
Journal of Statistical Theory and Practice            (2024) 18:5 
https://doi.org/10.1007/s42519-023-00357-0

ORIG INAL ART ICLE

A Versatile Model for Clustered and Highly Correlated
Multivariate Data

Yingjuan Zhang1 · Jochen Einbeck1,2

Accepted: 17 November 2023
© The Author(s) 2024

Abstract
For the analysis of multivariate data with an approximately one-dimensional latent
structure, it is suggested to model this latent variable by a random effect, allowing for
the use ofmixedmodelmethodology for dimension reduction purposes.We implement
this idea through the mixture-based approach for the estimation of random effect
models, hence conveniently enabling clustering of observations along the latent linear
subspace, and derive the estimators required for the ensuing EM algorithm under
several error variance parameterizations. A simulation study is conducted, and several
important inferential problems, including clustering, projection, ranking, regression
on covariates, and regression of an external response on the predicted latent variable,
are considered and illustrated by real data examples.

Keywords Linear approximation · Nonparametric maximum likelihood · MAP
estimation · Bootstrap · Multivariate response models

1 Introduction

It is not uncommon for a set of variables to be so strongly correlated that they can be
considered as intrinsically one-dimensional, meaning that they can be considered to
be generated by some latent one-dimensional linear subspace plus noise. As examples
for such situations, one could name price indexes for several goods, or educational
attainment scores on several different abilities, or several psychological mental health
indicators. While a rich set of statistical tools exists for identifying best linear approx-
imations of multivariate data, usually based on algebraic properties of the sample
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covariance matrix (such as principal component analysis), a different approach is fol-
lowed in this paper which is firmly rooted in basic principles of statistical modelling,
and hence allows versatile access to routine statistical tasks such as clustering or
regression.

The basic idea, which is of more general validity than the framework focused on
in this paper, is to consider the approximating lower-dimensional subspace as a latent
variable in amultivariate statisticalmodel and tomodel this latent variable by a random
effect. In this work, we develop and implement this very general idea in amore specific
framework, where we assume the low-dimensional structure to be a one-dimensional
space, i.e. a straight line.

More specifically, we consider a scenario where the multivariate data xi ∈ R
m

are noisy observations scattered along the one-dimensional space α + βz, where
α, β ∈ R

m , and z ∈ R is an unobserved instance of a (latent) variable Z . Then,
the observed data xi = (xi1, . . . , xim)T , i = 1, . . . , n, are assumed to be generated
from the following random effect model,

xi = α + βzi + εi , (1)

where εi ∼ N (0, �i ) is m-variate Gaussian noise with a positive definite variance
matrix �i ≡ �(zi ) ∈ R

m×m . It is clear that a model with observation specific m ×m
variance matrices is heavily overparametrized, and we will never contemplate fitting
this model in full generality. We still provide this general notation in Eq. (1) as it
contains all practically relevant special cases that will be naturally arising, including,
of course, the homoscedastic case �i = �, i = 1, . . . , n.

For the estimation of the random effect distribution along this line, we use the
nonparametric maximum likelihood approach, which amounts to representing this
distribution by a set of discretemass points (mixture centres) with some corresponding
masses (mixture probabilities). While this may look like a restrictive assumption, it is
actually more flexible than the application of a Gaussian random effect, as it allows
for multi-modalities in the distributions of the latent variable. Indeed, the mixture
character of this approach allows for clustering of observations based on the fitted
model.

In consequence, this arrives at a modelling approach with an enormous versatility.
Firstly, as just expressed, observations can be clustered based onmaximum a posteriori
(MAP) probabilities of class membership [14, chapter 11]. Secondly, projecting the
original data points onto the estimated lower-dimensional space, the dimension of the
original multivariate data is reduced (to 1, in the simple framework as discussed in
this work), and the compressed data can be used as summary statistic (such as an
overall price index across several goods) or for further inferential purposes. Thirdly,
the relative order of the posterior random effects (observations ‘projected’ onto the
latent linear subspace) can be used for ranking observations in multivariate data sets.
Finally, we will show that it is not difficult to include additional covariates into model
(1) so that one has de facto a novel tool for multivariate response situations, yielding
reduced parameter standard errors as compared to the separate univariate response
models. We will give each of these important applications some prominence later in
the paper.
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Fig. 1 Graph showing the estimated one-dimensional space with cluster centres in red and α in green

To enable some intuition for how the model operates (in the simpler case without
covariates), we use the faithful data set in R package MASS [20]. This is a two-
dimensional data set with 272 observations and two variables: eruption time and the
waiting time between two eruptions. The straight line in Fig. 1 is the one-dimensional
latent space α + βz that is parameterized by the latent variable. The red triangles
positioned along the straight line are the estimated mixture (cluster) centres. To give
some metaphor, one could consider the mixture centres as ‘washing pegs’ spanning
a ‘washing rope’ holding the clusters. We will return to this example in Sect. 5.1 and
illustrate there in detail how exactly this image translates into projections (dimension
reduction) and clusterings.

Some methodologically related techniques have been previously suggested in the
literature, partly very long ago. In the homoscedastic case, the model (1) can be seen
as a one-dimensional factor analysis model (see [14, chapter 12]), with the differ-
ence that we will apply a discrete mixture approximation of the latent variable zi .
There is also some overlap with the generative topographic mapping (GTM, [7]),
which allows for nonlinear manifolds rather than just a latent straight line. However,
in the GTM, the latent variables are parameterized by a fixed and equidistant grid,
rather than estimable masses and mass points, rendering the approach less useful for
clustering-type applications. Under both the factor analysis and the GTM approaches,
there is no immediate possibility to include covariates, and hence, they do not serve as
a multivariate response model. Models of the type (1) have also been proposed in the
literature on model-based clustering in high-dimensional data scenarios, an overview
over which has been given in [8]. Sammel et al. [17] proposed a latent variable model
for mixed discrete and continuous outcomes from the exponential family, where, how-
ever, the latent variable itself is modelled by covariates, contrasting with the approach
investigated in here.
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The remainder of this work is organized as follows. In Sect. 2, we give details of the
nonparametricmaximum likelihood procedure to estimate the parameters ofmodel (1),
yielding an EM algorithm which also automatically estimates masses, mass points,
and posterior probabilities of data points being associated with those. Simulation
studies which illustrate the accuracy of the proposed estimation methodology are
presented in Sect. 3. This is followed by Sect. 4, where we will lay down the clustering
and projection operations explicitly. Furthermore, in Sects. 4.4 and 4.5, we consider
extension of the proposed framework allowing for covariates along with a bootstrap
approach for the computation of standard errors. Applications to several real data
scenarios are given in Sect. 5,whichwe also use to illustrate themain application pillars
of clustering, dimension reduction, ranking, and regression, explicitly. The paper is
concluded with a discussion in Sect. 6. Some technical derivations are relegated to an
‘Appendix’.

2 Methods and Estimation

2.1 Likelihood

The marginal probability density function f (xi |α, β) for observations generated from
model (1) can be written as

f (xi |α, β) =
∫

f (xi , zi |α, β)dzi =
∫

f (xi |zi , α, β)φ(zi )dzi , (2)

where f (xi , zi |α, β) is the joint probability distribution of observed data xi and
unobserved random effects zi , and φ(·) is the density function of the random effect
distribution Z . This model is not fully specified since it lacks specific parametrizations
of the (unknown) �i = �(zi ) = Var(xi |zi , α, β) and φ, but let us consider any (addi-
tional) parameters involved into these initially as nuisance parameters and construct
appropriate parametrizations for these as we go along.

The initial goal is to find maximum likelihood estimates for the parameters α and
β in model (1). Building on the marginal density (2), the likelihood of model (1) is
the following,

L(α, β) =
n∏

i=1

∫
f (xi |zi , α, β)φ(zi )dzi

with corresponding log-likelihood,

l(α, β) =
n∑

i=1

log

{∫
f (xi |zi , α, β)φ(zi )dzi

}
. (3)

At this stage, a decision needs to be made on how to deal with the integral figuring
in Eq. (3). In principle, one could do this based on a Gaussianity assumption on φ(·),
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as common in the mixedmodel context, in this case leading us back to a factor analysis
framework. However, for reasons expressed in the introduction, we have decided here
differently and employ instead Aitkin’s nonparametric maximum likelihood approach
[2]. Here, the random effect distribution Z is approximated by a discrete mixture
distribution, say Z̃ , which is supported on a finite number of mass points z1, . . . , zK
withmasses P(Z̃ = zk) = πk , k = 1, . . . , K . This discretemixture facilitates a simple
approximation of the marginal likelihood which just involves sums rather integrals,
i.e.

l(α, β) ≈
n∑

i=1

log

{
K∑

k=1

f (xi |zk, α, β)πk

}
. (4)

Laird [12] showed that themarginal likelihood (3) can be approximated arbitrarilywell
by (4) with a finite set of mass points. We see that this has now become a mixture-
type problem, with each mixture component k representing a latent ‘class’ within the
domain of Z (we will use the terms class and component interchangeably henceforth).
The EM algorithm [9] is one of the most widely used algorithms for the estimation of
parameters in mixture models.

Denote by fik = P(xi |Z̃ = zk) = f (xi |zk, α, β) the probability density of xi
conditional on class k. Then, we know that

P(xi , Z̃ = zk) = P(xi |Z̃ = zk)P(Z̃ = zk) = fikπk .

Since it is in practice unknown which component each observations belongs to, this is
an incomplete data scenario. We describe the missing information on the component
membership by an indicator variable

Gik =
{
1, if observation i belongs to component k

0, otherwise.

This defines complete data (xi ,Gi1, . . . ,GiK ), i = 1, . . . , n, with probability

P(xi ,Gi1, . . . ,GiK ) =
K∏

k=1

( fikπk)
Gik

and resulting complete data likelihood
∏n

i=1
∏K

k=1( fikπk)
Gik . Then, we can obtain

the expected complete log-likelihood
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lc =
n∑

i=1

E

[
log

(
K∏

k=1

(πk fik)
Gik

)
|xi

]

=
n∑

i=1

K∑
k=1

E [Gik |xi ] log (πk fik)

=
n∑

i=1

K∑
k=1

wik logπk +
n∑

i=1

K∑
k=1

wik log fik

(5)

where wik = E [Gik |xi ] = P(Gik = 1|xi ) = P(Z̃ = zk |xi ), which is the probability
of each observation i belonging to component k. For the component-specific densities
fik , we specify, conditional on the mixture centres zk , a multivariate Gaussian model

fik = 1

(2π)m/2

1

|�k |1/2 exp

(
−1

2
(xi − α − βzk)

T�−1
k (xi − α − βzk)

)
(6)

where we allow the variance matrices �k = �(zk) to depend on the cluster k but not
on observation i , hence reducing the complexity of the original, fully heteroscedastic,
variance specification considerably. The termsα+βzk can be interpreted as themixture
centres in the original data space, spanned along the line α + βz. Note that the right
hand side of (4) is then the likelihood corresponding to the ‘approximative’ model

xi |zk, α, β ∼ N (α + βzk, �k) with probability πk, (7)

where we treat the mass points zk , k = 1, . . . , K , and their associated masses πk as
unknown parameters to be estimated in the EM algorithm alongside with the model
parameters α and β. This model can be seen as a Gaussian mixture model with struc-
tured mean function and component-specific variances, or as a multivariate response
version of the ‘nonparametric maximum likelihood’ (NPML) approach for the esti-
mation of mixture masses and mass points in random effect models [2], [4, chapter 8].

Several reduced, parsimonious, parameterizations of the variance matrices �k

are possible in order to describe the shape of the clusters around the mixture cen-
tres. The simplest case (i) would be a constant and diagonal matrix �k ≡ � =
diag(σ 2

j ){1≤ j≤m} ∈ R
m×m , which gives the same variance specification to all K com-

ponents of the mixture. Second (ii), we consider using different diagonal variance
matrices for different components, �k = diag(σ 2

jk){1≤ j≤m} ∈ R
m×m , which yields

an improvement for estimating data that have clusters of different sizes. Third (iii),
we consider using the same full (unrestricted) variance matrix, �k ≡ � ∈ R

m×m , to
capture the correlation of variables. Finally (iv), different full (unrestricted) variance
matrices,�k ∈ R

m×m give better estimations when dealing with clusters that differ by
shape and size. In line with (6) and (7), our notation in what follows will be tailored to
this most general case (iv); with the results for the reduced parameterizations naturally
deriving from this.
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2.2 EM Algorithm

Now we can set up the EM algorithm for estimating model (7). It is noted that the
developments in this subsection are for a fixed number of components, K . The question
of choosing K is considered as a model selection problem and will be addressed
through the use of model selection criteria as illustrated in later sections.
E-step

Using the Bayes’ theorem, we obtain the posterior probability of observation i
belonging to component k,

wik = P(Z̃ = zk |xi ) = P(Z̃ = zk)P(xi |Z̃ = zk)∑
l P(Z̃ = zl)P(xi |Z̃ = zl)

= πk fik∑
l πl fil

. (8)

M-step
Using expression (6) for the component-wise densities fik , the expected complete

data log-likelihood becomes

lc =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

−1

2
wik log(|�k |) +

n∑
i=1

K∑
k=1

−m

2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α − βzk)

T�−1
k (xi − α − βzk).

(9)

Taking partial derivatives of lc with respect to each parameter gives the score equations.
We then obtain the following estimators for the parameters α, β, zk and πk by setting
these score equations to zeros and solving them:

α̂ =
(

n∑
i=1

K∑
k=1

wik�̂
−1
k

)−1 (
n∑

i=1

K∑
k=1

wik�̂
−1
k (xi − β̂ ẑk)

)
(10)

β̂ =
(

n∑
i=1

K∑
k=1

wik�̂
−1
k ẑ2k

)−1 (
n∑

i=1

K∑
k=1

wik�̂
−1
k (xi − α̂)ẑk

)
(11)

ẑk =
∑n

i=1 wik β̂
T �̂−1

k (xi − α̂)∑n
i=1 wik β̂T �̂−1

k β̂
. (12)

For the mixture probabilities, since
∑K

k=1 πk = 1, we need to apply a Lagrange

multiplier by letting ∂
(
l − λ(

∑K
k=1 πk − 1)

)
/∂πk = 0, yielding

π̂k = 1

n

n∑
i=1

wik . (13)
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Estimators for the flexible variance specifications are again obtained by equating
the corresponding partial derivatives to zero, giving results as follows:

(i) � = diag(σ 2
j ){1≤ j≤m} ∈ R

m×m , k = 1, . . . , K ,

σ̂ 2
j = 1

n

n∑
i=1

K∑
k=1

wik(xi j − α̂ j − β̂ j ẑk)
2; (14)

(ii) �k = diag(σ 2
jk){1≤ j≤m} ∈ R

m×m , k = 1, . . . , K ,

σ̂ 2
jk =

∑n
i=1 wik(xi j − α̂ j − β̂ j ẑk)2∑n

i=1 wik
; (15)

(iii) � = �1 = · · · = �k ∈ R
m×m , k = 1, . . . , K ,

�̂ = 1

n

n∑
i=1

K∑
k=1

wik(xi − α̂ − β̂ ẑk)(xi − α̂ − β̂ ẑk)
T ; (16)

(iv) �k ∈ R
m×m, k = 1, . . . , K ,

�̂k =
∑n

i=1 wik(xi − α̂ − β̂ ẑk)(xi − α̂ − β̂ ẑk)T∑n
i=1 wik

. (17)

It is evident that all of these estimators depend on the weights wik , hence requiring
the use of the EM algorithm which iterates between finding the above estimates and
updating the weights given the estimates.

2.3 Computational Considerations

It is noted from Eqs. (10), (11), and (12) that these involve many inversions of the
estimated variance matrices �̂k . This can make the EM algorithm computationally
unstable especiallly under the component-specific variance parameterizations (ii) and
(iv). Therefore, in our implementation of the above EM algorithm, we disentangle the
M-step updates of �̂k from those of α̂, β̂ and ẑk . Specifically, the updates (10), (11),
and (12) are executed in a simplified formwhere �̂k ≡ diag(σ 2), for some constant σ 2

which does not need to be specified since it cancels out from the resulting simplified
update equations, yielding

α̂ = 1

n

(
n∑

i=1

xi − β̂

n∑
i=1

K∑
k=1

wik ẑk

)
; (18)

β̂ =
∑n

i=1
∑K

k=1 wik ẑk xi − 1
n (

∑n
i=1 xi )(

∑n
i=1

∑K
k=1 wik ẑk)∑n

i=1
∑K

k=1 wik ẑ2k − 1
n (

∑n
i=1

∑K
k=1 wik ẑk)2

; (19)
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ẑk = β̂T ∑n
i=1 wik(xi − α̂)

β̂T β̂
∑n

i=1 wik
. (20)

That is, in our implementation, within each M-step, we cycle a small number times
(five will be sufficient) between (18), (19), and (20), then we update π̂k via (13),
followed by the respective update of the variance matrices according to any of (14),
(15), (16), or (17) depending on the variance parameterization. The resulting updated
parameters are then used in the upcoming E-step (8). The simulation studies in Sect. 3
will confirm that this approach yields accurate parameter estimates.

2.4 Identifiability

Consider again the model for the xi implied by equation (7), i.e.

xi = α + βzk + εi . (21)

The product term βzk makes the parameters β = (β1, . . . , βm)T and zk unidentifiable.
The vector α is also unidentifiable as, when moving along the estimated straight line,
the same model could be attained by translating all zk’s along the line. Therefore, the
model is identifiable only under certain restrictions, and in order to fix the problem,
we standardize zk by letting

E(Z̃) =
K∑

k=1

πk zk = 0 (22)

and

Var(Z̃) =
K∑

k=1

πk z
2
k − (πk zk)

2 = 1. (23)

Equation (22) solves the problem forα byfixing the position of zk’s along the estimated
lower-dimensional subspace, andEq. (23) solves the scale problem forβ. Additionally,
to identify the direction of the latent variable, we enforce β1 ≥ 0 (but any other
component of β could equally be chosen for this).

2.5 StartingValues

Starting values can heavily influence the ability of the EM algorithm to locate the
maximum of the likelihood (see, e.g. [15]). In the R implementation of the EM algo-
rithm of our methodology, the following are the default starting values for parameters
πk, zk, α, β, and �k :

π
(0)
k = 1

K
,
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where K is the number of components. We use random numbers from a standard
normal distribution as the starting values for the mass points,

z(0)k ∼ N (0, 1),

which are then re-scaled according to (22) and (23). As default starting values for the
line parameters, we use

α(0) = 1

n

n∑
i=1

xi

β(0) = xr − α(0),

where xr ∈ R
m is a randomly selected observation. For all four variance parameteri-

zations, we use a diagonal matrix �(0) ∈ R
m×m , not depending on k, as the ‘starting

variance matrix’. Let

s j =
√√√√ 1

n − 1

n∑
i=1

(xi j − x̄ j )2,

where j = 1, 2, . . . ,m and x̄ j is the sample mean of the j-th variable. Then, for each

diagonal element (σ (0)
j )2 of the diagonal matrix �(0), one has the starting value

σ
(0)
j = s j

K
, j = 1, . . . ,m.

3 Simulation

3.1 Estimation of Model Parameters

The EM algorithm derived in the previous section, with all four variance parameteri-
zations, is implemented in R. Some simulations are set up to test the accuracy of the
R implementation under different settings.

Under the variance parameterization (i), i.e. the same diagonal matrix for all com-
ponents, we use two-dimensional data with three individual sample sizes n = 100,
n = 300, and n = 500 and generate 1000 data sets from model (7) for each sample
size. The true parameter values used for the simulations can be read from the first
column of Table 1.

The methodology from Sect. 2.2 is then applied on each generated data set (with
random starting values according to Sect. 2.5 to initialize the EM algorithm), and the
1000 estimates for each model parameter (see Table 3) are collected. Comparing the
average of the estimated values to the true values of the parameters used to generate
these data, some key results are shown in Table 1, Figs. 2, 3, and 4. In Table 1, the
averaged estimates of the parameters are close to their true values across all parameters
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Table 1 Simulation results
under variance parameterization
(i)

True Average estimates

n = 100 n = 300 n = 500

π1 0.0500 0.0463 0.0507 0.0498

π2 0.2500 0.2518 0.2504 0.2512

π3 0.7000 0.7019 0.6988 0.6990

z1 −0.6171 −0.6186 −0.6193 −0.6191

z2 1.1675 1.2262 1.1693 1.1708

z3 2.8023 2.8457 2.8130 2.8119

α1 −1.000 −0.9936 −0.9985 −0.9985

α2 1.000 1.0235 1.0036 0.9982

β1 1.000 0.9915 0.9986 0.9966

β2 3.000 2.9974 2.9982 2.9899

σ1 0.5000 0.5043 0.4966 0.4985

σ2 2.0000 1.9866 1.9892 1.9912

Fig. 2 Estimations of parameter β = (β1, β2)
T with different sample sizes under the variance parameteri-

zation (i)

and sample sizes, with the bias in the estimates reducing for larger sample sizes. In
Fig. 2, the medians of the estimates β̂1 and β̂2 in the three box plots are similar, but
with the ranges of the boxes getting smaller when increasing n from 100 via 300 to
500. The effect is clearer visible for the β̂2’s than the β̂1’s since the larger magnitude
of the true value of β2 also comes with larger variability.

Similar simulations were conducted to test the accuracy under variance parame-
terization (ii), again using 1000 replicates of two-dimensional data from model (7)
under each of three sample sizes of n = 100, n = 300, and n = 500. We report the
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Fig. 3 Estimations of parameter zk with different sample sizes under the variance parameterization (i)

Fig. 4 Estimations of parameter σ with different sample sizes, where σ1 and σ2 are the diagonal components
of the variance matrix, under the variance parameterization (i)

numerical results in Table 2 and display the estimated variance structures under this
model in Fig. 5. We omit the boxplots for the other parameters as they are similar to
those under parameterization (i). In ‘Appendix B’, we provide additional results and
boxplots under parameterization (iii).

Overall, we can tell from the tables and figures that the estimators give sensible
estimates of the parameters, the averaged estimates of the parameters are accurate
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Table 2 Simulation results
under variance parameterization
(ii), where σ11 and σ21 are the
diagonal elements of �1, σ12
and σ22 are the diagonal
elements of �2

True Average estimates

n = 100 n = 300 n = 500

π1 0.2000 0.2004 0.2001 0.2002

π2 0.8000 0.7996 0.7999 0.7998

z1 −0.5000 −0.5263 −0.5168 −0.4999

z2 2.0000 2.0293 2.0182 2.0248

α1 2.0000 2.0119 2.0024 2.0016

α2 10.0000 10.0045 9.9998 9.9995

β1 1.000 0.9929 0.9948 0.9955

β2 3.000 2.9771 2.9871 2.9926

σ11 0.2000 0.1972 0.1993 0.1998

σ21 0.4000 0.3949 0.3971 0.3991

σ12 1.0000 0.9614 0.9856 0.9948

σ22 2.0000 1.9465 1.9880 1.9862

Fig. 5 Under variance parameterization (ii), estimations of variance parameters with different sample sizes,
where σ11 and σ21 are the diagonal components of the variance matrix for mass point k = 1, σ12 and σ22
are the diagonal components of the variance matrix for mass point k = 2

compared to their true values, there appear to be no systematic biases, and the vari-
ability of the estimates reduces with increased sample size. The boxplots illustrate
the consistency of estimators, where the boxes are squeezing to the true value (red
horizontal line) as the sample size gets larger.

Next, we set up another set of simulations to address the importance of using the
correct variance parameterization when fitting a model. For each model with each
variance parameterization, we generate 200 replicates, each with sample size of 100,
from the model. Then for the data generated from the model with variance parame-
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Table 3 The number of estimated parameters used for AIC and BIC

Parameters Variance (i) Variance (ii) Variance (iii) Variance (iv)

πk K − 1 K − 1 K − 1 K − 1

zk K K K K

α m m m m

β m m m m

�k m mK m(m+1)
2

m(m+1)K
2

terization (i), we fit the data to four different models, each with a different variance
parameterization. For the remaining data sets generated from the model with variance
parameterization (ii), (iii), and (iv), we do the same. We consider to use the AIC and
BIC [18] as the model selection criteria, and we use the approximated likelihood (4)
as the likelihood in AIC and BIC. For reference, the number of estimated parameters
used in the calculation of AIC and BIC is shown in Table 3, where m is the dimension
of data, and K is the number of mass points.

Figure 6 shows some key results: For the data sets generated from the model with
variance parameterization (i), 73.5% of the fitted models with variance parameteriza-
tion (i) lead to the smallest AIC values, and 95% of the fitted models with variance
parameterization (i) lead to the smallest BIC values. For the data sets generated from
the model with variance parameterization (ii), 88% of the fitted models with variance
parameterization (ii) lead to the smallest AIC values, and 98% of the fitted models
with variance parameterization (ii) lead to the smallest BIC values. For the data sets
generated from the model with variance parameterization (iii), 87% of the minimum
AIC values and 99% of the minimumBIC values are obtained from a fitted model with
the variance parameterization (iii). For data sets generated from the model with vari-
ance parameterization (iv) and fitting the model with variance parameterization (iv),
we obtain 99% of the minimum AIC values and 91.5% of the minimum BIC values.
The results indicate that choosing a correct variance parameterization is significant
for fitted model selection. Almohaimeed and Einbeck [6] discussed the use of AIC
and BIC for model selection under NPML estimation. Although the BIC might lead
to a different choice than AIC, Leroux [13] showed that using BIC for selecting the
number of mixture components for finite mixture models is consistent. We use AIC
and BIC as model selection criteria in our methodology.

4 Additional Inferential Aspects

In the previous sections, the focus was on estimating the parameters of model (7) from
multivariate data xi ∈ R

m and demonstrating that these estimators are (in an empirical
sense) consistent, and the variance parameterizations are identifiable. In practice, these
steps will rarely form an end in itself, but will be building blocks on the way to a
more concrete statistical question. We now refer back to the four application pillars
already mentioned in the introduction and explain these one by one. Additionally, we
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Fig. 6 Barplots showing the number of minimum AIC and BIC values obtained from fitted models with
different variance parameterizations

will address the important question of how bootstrapped standard errors of covariate
parameter estimates are obtained, and how these fare in comparison with univariate
response models.

4.1 Clustering via MAP Estimation

We have already observed in Sect. 2.2 that the weights wik correspond to the posterior
probability of observation i belonging to component k. The term ‘posterior’ is here be
to be understood as the updated probability of class membership, having knowledge
on the value of the observation xi , as opposed to the ‘prior’ probability πk , which does
not make use of this information.

Given the availability ofwik from the last iteration of the EMalgorithm, observation
xi is then classified to the cluster k̂(xi ) to which it belongs with highest posterior
probability,

k̂(xi ) = arg maxkwik .

This cluster allocation rule is commonly known as maximum a posterior (MAP) rule.
It is noted in this context that, after convergence of the EM algorithm, typically most
wik are close to 0 or 1 (with obviously only one of them being close to 1), so that this
allocation is in most cases very clear-cut. We will see examples for the application of
the MAP rule in Sects. 5.1 and 5.3.
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4.2 Dimension Reduction Through Predicted Latent Scores

One application of our methodology is the compression of m-dimensional data to
one-dimensional, model-based scores, which can be considered as the summary infor-
mation of the original data. This is achieved through the use of the ‘projection’

z∗i =
K∑

k=1

wik ẑk, (24)

where z∗i ∈ R [1]. Given the fitted model (1), z∗i would be the best prediction of the
position for the latent variable zi that generates the original data xi . Then, the following
equation maps the one-dimensional scores back onto the higher dimensional original
data space,

x∗
i = α + βz∗i ,

where x∗
i is the compressed counterparts to the original data. It is clear that, unlike in,

e.g. principal component analysis, the projections xi − x∗
i are not orthogonal to the

linear subspace. However, they still can be meaningful: Under the given approach, all
differences between observations to their cluster centres are treated as actual errors.
The result of this is an increased robustness to such errors, as only clear deviations from
a cluster lead to a projection beyond its centre. An example illustrating this behavior
is provided in Fig. 9 in Sect. 5.1.

The one-dimensional scores, z∗i , can then be used for subsequent inferential pro-
cedures, such as a predictor variable in a regression problem involving an external
response variable yi . This approach is illustrated by way of example in Sect. 5.2.

4.3 Ranking

The projected z∗i provides a ‘summary score’ of all involved variables in the direction
spannedby the latent line.Along this line, the positioning of the z∗i is informative for the
degree of which the variables jointly point into the direction of the latent variable. That
is, high values of z∗i would indicate overall high values of the contributing variables,
and good agreement of what constitutes ‘high’. For instance, if each of three variables
constitutes price indexes for certain goods, then the higher these constituent indices
are, the higher the overall price index will be. Hence, the order statstic of the z∗i ,
denoted by z∗[i], can be used to rank the cases i , namely by [i], i = 1, . . . , n. Many
of these order statistics will be undistinguishable as the projections will be on (or
close) to the same cluster centre. This makes sense from a clustering point of view: If
observations cannot be distinguished statistically (i.e. if they are just distinguished by
noise), their rank cannot be distinguished. De facto, in many cases, the z[i] will take as
many distinguishable values as there are mass points. This concept will be explained
in more detail by means of an example in Sect. 5.3.
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4.4 Inclusion of Covariates

Where multivariate response data appear in statistical applications, the most common
inferential approach is to define separate regression models for each of the individual
variables constituting the multivariate response vector. For instance, while the lin-
ear model function lm in the statistical programming language R does allow for a
multivariate response, the resulting fitted models correspond exactly to the individual
one-dimensional response models. This approach, however, is ignoring the correla-
tion of the different response variables, which, when taken into account, could lead to
reduced parameter standard errors, and hence increased powers.

In the original model (1), xi ∈ R
m can be explained by a one-dimensional coordi-

nate system. Under the mixture representation of the model (7), certain latent groups
along the one-dimensional line are driving the data generating process. However, these
models do not yet allow for the presence of covariates in the data generating process
of the xi . To avoid confounding of the latent variable with such covariates (if they are
known), the following is an extended model which includes a vector of p covariates
related to the response variables,

xi = α + βzi + �vi + εi , (25)

where xi ∈ R
m , i = 1, 2, . . . , n, α ∈ R

m , β ∈ R
m , vi ∈ R

p is the vector of the
covariates, and �m×p is a matrix of the coefficients of the covariates. The estimators
of these parameters can be found in ‘Appendix A’. When we have only one covariate
in model (25), vi ∈ R, and we denote � = γ ∈ R

m .
Notably, under model (25) with xi ∈ R

m , the ‘models’ for each of the m response
variables would be linked through the random effect zi , hence inducing correlation
between units similar as for a multilevel model. An example for the use of this mod-
elling technique is provided in Sect. 5.4.

4.5 Bootstrapped Standard Errors

In statistical practice, not only the estimation of� but also an assessment of its accuracy
(or in other words, a quantification of its uncertainty) is of interest. Since the direct
calculation of standard errors is generally difficult in the context of EM estimation,
we propose a bootstrap procedure for their computation.

The bootstrap process is carried out with the following steps:

(i) We are given a data set xi ∈ R
m and a covariate vector vi ∈ R

p, i = 1, . . . , n.
(ii) Fit the data xi , vi to model (25) to obtain the estimates of the parameters.
(iii) Sampling B data sets from model (25) with the estimated parameters obtained

from (ii).
(iv) Fit these B data sets to our model and we would obtain B sets of γ̂ . Then, calculate

the standard deviations across all B replicates of each of the m × p components
of �̂.

As an example, we generated a two-dimensional data set xi ∈ R
2 with π =

(0.3, 0.7), z = (1.5,−0.6), α = (10, 2), β = (1, 3), γ = (0.5, 3) and B = 300.
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Table 4 Estimations (Standard errors) of γ obtained using different methods

γ̂1 (SE) γ̂2 (SE)

lm(.) 0.5025 (0.2139) 2.8763 (0.4871)

Model (25) with bootstrap 0.4649 (0.1709) 2.7710 (0.3201)

Fig. 7 Density contour plots with different variance parameterizations; top left (i); top right (ii); bottom
left (iii); and bottom right (iv)

Then, we compared the estimates and standard errors obtained from the use of R
function lm (when used as a multivariate response model), with those obtained from
the procedures outlined in the previous and current subsection. The results are shown
in Table 4; overall, our model leads to considerably smaller standard errors for the
estimated coefficient parameter γ .

5 Applications

5.1 Faithful Data: Model Selection and Projection

In Sect. 2.2, we introduced four different variance parameterizations; here, we use
again the faithful data set to illustrate the effect of using these different variance
specifications on model fitting. Figure7 shows the density contour plots for fitting
the model with flexible variance parameterizations (i)–(iv). As shown from Table 5,
the AIC and BIC values decrease when increasing the complexity of the variance
parameterization, even though of course this does not need to be the case generally.
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Table 5 AIC and BIC values for the faithful data under different variance parameterizations

Variance (i) Variance (ii) Variance (iii) Variance (iv)

AIC 2333.36 2317.61 2300.37 2286.53

BIC 2365.81 2357.28 2336.43 2333.40

The following are the parameter estimates from a fitted model with the selected
parameterization (iv), i.e. different full variance–covariance matrices for each com-
ponent: π̂ = (0.3559, 0.6441), α̂ = (3.4878, 70.8971), β̂ = (1.0788, 12.2038),
ẑ = (−1.3454, 0.7433), and

�̂1 =
[
0.0692 0.4352
0.4352 33.6973

]
, �̂2 =

[
0.1700 0.9406
0.9406 36.0462

]
.

Figure8 shows the clustering resulting from these estimates, according to the cluster
allocation process that is described in Sect. 4.1.

We can obtain the scores (coordinates of the projected data along the one-
dimensional subspace spanned by the latent variable) through the use of Eq. (24).
We use the following images to illustrate the process of projecting the original data
points onto the estimated low-dimensional space. In Fig. 1, the straight line is the one-
dimensional latent space, and the red triangles positioned along the straight line are
the estimated mixture centres α̂ + β̂ ẑk . Figure8 illustrates how the original data are
assigned to different clusters following the MAP rule. The green points in Fig. 9 on
the straight line are the compressed data, x∗

i , after projection onto that line. The most
distinctive character between our methodology and the principal component analysis
is that the projections are not orthogonal, which is shown in Fig. 10.

5.2 Soils Data: Dimension Reduction

In this example, we consider using the model based scores as the explanatory variable
to fit a regression model with an additional new variable as the response variable. The
data set we used for this analysis is the Soils data set in R package carData [11]. We
construct a data frame with n = 48 and six variables: nitrogen, phosphorous, calcium,
magnesium, potassium, and sodium (which are highly correlated, but do not all use
the same units), and use an additional variable ‘Density’ (bulk density in gm/cm3) as
the response.

We apply the methodology laid out in Sect. 2.2 on the six-dimensional space of
variables and use AIC and BIC to inform the choice of parameterizations and number
of mass points. Details of the obtained AIC and BIC values using different number
of mass points and variance parameterizations are shown in Tables 6 and 7. The AIC
and BIC values given in these tables are the minimum values obtained over 20–50
runs with starting values chosen according to Sect. 2.5; the problem of finding the best
solution gets harder when increasing k or the complexity of the error structure. We
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Fig. 8 For the faithful data, graph showing the original data points being assigned to different clusters
according to the maximum a posterior (MAP) rule

Fig. 9 For the faithful data, graph showing the projected data points x∗
i in green

find that AIC and BIC suggest to use variance parameterization (ii) with 4 mass points
or 3 mass points, respectively, to fit the model.

Nextwe fit a regressionmodelwith the scores z∗i being the predictor and the variable
Density as response. Principal component regression is a commonly used technique
for computing regressions when the explanatory variables are highly correlated. For
a fair comparison, we construct the first principal component scores by projecting all
data points onto the one-dimensional space and use these scores as the predictor. The
fitted lines resulting from using two regression models are shown in Fig. 11. We see
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Fig. 10 For the faithful data, graph showing the projections of the original data points onto the estimated
straight latent line

Table 6 AIC values for the Soils data under different variance parameterizations and different number of
mass points

Variance parameterization k = 2 k = 3 k = 4 k = 5 k = 6

(i) 941.07 877.40 881.40 885.35 889.36

(ii) 888.38 827.99 818.13 823.82 849.45

(iii) 898.33 879.41 896.68 922.73 903.31

(iv) 842.40 940.30 876.08 826.69 NA

The smallest AIC value is in bold

Table 7 BIC values for the Soils data under different variance parameterizations and different number of
mass points

Variance parameterization k = 2 k = 3 k = 4 k = 5 k = 6

(i) 980.37 934.84 928.18 935.87 943.62

(ii) 938.91 893.49 898.59 919.25 959.85

(iii) 965.70 950.51 971.53 1001.32 985.64

(iv) 949.06 1090.00 1068.81 1062.47 NA

The smallest BIC value is in bold

that the data are represented quite differently for our methodology. Table 8 shows the
statistical measures that evaluate the performance of principal component regression
in comparison with our approach (where we have considered both the AIC and BIC
solutions). We find that our latent variable approach has a better performance for the
non-scaled data. It is not unduly affected by scales or units and is robust concerning
scaling.
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Fig. 11 Graph showing fitted lines using two regression models. In our methodology, the regression used
model-based scores (model with k = 4) as the explanatory variable and another variable in the Soils
data set called ‘Density’ as the response variable. The points in black correspond to Density values at the
model-based scores, and points in red are the Density values predicted at the mass points. For the principal
component regression, the fitted regression line in blue used the first principal component (the blue points)
as the explanatory variable and the variable Density as the response variable

Table 8 Statistical measures of fit for the two regression models

Regression model Non-scaled data Scaled data

Latent variable model (k = 3) R2: 0.7430 R2: 0.7231

RMSE: 0.1105 RMSE: 0.1137

Latent variable model (k = 4) R2: 0.7534 R2: 0.7457

RMSE: 0.1084 RMSE: 0.1088

Principal Component Regression R2: 0.6226 R2: 0.7435

RMSE: 0.1375 RMSE: 0.1097

5.3 Literacy Survey Data: Clustering and Ranking

League tables are produced for the comparison of different institutions. Aitkin et al.
[3] compared student performance under different teaching techniques using vari-
ance component models. Aitkin and Longford [5] investigated several modelling
approaches for the comparison of school effectiveness studies. Sofroniou et al. [19]
used the International Adult Literacy Survey (IALS) data to construct league tables
under the NPML estimation approach. In this section, we reconsider this data set for
analysis. The International Adult Literacy Survey (IALS) was collected in 13 coun-
tries (or country-type entities) on Prose, Document, and Quantitative scales between
1994 and 1995. The data are reported as the percentage of individuals who could not
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reach a basic level of literacy (being the worst) in each country, the data can be found
in ‘Appendix C’.

As in [19], we only use the prose scale for the analysis. However, we take the
separation of the reported prose results into male and female attainment differently
into account than in that publication. We consider, for each of the 13 countries, male
and female prose attainment as a bivariate response, allowing us to employ model
(1) to describe the data, and so model (7) for parameter estimation. Since the gender
variable is now being taken into account naturally in the response, no covariates at
all are required in the model. Furthermore, since under this modelling approach, both
female and male prose attainment for a given country are associated with the same
random effect, it also eliminates the need to fit a two-level model as in [19] which is
otherwise needed to correlate the female and male observations within each country.
So, effectively, by using a gender-defined bivariate response, we are ‘taking one level
out’ of the problem.

We fit the model with k = 3 mass points and with variance parametrization (ii)
which leads to a minimum AIC value of 158.3963 and the smallest BIC value of
166.8705. The scores z∗i are obtained as the posterior intercept and can be considered as
the summary information of the original data. The task is here to rank the observations
using the summary information. With the posterior probability matrix W = (wik)

obtained at the convergence of the EMalgorithm, upper-level units (countries) can then
be classified into different clusters according to their largest posterior probabilities.

Table 9 shows the joint ranking of the countries, with the countries being classified
into different clusters. In the table, the 3mass points are ordered from left to right, from
the cluster in which the country has the smallest percentage of adults being illiterate to
the cluster inwhich the country has the largest percentage of adults being illiterate. The
table shows that Sweden is assigned to mass point 1 which has the smallest number of
people being illiterate. Poland is the only country that is assigned to the high illiteracy
mass point 3. The Netherlands and Germany have posterior probabilities that spread
across 2 mass points but are assigned to mass points 1 and 2 according to their highest
posterior probabilities. We also fit the model (25) with k = 5 in order to compare to
the results obtained by [19], the results and analysis can be found in ‘Appendix C’.

5.4 Foetal Movement Data: Covariates and Standard Errors

We consider a set of foetal movements data collected before and during the COVID-19
pandemic. The study,whichwas executed by researchers of theNeonatal ResearchLab
at Durham University, aims to analyse the effects of COVID on foetal development
[16]. The data were recorded via 4D ultrasound scans from a total of 40 mothers (20
before COVID and 20 during COVID) at 32 weeks gestation and consist of the number
ofmovements each foetus carries out in relation to the recordable scan length. The ratio
of these counts to scan length then forms the response variables of interest, with the
following five specificmovements recorded during the 4Dultrasound scans: upper face
movements, head movements, mouth movements, touch movements, and eye blink.
We are interested in the relationship of these five movements to the variable ‘status’,
which indicates the period during which the data were collected (‘pre-COVID’ or
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Table 9 Posterior intercepts and ‘weight matrix’ of posterior probabilities for the IALS data, with implied
ranking (‘league table’), for k = 3

Country Posterior intercept Mass points

0.154 0.769 0.077
−1.325 −0.043 3.078

Sweden −1.325 1.000

Netherlands −1.323 0.999 0.001

Germany −0.044 0.001 0.999

Canada −0.043 1.000

Australia −0.043 1.000

Switzerland (French) −0.043 1.000

New Zealand −0.043 1.000

Belgium (Flanders) −0.043 1.000

Ireland −0.043 1.000

United States −0.043 1.000

Switzerland (German) −0.043 1.000

United Kingdom −0.043 1.000

Poland 3.078 1.000

Omitted entries correspond to 0.000

‘during COVID’). For our analysis, this will be considered as a five-variate response,
xi ∈ R

5 whereas status is the predictor, vi ∈ R.
We fit the data to model (25) with k = 3 and variance parametrization (ii) which

leads to the smallest AIC (554.3622) value and BIC (613.473) value among all
parametrizations andmass points. In principle, one could fit five separate linear regres-
sion models, each taking one of the movements score as the response and status as
the predictor. We compare the estimates of the parameters and the parameter standard
errors using this ‘naïve’ method to our proposed approach, using model (25), where
the five equations are linked through a common random effect, the results are shown
in Tables 10 and 11. Our methodology, involving a multivariate response model with
random effect, gives parameter estimates which are consistent with the ones obtained
from separate linear models, however enjoying reduced standard errors of the coeffi-
cients. The bottom row of Tables 10 and 11 also gives the p values of the estimated γ̂ ’s.
We observe that the p values also tend to be reduced, leading to a potentially different
decision on the significance of a predictor variable if a decision threshold is crossed.

6 Conclusion

Multivariate data are rarely distributed homogeneously in space. In practice, one will
often observe that the data reside on a latent linear subspace of a smaller dimension
than itself, or that the data are concentrated into a certain number of clusters. From
a statistical modelling point of view, these two concepts are usually dealt with in
isolation or in succession, but not simultaneously. That is, often one will account for
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Table 10 For the COVID data, estimations of γ obtained using individual linear models for upper face
movements, head movements, mouth movements, touch movements, and eye blink

Indiv. linear models

Upper face Head movements Mouth movements Touch movements Eye blink

Estimate (γ̂ ) 0.472 0.217 2.600 0.317 0.367

Standard error 0.251 0.274 1.135 0.357 0.435

p value 0.068 0.432 0.028 0.380 0.405

Table 11 For the COVID data, estimations of γ obtained using the proposed multivariate response model
with random effect

Multivariate model

Upper face Head movements Mouth movements Touch movements Eye blink

Estimate (γ̂ ) 0.460 0.203 2.549 0.297 0.346

Standard error 0.193 0.208 0.878 0.250 0.361

p value 0.051 0.381 0.048 0.224 0.323

Standard errors and p values are obtained via the bootstrap

the lower ‘intrinsic’ dimensionality through methods such as principal component
analysis, partial least squares, factor analysis, etc., and then account for clustering in
the resulting lower-dimensional space (for instance, by fitting a mixture model to the
projections onto that space), or, less commonly, firstly partition the data into clusters
and then apply separate compressions onto linear subspaces within each of them.

In this work, we have proposed a versatile statistical model based on a latent
variable representation, which approaches both of these tasks simultaneously and
enables solutions to awide range of inferential problems, includingmultivariate regres-
sion problems in which the original data space might constitute either the predictors
or responses. We have illustrated these scenarios, illuminating different inferential
aspects, through a series of examples from various fields, hence illustrating the power
of the proposed approach in statistical practice.

Our work has been based on the premise that the data set under investigation does
feature latent structures which are worth of identifying or accounting for. The com-
plexity of these latent structures is related to the choice of variance parameterization
(i)–(iv). Empirical evidence for the identifiability of these variance matrices has been
provided in the simulation section. From a practical point of view, we found variance
parameterization (ii)—that is, diagonal, cluster-specific variance matrices–most use-
ful, and also in fact selected by the AIC and BIC criteria in most cases. While the
non-diagonal parameterizations (iii) and (iv) may be useful in certain situations, espe-
cially when the focus is on accurately describing the cluster structure as in Sect. 5.1,
one could, at least conceptually, suspect that situations could arise where the latent
variable and the variance matrices ‘compete’ for capturing the direction of the data
cloud, hence potentially leading to non-identifiabilities in this respect. While we have
not observed such problems in practical data sets, it is the case that convergence of
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the EM algorithm for scenarios (iii) and (iv) takes longe, and is also more sensitive to
the selection of starting points.

As alluded to in the introduction, the basic concept behind the presented approach is
not entirely new and has previously been expressed in the neural network community.
However, those ideas have not been transferred into the statistical toolbox and embed-
ded into a statistical modelling framework (as done here through the use of random
effects) so far. It is also pointed out that several extensions of this work are possible,
including the use of nonlinear or multivariate latent spaces with appropriate random
effect specifications. Further, one could consider extending this framework towards
non-Gaussian response distributions, requiring however more complex, GLM-type
estimation methods.

We close with noting that our work can be considered as a particular type of multi-
level (i.e. here, two-level) model, with the upper level corresponding to observations
xi and the lower level to ‘measurements’ xi j on the ‘repeated responses’. However,
as we have seen in the example in Sect. 5.3, the shared random effect on the ‘upper
level’ is directly obtained from the inferential framework without resorting to two-
level (‘variance component’) modelling in a traditional sense. Spinning this thought
further, the present methodology allows for a reduction of the number of levels in a
genuine multilevel scenario. For instance, assume one has repeated measures of some
quantity taken on the left and right ear of some individuals over time [21]. Then,
rather than fitting a three-level model, the two ears could define the axes of a bivariate
response model, reducing the problem to a two-level model. Work on such problems
is in progress and will be reported elsewhere.
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A Estimators for AdvancedModels

We recall model (25) introduced in Sect. 4.4:

xi = α + βzi + �vi + εi , (25)

where xi ∈ R
m , i = 1, 2, . . . , n, vi ∈ R

p, �m×p is a matrix, εi ∼ N (0, �) is a
Gaussian noise, and � in our methodology has four different parameterizations. The
estimators used in the EMalgorithm for thismodel would be obtained in the following:

With the probability density function for model (25),

fik = 1

(2π)m/2
1

|�k |1/2
exp

(
−1

2
(xi − α − βzk − �vi )

T�−1
k (xi − α − βzk − �vi )

)
,

the log-likelihood would be:

l =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

−1

2
wik log(|�k |) +

n∑
i=1

K∑
k=1

−m

2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α − βzk − �vi )

T�−1
k (xi − α − βzk − �vi )

E-step

wik = πk fik∑
l πl fil

M-step By taking partial derivatives of the log-likelihood with respect to each
parameter, we obtain the score functions, and by equaling these score function to
zero and solving them, we obtain the following estimators (already presented in the
computationally efficient form as in Sect. 2.3):

α̂ = 1

n

(
n∑

i=1

xi − β̂

n∑
i=1

K∑
k=1

wik ẑk −
n∑

i=1

�̂vi

)
,

β̂ =

∑n
i=1

∑K
k=1 wik ẑk xi− 1

n (
∑n

i=1 xi )(
∑n

i=1
∑K

k=1 wik ẑk )−∑n
i=1 �̂vi

∑K
k=1 wik ẑk

+ 1
n (

∑n
i=1

∑K
k=1 wik ẑk )(

∑n
i=1 �̂vi )∑n

i=1
∑K

k=1 wik ẑ2k − 1
n (

∑n
i=1

∑K
k=1 wik ẑk)2

,

ẑk = β̂T ∑n
i=1 wik(xi − α̂ − �̂vi )

β̂T β̂
∑n

i=1 wik
,
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�̂ =
∑n

i=1 xiv
T
i − α̂

∑n
i=1 vTi − β̂

∑n
i=1 vTi

∑K
k=1 wik ẑk∑n

i=1 viv
T
i

.

Since
∑K

k=1 πk = 1, we need to apply a Lagrange multiplier by letting

∂
(
l − λ(

∑K
k=1 πk − 1)

)
/∂πk = 0, then one obtains,

π̂k = 1

n

n∑
i=1

wik .

We let ψi = (ψi1, . . . , ψim)T = �vi ∈ R
m . Estimators for the flexible variance

parameterizations are given as the following,

(i) � = diag(σ 2
j ){1≤ j≤m} ∈ R

m×m, k = 1, . . . , K ,

σ̂ 2
j = 1

n

n∑
i=1

K∑
k=1

wik(xi j − α̂ j − β̂ j ẑk − ψi j )
2

(ii) �k = diag(σ 2
jk){1≤ j≤m} ∈ R

m×m, k = 1, . . . , K ,

σ̂ 2
jk =

∑n
i=1 wik(xi j − α̂ j − β̂ j ẑk − ψi j )

2∑n
i=1 wik

(iii) � = �1 = · · · = �k ∈ R
m×m , k = 1, . . . , K ,

�̂ = 1

n

n∑
i=1

K∑
k=1

wik(xi − α̂ − β̂ ẑk − �̂vi )(xi − α̂ − β̂ ẑk − �̂vi )
T

(iv) �k ∈ R
m×m, k = 1, . . . , K ,

�̂k =
∑n

i=1 wik(xi − α̂ − β̂ ẑk − �̂vi )(xi − α̂ − β̂ ẑk − �̂vi )
T∑n

i=1 wik

B Additional Simulation Results

We provide here the figures arising from the simulation study carried out in Sect. 3,
for variance parameterization (iii). We generate two-dimensional data from model (7)
under three sample sizes of n = 100, n = 300, and n = 500, with 200 replicates.

The main results are summarized in Table 12 and Figs. 12, 13, and 14.
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Table 12 Simulation results
under variance parameterization
(iii)

True Average estimates

n = 100 n = 300 n = 500

π1 0.4000 0.4007 0.3983 0.3971

π2 0.6000 0.5993 0.6017 0.6028

z1 −0.8165 −0.8215 −0.8145 −0.8121

z2 1.2247 1.2296 1.2320 1.2340

α1 20.0000 20.0001 19.9965 19.9891

α2 7.0000 7.0174 6.9780 6.9828

β1 1.000 1.0065 0.9967 0.9980

β2 3.000 2.9749 2.9864 2.9901

Fig. 12 Under variance parameterization (iii), estimations of parameter β with different sample sizes
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Fig. 13 Under variance parameterization (iii), estimations of parameter πk with different sample sizes

Fig. 14 Under variance parameterization (iii), estimations of parameter� with different sample sizes, where
�11 and �22 are the diagonal elements, and �12 and �21 are the off-diagonal elements of the variance
matrix. The true values are: �11 = 1.0, �22 = 1.5, �12 = �21 = 0.1

IALS Data

Table 13 displays the data used in Sect. 5.3, these data are the percentage of adults
not reaching a basic level of prose in each country. Table 14 shows the ranking and
clustering results obtained by [19], in which the data are modelled through a two-level
binomial logit model with gender as a covariate using the alldist function from
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Table 13 Proportion of adults
not achieving prose level 2 in the
IALS data set

Country Male Female

Ireland 24.21 20.93

United States 23.00 18.76

Switzerland (French) 17.46 19.44

Switzerland (German) 18.30 20.66

Canada 18.76 14.44

Belgium (Flanders) 15.55 21.61

Germany 14.31 13.31

United Kingdom 21.38 21.60

Netherlands 10.39 10.49

Poland 43.72 41.74

Sweden 7.31 7.18

Australia 18.33 15.69

New Zealand 19.94 16.52

Table 14 Classification and ranking for the IALS data in the paper by [19]

Country Posterior intercept Mass points

0.077 0.093 0.434 0.319 0.077
−2.602 −2.156 −1.599 −1.379 −0.330

Sweden −2.60 1.00

Netherlands −2.16 1.00

Germany −1.72 0.21 0.79

Australia −1.60 1.00

Canada −1.59 0.97 0.03

New Zealand −1.58 0.92 0.08

Belgium (Flanders) −1.58 0.89 0.11

Switzerland (French) −1.54 0.72 0.28

Switzerland (German) −1.45 0.34 0.66

United States −1.38 0.01 0.99

Ireland −1.38 1.00

United Kingdom −1.38 1.00

Poland −0.33 1.00

the R package npmlreg [10]. For fair comparison, we fit the data (shown in Table 13)
to model (25) with 5 mass points, i.e. k = 5, and the results are shown in Table 15.
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Table 15 Posterior intercepts, weight matrix, and implied ranking for the IALS data using model (25) with
k = 5

Country Posterior intercept Mass points

0.15 0.08 0.32 0.37 0.08
−1.29 −0.66 −0.17 0.19 2.99

Sweden −1.29 1.00

Netherlands −1.29 1.00

Germany −0.66 1.00

Canada −0.17 1.00

Australia −0.17 1.00

New Zealand −0.15 0.95 0.05

Switzerland (French) −0.03 0.61 0.39

Switzerland (German) 0.04 0.42 0.58

Belgium (Flanders) 0.15 0.12 0.88

United Kingdom 0.19 1.00

United States 0.19 1.00

Ireland 0.19 1.00

Poland 2.99 1.00

Omitted entries correspond to 0.00
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