the node from firing if the output 
is negative, and fires with increasing confidence for increasingly positive 
outcomes. For binary classifiers, once the final layer of the network is 
reached, one-hot encoding classifies the output as a value between one 
and zero. 

CNN training consists of loading known inputs with their corre-
sponding classifications (labels) into the network in batches. The colour 
and pixel distribution of a given image are used by the network to 
predict if a PCE is present. After each batch of predictions, an optimiser 
function adjusts each node’s weight and bias depending on how ‘wrong’ 
the predictions were, calculated using a loss function. This process is 
known as loss minimization and over time improves the network’s 

accuracy. CNNs trained to recognise Martian surface features, such as 
craters, have achieved accuracies in excess of 90% (Palafox et al., 2017). 
However, when handling large datasets, this still produces a significant 
number of incorrect predictions, somewhat limiting their application. 

2.2. Survey regions 

CTX satellite imagery of Mars’ surface was loaded as TIFF image files 
with several layers of zoom. A trade-off exists between the survey size 
and image resolution when selecting the optimal zoom level to attain 
images for the neural network. A zoom level of 32,768 Pixel Per Degree 
(PPD) was chosen to optimise the number of resolved MGC3 PCEs. This 
zoom level would require over 136 million input images to cover the 
entire Martian surface. 

To increase the chance of PCE detection, five locations (referred to 
herein as regions A, B, C, D, and E), either containing high concentra-
tions of MGC3 PCEs or volcanic surface features, were chosen for the 
survey dataset. Each location surveyed a 12◦x 12◦ area, totalling around 
1.1% of the Martian surface (Fig. 1). 

Regions A, B, and C are located in the Tharsis Bulge, with the large 
volcano, Olympus Mons, situated around 1500 km to the NE (Fig. 1). 
Region A (latitude: -20o N to -8o N, longitude: -120o E to -132o E, centre: 
-14o N, − 126o E) contains 68 MGC3 PCEs. The volcano Arsia Mons is 
located in the region’s NE corner. Region B (latitude: 0o N to -12o N, 
longitude: -108o E to -120o E, centre: -6o N, − 114o E) contains 152 MGC3 

PCEs. The Arsia Mons volcano is located in the region’s SW corner and 
the Pavonis Mons volcano is located in the North. The smaller volcanoes 
Ulysses Tholus and Biblis Tholus are located to the NE. Region C 

Fig. 8. Top panel: Location of all known PCEs in region C (latitude: 0o N to 12o N, longitude: -100o E to -112o E), visualised on the CTX Global Mosaic (NASA/JPL/ 
MSSS/The Murray Lab.). PCEs-dense subregions are outlined in yellow. Bottom panel: Location of all known PCEs between 45o N and -45o N shown on a colourised 
elevation map of Mars. Includes the locations of all the survey regions, with region C highlighted green. PCEs identified in this study are in red whereas those 
included in the MGC3 are shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(latitude: 0o N to 12o N, longitude: -100o E to -112o E, centre: 6o N, 
− 106o E) contains 89 MGC3 PCEs and covers the volcano Ascraeus 
Mons’ southern slope. The smaller Tharsis Tholus volcano is located to 
the NE. Region D (latitude: -28o N to -40o N, longitude: 88o E to 100o E, 
centre: -34o N, 94o E) is located east of the Hellas Basin. There are no 
MGC3 PCEs present, but the volcano Tyrrhenus Mons is located to the 
NE. Lava tubes are detectable in this region, as well as signs of fluvial 
and glacial activity, increasing the possibility of life existing in water- 
related minerals in any PCEs detected (Husseini et al., 2009). Region 
E (latitude: 20o N to 32o N, longitude: 140o E to 152o E, centre: 26o N, 
146o E) is located in the Elysium Bulge and contains 32 MGC3 PCEs. The 
region is centred around the Elysium Mons volcano with the smaller 
Albor Tholus and Hecates Tholus volcanoes to the SE and NE of the 
region respectively. 

2.3. Training data 

Three datasets are required to train a neural network: training, 
validation, and test. Each dataset requires an equal number of positive 
(containing a PCE) and negative (not containing a PCE) images. Positive 
images for these datasets were collected using MGC3 PCE coordinates. 
Training images were collected on JMARS (a GIS tool used to visualise 
remote sensing data retrieved from a variety of planetary bodies 

(Christensen et al., 2022)) using a python automation script, coded to 
input coordinates from the MGC3 and take a screenshot of the resulting 
PCE image (see Supplementary Information). The CTX Global Mosaic 
(Dickson et al., 2018) was used to generate the images of the PCEs on 
JMARS, with screenshots taken at the required 32,768 PPD. Overall, the 
dataset consisted of 1065 images of MGC3 PCEs which were randomly 
subdivided into 851 training images (80%), 160 validation images 
(15%), and 54 test images (5%). 

Negative images were obtained using 1065 randomly generated co-
ordinates of the Martian surface. The same python script, at 32,768 PPD 
on the CTX Global Mosaic, was used to collect the images in JMARS. 
Each image was manually checked to confirm no PCE was present, 
before the group was subdivided into the same ratios as the positive 
images. 

2.4. Data augmentation 

Visual analysis of the training datasets found that some of the posi-
tive images contained no visible PCE, because either the zoom level used 
was ineffective at resolving small PCEs or because of slight inaccuracies 
in the coordinates provided in the MGC3. These images were removed 
from the dataset. The reduced dataset contained equal numbers of 
positive and negative images, each with 283 training, 53 validation, and 

Fig. 9. Top panel: Location of all known PCEs in region E (latitude: 20o N to 32o N, longitude: 140o E to 152o E), visualised on the CTX Global Mosaic (NASA/JPL/ 
MSSS/The Murray Lab.). PCE-dense subregions are outlined in yellow. Bottom panel: Location of all known PCEs between 45o N and -45o N shown on a colourised 
elevation map of Mars. Includes the locations of all the survey regions, with region E highlighted green. PCEs identified in this study are in red whereas those included 
in the MGC3 are shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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18 test images. 
Data augmentation was used to artificially increase the size of this 

reduced dataset to prevent overfitting, a problem that occurs when a 
neural network performs well on the training dataset but poorly on 
larger datasets. The positive dataset was duplicated three times and 

Table 2 
Example images of newly identified PCEs from this survey, highlighting the 
variety of PCE types identified. Informal names are assigned for ease of refer-
ence. Visualised on the CTX Global Mosaic (NASA/JPL/MSSS/The Murray Lab.).  

PCE Image Description 

N

Region: E (Elysium Province) 
Coordinates: 140.871◦ E, 29.194◦ N 
Classification: Atypical pit crater 
MOLA elevation: -1020 m 
Informal name: Emily 

N

Region: B (Tharsis Bulge) 
Coordinates: 245.472◦ E, − 6.004◦ N 
Classification: Atypical pit crater 
MOLA elevation: 7330 m 
Informal name: Marvin 

N

Region: B (Tharsis Bulge) 
Coordinates: 244.143◦ E, − 6.636◦ N 
Classification: Atypical pit crater 
MOLA elevation: 7806 m 
Informal name: Frankie 

N

Region: C (Tharsis Bulge) 
Coordinates: 255.851◦ E, 5.589◦ N 
Classification: Small rimless pit 
MOLA elevation: 5745 m 
Informal name: Pip  

Table 2 (continued ) 

PCE Image Description 

N

Region: E (Elysium Province) 
Coordinates: 143.836◦ E, 23.705◦ N 
Classification: Pit end and irregular atypical 
pit craters 
MOLA elevation: 1385 m 
Informal name: Steve 

N

Region: B (Tharsis Bulge) 
Coordinates: 244.85◦ E, − 7.316◦ N 
Classification: Pinhole 
MOLA elevation: 7504 m 
Informal Name: Lanchester EP 

N

Region: A (Tharsis Bulge) 
Coordinates: 239.476◦ E, − 12.047◦ N 
Classification: Atypical Pit Crater 
MOLA elevation: 11125 m 
Informal Name: Ciaran 

N

Region: E (Elyssium Province) 
Coordinates: 149.499◦ E, 22.563◦ N 
Classification: Irregular pit 
MOLA elevation: 1751 m 
Informal Name: Eva  

T.H. Watson and J.U.L. Baldini                                                                                                                                                                                                             
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inputted into a python script which randomly rotated images in the 
range of 360o, flipped images horizontally and vertically, and zoomed 
images in the range of 110–150% (see Supplementary Information). This 
quadrupled the positive dataset’s size to 1416 images. The negative 
image dataset’s size was increased by generating 1416 random co-
ordinates and re-running the python automation script to collect non- 
PCE images. Using image augmentation to increase the dataset beyond 
this size had no positive effect on the network’s performance, a common 
problem when augmenting a small dataset (Mikołajczyk and Grochow-
ski, 2018). Ultimately, the positive and negative datasets each contained 
1132 training, 212 validation, and 72 test images. 

All images also underwent VGG16 pre-processing before being 
inputted into the network (Fig. 4). VGG16 is a state-of-the-art 16-layer 
CNN, trained on images belonging to over 1000 classes (Simonyan 
and Zisserman, 2014). The pre-processing function converts each image 
to a fixed 224 × 224 RGB image, before subtracting the mean RGB value 
computed on the training set from each pixel. This helps to increase 
training speed and accuracy by centring the intensities at zero. 

2.5. Network structure 

A sequential model, built using the Keras Machine Learning Library 
(Chollet, 2015), was trained using the training dataset. The network 
consists of 420,802 trainable parameters and contains only two hidden 
layers (Fig. 5). Compared to the 138 million trainable parameters in the 
VGG16, the network is relatively small. However, VGG16 is trained to 
identify over 1000 different image categories, whereas only two cate-
gories are required for PCE detection (PCE and no PCE). Hence, fewer 
trainable parameters are required, which helps to increase computa-
tional speed. The relatively low complexities of the input images reduces 
the number of hidden layers required, further saving computational 
time. 

2.6. Overfitting 

Training was conducted in six rounds to assess the data augmenta-
tion’s impact on the network’s performance. The first training round 
consisted of the unaugmented training dataset, and was followed by five 
accumulative rounds using the augmented data. Data for each round 
consisted of 566 training and 106 validation images, which were loaded 
into the network in batches of 10 over 10 epochs. The network’s per-
formance was assessed after each epoch. 

For training round one, the validation accuracy was significantly 
lower than the training accuracy, indicating that overfitting had 
occurred (Muralidhar, 2021) (Table 1). Overfitting decreased until 
training round four, at which point the average accuracy also began to 
decrease. Hence, model four was chosen as the most optimal network for 
PCE detection and is referred to as ‘CaveFinder’ from here onwards. 

2.7. Survey data 

Following CNN training, survey data was loaded into the network for 
PCE detection. Each individual survey area (Fig. 1) comprised 36 CTX 
Global Mosaic tiles, each covering 2◦ x 2◦ of the Martian surface. To 
achieve the required 32,768 PPD image resolution, each tile was further 
split into 8649 images, using a python script (see Supplementary In-
formation). Overall, the survey dataset consisted of 1,556,820 images, 
inputted into the network in 180 batches. This dataset also underwent 
VGG16 pre-processing, however, did not undergo any other form of 
image augmentation prior to input. 

3. Results 

3.1. Cave verification criteria 

CaveFinder was coded to output the centre coordinates and image of 
each positive result detected (Supplementary Table 1). Positive outputs 
from CaveFinder were reviewed manually to confirm that a PCE was 
indeed present. For images deemed likely to contain a PCE, the corre-
sponding coordinates were inputted into JMARS to further analyse the 
surrounding area. Typical lava tube collapse characteristics, such as 
having flat overhanging rims with no ejecta patterns (see Fig. 2), were 
used to initially identify PCEs. Further analysis evaluated possible con-
nections to lava tubes and other MGC3 PCEs. 

3.2. Output from network 

In total CaveFinder produced 10,834 positive detections. Following 
visual cross-checking, only 85 positive outputs were deemed true posi-
tives (0.78%). Of these, 24 contained an MGC3 PCE, accounting for 
7.04% of the 341 MGC3 PCEs within regions A-E. After further review of 
the outputs, twelve subregions with particularly high abundances of 
PCEs were also identified. 

Region A: CaveFinder output 2481 positive PCE detections from 
region A, however, only 11 were deemed true positives (0.44%). Of 

Table 3 
Total area of each PCE-dense subregion and the number of PCEs they contain.  

Subregion Area 
(km2) 

Number 
of MGC3 

PCEs 

Number of 
newly 
identified 
PCEs 

Total 
number 
of PCEs 

Coordinates 
(longitude 
range, latitude 
range) 

A1 12,000 7 0 7 (− 125.5o E to 
− 124.5o E), 
(− 13o N to 
− 15.5o N) 

A2 5500 8 0 8 (− 124o E to 
-123o E), 
(− 12.5o N to 
-14o N) 

A3 16,00 16 5 21 (− 122.5o E to 
-120o E), 
(− 13o N to 
− 15.5o N) 

A4 9000 10 2 12 (− 121.5o E to 
− 120o E), 
(− 10o N to 
-12.5o N) 

B1 29,000 30 0 30 (− 120o E to 
-117o E), 
(− 0o N to 
− 3.5o N) 

B2 30,000 27 16 43 (− 117o E to 
-113o E), 
(− 5.5o N to 
− 8.5o N) 

B3 6500 13 2 15 (− 112o E to 
− 110.5o E), 
(− 1o N to -3o 

N) 
B4 2000 7 0 7 (− 109.5o E to 

− 108.5o E), 
(− 2o N to -3o 

N) 
C1 17,500 10 6 16 (− 104.5o E to 

− 102.5o E), 
(7.5o N to 5o N) 

C2 5000 11 0 11 (− 103o E to 
− 101.5o E), 
(9.5o N to 8o N) 

E1 400 4 1 5 (140.5o E to 
141.5o E), 
(29.5o N to 29o 

N) 
E2 8000 6 4 10 (142.5o E to 

144.5o E), 
(25o N to 23o 

N)  
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these, four were MGC3 PCEs, meaning ~6% of the 68 known PCEs in the 
region were detected. Region A also contains four PCE-dense subregions: 
A1-A4 (Fig. 6). 

Region B: There were 2380 positive outputs from region B, with 44 
true positives (1.85%). Of the 44 true positives, 10 were MGC3 PCEs, 
meaning ~7% of the 152 known PCEs were detected. Region B also 
contains four PCE-dense subregions: B1-B4 (Fig. 7). 

Region C: CaveFinder output 3950 positive detections from region 
C, only 17 of which were deemed true positives (0.43%). Six of the 89 
MGC3 PCEs were correctly identified (~7%). Region C also contains two 

PCE-dense subregions: C1 and C2 (Fig. 8). 
Region D: Region D produced 621 positive detections; however, no 

detections were deemed true positives. 
Region E: 1402 positive detections were identified in region E, 13 of 

which were deemed true positives (0.93%). Four of these were MGC3 

PCEs, meaning 12.5% of the 32 MGC3 PCEs in this region were correctly 
identified. Region E also contains two PCE-dense subregions: E1 and E2 
(Fig. 9). 

Fig. 10. Close up of PCE-dense subregion B2 (Fig. 7). MGC3 PCEs are highlighted in blue, whereas newly identified PCEs from this study are highlighted in red. Close 
up images of all the newly identified PCEs and examples of some MGC3 PCEs are included. Visualised on the CTX Global Mosaic (NASA/JPL/MSSS/The Murray Lab.). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

4.1. PCEs of specific interest 

Of the 61 newly detected PCEs, four are highlighted for having 
specific traits that warrant further exploration (included in Table 2). 
These PCEs, along with a handful of other examples, have been infor-
mally assigned names for ease of reference, following previous 
convention (Cushing et al., 2007). ‘Emily’ is an APC located at − 1020 m 
on the northern flank of Elysium Mons. Geographically, Emily is the 
lowest altitude PCE identified in this survey. This is significant because 
this altitude’s denser atmosphere allows for increased generation of lift, 
aiding the landing of landers and rovers with parachutes as well as 
allowing for exploration via drone flight (Ata, 2021). Additionally, the 
denser atmosphere at Emily’s altitude would facilitate future human 
habitation. Five other MGC3 PCEs exist within 15 km of Emily, making 
this a promising region for targeted cave exploration. The PCE is also 
significantly larger than the five surrounding PCEs, potentially 
increasing accessibility. 

At 700 m in diameter ‘Marvin’, located northeast of Arsia Mons, is 
the largest PCE identified in this survey. The entrance’s size could assist 
the landing of robotics, because precision landings are more complex for 
smaller cave targets (Cushing, 2015). Further research of Marvin will 
also improve understanding of how large cave entrances can form under 
Mars’ gravity. 

‘Frankie’ is an excellent example of an APC that appears to be 
partially filled by wind-blown dust. Located on the flanks of Arsia Mons, 
Frankie is part of an 18 km chain of pit collapses, most of which also 
appear to be partially filled. This may make them more accessible by 
vehicle, if ramp-like features have formed (Cushing, 2012), such as the 
one formed at the southern part of Frankie’s entrance. 

‘Steve’ is located on the flank of Elysium Mons and is part of a 100 
km-long linear geological feature. The MGC3 PCE ‘CC0012’ is located 
along the same linear feature, 22 km to the SE. Multiple sections of the 
feature remain covered for kilometres, raising the potential for extensive 
exploration. However, the feature is associated with the Zephyrus 
fossae, and has formed radial to the volcano Elysium Mons, suggesting 
this could be a type of graben formed at the edge of a lava field rather 
than a lava tube collapse. This highlights the possibility that some of the 
new PCEs are the result of processes other than lava tubes. Although the 
likelihood of a substantial cave is reduced in these instances, some 
passage or chambers may still exist, and we include these identifications 
for the sake of completeness. Further research is required to determine if 
sub-surface cave systems are associated with fossae or other similar 

features. 

4.2. PCE-dense subregions 

Twelve PCE-dense subregions are identified as part of this study, 
comprising mostly MGC3 and some newly identified PCEs (Table 3). 
They represent particularly important areas for further exploration due 
to the high abundance of PCEs located within them. The limited range of 
current Martian rovers (travelling a maximum of 100 m per day), and 
the associated costs and logistical challenges faced, mean only a handful 
of rover missions have been undertaken. Hence, regions with high 
concentrations of closely spaced PCEs, such as these, are desirable 
because they could facilitate multi-cave exploration as part of single 
rover missions. They would also benefit future crewed missions, with 
multiple caves allowing for the construction of multiple shelters, 
enabling wider exploration. Region B2, the largest of these PCE-dense 
subregions, contains both the highest number of newly identified 
PCEs, and the largest overall number of PCEs. (Table 3). Located on the 
NE flanks of Arsia Mons, the region has experienced high volcanic ac-
tivity and has well-preserved and abundant lava flows (Mouginis-Mark 
and Rowland, 2008), consistent with the presence of numerous lava 
tubes. 

Studying PCEs identified in region B2 will provide insight into the 
types of eruptions that occurred during the late Amazonian period (the 
last few millions of years), helping to detangle Tharsis regional devel-
opment and refine the overall geological framework of Martian volca-
nism (Bleacher et al., 2007). Furthermore, studying the wide variety of 
PCE types and sizes in this subregion (Fig. 10) would also provide insight 
into the different mechanisms of cave formation on Mars. 

The subregion avoids extreme seasonal insolation variations due to 
its proximity to the equator, thus providing a secure solar energy supply 
for both autonomous vehicles and future human shelters (German 
Aerospace Centre, 2018). The Tharsis region itself is also conducive to 
ice cave formation (Williams et al., 2010), increasing the chances of 
PCEs in subregion B2 harbouring life, as well as providing a potential 
water supply for crewed missions. 

However, if life is detected in these PCEs, human access would 
necessarily become restricted to prevent contamination (Race et al., 
2005). Thorough remote robotic evaluation for cave-based bio-
signatures is therefore required prior to crewed missions. The eastern 
portion of the region is relatively flat, remaining at a near-constant 
elevation for 100 km east to west. However, the gradient steepens 
beyond this, restricting accessibility with current rover technologies 
(German Aerospace Centre, 2018). Hence, advancements in robotic 
capabilities are also required prior to further exploring this subregion. 

4.3. Thermal imagery 

Satellite imagery alone cannot confirm the presence of void spaces 
extending beneath the surface from PCEs (Cushing, 2015). One method 
to improve confidence in the identified PCEs is through thermal imaging 
(Fig. 11). The subsurface voids associated with cave entrances produce 
unique thermal signatures compared to their surroundings, due to the 
lack of insolation they receive (Wynne et al., 2008). They experience less 
temperature variation, making them appear warmer at night and cooler 
during the day (Cushing et al., 2007). This property is theoretically 
quantifiable using the Thermal Emissions Imagining System (THEMIS) 
onboard the Odyssey Orbiter (Edwards et al., 2011). Most large APCs 
and irregular pits identified in this survey appear to have thermal sig-
natures consistent with cave entrances. However, the resolution of 
THEMIS only allows for visualisation of larger PCEs this way, and so was 
not successful on smaller PCEs. Furthermore, not all cave entrances give 
off distinct thermal signatures (Jung et al., 2014) and other surface 
features, such as deep craters, can also produce similar signatures, 
adding to uncertainty inherent with this technique. 

To quantify the uncertainty in each validated PCE, new PCEs are 

Fig. 11. The use of thermal imaging to verify PCEs. During the day, large caves 
have a cool thermal signature (represented by darker pixels) whereas at night 
they have a warmer thermal signature (represented by whiter pixels). Non-cave 
features, such as craters, tend to either have one or none of the afore mentioned 
thermal signatures. Thermal images were captured on the THEMIS IR Mosaics 
(Edwards et al., 2011). 
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catalogued with an associated confidence between one and three, where 
one is the highest confidence (Supplementary Table 1). PCEs with 
multiple features indicative of a cave, such as thermal signatures, 
associated lava tubes, and overhanging rims are assigned a confidence of 
one. PCEs that visibly resemble known PCEs and are potentially linked 
to other MGC3 PCEs but lack features such as thermal signatures, or are 
poorly resolved, are assigned a confidence of two. PCEs that resemble 
MGC3 PCEs but are isolated from other entrances and lack features such 
as thermal signatures are assigned a confidence of three. 

5. Conclusion 

CaveFinder has identified 61 new PCEs across four of the five regions 
surveyed. Four PCEs are highlighted for having specific qualities that 
make them interesting for further research, including Marvin, the largest 
PCE identified, as well as Emily, whose low altitude could enable sur-
veyance by drone. Twelve PCE-dense subregions are also identified, 
which could facilitate rapid exploration due to the proximity and 
abundance of PCEs. Whilst CaveFinder was successful in identifying new 
PCEs, analysis of the network’s performance shows most of the smaller 
PCEs identified in the survey were located in channels thought to have 
enhanced the network’s ability to identify them (see Supplementary 
Information). This suggests CaveFinder’s ability to identify lone small 
cave types, such as skylights and pinholes is more limited. 

CaveFinder achieved a test accuracy of 77% and a specificity of 
100% indicating that the network is conservative with positive pre-
dictions (see Supplementary Information). Following survey data input, 
0.70% of images triggered a positive detection, further emphasising 
CaveFinder’s conservative approach. Of these positive detections, only 
0.78% were found to contain a PCE. However, this result implies 
CaveFinder does perform better than random search, with 7.04% of the 
341 MGC3 PCEs present in the survey regions being correctly identified. 
Despite this, CaveFinder is still not considered appropriate for detection 
on a planet-wide scale, due to the high number of false positive outputs 
requiring manual assessment. However, it could prove effective in 
smaller regions perhaps already known to contain PCEs. 

Increasing the size of the training dataset is one method that would 
likely improve CaveFinder’s performance. This could be achieved 
through the use of computer generated imagery (CGI) or through higher 
levels of image zoom to capture more true positive PCE examples. Other 
suggestions for improvement include utilising thermal imagery along-
side VLI within the network itself, as well as using higher resolution 
imagery from the Mars NeMo Orbiter (see Supplementary Information). 
Overall, this survey’s findings indicate that, with these additions, ma-
chine learning has a great potential to advance remote cave detection, 
which is key to future Martian exploration. 
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