
1. Introduction
Anthropogenic river barriers including dams, weirs, sluice gates, and bridge aprons alter natural flow regimes, 
hinder longitudinal connectivity, and alter aquatic habitat (Belletti et  al.,  2020; Poff et  al.,  1997; Spinti 
et al., 2023). These barriers modify river ecosystems directly and indirectly, and can result in substantial biodi-
versity loss (Grill et al., 2019; Sofi et al., 2020). As one of the persistent threats to freshwater biodiversity, river 
barrier-derived flow modification and resultant habitat degradation have received great attention globally (Reid 
et al., 2019; Winemiller et al., 2016). For migratory fishes, river barriers have hindered their migration routes, 
impeded them from completing their life cycles, and resulted in population declines and local extinctions of 
many fish species (Lucas & Baras, 2001). For river fish species, barriers isolate gene flow between populations 
by preventing fish movement between meta-populations, and make them more vulnerable to other anthropogenic 
stressors and stochastic events (Jones et al., 2021; Radinger et al., 2018).

Historically, research on the environmental effects of anthropogenic river barriers has mainly focused on the 
impacts of large-scale barriers (e.g., large hydropower facilities and dams) on aquatic ecosystems (Lehner 
et  al.,  2011; Vörösmarty et  al.,  2010). Over two-thirds of large rivers are no longer free-flowing due to the 
construction of large dams (Grill et  al.,  2019). More recently concerns have been raised about the negative 
impacts of small-scale barriers such as weirs, bridge aprons, and sluice gates (Atkinson et  al., 2018; Belletti 
et al., 2020; Sun et al., 2020, 2021). Due to fewer regulations, small-scale river barriers are usually built in greater 
numbers compared with large-scale barriers (Atkinson et  al.,  2018; Belletti et  al.,  2020; Couto et  al.,  2021), 
and their cumulative impacts on aquatic ecosystems may be greater (Jones et  al.,  2021; Lucas et  al.,  2009). 
For example, migrating fish may be able to pass a single small barrier, but passage over multiple barriers is 
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increasingly compromised due to cumulative energy consumption, high rates of predation, and other factors 
(Lucas et al., 2009). Small anthropogenic river barriers have been found to contribute to the decreased abundance 
of a variety of migratory and non-migratory rheophilic fish species (Birnie-Gauvin et al., 2018; Jones et al., 2021; 
Sun et al., 2021, 2022).

Several connectivity indices including the Dendritic Connectivity Index (Cote et al., 2009), the Population Connec-
tivity Index (Rodeles et al., 2021), and the Catchment Area-based Fragmentation Index (Jumani et al., 2022) have 
been developed to assess the impacts of barrier construction on river longitudinal connectivity and to quantify 
habitat fragmentation. Along with an increased emphasis on measuring river connectivity and habitat fragmen-
tation levels (Jumani et al., 2020; Wohl, 2017), removal or mitigation of the negative impacts of anthropogenic 
river barriers has become a priority as part of basin-scale restoration planning. River reconnection approaches, 
including barrier removal and fish pass installation, are now widely employed to restore longitudinal connectivity 
and fish passage (Silva et al., 2018; Sun et al., 2022). These methods rely on the accuracy and completeness of 
barrier documentation in existing inventories. A complete barrier inventory can be used to prioritize which barri-
ers to remove or improve connectivity at a basin, depending on modeled benefits, funding availability, and project 
objectives (King et al., 2017). Across the globe, several river barrier databases are publicly available. Most of 
these databases were built for large barriers, and small barriers are normally poorly documented (but see North 
American Great Lakes Barrier Database, Januchowski-Hartley et al., 2013; Adaptive Management of Barriers 
in European Rivers (AMBER) Barrier Atlas, Belletti et al., 2020; Global River Obstruction Database (GROD), 
Yang et al., 2022). In order to enable effective river restoration, it is necessary to understand the true numbers, 
distribution, and types of barriers across entire basins. To do this, most, and ideally all, barriers within the 
basin need to be mapped and categorized, to generate a proper barrier inventory (Atkinson et al., 2018; Belletti 
et al., 2020; Januchowski-Hartley et al., 2013).

Several barrier detection methods have been developed to identify and locate river barriers. Traditional methods 
include walkover surveys (Jones et al., 2019; Sun et al., 2020), which require the river network to be surveyed by 
fieldworkers, which is time-consuming and labor-intense. About 10 km of river channel can be walkover-surveyed 
per person per day (Sun et al., 2020). Visual interpretations of remotely sensed photographic images (Atkinson 
et al., 2018; Yang et al., 2022) are effective but also time-consuming (approximately 80∼100 km of river can 
be surveyed per person per day depending on the number of river barriers and complexity of the surveyed river 
reach; Sun, Du, et al., 2023), making it difficult to conduct across large areas. Other methods include manual 
or automated (e.g., machine learning) interpretation of high-resolution remotely sensed data derived from Light 
Detection and Ranging (LIDAR) or Synthetic Aperture Radar (SAR) (Buchanan et al., 2022; Entec, 2010). These 
enable more rapid acquisition of barrier location data, but require costly access to equipment to obtain DEM data 
or high-resolution images. An additional approach identifies intersections of the river network with transport 
crossings to identify potential barriers (Januchowski-Hartley et al., 2013), but may require further steps to check 
the validity of each potential barrier. The scarcity of accurate and relatively complete basin-scale barrier invento-
ries, other than for just the largest dams, is a major impediment to river conservation in many parts of the world.

In recent years, with the rapid development of deep learning algorithms, convolutional neural networks (CNNs) 
have been widely employed for object detection from remotely sensed images (Liu et al., 2019). This approach 
has been successfully used to identify reservoirs and large dams from satellite images, by extracting deeper image 
features through CNNs (Fang et al., 2019, 2021; Jing et al., 2021), making it possible to apply to river barrier 
detection across large-scale areas. However, river barriers comprise several different types and a variety of sizes 
(Belletti et al., 2020) which, when associated with variations in environmental background and weather condi-
tions, could increase the object diversity, reducing detection of barrier “objects” (Saeed et al., 2021). No previous 
attempts have been made using CNNs to detect small-scale barriers or multiple barrier types such as weirs and 
sluice gates across a large-scale river basin.

In this study, we propose a new river barrier detection framework that is able to identify different river infrastruc-
tures within satellite images. The framework was applied to multiple object detection models with an associated 
manual revision step.  A custom global river barrier satellite image database covering both flow-impounding 
structures and flow-regulating structures was built and used to train selected CNN models. Flow-impounding 
structures classically include dams (hydropower facilities or reservoir dams, with impounded areas clearly 
evident immediately upstream), but also sluices, which impound water over variable time scales for flood and 
tide water management (Garcia de Leaniz & O’Hanley, 2022). Flow-regulating structures are typically weirs 
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(run-of-river flow-regulating structures, in which water normally overspills 
the crest of the structure), but also include structures such as bridge aprons 
(Garcia de Leaniz & O’Hanley,  2022). The best-performing CNN model 
was  retained and applied to identify barriers across a large scale. In this case, 
the Mekong Basin, one of the world's freshwater biodiversity hotspots in 
Southeast Asia (Kang & Huang, 2021; Tao, Ding, et al., 2023; Winemiller 
et  al.,  2016), was used as our study site, in order to identify previously 
unrecorded river barriers. Internationally, there is a focus of debate on the 
impacts of current and planned proliferation of river infrastructure through-
out the Mekong Basin (Sun, Galib, et al., 2023; Winemiller et al., 2016; Ziv 
et  al.,  2012). Although previous studies suggest existing barrier databases 
are highly incomplete for the Mekong Basin (Baumgartner et al., 2022; Sun, 
Du, et al., 2023), no thorough, publicly-open, basin-scale, barrier database 
currently exists (Sun, Galib, et al., 2023). Therefore, the distribution of river 
barriers within the Mekong Basin, and their impacts on river habitat frag-
mentation, were re-assessed using our newly created barrier database.

2. Materials and Methods
2.1. Study Area

The Mekong River, the largest transboundary river in East and Southeast 
Asia, originates in China and flows through Myanmar, Thailand, Laos, 
Cambodia, and Vietnam (Figure  1). The basin covers an area of approxi-
mately 805,809  km 2, and mainstream length (Strahler stream order ≥6) 
is 7,928  km. To facilitate data analysis, interpretation, and management 
options, the Mekong Basin was first categorized into nine regions (i.e., 
Headwater Region One (HR1), Headwater Region Two (HR2), Upper Region 
(UR), Highland Region (HLR), Middle Region (MR), Nam Chi and Nam 
Mun Region (NNR), Sekong, Sesan and Srepok Region (3S), Tonle Sap 
Region (TSR), Estuary Region (ER)) based on the biogeographical regions 
of freshwater fish species in the basin (Kang & Huang, 2021). Then, a total 
of 1,130 sub-basins (Hydrobasin level 8) were identified according to the 
HydroBASINS spatial layer within the HydroSHEDS database (https://www.
hydrosheds.org/).

2.2. River Barrier Image Training Set Development

A river barrier satellite image dataset (Google Earth GEOTIF images, 1 m resolution, shot between year 2020 
and 2021) containing a variety of river infrastructure types spanning the globe, was generated to train the barrier 
detection candidate models. To maximize the capability of the model for detecting different types of river barri-
ers, barriers of different shapes, sizes, and functions were needed. To do that, three existing barrier datasets, 
namely the GROD database (Yang et al., 2022), AMBER Barrier Atlas (Belletti et al., 2020), and the Lancang 
River Barrier Database (LRBD) (Sun, Du, et al., 2023) were used (see in Supporting Information S1). Large 
hydropower facility and reservoir dam data were mainly extracted from the GROD database, and small river 
barriers such as small dams, weirs, bridge aprons, and sluice gates were mainly extracted from the AMBER and 
Lancang barrier databases. The numbers of barriers derived from each database used for CNN training, validation 
and testing are displayed in Table S1 in Supporting Information S1, while their geographical distribution is shown 
in Figure S1 in Supporting Information S1.

To collect satellite images of anthropogenic river barriers, a total of 10,000 barrier coordinates including lati-
tude and longitude were randomly selected from these datasets. A 680 × 680 pixels square polygon (appropriate 
size that could cover the majority of river barriers within a single image at 1 m resolution) was built for each 
coordinate, using the R packages “rgdal” and “regeos” (Bivand et  al.,  2021, 2022), and saved as a shapefile 
with the package “sf” (Pebesma et al., 2022). Shapefiles were imported in Bigemap GIS office, to download the 

Figure 1. The Mekong Basin, six surrounding countries, and nine 
biogeographical regions for freshwater fish species in the basin: Headwater 
Region 1 (HR1), Headwater Region 2 (HR2), Upper Region (UR), Highland 
Region (HLR), Middle Region (MR), Nam Chi and Nam Mun Region (NNR), 
Sekong, Sesan, and Srepok Region (3S), Tonle Sap Region (TSR), Estuary 
Region (ER).
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corresponding Google Earth GEOTIF images. Each image was manually checked, images with no barriers or 
barriers shaded by overlapping trees were deleted, and duplicated barriers were removed. After that, a total of 
8,246 images were retained for further processing.

The open-source image labeling software LabelMe (Russell et  al.,  2008) was used to mark barriers within 
each image. For each barrier, a rectangular bounding box was manually created to fully surround the structure 
(Figure 2). For barriers with complex shapes, an appropriate polygon was used to label the barrier. When an 
image contained multiple barriers, each barrier was framed with a different bounding box. During the labeling 
process, all barriers were categorized into two main types: Impounding structures (including large hydropower 
facilities, reservoir dams, and sluice gates) and flow-regulating structures including weirs and bridge aprons, 
based on their physical features (Garcia de Leaniz & O’Hanley, 2022). A total of 6,375 Impounding-type barri-
ers and 4,886 Regulating-type barriers were labeled. The areas of detection boxes ranged from 70 to 454,251 
pixel 2, with a median [quartiles] area of 17,535 [5,096–61,588] pixel 2 for Impounding-type barriers and 1,548 
[784–5,153] pixel 2 for regulating-type barriers (Figure 2). Due to large variations in barrier sizes, small-scale 
barriers like weirs may only have a few pixels in an image, which increases the difficulty of detection. To increase 
the size of both the object and bounding box, the tailwater (white-colored water located immediately downstream 
of the structure) of the small-scale structure (i.e., weir and bridge apron) was also framed with the barrier. After 
labeling, all bounding box data were saved in COCO format JSON files (Lin et al., 2014).

2.3. Baseline Models and Experimental Settings

Before training, all images and associated corresponding JSON files were randomly divided into training, valida-
tion, and test sets with a ratio of 8:1:1 (Jing et al., 2021; Moortgat et al., 2022; Segal-Rozenhaimer et al., 2020). 
A total of 6,596 images with 9,014 detection boxes were categorized as the training set, 825 images with 1,169 
detection boxes were categorized as the validation set, and 825 images with 1,078 detection boxes were catego-
rized as the test set (Figure S1 and Table S1 in Supporting Information S1). Several object detection-based models 
were used to identify and locate river barriers within each image. Anchor-based multi-stage methods includ-
ing faster regions with convolutional neural networks (Faster R-CNN, Ren et al., 2015), Cascade Mask R-CNN 
(Cai & Vasconcelos, 2019), Libra-Faster R-CNN (Pang et al., 2019), and anchor-free one-stage methods, Fully 
Convolutional One Stage (FCOS, Tian et al., 2019) and Foveabox (Kong et al., 2020), were used to evaluate their 
performance on the river barrier satellite dataset. Detailed information of selected models and their architectures 
are available in Supporting Information S1.

Figure 2. Example types and sizes of barriers from satellite images used for training and validation using convolutional neural network models. Left panel, examples 
of labeled river barriers, “Impounding” type barriers: (a) large hydropower facility, (b) large reservoir dam, (c) sluice gate, (d) small earth dam; “Flow-regulating” type 
barriers: (e) bridge apron, (f) weirs. Right panel, area (pixel 2) of two types of river barrier used in training and validation data. Note the log x scale.
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The open-source MMDetection framework (Chen et al., 2019) was used for 
implementing the above methods in our benchmark dataset. The pre-trained 
backbones including ResNet50, ResNet101, and ResNext101 were applied 
for training different models. Each model was trained under its standard 
default implementation with adaptive improvements. A total of 24 epochs 
were trained for each model, where the slope of the loss curve turned flat 
indicating that the model was well trained (Figure S2 in Supporting Infor-
mation S1). Then, each epoch was validated with the validation dataset. As 
the main objective of the study was to discover as many unrecorded river 
barriers as possible, to maximize the barrier retrieval rate, we selected the 
best performance model based on highest recall with relatively highest preci-
sion (Figure S2 in Supporting Information S1). Average precision metrics 
were also calculated for all barriers and impounding (dam) and regulating 
(weir) types. The specific details of the methods and backbones used for 
training are given in Table 1, and a detailed explanation of each evaluation 
metric can be found in Supporting Information S1. Omission and commis-
sion errors of each barrier detection method were compared with the test 
set (Figures S3 and S4 in Supporting Information S1). Overall, the FCOS 
achieved less confusion with other objects, and missed fewer river barriers 
(Figures S3 and S4 in Supporting Information S1). Taken together, we kept 
the FCOS ResNext-101-FPN as the best-performing barrier detection model 
(with a recall of 0.935 at an Intersection over Union [IoU] threshold of 0.5; 
see Table 1) in the MMDetection framework. The network architecture of 
the FCOS model is shown in Figure 3 (Tian et al., 2019; see in Supporting 
Information S1 for detailed explanation).

2.4. Application Method for Large-Scale River Barrier Detection

The Lower Mekong Basin (for the purposes of this study, downstream of the UR region; Figure 1) was chosen for 
applying the CNN barrier detection method. Due to its large basin area, it is not possible to input the entire satel-
lite image of the basin into the MMDetection framework for barrier detection. In addition, satellite images with-
out river features (i.e., those without river channels and related aquatic features) contain too much background 
information, which could reduce the calculation efficiency and occupy a large amount of hard drive storage. In 
order to solve this problem, only images with river features (river channels, lakes with afferent and efferent chan-
nels etc.) were selected for barrier detection. To download the satellite images (Google Earth images generated 

Method Backbone Recall AP50 APweir APdam

Faster-RCNN Resnet-50 0.848 0.656 0.629 0.684

Resnet-101 0.828 0.635 0.623 0.648

ResNext-101 0.838 0.663 0.636 0.689

Cascade-Mask- RCNN Resnet-50 0.836 0.625 0.617 0.633

Resnet-101 0.838 0.650 0.652 0.648

ResNext-101 0.862 0.609 0.637 0.582

Libra-Faster- RCNN Resnet-50 0.849 0.619 0.605 0.633

Resnet-101 0.835 0.635 0.615 0.655

ResNext-101 0.852 0.649 0.640 0.659

FCOS Resnet-50 0.927 0.688 0.662 0.715

Resnet-101 0.934 0.677 0.687 0.666

ResNext-101 0.935 0.704 0.698 0.711

Foveabox Resnet-50 0.915 0.656 0.646 0.666

Resnet-101 0.903 0.672 0.646 0.698

Note. The best recall value is shown in bold. AP50 (mean average precision 
over an IoU of 0.5) is a common metric for assessing the efficacy of models 
for object detection.

Table 1 
Comparison of the Performance of Various Object Detection Models on the 
Barrier Test Data Set, at the Intersection Over Union (IoU) Threshold of 0.5

Figure 3. The network architecture of the Fully Convolutional One Stage model. H × W represent the height and width of 
feature maps. C3 to C5 denote the feature maps of the backbone network. P3 to P7 are the feature levels used for the final 
prediction.
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in 2020–2021) for river network areas only, a 90 m resolution basin-scale river network (i.e., polylines) (Wang 
et al., 2021) was used to locate all river segments. Then, a large matrix filled with 680 × 680 pixel cells (poly-
gons) was created at 1 m resolution, covering the whole lower Mekong Basin area (Figure 4, panel B). The “select 
by location” function of ArcGIS was used to select cells that were proximate to the river network (Figure 4, panel 
C), and all selected cells were saved as shapefiles (Figure 4, panel D). Figure 4 demonstrates how this process 
was performed, using a small sub-basin to showcase the process.

For the Mekong delta region (ER in Figure 1), due to intensive development in canals and dike systems, the natu-
ral river channels have been largely altered (Hung et al., 2012), so river network polylines are unable to match 
the actual channels in satellite images. In this case, all cells in the Mekong delta region were saved as shapefiles 
rather than selected as river networks. Overall, the lower Mekong Basin was split into a total of 1.4 million cells. 
After that, all shapefiles were imported into Bigemap GIS office, to download the corresponding Google Earth 
satellite images (shot between year 2020 and 2021) at the same resolution scale (1 m).

All images were tested with our best-performing barrier detection model (FCOS ResNext-101-FPN) in the 
MMDetection framework. Bounding boxes of potential river barriers with a score threshold exceeding 0.3 were 
retained, and drawn on corresponding images. After that, the coordinates (latitude and longitude) of the midpoint 
of each bounding box were extracted from the corresponding GEOTIF image, using the “GDAL” package 
(Rouault et al., 2021) in Python. Then, each image with potential barriers were manually checked by at least two 
members from the pre-trained team, via Microsoft Excel Visual Basic function (Figure S5 in Supporting Informa-
tion S1). During this step, potential barriers and their coordinates were loaded in an Excel file, then each detected 
object was judged by clicking “Yes” (= anthropogenic river barrier), “No” (not an anthropogenic river barrier) or 
“Not sure” buttons on the panel. The confirmed barrier was visually categorized by type (i.e., dam, weir, sluice 
gate, bridge apron, and others; Figure 5), by clicking the corresponding button (Figure S5 in Supporting Infor-
mation S1). Objects classified as “Not sure” were re-assessed by another researcher before a final decision. To 
resolve commission errors, during this step, misidentified objects (e.g., bridges, river banks, rice field ridges, and 
farms) were removed from the river barrier list (Figure 6). If undetected river barriers (barriers without bounding 
boxes) were found on the image, then they were manually recorded, as a compensation approach to reduce omis-
sion errors. The country, sub-basin identity (level 8), and altitude (m above sea level) in which it was located 
were recorded, and a unique ID code was assigned, to form the Lower Mekong River Barrier Database (LMBD). 

Figure 4. The river satellite images downloading process: (a) an example sub-basin and river network polyline, (b) fishnet matrix (filled with 680 × 680 pixels cells/
polygons) created covering the whole area, (c) selected polygons that were proximate to the river network, (d) retained polygons based on the river network, (e) 
downloaded river network satellite images based on polygons.
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Barriers coordinates from both the LMBD and the Lancang River Barrier Database (LRBD, comprising HR1, 
HR2 and UR regions) were then added to ArcGIS to remove duplicates (within a distance of 50 meters) using the 
‘Near’ tool. Then a complete Mekong River Barrier Database (MRBD) was formed.

2.5. Model Enhancement

Due to the geographic specificity in the lower Mekong Basin, it was observed that certain “barrier-like” objects 
were misidentified as river barriers by the initial FCOS model. To mitigate the commission errors, and enhance 
the model performance, an additional 1,897 images (all containing genuine barriers, coordinates extracted 
from the MRBD database) from 16 sub-basins of the Mekong Basin were incorporated to the original training/
valida tion/test sets, to enable further training the FCOS model.

To compare the performance of the initial and enhanced FCOS models in the Mekong Basin, a total of 20 
sub-basins (Hydrobasin Level 8; different from the aforementioned 16 sub-basins) from the Lower Mekong were 
randomly selected, for conducting searches of satellite images to identify river barriers. Then, the accuracy of 
both FCOS models were calculated and compared. Accuracy was calculated as (true positives + true negatives)/
(true positives + true negatives + false positives + false negatives) and expressed as a percentage.

2.6. Comparison Against Existing Barrier Database

Existing river barrier data for the Mekong Basin were collected from two open access databases: Global River 
Obstructions Database (GROD) (Yang et  al.,  2022), and the Greater Mekong Subregion Hydropower Dams 
(GMSHD) Database (Barbarossa et al., 2020; Open Development Mekong, 2016). Prior to our study, these were 

Figure 5. Examples of objects identified river barriers by the Fully Convolutional One Stage model in the Mekong Basin. (a) large hydropower facility, (b) large 
reservoir dam, (c) small earth dam, (d) weir, (e) bridge apron, (f) sluice gate.
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the two most up-to-date barrier databases covering the Mekong region, suitable for comparison against. Only 
existing barriers and barriers that were under construction were recorded, planned dams/hydropower facilities 
were excluded from further analysis. Barrier density was used as a measure of regional river fragmentation 
(Jones et al., 2019; Sun, Du, et al., 2023). For each sub-basin, the river length was calculated according to the 
HydroRIVERS database. Barrier density was calculated for each sub-basin, using the total number of barriers 
divided by the total river length within the given sub-basin. Barrier densities from the three databases, GROD, 
GMSHD and MRBD were calculated separately.

2.7. Fragmentation Assessment of the Mekong Basin

To evaluate the impacts of river barriers on aquatic habitat, the Catchment Area-based Fragmentation Index 
(CAFI) (Jumani et al., 2022) was calculated for each sub-basin (Figure 7). The CAFI (Equation 1) is calculated 
based on the basin area, the number, location, and impassability of barriers within a given sub-basin (Jumani 
et al., 2022). In this study, dams and heavily modified channels (categorized within “Others” in the database, but 
mainly comprising sections of channel converted to linked rice paddies and bunded ponds; Figure S6 in Support-
ing Information S1) were assumed to be impassable due to their physical dimensions and form, so an impassabil-
ity of 1 was given (Baumgartner et al., 2022; Grill et al., 2014). For partially permeable barriers including weirs, 
bridge aprons, and sluice gates, three impassability values (high: 0.8, moderate: 0.5, low: 0.2) were assigned in 
order to explore the effect of impassability on CAFI outputs within the basin (Shaad et al., 2018).

CAFI =

𝑛𝑛
∑

𝑖𝑖=1

𝑎𝑎𝑖𝑖 × 𝑐𝑐𝑖𝑖

𝐴𝐴
 (1)

where, “n” is the number of river barriers within the specific sub-basin; “ai” is the total sub-basin area of barrier 
“i”; “ci” is the barrier impassability score ranging from 1 (impassable) to 0 (completely passable); “A” is the basin 
area of the entire river network.

CAFI values were calculated from two directions: from downstream to upstream, and from upstream to down-
stream (Jumani et al., 2022). Values of CAFI were calculated using the R packages “terra” and “sf” (Hijmans 

Figure 6. Examples of objects misidentified as anthropogenic river barriers by the Fully Convolutional One Stage model. (a) 
small bridge without bridge apron, (b) rice field ridges, (c) river bank, (d) farm edge, (e) fish pond, (f) natural bedrock.
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et al., 2022; Pebesma et al., 2022). Kruskal-Wallis H tests were used to compare the differences in median barrier 
densities between the three databases (GROD, GMSHD and MRBD), as well as barrier densities and CAFI 
values across the nine regions of the Mekong Basin. All statistical analysis were conducted in SPSS v25.

3. Results
3.1. Abundance and Distribution of River Barriers in the Mekong Basin

A total of 329,075 potential anthropogenic river barriers were identified in the Lower Mekong Basin by the 
CNN object detection model, when the score threshold exceeded 0.3. During the manual cleansing step, a total 
of 318,065 misidentified objects were removed and 11,010 river barriers were retained, comprising 7,827 dams, 
883 weirs, 2,121 sluice gates, 46 bridge aprons, and 133 barriers of other types (e.g., heavily modified channel, 
cross channel fixed fishing gear). Then, an additional 854 manually detected barriers, including 633 dams (mostly 
[95.1%] consisting of simple earth dams), five weirs, 162 sluice gates, six bridge aprons, and 48 barriers of other 
types were added to the database. Furthermore, a total of 1.07 million images without barriers were correctly 
classified by the FCOS model.

Figure 7. Flow chart of the model training and river fragmentation assessment process.
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Compared with river barriers identified by the initial FCOS model (recall = 0.935, AP50 = 0.704) and enhanced 
FCOS model (recall = 0.937, AP50 = 0.752) in 20 randomly selected Mekong sub-basins, the initial model was 
less efficient in the NNR and ER regions, due to relatively high numbers of simple earth dams and sluice gates 
missed, and misidentified objects such as field ridges. After more training data added, the performance of the 
enhanced model was substantially improved across all regions (Table 2), with an improved mean accuracy of 
86.7% across these sub-basins compared with the initial model (mean accuracy = 80.9%).

Overall, a total of 11,864 barriers formed the Lower Mekong Barrier Database (LMBD). The LMBD was 
combined with the LRBD (Lancang River Barrier Database) to form the MRBD (Mekong River Barrier Data-
base). After removing duplicates (the LRBD contained some barriers near the boundary of the UR and HLR 
regions that were duplicated in the LMBD) between the two barrier databases, a total of 13,054 river barriers 
including 8,795 dams, 1,689 weirs, 2,288 sluice gates, 101 bridge aprons, and 181 barriers of other types, belong-
ing to 810 sub-basins, were recorded (Figure 8). In comparison, the existing database GROD recorded 123 dams 
and 60 weirs (111 dams and 55 weirs within the Lower Mekong Basin) belonging to 103 (89 within the Lower 
Mekong Basin) sub-basins, and the GMSHD recorded 398 dams (327 dams within the Lower Mekong Basin) 
belonging to 220 (189 within Lower Mekong) sub-basins (Figure S7 in Supporting Information S1). For the 
MRBD database, the NNR region contains the most river barriers (n = 5,243) as well as most dams (n = 4,034, 
mostly simple earth dams) and sluice gates (n = 1,053), followed by the MR region with 3,149 barriers includ-
ing 2,458 dams; the HR1 and HR2 contain least barriers (n = 73 and 56 respectively). The CNN based method 
detected a total of 10,561 new barriers within the Lower Mekong Basin.

Across all six Mekong countries, Thailand has the most barriers across the Mekong Basin (n = 8,187) as well 
as most dams (n = 6,484) and sluice gates (n = 1,398) (Figure 8), followed by Vietnam with the second highest 
barrier numbers (n = 1,389) and sluice gate numbers (n = 625). China has a total of 1,302 Mekong barriers and 

Sub-basin Region
Input satellite 

images

True positives True negatives Accuracy

Initial 
model

Enhanced 
model

Initial 
model

Enhanced 
model

Initial 
model

Enhanced 
model

1 HLR 3,527 14 21 3,354 3,385 95.5% 96.6%

2 HLR 2,788 28 46 2,521 2,538 91.4% 92.7%

3 HLR 10,027 17 26 9,747 9,841 97.4% 98.4%

4 HLR 1,777 26 54 1,228 1,426 70.6% 83.3%

5 MR 169 4 5 153 147 92.9% 89.9%

6 MR 4,014 2 16 3,741 3,877 93.2% 97.0%

7 MR 3,950 8 16 3,734 3,800 94.7% 96.6%

8 MR 1,303 14 35 1,155 1,169 89.7% 92.4%

9 MR 4,084 74 222 3,282 3,226 82.2% 84.4%

10 NNR 4,137 213 570 2,433 2,769 64.0% 80.7%

11 NNR 2,955 169 462 1,766 1,804 65.5% 76.7%

12 TSR 2,548 22 91 1,994 2,093 79.1% 85.7%

13 TSR 5,960 11 27 5,482 5,527 92.2% 93.2%

14 TSR 6,622 217 825 4,273 4,660 67.8% 82.8%

15 TSR 3,196 75 165 1,412 1,929 46.5% 65.5%

16 3S 3,658 30 33 3,348 3,352 92.3% 92.5%

17 3S 7,257 14 26 6,969 6,989 96.2% 96.7%

18 3S 7,152 110 345 6,113 5,718 87.0% 84.8%

19 ER 7,474 90 238 4,336 5,244 59.2% 73.3%

20 ER 3,247 13 29 1,943 2,249 60.2% 70.2%

Table 2 
Comparison of Model Performance Between the Initial Retained Fully Convolutional One Stage (FCOS) Model and the 
Enhanced FCOS Model Across 20 Randomly Selected Sub-Basins in the Lower Mekong
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the most weirs (n = 846), followed by Laos (n = 1,295 total Mekong barriers), Cambodia (n = 761 total Mekong 
barriers), and Myanmar (n = 120 total Mekong barriers). Barriers were mostly distributed at elevations below 
1,000 m, and barrier numbers steadily decreased with increased elevation, with only nine barriers above an eleva-
tion of 4,000 m (Figure 8).

3.2. River Fragmentation Level of the Mekong Basin

Across the Mekong Basin, the overall barrier density (median and [95% CI]) based on the MRBD database is 
1.86 [0.00–25.41] per 100 km, significantly higher than barrier densities calculated from the GROD database (0.00 
[0.00–0.57] per 100 km) and the GMSHD database (0.00 [0.00–1.01] per 100 km in both cases) (Kruskal-Wallis H 
test, χ 2 (2) = 1,356, P < 0.001). For the MRBD database, significant differences occurred in total barrier densities 
between regions (Figure 9, Kruskal-Wallis H test, χ 2 (8) = 375.5, P < 0.001). The NNR region has the highest total 
barrier density (15.53 [0.00–49.30] per 100 km), significantly higher than other regions (pairwise post hoc, P < 0.001 
in all cases). The ER region has the second highest barrier density (5.07 [0.00–26.75] per 100 km), followed by the 
UR (2.86 [0.00–17.41] per 100 km) and MR (2.42 [0.00–18.23] per 100 km) regions. The most upstream HR1 and 
HR2 regions have the lowest barrier densities (0.00 [0.00–4.97] and 0.00 [0.00–1.92] per 100 km respectively).

Differences were found for dam densities across the nine regions (Figure 9, Kruskal-Wallis H test, χ 2 (8) = 334.1, 
P < 0.001, with the highest dam densities in the NNR region (11.66 [0.00–43.02] per 100 km) and lowest densities 
appeared in the HR1 and HR2 regions (0.00 [0.00–1.48] and 0.00 [0.00–1.45] per 100 km respectively). For weir 
densities, significant differences also occurred across regions (Figure 9, Kruskal-Wallis H test, χ 2 (8) = 140.9, 
P < 0.001), with the highest densities in the UR region (0.91 [0.00–15.30] per 100 km) and lowest densities in 
the HR1, HR2, and TSR regions. For sluice gates, densities in the NNR (3.01 [0.00–14.57] per 100 km) and ER 
(2.75 [0.00–21.28] per 100 km) regions were significantly higher compared with other regions (Kruskal-Wallis H 
test, χ 2 (5) = 318.7, P < 0.001; HR1, HR2, and UR regions were excluded from the analysis due to absent/very 
low numbers of sluice gates).

Use of a high (0.8) impassability coefficient resulted in higher median sub-basin Catchment Area-based Frag-
mentation Index than for a low (0.2) impassability coefficient (P < 0.01), but no difference with a moderate (0.5) 

Figure 8. Distribution of anthropogenic river barrier types across the Mekong Basin. Left panel: locations of five types of barriers in the Mekong Basin recorded in the 
Mekong River Barrier Database; regions are indicated by arrowed abbreviations as in Figure 1. Right panel: distribution of five types of barriers in the Mekong Basin 
by regions (upper panel), countries (middle panel), and elevation (lower panel). Note the log y scale.
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impassability coefficient (P > 0.05, further detail in Supporting Information S1). Using an upstream-direction 
calculated CAFI index, with an impassability index of 0.5 for semi-permeable barriers (weirs, bridge aprons, 
sluice gates), and 1.0 for dams and other barriers, significant differences in median CAFI occurred between 
the nine Mekong regions (Figure  10, Kruskal-Wallis H test, χ 2 (8)  =  292.1, P  <  0.001). Median [95% CI] 
CAFI in the NNR region, 1,178.67 [0.00–6,418.46] (Figure 10), was significantly higher compared with other 
regions, followed by the ER region (455.35 [0.00–2,229.94]), and the lowest CAFI appeared in the HR1 (0.00 
[0.00–255.13]) and HR2 regions (0.00 [0.00–280.68]).

4. Discussion
This study provides the first complete Mekong River barrier database covering five major types of anthropo-
genic river barriers, generated by the object detection approach combined with manual revision and merged with 

Figure 9. Regional distribution of anthropogenic river barrier types in the Mekong Basin. Left panel: Barrier densities (n/100 km) in each region of the Mekong Basin. 
Right panel: Box plots showing median (with quartiles, ranges, and outliers) barrier densities in each region of the Mekong Basin. Note the log scale. Full name of each 
region can be found in Figure 1.
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the existing Lancang barrier database. We found that CNN-based object detection is effective in automatically 
identifying multiple types of river barrier, though a high frequency of commission errors occurred, necessitating 
manual revision. Nevertheless, our priority was the detection of previously unrecorded river barriers and this 
methodology enabled that in a way that would not have been possible by conventional barrier mapping methods. 
Across several models, the anchor-free one-stage method (FCOS ResNext-101-FPN) had better performance 
compared with multiple-stage methods. Furthermore, our study indicated that existing databases that covered the 
Lower Mekong are highly incomplete for the Lower Mekong Region, with 97%–99% of river barriers absent from 
the two existing databases (GROD, GMSHD). Furthermore, after adding 1,897 more images to the model, the 
accuracy of the enhanced FCOS model had increased from 80.9% to 86.7% compared to the initial model across 
the Lower Mekong Basin, reflecting a substantial improvement. Barrier densities calculated from the MRBD 
database were significantly higher compared with those calculated from existing databases, showing that previ-
ous assessments largely underestimated the true level of river fragmentation in the Lower Mekong.

4.1. Performance Comparisons Between Barrier Detection Models

The FCOS object detection approach captured more than 10,561 previously unrecorded river barriers in the Lower 
Mekong Basin (downstream of the Lancang), covering five different barrier types, suggesting it is a powerful tool 

Figure 10. Catchment Area-based Fragmentation Index values across the Mekong Basin. Left panel: Catchment Area-based 
Fragmentation Index (CAFI) values at each region in the Mekong Basin. Impassability of 0.5 was assigned to weirs, 
bridge aprons and sluice gates, and 1.0 to dams and other barriers when calculating CAFI values here. Note the square root 
transformed scale. Right panel: box plots showing median (with quartiles, ranges, and outliers) CAFI in each region. Note the 
log scale.
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and can be applied to identify different river barriers in other large river basins with no, or limited, barrier infor-
mation. Importantly, our trained model can be applied on freely accessed Google Earth satellite images or other 
open access remotely sensed images, and does not require acquisition of specialist remotely sensed data such as 
LIDAR and SAR. The barrier identification performances were better in anchor-free one-stage methods (FCOS 
and Foveabox) compared with anchor-based multi-stage methods. This is potentially due to the dataset used in 
training and validation containing large numbers of small-scale barriers. Detection of small objects has been a 
major challenge in object detection since it was developed (Pham et al., 2020; Tian et al., 2019). In anchor-based 
multi-stage methods, where the scales and aspect ratios of anchor boxes are kept fixed, detectors suffered difficul-
ties in dealing with small-size candidates with large variations in shape (Tian et al., 2019). Even after tuning the 
anchor boxes, the recall rates of anchor-based multi-stage methods remained lower compared with anchor-free 
one-stage methods. The pre-defined anchor boxes also hamper the generalization ability of detectors, as they need 
to be re-designed for new detection tasks with different object sizes or aspect ratios. This is particularly the case 
for river barrier detection, due to the large variation in barrier sizes, in which the area of large-scale barriers, such 
as hydropower facilities or reservoir dams could be several magnitudes greater than small-scale barriers such as 
weirs, and even small-scale dams, in remotely sensed images (Figure 2).

4.2. Habitat Fragmentation Level of the Mekong Basin

Distribution of barriers across the Mekong Basin was found to be highly variable. In the most fragmented locali-
ties (i.e., the NNR region and western part of the MR region), high dam and sluice gate densities were related to 
the predominance of agricultural land use in Thailand, resulting in the construction of many simple earth dams, 
reservoir dams, and sluice gates to support farming and irrigation. In rural areas of Thailand, these irrigation 
systems have been widely applied for water resource management (Suntaranont et al., 2020). In addition, it was 
noticed that in this region many river channels, especially second- to fourth-order tributaries have suffered from 
heavy modification, and in some cases river channels were modified into multiple fragmented ponds or crop 
fields. This has resulted in these rivers having lost their function as free-flowing habitat for migratory aquatic 
species. Similarly, the ER region (i.e., the Mekong Delta) is one of the biggest rice producing regions in Asia, 
with the majority of its land area used for paddy rice farming by the Vietnamese government (Clauss et al., 2018). 
This has resulted in sluice gates and dams being increasingly built for protecting agricultural land from flooding, 
climate change -derived salinity intrusion, and supporting irrigation networks under increased cropping intensity 
(Hoanh et al., 2014). These barriers could pose significant threats to migratory fish species, especially those 
diadromous fishes that require free access between saltwater and freshwater habitat to complete their life cycle 
(Baumgartner et al., 2022; Sun et al., 2021).

For the UR region, high densities of weirs and small hydropower facilities are related to the rapid rural electri-
fication in China (Bhattacharyya & Ohiare, 2012), and increased demand for irrigation water on crop fields (Gu 
et al., 2010). These small-scale barriers, and main channel cascade reservoirs have led to habitat loss for both 
locally resident and moderate-distance migratory fish species in the Upper Mekong region (Ding et al., 2023; 
Sun, Du, et al., 2023). For the 3S region, especially in the Vietnamese part, the construction of river barriers 
including hydropower dams is much more intensive compared with the Laos and Cambodia parts, which has 
resulted in the regional river connectivity and physical features being seriously affected (Bonnema et al., 2020; 
Shaad et al., 2018). The 3S region and the northern Cambodian Mekong River are considered to provide critical 
habitat for fish megafaunal species (Campbell et al., 2020). Although currently the main Mekong channel here 
is free from barrier construction, the Lower Sesan 2 Dam (commissioned in 2018) on the lower Sesan River has 
mostly blocked access to nearly two-thirds of critical habitat in the Sesan and Srepok Rivers for migratory fish 
species (Sun, Yu, et al., 2023). For other regions, although impacts of barrier construction on aquatic habitats 
were relatively low, concerns should be raised as even limited numbers of barriers could still pose significant 
threats to aquatic ecosystems (Sun et al., 2021, 2022; Zhang et al., 2019).

There is vigorous international debate concerning further river barrier development in the Mekong Basin and 
other large Asian transboundary rivers (Sun, Galib, et al., 2023; Tao, Bond, et al., 2023; Winemiller et al., 2016). 
This is particularly so for large hydropower in terms of the balance of costs and benefits to society and the envi-
ronment, including the provision of key ecosystem services such as the fisheries that are vital in large parts of the 
lower Mekong Basin (Ziv et al., 2012). A further reason for the generation of a high-quality basin-wide inventory 
of small as well as large barriers is that, in attempting to mitigate the impacts of the building of large dams, an 
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alternative to building high-head bidirectional fish passes that, to date have often proved ineffectual in the tropics 
(Silva et al., 2018), is to provide improved passage at many small migration barriers in the locality (Baumgartner 
et al., 2022). This “offset” strategy of improving connectivity at weirs and road crossings on tributaries and at 
flood control sluices is more likely to be an economically effective means of supporting fisheries to compensate 
for the losses due to mainstream dams, but is reliant upon a relatively complete barrier database across subctch-
ments (Campbell & Barlow, 2020). During the visual interpretation in the 20 Lower Mekong sub-basins (during 
which we checked both 2020/21 and 2022/23 images), we recorded an addition of 16 newly constructed river 
barriers (majority constructed in the NNR and MR regions) since 2021, suggesting that barrier construction is 
still proceeding rapidly in Lower Mekong Basin countries. Ultimately a basin-wide barrier inventory is essential 
for planning aquatic habitat protection and connectivity for biodiverse freshwater fauna of the Mekong, including 
the charismatic megafish species (Campbell et al., 2020; Winemiller et al., 2016).

4.3. Limitations in Current Method and Potential Solutions

Potential limitations in this study deserve consideration. First, our barrier detection procedure requires both the 
object detection model and the manual revision step. The manual step is crucial for correcting commission and 
omission errors that occurred during the object detection process. For the Mekong Basin, the omission errors 
mostly occurred in Thailand (the NNR and western MR regions). Although the FCOS model outperformed other 
models when detecting small barriers, it still suffered difficulty in detecting certain types of small barriers such as 
simple earth dams and sluice gates. This is due to the fact that both types of barriers, in particular the simple earth 
dam, are endemic to South East Asia countries, especially Thailand, but are rarely constructed in other countries 
across the world. This resulted in these barriers being rarely recorded in existing databases, which limited their 
chance of being studied by the model. Furthermore, these small-scale barriers were generally constructed in 
low-order rivers, and their small size further increased the difficulty of being detected by the model. We manually 
surveyed over 23% of all images (that fraction in which the FCOS model identified potential barriers) to identify 
unrecorded barriers, especially earth dams, in order to reduce omission errors. After we added new data of simple 
earth dams and sluice gates to the training set, omission errors from the enhanced model were substantially (by 
20.9%) reduced within these regions. To more fully solve this problem and reduce labor during the manual revi-
sion step in future, more images of these types of barriers need to be added to the training set in the future as an 
augmentation approach. For application of our method to other large river basins, the likelihood that enhanced 
training as described above, will be needed is dependent on the degree to which barrier types common to exist-
ing databases and available for CNN training, validation and testing are typical of those found in the basin to be 
investigated. If there is an unusual or atypical barrier type, not widely found in existing barrier dataset, as is the 
case for simple earth dams in flat, floodplain habitat for parts of the Lower Mekong, then enhanced training using 
many images of those barrier types will be needed.

Second, it was noticed that commission errors for the Mekong Basin were much more frequent compared with 
using the test set. During the manual cleansing step, we noticed that commission errors largely occurred in the 
ER region, with more than half of satellite images having generated false positives of artificial river barrier pres-
ence. Although enhanced model training reduced false positives to one third of the total images of the enhanced 
model, they remained highest within the ER region. As mentioned above, the majority of the land in this region 
has been converted into paddy rice fields. During the barrier detection process, considerable numbers of rice 
field ridges were wrongly identified as small dams or weirs, due to their similar physical features (water on both 
sides of the structure). In addition, small bridges (without barrier-forming bridge aprons) have been built in large 
numbers to support local traffic between rice fields, and many of these bridges were identified as small dams by 
the object detection model. Concerns should be raised when transferring our model to other basins with similar 
land features, and manual revision must be adopted associated with the object detection method to minimize 
commission errors. By contrast, along single thread river channels, where flooded field agriculture is rare (e.g., 
large parts of temperate Eurasia and North America) it is likely the CNN method developed here would work 
well, with much lower expected omission and commission errors. Similarly, to properly solve the commission 
error problem for the Mekong, more images within the ER region should be added to the current training set, to 
enhance the performance of the model. On the other hand, in the future, structures such as rice field ridges or 
bridges can potentially be labeled as separate classes during training, to enable the CNN model to autonomously 
distinguish them from genuine barriers. Also, spectral information (individual bands and their transformation) 
could be considered during the image processing stage, to further enhance the model performance.
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Third, we generated the MRBD by combining the LRBD from Sun, Galib, et al. (2023) with the Lower Mekong 
barrier database generated here. The LRBD was solely obtained by visual searching and interpretation of barri-
ers found in the Upper Mekong (Lancang), while the Lower Mekong barriers were generated mostly by CNN 
detection as potential barriers, confirmed by visual checking. Based on the analysis, visual searching was a more 
reliable but time consuming way of finding smaller barriers, especially earth dams and sluice gates. It is therefore 
likely that the Lancang Barrier database is more complete (in terms of percentage of the true number of barriers) 
than the Lower Mekong Barrier Database, but we do not anticipate this to markedly affect the utility of the overall 
database for conservation planning.

Lastly, although the model can detect visible barriers from satellite images, barriers that are obstructed from view, 
such as those covered by clouds, or located on small tributaries with dense tree canopies, cannot be seen from 
satellite images and therefore cannot be detected by the software. Similarly, some river barriers such as culverts 
at transport crossings cause negative effects on aquatic habitat and river connectivity (Januchowski-Hartley 
et  al.,  2013), but cannot be readily detected from satellite images due to their physical features (constructed 
underground). This probably results in certain types of barriers being missed from our database, which should be 
regarded as conservative in the extent of its inventory. Therefore, it is suggested that during future river barrier 
management actions, field-surveying should be combined with our database, to avoid missing barriers that are not 
apparent from satellite images, especially in urban or heavily tree-lined areas. Our next step would be to add the 
Lower Mekong Barrier Database (LMBD) to the satellite image database we created, and to train a new model to 
achieve better performance in detecting these small-scale river barriers, and apply it to other data-deficient large 
river basins (e.g., the Nu-Salween, Yuan-Red basins) for barrier collection. Furthermore, the effects of barrier 
construction on the habitat availability and river biodiversity in the Mekong Basin require full evaluation in 
future; publication of our open-access Mekong River Barrier Database will help enable this.

5. Conclusion
In this study, we proposed a new river barrier detection framework combined with a convolutional neural network 
-based object detection model combined with a manual revision step. Across several object detection models, 
the FCOS had better precision and recall compared with other multiple-stage methods. With this framework, 
we identified 10,561 previously unrecorded anthropogenic river barriers within satellite images for the Lower 
Mekong Basin, and assessed the habitat fragmentation level for the whole basin. It was found that the Mekong 
Thailand Region is the most fragmented locality, with highest earth dam and sluice gate densities, and highest 
CAFI values. The open-access Mekong River Barrier Database created in this study can provide baseline data to 
all Mekong countries, facilitate environmental protection and habitat restoration projects, and support manage-
ment plans for future river connectivity restoration work. The new river barrier detection framework could be 
transferred to other data-deficient river basins for detecting both large- and small-scale river barriers.
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