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Abstract
Let 𝜒 be a primitive character modulo a prime 𝑞, and
let 𝛿 > 0. It has previously been observed that if 𝜒 has
large order 𝑑 ⩾ 𝑑0(𝛿) then 𝜒(𝑛) ≠ 1 for some 𝑛 ⩽ 𝑞𝛿,
in analogy with Vinogradov’s conjecture on quadratic
non-residues. We give a new and simple proof of this
fact. We show, furthermore, that if 𝑑 is squarefree
then for any 𝑑th root of unity 𝛼 the number of 𝑛 ⩽

𝑥 such that 𝜒(𝑛) = 𝛼 is 𝑜𝑑→∞(𝑥) whenever 𝑥 > 𝑞𝛿.
Consequently, when 𝜒 has sufficiently large order the
sequence (𝜒(𝑛))𝑛⩽𝑞𝛿 cannot cluster near 1 for any 𝛿 >
0. Our proof relies on a second moment estimate for
short sums of the characters 𝜒𝓁 , averaged over 1 ⩽

𝓁 ⩽ 𝑑 − 1, that is non-trivial whenever 𝑑 has no small
prime factors. In particular, given any 𝛿 > 0 we show
that for all but 𝑜(𝑑) powers 1 ⩽ 𝓁 ⩽ 𝑑 − 1, the par-
tial sums of 𝜒𝓁 exhibit cancellation in intervals 𝑛 ⩽ 𝑞𝛿

as long as 𝑑 ⩾ 𝑑0(𝛿) is prime, going beyond Burgess’
theorem. Our argument blends together results from
pretentious number theory and additive combinatorics.
Finally, we show that, uniformly over prime 3 ⩽ 𝑑 ⩽ 𝑞 −

1, the Pólya–Vinogradov inequality may be improved for
𝜒𝓁 on average over 1 ⩽ 𝓁 ⩽ 𝑑 − 1, extending work of
Granville and Soundararajan.
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1 INTRODUCTION ANDMAIN RESULTS

1.1 Background

Understanding the value distribution of Dirichlet characters is a central theme in analytic number
theory. An old and famous conjecture of Vinogradov predicts that the least quadratic non-residue
𝑛𝑝 modulo a prime 𝑝 satisfies 𝑛𝑝 ≪𝛿 𝑝

𝛿 as 𝑝 → ∞ for any 𝛿 > 0. This conjecture, relating to
negative values of the Legendre symbol ( ⋅

𝑝
), may be generalized to other primitive Dirichlet char-

acters. One can ask whether the least integer 𝑛𝜒 for which a primitive character 𝜒 (mod 𝑞) yields
𝜒(𝑛) ≠ 0, 1 satisfies 𝑛𝜒 ≪𝛿 𝑞

𝛿 as 𝑞 → ∞ for any 𝛿 > 0.
These problems may be recast in terms of cancellation in short character sums. For the

Legendre symbol modulo 𝑝 it is a folklore conjecture going beyond Vinogradov’s that

|||||
∑
𝑛⩽𝑥

(
𝑛

𝑝

)||||| = 𝑜𝑝→∞(𝑥) whenever 𝑥 > 𝑝𝛿 for any 𝛿 > 0,

and more generally for any primitive Dirichlet character 𝜒 (mod 𝑞) we expect that

|||||
∑
𝑛⩽𝑥

𝜒(𝑛)
||||| = 𝑜𝑞→∞(𝑥) whenever 𝑥 > 𝑞𝛿 for any 𝛿 > 0. (1)

Currently, the best general result toward (1), due to Burgess [3], allows for such cancellation (at
least for 𝑞 cube-free)whenever 𝛿 > 1∕4, improved to 𝛿 ⩾ 1∕4 for prime 𝑞 byHildebrand [17]. How-
ever, it is a notoriously difficult problem to extend the zero-free regions of Dirichlet 𝐿-functions for
individual characters. It is therefore desirable to determine other sufficient criteria that a primitive
character might satisfy that guarantees cancellation in its partial sums in a range going beyond
Burgess’ theorem.
Both the above conjectures are well known to hold (in a much stronger form) under the

assumption of the generalized Riemann hypothesis (GRH), but should even hold assuming
far less. Indeed, Granville and Soundararajan [14, Corollary 1.2] showed that (1) holds as
long as 𝐿(𝑠, 𝜒) has sufficiently few zeros in certain small rectangles near the line Re(𝑠) =
1, a condition that is easily implied for typical characters 𝜒 by classical zero density
estimates.
As has been elaborated upon in various works (see, for example, [2, 6, 21] and [10]),

there is also a relationship between such questions about short character sums and cor-
responding estimates for maximal character sums, in particular regarding improvements to
the Pólya–Vinogradov inequality, which asserts that any non-principal character modulo 𝑞

satisfies

𝑀(𝜒) ∶= max
1⩽𝑡⩽𝑞

|||||
∑
𝑛⩽𝑡

𝜒(𝑛)
|||||≪√𝑞 log 𝑞. (2)

Montgomery and Vaughan [22] showed that, assuming GRH, the factor log 𝑞 in (2) may be
improved to log log 𝑞. This is sharp (up to the implicit constant) for quadratic characters
according to a construction due to Paley [25]. A general, unconditional improvement to the
Pólya–Vinogradov inequality has, however, resisted proof for over a century.
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LARGE SUMS OF HIGH ORDER CHARACTERS 3 of 44

Characters of various fixed orders 𝑑 ⩾ 2 have been considered in this connection in a number
of works, see, for example, [13] and [8]. Building on a breakthrough by Granville-Soundararajan
[13], Goldmakher [7] showed that for characters with fixed odd order 𝑑 the estimate (2) may be
improved unconditionally to

𝑀(𝜒) ≪
√
𝑞(log 𝑞)1−𝛿(𝑑)+𝑜(1), with 𝛿(𝑑) = 1 −

𝑑

𝜋
sin(𝜋∕𝑑) > 0 (3)

(see [20] formore precise results). On the other hand, unconditional improvements to (2) for fixed
even order characters seem to provide a logjam to generally improving (2). Once again, it would
be valuable to determine other collections of primitive characters for which one may improve the
Pólya–Vinogradov inequality.
In this paper, we will study the relationship between cancellation in short and maximal char-

acter sums and the size of the order of a character 𝜒 (mod 𝑞), that is, the minimal positive integer
𝑑 such that 𝜒𝑑 is principal.

1.2 Motivating questions

In order to obtain improvements in estimates for short andmaximal sums of a primitive character
𝜒 (mod 𝑞), we must rule out the heuristic possibility that

𝜒(𝑝) = 1 for all but very few 𝑝 ⩽ 𝑞𝛿.

Since 𝜒 is multiplicative, this would further imply that

𝜒(𝑛) = 1 for many integers 𝑛 ⩽ 𝑞𝛿.

In order to preclude this possibility, therefore, we would like to quantify the frequency with which
a character takes the value 1 at integers 𝑛 up to some small threshold 𝑥. Note that this question is
more refined than simply trying to bound 𝑛𝜒 .
In this paper, we will study the value distribution of characters 𝜒 of large order (in a sense

to be made precise shortly). If 𝜒 has modulus 𝑞 then the order 𝑑 of 𝜒 divides 𝜙(𝑞), and most
such divisors grow as a function of 𝑞. Thus, the collection of such characters is rather substantial.
Moreover, as the elementary results in Section 2 show, such characters do exhibit some variation
in their values 𝜒(𝑛) for small 𝑛, which might suggest that their short and maximal sums also
exhibit cancellation.
The role of a character’s order in its value distribution has previously been considered in the

work of Norton on small upper bounds for 𝑛𝜒 (see [23] and especially [24], which contains a
substantial survey on the topic), and of Granville and Soundararajan [11] on upper bounds for|𝐿(1, 𝜒)|. To our knowledge, however, questions surrounding especially the paucity of solutions
to 𝜒(𝑛) = 1 and distribution of values 𝜒(𝑛) ≠ 1 for small 𝑛 have not appeared previously in the
literature, in particular when the order of the character is allowed to grow as a function of
its modulus.
In this direction we pose the following three motivating questions:
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4 of 44 MANGEREL

Question 1. Fix 𝛿 ∈ (0, 1). If 𝜒 is a primitive character modulo 𝑞 with order 𝑑 = 𝑑(𝑞) growing
with 𝑞, how few solutions 𝑛 ⩽ 𝑞𝛿 are there to 𝜒(𝑛) = 1, or more generally to 𝜒(𝑛) = 𝛼 when 𝛼𝑑 =
1?

Question 2. If 𝜒 is a character as in the previous question, can it be shown that for any fixed
𝛿 ∈ (0, 1),

|||∑
𝑛⩽𝑥

𝜒(𝑛)
||| = 𝑜𝑑→∞(𝑥) for all 𝑥 > 𝑞𝛿?

Question 3. For a character 𝜒 as in the previous two questions, can it be shown that 𝑀(𝜒) =

𝑜𝑑→∞(
√
𝑞 log 𝑞)?

The rationale for these questions is the following: if, say, 𝜒 is primitive modulo a prime 𝑞 of
order 𝑑 then {𝜒(𝑛)}𝑛<𝑞 equidistributes among the 𝑑th order roots of unity (by orthogonality of
Dirichlet characters). If 𝑑 is large then one expects that the level sets

{𝑛 ⩽ 𝑥 ∶ 𝜒(𝑛) = 𝛼}, 𝛼𝑑 = 1,

should become sparse, that is, of size 𝑜(𝑥), even when 𝑥 is rather small relative to 𝑞. Naturally,
we would like to understand how quickly this can occur (that is, how small can 𝑥 be for this
to happen). The variation in the values of 𝜒(𝑛) also suggests the possibility that the short and
maximal sums of 𝜒 might exhibit cancellation as well.

1.3 Main results

Our main results address each of the three questions above. In the interest of clarity we defer
relevant remarks about the theorems below to Section 1.5.
Our first main result addresses Question 1, provided 𝑞 is prime and 𝑑 is squarefree. See

Remarks 2 and 3 regarding the necessity of these assumptions.
(Unless indicated otherwise, all implicit constants in this paper are absolute.)

Theorem 1. Let 𝑞 be a large prime, let 𝑑 ⩾ 2 be squarefree with 𝑑|(𝑞 − 1) and let 𝜒 be a primitive
character modulo 𝑞 of order 𝑑. Then there is an absolute constant 𝑐1 > 0 such that if

𝛿 ∶= max
{( log log(𝑒𝑑)

𝑐1 log 𝑑

)1∕2
, (log 𝑞)−𝑐1

}
and 𝑥 > 𝑞𝛿 then for any† 𝛼 ∈ 𝜇𝑑,

|{𝑛 ⩽ 𝑥 ∶ 𝜒(𝑛) = 𝛼}|≪ 𝑥

(log log 𝑑)1∕16
.

†Here and below, we write 𝜇𝑑 to denote the set of 𝑑th order roots of unity.
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LARGE SUMS OF HIGH ORDER CHARACTERS 5 of 44

Our secondmain theorem is amean-square estimate for short sums of order 𝑑 characters, show-
ing that for typical 1 ⩽ 𝓁 ⩽ 𝑑 − 1 the partial sums of 𝜒𝓁 over intervals [1, 𝑞𝛿] exhibit cancellation
for any fixed 𝛿 > 0, as long as 𝑑 has no small prime factors. This shows that Question 2 has a pos-
itive answer for almost all powers 𝜒𝓁 of 𝜒. See Remark 4 for a discussion of the strength of these
bounds.

Theorem 2. Let 𝑞 be a large prime, let 𝑑 ⩾ 2 with 𝑑|(𝑞 − 1) and let 𝜒 be a primitive character
modulo 𝑞 of order 𝑑. Define†

𝐺 = 𝐺(𝑑) ∶= min{𝑃−(𝑑), log log(𝑒𝑑)}.

Then there is an absolute constant 𝑐2 > 0 such that if

𝛿 ∶= max
{( log log(𝑒𝑑)

𝑐2 log 𝑑

)1∕2
, (log 𝑞)−𝑐2

}
and 𝑥 > 𝑞𝛿 then

1

𝑑

∑
1⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝜒𝓁(𝑛)
|||||
2

≪ 𝑥2
(log𝐺)2

𝐺2∕15
.

Our thirdmain theorem gives an upper bound for the average size of𝑀(𝜒𝓁)with 1 ⩽ 𝓁 ⩽ 𝑑 − 1

that improves on the Pólya–Vinogradov inequality for any𝑑|(𝑞 − 1)having no small prime factors.
This addresses Question 3, again for almost all powers 𝜒𝓁 of 𝜒.

Theorem 3. Let 𝑞 be a large prime, let 𝑑 ⩾ 2 with 𝑑|(𝑞 − 1) and let 𝜒 be a primitive character
modulo 𝑞 of order 𝑑. Then

1

𝑑

∑
1⩽𝓁⩽𝑑−1

𝑀(𝜒𝓁) ≪ (
√
𝑞 log 𝑞)

⎛⎜⎜⎝
√

log log log 𝑞

log log 𝑞
+

1

𝑃−(𝑑)

⎞⎟⎟⎠.
Combined with a (slight extension of a) result of Granville and Soundararajan on characters of

fixed odd order [13, Theorem 2], this gives the following bound, which provides a uniform saving
for all prime 𝑑, even when 𝑑 = 𝑑(𝑞) → ∞. See Remark 5 for a discussion of the novelty of this
result.

Corollary 4. Let 𝑞 be a large prime. Then, uniformly over all primitive characters 𝜒 modulo 𝑞 of
prime order 𝑑 ⩾ 3 with 𝑑|(𝑞 − 1),

1

𝑑

∑
1⩽𝓁⩽𝑑−1

𝑀(𝜒𝓁) ≪ (
√
𝑞 log 𝑞)

(
log log log 𝑞

log log 𝑞

)1∕2
.

†Here and elsewhere, for 𝑑 ∈ ℕ we write 𝑃−(𝑑) to denote the smallest prime factor of 𝑑, and 𝑃+(𝑑) to denote the largest
prime factor of 𝑑, with the conventions 𝑃−(1) = 𝑃+(1) ∶= 1.
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6 of 44 MANGEREL

1.4 More precise results

Theorems 1 and 2 may be extended to a larger collection of completely multiplicative functions
whose non-zero values are roots of unity of a large order. Considerations of such a general (but
slightly different) nature arose also in [11].

Definition 1. Let 𝑑 ∈ ℕ and 𝑥0 ⩾ 1. We say that a completely multiplicative function 𝑓 ∶ ℕ →

𝜇𝑑 ∪ {0} weakly equidistributes beyond (a scale) 𝑥0 if† for any 𝑥 ⩾ 𝑥0,

max
𝛼∈𝜇𝑑
|{𝑛 ⩽ 𝑥 ∶ 𝑓(𝑛) = 𝛼}| ⩽ 100𝑥

𝑑

∏
𝑝⩽𝑥

𝑓(𝑝)=0

(
1 −

1

𝑝

)
.

We define(𝑥0; 𝑑) to be the collection of all such completely multiplicative functions. For 𝑓 ∈

(𝑥0; 𝑑) and 𝑥 ⩾ 𝑥0 we write

𝑐𝑓(𝑥) ∶=
∏
𝑝⩽𝑥

𝑓(𝑝)=0

(
1 −

1

𝑝

)
,

and we call 𝑥0 the threshold of 𝑓. We define 1(𝑥0; 𝑑) to be the subcollection of those 𝑓 ∈

(𝑥0; 𝑑) for which ∑
𝑝∶𝑓(𝑝)=0

1

𝑝
⩽ 100, (4)

so that 𝑐𝑓(𝑥) ≫ 1 uniformly in 𝑥 whenever 𝑓 ∈ 1(𝑥0; 𝑑).

For example, let 𝜒 be a primitive character modulo 𝑞 prime and order 𝑑|(𝑞 − 1). By (2), we
have ∑

𝑛⩽𝑥

𝜒𝓁(𝑛) ≪
√
𝑞 log 𝑞 = 𝑜(𝑥∕𝑑)

with 𝑥 > 𝑞3∕2+𝜀 uniformly over 1 ⩽ 𝓁 ⩽ 𝑑 − 1 and 𝑑|(𝑞 − 1). Thus, by the Weyl criterion,

max
𝛼∈𝜇𝑑
|{𝑛 ⩽ 𝑥 ∶ 𝜒(𝑛) = 𝛼}| = (1 + 𝑜(1))

𝑥

𝑑
, 𝑥 > 𝑞3∕2+𝜀.

Thus, 𝜒 ∈ 1(𝑞
𝜃; 𝑑) for any 𝜃 > 3∕2.

Our first general theorem shows that for any fixed 𝛿 > 0 and any‡𝑑 large enough relative to 𝛿,
if 𝑓 ∈ 1(𝑥0; 𝑑) then 𝑓(𝑝) ≠ 0, 1 for many primes 𝑝 ⩽ 𝑥𝛿

0
.

Theorem 1.1. Let 𝑥0 ⩾ 3 be large and let 𝜂, 𝛿 ∈ (0, 1). Then there are absolute constants 𝑐3 ∈ (0, 1)

and 𝐶1, 𝐶2, 𝐶3 > 0 such that the following is true.

† The constant 100 here could be replaced by any fixed constant, and is merely chosen for concreteness.
‡ In contrast to our main theorems, this result makes no assumptions on the arithmetic nature of 𝑑.
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LARGE SUMS OF HIGH ORDER CHARACTERS 7 of 44

(a) If 𝑓 ∈ 1(𝑥0; 𝑑) with†

𝐶1𝜌(
𝐶2
𝜂𝛿
)−1 ⩽ 𝑑 ⩽

𝐶3
𝜂𝛿
𝑒(log 𝑥0)

𝑐3 (5)

then for any 𝑥 > 𝑥𝛿
0
,

∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1

1

𝑝
⩾ log(1∕𝜂).

(b) If 𝑓 is a primitive Dirichlet character modulo a large prime 𝑞 and 𝑑|(𝑞 − 1), and 𝜂𝛿 ⩾ (log 𝑞)−𝑐

for some 0 < 𝑐 < 𝑐3, then the upper bound constraint in (5) may be removed.

Our second general theorem gives a mean-square estimate for short sums of powers 𝑓𝓁 , for
𝑓 ∈ (𝑥0; 𝑑). It shows that if 𝑓(𝑝) ≠ 0, 1 sufficiently often and 𝑑 has no small prime factors then
the short sums of 𝑓𝓁 exhibit cancellation formost 1 ⩽ 𝓁 ⩽ 𝑑 − 1.

Theorem 1.2. Let 𝑑 ⩾ 2 and 𝑥0 ⩾ 3. Let 𝑓 ∈ (𝑥0; 𝑑), let 1 ⩽ 𝑥 ⩽ 𝑥0 and set

Σ ∶= min
{
𝑃−(𝑑), 2 +

∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1
𝑝−1
}
.

Then

1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

≪ 𝑥2
(log Σ)2

Σ2∕15
.

In Section 3 we will combine Theorems 1.1 and 1.2 to deduce the following corollary.

Corollary 1.3. Let 𝑞 ⩾ 3 be large. Let 𝜂, 𝛿 ∈ (0, 1) and let 𝑑 ⩾ 2 be squarefree. Then there are
absolute constants 𝑐4 ∈ (0, 1) and 𝐶4, 𝐶5 > 0 such that if 𝜂𝛿 > (log 𝑞)−𝑐4 then the following holds:
If 𝜒 is a primitive character modulo a prime 𝑞 with order 𝑑|(𝑞 − 1) and

𝑑 ⩾ 𝐶4𝜌(
𝐶5
𝜂𝛿
)−1

then for any 𝑥 > 𝑞𝛿 and 𝛼 ∈ 𝜇𝑑,

|{𝑛 ⩽ 𝑥 ∶ 𝜒(𝑛) = 𝛼}|≪ 𝑥

(log(1∕𝜂))1∕16
.

†Here and elsewhere, 𝜌 ∶ [0,∞) → ℝ denotes the Dickman–de Bruijn function, defined uniquely by the initial condition
𝜌(𝑢) = 1 for 𝑢 ∈ [0, 1], and

𝑢𝜌′(𝑢) + 𝜌(𝑢 − 1) = 0, 𝑢 > 1.

See [27, Section III.5.3 and III.5.4] for an account of some of its useful properties.
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8 of 44 MANGEREL

Theorem 1 immediately follows from Corollary 1.3 and standard estimates for the Dickman–de
Bruijn function 𝜌.

1.5 Remarks on the results

Remark 1. Underlying the results above is the commonly exploited strategy that while infor-
mation about individual characters is usually difficult to ascertain, it is often possible to make
progress on average over a family of characters. When 𝑑 is a large prime, for instance, the char-
acters {𝜒𝓁}1⩽𝓁⩽𝑑−1 all have exact degree 𝑑, and this collection, though thin, is large enough for
averaging techniques to be effective. Fortunately, since these powers are all generated by 𝜒 we are
able to use this average information to elucidate some properties of 𝜒, for example, Theorem 1.

Remark 2. The condition that 𝑞 is prime in our main theorems is mainly a convenience that
ensures that (4) holds, andhence𝜒 ∈ 1(𝑥0; 𝑑) for an appropriate scale𝑥0. As such, Theorems 1.1
and 1.2 can be applied to 𝜒. However, the bound (4) is only used in the proof of Theorem 1.1, and
could be removed at the expense of replacing the quantity 𝜌(𝐶2

𝜂𝛿
) by 𝜌( 𝑞

𝜙(𝑞)

𝐶2
𝜂𝛿
) in (5).

As a result, we may equally well extend Corollary 1.3 to a collection of moduli 𝑞 with uniformly
bounded sums

∑
𝑝|𝑞 𝑝−1. Note in this connection that the trivial bound
|||∑
𝑛⩽𝑥

𝜒(𝑛)
||| ⩽ |{𝑛 ⩽ 𝑥 ∶ (𝑛, 𝑞) = 1}|≪ 𝑥

∏
𝑝|𝑞
(
1 −

1

𝑝

)
,

valid for any 𝑥 > 𝑞𝛿 and 𝛿 > 0 fixed, shows that if
∑

𝑝|𝑞 𝑝−1 is unbounded as a function of 𝑞, in
contrast, then we can trivially answer Question 2 in the affirmative.

Remark 3. Our requirement that 𝑑 be squarefree in Theorem 1 and Corollary 1.3 is needed to
ensure that when 𝑑 is large so are most of its prime factors. As such, the group 𝜇𝑑 does not have
‘too many’ small subgroups. Morally, this prevents from occurring the situation that 𝜒(𝑛) has
order much smaller than 𝑑 for many 𝑛, which would yield to much repetition in the sequence
(𝜒(𝑛))𝑛. In place of the squarefreeness of 𝑑, it would be sufficient to assume that∏

𝑝𝑘||𝑑
𝑝>𝑧

𝑝𝑘, with 𝑧 ≍ log(1∕𝜂),

is large enough in terms of 𝜂, 𝛿.

Remark 4. The savings obtained in Theorem 2, though non-trivial, are admittedly weak. By
comparison, if we assume GRH then the far stronger square-root cancelling bound

|||||
∑
𝑛⩽𝑥

𝜒(𝑛)
|||||≪𝜀 𝑥

1∕2+𝜀, 𝑥 > 𝑞𝜀

holds for individual character sums modulo 𝑞. Even unconditionally, if we average over all char-
acters 𝜒 (mod 𝑞) (that is, the case 𝑑 = 𝑞 − 1) then far stronger results than Theorem 2 can be
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LARGE SUMS OF HIGH ORDER CHARACTERS 9 of 44

proved. In particular, Harper [16] has recently shown using the theory of random multiplicative
functions that

1

𝑞 − 1

∑
𝜒 (mod 𝑞)

|||||
∑
𝑛⩽𝑥

𝜒(𝑛)
|||||≪

√
𝑥

(log logmin{𝑥, 𝑞∕𝑥})1∕4
.

We might expect by analogy that

1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝜒𝓁(𝑛)
||||| = 𝑜𝑑→∞(

√
𝑥), (6)

at least in some range of 𝑥 ∈ [1, 𝑞]. It would be interesting to understand whether Harper’s tools
(suitably adapted to treat randommultiplicative functions taking uniformly distributed values in
μ𝑑) could be used to study the average (6), especially when 𝑑 grows only slowly with 𝑞.

Remark 5. Note that Theorem 3 is only non-trivial when 𝑑 has no small prime factors, and there-
fore odd. In view of (3), Theorem 3 is thus much weaker than existing results when 𝑑 is slowly
growing. However, note that the exponent

𝛿(𝑑) = 1 −
𝑑

𝜋
sin(𝜋∕𝑑) ≪

1

𝑑2
,

so (3) is no stronger than (2) as soon as† 𝑑 ≫
√
log log 𝑞. Theorem 3 and Corollary 4 are therefore

new in the range 𝑑 ≫
√
log log 𝑞.

It is worth noting that Theorem 3 is also related to (though not implied by) [11, Theorem 3],
where, for slowly growing 𝑑 an upper bound for the geometric mean of the related quantities

|𝐿(1, 𝜒𝓁)|, 1 ⩽ 𝓁 ⩽ 𝑑, (𝓁, 𝑑) = 1

is obtained that goes beyond the Pólya–Vinogradov bound. The estimate there does not, however,
extend uniformly to the full range of 𝑑 considered here.

Remark 6. We have made no attempt to optimize any of the exponents in Theorem 1 or 2, and we
do not believe our results to be best possible.

1.6 Plan of the paper

The paper is structured as follows.
In Section 2 we give context for our main theorems by providing elementary proofs of two

results, Propositions 2.1 and 2.3. These results show how assuming 𝑑 is large helps in finding
small 𝑛 with 𝜒(𝑛) (at times significantly) different from 1 in value.
In Section 3.1 we give a brief review of pretentious number theory, then in Section 3.2we deduce

Corollary 1.3 and Theorem 1 from the more general Theorems 1.1 and 1.2. As Theorem 1.2 is the

† Though the method of [13] on which (3) is based assumes 𝑑 as fixed, slight alterations of the argument yield to a result
in which 𝑑 is allowed to grow with 𝑞; see Lemma 6.2.
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10 of 44 MANGEREL

more novel and involved of the two theorems, we provide a sketch of the proof of that theorem in
Section 3.3. The proof itself appears in Section 4.
In Section 5 we derive Theorem 1.1. Combining this with the work of Section 3, we then deduce

Theorem 2.
Finally, in Section 6we prove Theorem 3 andCorollary 4 by combining (slightly extended)work

of Granville and Soundararajan with some combinatorial observations related to sum-free sets in
Abelian groups.
Sections 2 and 6 may be read independently of the remaining sections.

2 ELEMENTARY ARGUMENTS TOWARD SMALL 𝒏WITH 𝝌(𝒏) ≠ 𝟏

Using only elementary arguments, in this sectionwewill prove two results about large order char-
acters that are only conjectural for characters of fixed order. This provides evidence that large order
characters are easier to study than their fixed order counterparts, andmotivates the investigations
in the remainder of the paper.

2.1 Estimates for 𝒏𝝌

Let 𝛿 ∈ (0, 1). In this subsection we show that if 𝜒 is a primitive character modulo a prime 𝑞 with
order 𝑑 sufficiently large in terms of 𝛿 then one can find solutions to 𝜒(𝑛) ≠ 1with 𝑛 ⩽ 𝑞𝛿. When
𝛿 < 1∕4 this goes beyond what can be obtained using Burgess’ theorem. Such an observation has
previously been made† by Norton (see, for example, [23, Theorem 6.4; 24, Theorem 1.20]), but we
give an alternative, short proof.

Proposition 2.1. Let 𝛿 > 0 and let 𝑞 ⩾ 𝑞0(𝛿) be prime. If 𝜒 is a primitive character modulo 𝑞 of
order 𝑑 > 𝜌(1∕𝛿)−1 then there is 1 ⩽ 𝑛 ⩽ 𝑞𝛿 with 𝜒(𝑛) ≠ 1. In particular,

𝑛𝜒 ≪ 𝑞
log log(𝐶𝑑 log 𝑑)

log 𝑑

for some 𝐶 > 0 absolute.

To prove this we use the following simple combinatorial lemma.

Lemma 2.2. Let 𝛿 > 0 and let 𝑞 ⩾ 𝑞0(𝛿) be prime. Then there is a constant 𝑐 = 𝑐(𝛿) ∈ (0, 1) for
which the following holds.
If 0 ⩽ 𝑑1 ⩽ 𝑑2 ⩽ 𝑐𝑞 are such that

𝑛𝑑2 ≡ 𝑛𝑑1 (mod 𝑞) for all 1 ⩽ 𝑛 ⩽ 𝑞𝛿

then 𝑑1 = 𝑑2. In fact, we may take any 0 < 𝑐 < 𝜌(1∕𝛿).

† Strictly speaking, Norton states his results as 𝑛𝜒 ≪ 𝑞
1

4𝛼𝑤
+𝜀 for prime 𝑞 and 𝑑 ⩾ 𝑤, where 𝛼 = 𝛼𝑤 is the unique solution

to 𝜌(𝛼) = 1∕𝑤. Aside from the factor 1∕4 that arises from his use of Burgess’ theorem, it is easy to see that the parameter
choices in Proposition 2.1 correspond with his.
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LARGE SUMS OF HIGH ORDER CHARACTERS 11 of 44

Proof. Assume the contrary, so that 𝑑 ∶= 𝑑2 − 𝑑1 > 0. By assumption, we have 𝑡𝑑 ≡ 1 (mod 𝑞) for
all 1 ⩽ 𝑡 ⩽ 𝑞𝛿, and in particular for all primes 𝑝 ∈ [1, 𝑞𝛿] this congruence holds. But then since
(𝑡1𝑡2)

𝑑 ≡ 1 (mod 𝑞) whenever 𝑡𝑑
𝑗
≡ 1 (mod 𝑞) for 𝑗 = 1, 2, all 𝑞𝛿-friable† integers 1 ⩽ 𝑡 ⩽ 𝑞 − 1

also satisfy this congruence. But for large enough 𝑞 there are (𝜌(1∕𝛿) + 𝑜(1))𝑞 such integers up to
𝑞 [27, Theorem III.5.8]. Thus, if 0 < 𝑐 < 𝜌(1∕𝛿) and 𝑞 is large enough then we find that there are
> 𝑐𝑞 ⩾ 𝑑 solutions to the polynomial equation 𝑋𝑑 ≡ 1 (mod 𝑞), which is a contradiction since
𝑑 ≠ 0. □

Proof of Proposition 2.1. Write 𝜒 = 𝜒
𝓁(𝑞−1)∕𝑑
𝑞 , where 𝜒𝑞 generates the character group modulo 𝑞

and (𝓁, 𝑑) = 1. Setting 𝜒1 ∶= 𝜒
(𝑞−1)∕𝑑
𝑞 , note that 𝜒1 takes values in roots of unity of order 𝑑, and

so if we can show that 𝜒1(𝑛) ≠ 1 for some 𝑛 ⩽ 𝑞𝛿 then the same is true for 𝜒 = 𝜒𝓁
1
.

Note that 1 ⩽ 𝑞−1

𝑑
⩽ 𝑐𝑞 for some 0 < 𝑐 < 𝜌(1∕𝛿). Now assume for the sake of contradiction that

𝜒1(𝑛) = 1 for all 1 ⩽ 𝑛 ⩽ 𝑞𝛿. Since𝜒𝑞 is injective onℤ∕𝑞ℤ it follows that 𝑛
𝑞−1

𝑑 ≡ 1 (mod 𝑞) for all
1 ⩽ 𝑛 ⩽ 𝑞𝛿. By the previous lemma we deduce that (𝑞 − 1)∕𝑑 = 0, which is a contradiction. This
establishes the first claim. If 𝛿 is small enough then, using

𝜌(𝑢) ≫

(
𝑒

2𝑢 log 𝑢

)𝑢
(7)

with 𝑢 = 1∕𝛿 (see [9, Section 3.9]) we deduce that if

𝛿 log 𝑑 > log log 𝑑 + log log log 𝑑 + 𝑂(1)

then 𝑑 > 𝜌(1∕𝛿)−1 and we may apply the first claim. The choice 𝛿 ∶= log log(𝐶𝑑 log 𝑑)

log 𝑑
with 𝐶 > 0

absolute and sufficiently large, furnishes the second claim. □

2.2 Small 𝒏with 𝝌(𝒏) bounded away from 𝟏

We next set out to study to what extent the values 𝜒(𝑛) can vary for 𝑛 ⩽ 𝑥 and 𝑥 not much larger
than 𝑛𝜒 . It is possible that while 𝜒(𝑛) ≠ 1, 𝜒(𝑛) might still take values that are very close to 1 in
this range, that is, 𝜒(𝑛) = 𝑒(𝑗∕𝑑) where‡ ‖𝑗∕𝑑‖ is quite small. As a consequence, the partial sum
of 𝜒 up to 𝑥 would not witness significant cancellation, contrary to expectations in line with the
conjectured estimate (1).
By an elementary argument, however, we show that this is not necessarily the case when 𝑑 is

large. In the sequel, for 𝑧 ∈ 𝑆1 we write arg(𝑧) to denote the element of (−1∕2, 1∕2] for which
𝑧 = 𝑒(arg(𝑧)).

Proposition 2.3. Let 𝑞 be a large prime, let 𝑑 ⩾ 2 and let 𝜒 be a primitive character modulo 𝑞 of
order 𝑑. Let 𝛿 ∈ (0, 1∕2) with

1∕𝛿 = 𝑜

(
log log 𝑞

log log log 𝑞

)
†Given 𝑦 ⩾ 2 we say that a positive integer 𝑛 is 𝑦-friable if any prime factor 𝑝|𝑛must satisfy 𝑝 ⩽ 𝑦.
‡Given 𝑡 ∈ ℝ we write 𝑒(𝑡) ∶= 𝑒2𝜋𝑖𝑡 and ‖𝑡‖ ∶= min𝑛∈ℤ |𝑡 − 𝑛|.
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12 of 44 MANGEREL

as 𝑞 → ∞, and suppose that 𝑑 > 𝜌(1∕𝛿)−1. Then for any 𝑐 > 1,

∃𝑛 ⩽ 𝑞𝛿 with |arg(𝜒(𝑛))| ⩾ max
{
1

𝑑
, 𝜌(1∕𝛿)𝑐

}
.

Remark 7. For 𝑐 > 1 fixed set 𝑀 ∶= 𝜌(1∕𝛿)−𝑐. Note that if 𝜒(𝑛) ≠ 0, 1 then |arg(𝜒(𝑛))| ⩾ 1∕𝑑.
Thus, when 𝑀 > 𝑑 Proposition 2.3 gives no further information than Proposition 2.1 does. The
proposition is interesting, however, when 𝑑 is significantly large compared to𝑀.

The proof requires a few auxiliary results. The first is due to Friedlander [5, Theorems 1(B) and
6(B)].

Theorem (Friedlander). There is a continuous function 𝜎 defined on {(𝑢, 𝑣) ∈ (1,∞)2 ∶ 𝑣 > 𝑢}

such that the following holds. For any fixed 𝛼 > 1 there is 𝑢0 = 𝑢0(𝛼) > 2 such that if 𝑢 ⩾ 𝑢0 and 𝑋
is large enough then

|{𝑛 ⩽ 𝑋 ∶ 𝑃−(𝑛) > 𝑋1∕(𝛼𝑢), 𝑃+(𝑛) ⩽ 𝑋1∕𝑢}| = (𝜎(𝑢, 𝛼𝑢) + 𝑂

(
1

log(𝑋1∕(𝛼𝑢))

))
𝑋

log(𝑋1∕(𝛼𝑢))
.

Moreover, under these conditions there is a 𝑐0 = 𝑐0(𝛼) ⩾ 1 such that 𝜎 satisfies

𝜎(𝑢, 𝛼𝑢) ⩾ 𝜌(1∕𝑢)𝑐−𝑢0 . (8)

Corollary 2.4. Let 𝑞 and 𝛿 be as in the statement of Proposition 2.3. Then there is an absolute
constant 𝑐0 ⩾ 1 such that

|{𝑛 = 𝑚𝑘 < 𝑞 ∶ 𝑚 ⩽ 𝑞𝛿∕10 and 𝑝|𝑘 ⇒ 𝑞𝛿∕10 < 𝑝 ⩽ 𝑞𝛿}|≫ 𝜌(1∕𝛿)𝑐
−1∕𝛿
0

𝑞.

Proof. Call 𝛿 the set of 𝑛 = 𝑚𝑘 as above. Note that if 𝑛 ∈ 𝛿 then its representation 𝑛 = 𝑚𝑘 is
uniquely determined.Now, for each𝑚 ⩽ 𝑞𝛿∕10 define𝑢𝑚 to be the unique solution to (𝑞∕𝑚)1∕𝑢𝑚 =

𝑞𝛿; explicitly, 𝑢𝑚 = 𝛿−1(1 −
log𝑚

log 𝑞
). Taking 𝛼 = 10 in Friedlander’s theorem and using the lower

bound (8), we get

|𝛿| ⩾ ∑
𝑚⩽𝑞𝛿∕10

∑
𝑘<𝑞∕𝑚

𝑞𝛿∕10<𝑃−(𝑘)⩽𝑃+(𝑘)⩽𝑞𝛿

1 ≫
𝑞

𝛿 log 𝑞

∑
𝑚⩽𝑞𝛿∕10

𝜎(𝑢𝑚, 10𝑢𝑚)

𝑚
⩾

𝑞

𝛿 log 𝑞

∑
𝑚⩽𝑞𝛿∕10

𝜌(𝑢𝑚)𝑐
−𝑢𝑚
0

𝑚
,

for large enough 𝑞. Since 𝑐0 ⩾ 1, 𝜌 is a decreasing function, and 𝑢𝑚 ⩽ 1∕𝛿 uniformly over 𝑚 ⩽

𝑞𝛿∕10, we obtain

|𝛿|≫ 𝑞𝜌(1∕𝛿)𝑐
−1∕𝛿
0

𝛿 log 𝑞

∑
𝑚⩽𝑞𝛿∕10

1

𝑚
≫ 𝑞𝜌(1∕𝛿)𝑐

−1∕𝛿
0

,

as claimed. □
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LARGE SUMS OF HIGH ORDER CHARACTERS 13 of 44

Lemma 2.5. Let 𝐼 ⊆ [0, 1] be an open interval with length |𝐼|. If 𝜒 is a primitive character modulo
prime 𝑞 of order 𝑑 then for any 𝐾 ⩾ 1,

|{𝑛 < 𝑞 ∶ arg(𝜒(𝑛)) ∈ 𝐼}| = 𝑞

(|𝐼| + 𝑂

(
1

𝐾
+
log(1 + ⌊𝐾∕𝑑⌋)

𝑑

))
.

Proof. We apply the Erdős–Turán inequality [27, Theorem I.6.15]. Given 𝐾 ⩾ 1,

| |{𝑛 < 𝑞 ∶ arg(𝜒(𝑛)) ∈ 𝐼}| − 𝑞|𝐼| |≪ 𝑞

𝐾
+
∑

1⩽𝑘⩽𝐾

1

𝑘

||||||
∑
𝑛⩽𝑞

𝜒(𝑛)𝑘
||||||.

If 𝑑|𝑘 then 𝜒(𝑛)𝑘 is principal and the inner sum is 𝑞 − 1. Otherwise, if 𝑑 ∤ 𝑘 then 𝜒𝑘 is non-
principal and the sum is zero by orthogonality. This yields the upper bound

≪
𝑞

𝐾
+ 𝑞

∑
1⩽𝑘⩽𝐾

1𝑑|𝑘
𝑘

≪ 𝑞

(
1

𝐾
+
log(1 + ⌊𝐾∕𝑑⌋)

𝑑

)
,

and implies the claim. □

Proof of Proposition 2.3. Let 1 ⩽ 𝑀 ⩽ 𝑑 be a parameter to be chosen later. Assume for the sake
of contradiction that |arg(𝜒(𝑛))| ⩽ 1

𝑀
for all 𝑛 ⩽ 𝑞𝛿. It follows that whenever 𝑛 = 𝑚𝑘 < 𝑞, where

𝑚 ⩽ 𝑞𝛿∕10 and 𝑞𝛿∕10 < 𝑃−(𝑘) ⩽ 𝑃+(𝑘) ⩽ 𝑞𝛿,

|arg(𝜒(𝑚𝑘))| ⩽ |arg(𝜒(𝑚))| +∑
𝑝|𝑘 |arg(𝜒(𝑝))| ⩽ 1

𝑀
+
10

𝛿
max
𝑝|𝑘
𝑝⩽𝑞𝛿

|arg(𝜒(𝑞))| ⩽ 11

𝑀𝛿
.

Since𝑀 ⩽ 𝑑, applying Lemma 2.5 with 𝐾 = ⌊𝑀⌋ − 1 < 𝑑 gives

|𝛿| = |{𝑛 = 𝑚𝑘 < 𝑞 ∶ 𝑚 ⩽ 𝑞𝛿∕10, 𝑝|𝑘 ⇒ 𝑞𝛿∕10 < 𝑝 ⩽ 𝑞}| ⩽ |{𝑛 < 𝑞 ∶ |arg(𝜒(𝑛))| ⩽ 11

𝑀𝛿
}|≪ 𝑞

𝑀𝛿
.

On the other hand, Corollary 2.4 directly implies that

|𝛿|≫ 𝑞𝜌(1∕𝛿)𝑐
−1∕𝛿
0

.

If 𝛿 is sufficiently small and 𝐶 > 0 is a large enough absolute constant then we obtain a
contradiction with

𝑀 ∶= min{𝑑, 𝐶(𝛿𝜌(1∕𝛿))−1𝑐
1∕𝛿
0

}.

Thus, there must exist 𝑛 ⩽ 𝑞𝛿 with |arg(𝜒(𝑛))| > 1∕𝑀. Since for any 𝑐 > 1 and small enough
𝛿 the bound 𝜌(1∕𝛿)𝑐 ≪ 𝛿𝜌(1∕𝛿)𝑐

−1∕𝛿
0

holds, we get 1∕𝑀 ≫ max{1∕𝑑, 𝜌(1∕𝛿)𝑐} and the claim
follows. □
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14 of 44 MANGEREL

3 BACKGROUND AND PROOF STRATEGY

3.1 A pretentious primer

The arguments used toward the proof of ourmain theorems are grounded innotions of pretentious
number theory, as developed by Granville and Soundararajan. Here, we give a brief overview of
those ideas from that subject that will be relevant in this paper.
Let 𝕌 ∶= {𝑧 ∈ ℂ ∶ |𝑧| ⩽ 1}. Given arithmetic functions 𝑓, g ∶ ℕ → 𝕌 and 𝑥 ⩾ 2 we define the

pretentious distance between 𝑓 and g (at scale 𝑥) as

𝔻(𝑓, g ; 𝑥) ∶=

(∑
𝑝⩽𝑥

1 − Re(𝑓(𝑝)g(𝑝))
𝑝

)1∕2
.

Note that 𝔻(𝑓, g ; 𝑥) = 𝔻(𝑓g , 1; 𝑥), and by Mertens’ theorem, 0 ⩽ 𝔻(𝑓, g ; 𝑥)2 ⩽ 2 log log 𝑥. This
distance function also satisfies a triangle inequality: given 𝑓, g , ℎ ∶ ℕ → 𝕌 we have

𝔻(𝑓, ℎ; 𝑥) ⩽ 𝔻(𝑓, g ; 𝑥) + 𝔻(g , ℎ; 𝑥), (9)

which implies the useful inequality (see [13, Lemma 3.1])

𝔻(𝑓1𝑓2, g1g2; 𝑥) = 𝔻(𝑓1g1, 𝑓2g2; 𝑥) ⩽ 𝔻(𝑓1g1, 1; 𝑥) + 𝔻(𝑓2g2, 1; 𝑥) = 𝔻(𝑓1, g1; 𝑥) + 𝔻(𝑓2, g2; 𝑥).

(10)

If 𝑓 and g are multiplicative functions for which 𝔻(𝑓, g ; 𝑥)2 = 𝑜(log log 𝑥) then 𝑓(𝑝) ≈ g(𝑝) for
most 𝑝 (in a suitable average sense), and we think of 𝑓 and g as approximating one another. In
the particular case that 𝔻(𝑓, g ; 𝑥) is bounded as a function of 𝑥 we say that 𝑓 is g-pretentious (or,
symmetrically, that g is 𝑓-pretentious).
The pretentious distance can be used to express upper bounds for Césaro averages of bounded

multiplicative functions. TheHalász–Montgomery–Tenenbaum inequality [27, Corollary III.4.12],
a quantitative refinement of fundamental work of Halász, states that for a multiplicative function
𝑓 ∶ ℕ → 𝕌 and parameters 𝑥 ⩾ 3 and 𝑇 ⩾ 1,

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓(𝑛)
|||||≪ (𝑀 + 1)𝑒−𝑀 +

1

𝑇
+
log log 𝑥

log 𝑥
, (11)

where 𝑀 ∶= min|𝑡|⩽𝑇 𝔻(𝑓, 𝑛𝑖𝑡; 𝑥)2. Thus, if 𝑓 is not 𝑛𝑖𝑡-pretentious for all |𝑡| ⩽ 𝑇, and 𝑇 is large
enough, then the partial sums of 𝑓 are small. This result will be used several times in the sequel.

3.2 Deductions of corollary 1.3 and theorem 1

We show in this section that our main results on level sets, Theorem 1 and Corollary 1.3, are
consequences of our general Theorems 1.1 and 1.2.
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LARGE SUMS OF HIGH ORDER CHARACTERS 15 of 44

Given a multiplicative function 𝑓 ∶ ℕ → 𝑆1 ∪ {0} and 𝛼 ∈ 𝑆1 define the level set

𝛼(𝑥; 𝑓) ∶= {𝑛 ⩽ 𝑥 ∶ 𝑓(𝑛) = 𝛼}, 𝑥 ⩾ 1.

Corollary 3.1. Assume the hypotheses and notation of Theorem 1.2. Let {𝛼𝑗}1⩽𝑗⩽𝑑 be an ordering of
𝜇𝑑 so that

|𝐴𝛼1
(𝑥; 𝑓)| = max

𝛼∈𝜇𝑑
|𝛼(𝑥; 𝑓)|,

|𝛼𝑗
(𝑥; 𝑓)| = max

𝛼∈𝜇𝑑
𝛼∉{𝛼1,…,𝛼𝑗−1}

|𝛼(𝑥; 𝑓)|, 𝑗 ⩾ 2.

Then for any 𝐽 ⩾ 1,

|𝛼𝐽
(𝑥; 𝑓)|≪ 𝑥√

𝐽

log Σ

Σ1∕15
.

In particular,

max
𝛼∈𝜇𝑑
|{𝑛 ⩽ 𝑥 ∶ 𝑓(𝑛) = 𝛼}|≪ 𝑥

log Σ

Σ1∕15
.

Proof of Corollary 3.1 assuming Theorem 1.2. The second claim follows from the first with 𝐽 = 1 so
it suffices to prove the first.
By orthogonality modulo 𝑑,

1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

=
∑

𝑛,𝑚⩽𝑥

1

𝑑

∑
0⩽𝓁⩽𝑑−1

(𝑓(𝑛)𝑓(𝑚))𝓁 = |{𝑛,𝑚 ⩽ 𝑥 ∶ 𝑓(𝑛) = 𝑓(𝑚) ≠ 0}|.
Next, we note that by positivity,

|𝛼𝐽
(𝑥; 𝑓)|2 ⩽ 1

𝐽

∑
1⩽𝑗⩽𝐽

|𝛼𝑗
(𝑥; 𝑓)|2 = 1

𝐽

∑
𝑛,𝑚⩽𝑥

𝑓(𝑛)=𝑓(𝑚)
𝑓(𝑛)∈{𝛼1,…,𝛼𝐽}

1

⩽
1

𝐽
|{𝑛,𝑚 ⩽ 𝑥 ∶ 𝑓(𝑛) = 𝑓(𝑚) ≠ 0}|.

Combining this with the previous equation and applying Theorem 1.2, we obtain

|𝛼𝐽
(𝑥; 𝑓)|≪ 1√

𝐽

(
1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2
)1∕2

≪
𝑥√
𝐽

log Σ

Σ1∕15
,

as claimed. □
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16 of 44 MANGEREL

Proof of Corollary 1.3 assuming Theorems 1.1 and 1.2. Wemay assume that 𝜂 ∈ (0, 1) is smaller than
any fixed constant, since otherwise the claim is trivial. Set now 𝑧 ∶= log(1∕𝜂) and factor 𝑑 = 𝔡𝔇,
where

𝔡 ∶=
∏
𝑝𝑘||𝑑
𝑝⩽𝑧

𝑝𝑘, 𝔇 ∶=
∏
𝑝𝑘||𝑑
𝑝>𝑧

𝑝𝑘.

Define 𝜓 ∶= 𝜒𝔡. Then 𝜓 has order 𝔇, which satisfies 𝑃−(𝔇) > 𝑧. Since 𝑑 is squarefree, by the
prime number theorem we have 𝔡 ⩽ 𝑒(1+𝑜(1))𝑧 ⩽ 𝜂−2, and so by assumption,

𝔇 = 𝑑∕𝔡 ⩾ 𝐶4𝜂
2𝜌

(
𝐶5
𝜂𝛿

)
.

Increasing 𝐶4, 𝐶5 if needed, we have𝔇 ⩾ 𝐶1𝜌(
𝐶2
𝜂𝛿′

), where 𝐶1, 𝐶2 are as in Theorem 1.1, and 𝛿′ ∶=
2𝛿∕3.
Now let 𝑥 > 𝑞𝛿. Since 𝜓 ∈ 1(𝑞

𝜃; 𝑑) for 𝜃 > 3∕2 and prime 𝑞, taking any 0 < 𝑐4 < 𝑐3 and
applying Theorem 1.1 gives

Σ = min
{
𝑃−(𝔇), 2 +

∑
𝑝⩽𝑥

𝜓(𝑝)≠0,1
𝑝−1
}
⩾ log(1∕𝜂).

By Corollary 3.1, if 𝜂 is sufficiently small then

max
𝛼𝔇=1

|𝛼(𝑥; 𝜓)|≪ 𝑥
log Σ

Σ1∕15
≪

𝑥

(log(1∕𝜂))1∕16
.

Since 𝜓(𝑛) = 𝑒(𝑗∕𝔇) whenever 𝜒(𝑛) = 𝑒(𝑗∕𝑑), we deduce that

max
𝛽𝑑=1
|𝛽(𝑥; 𝜒)| ⩽ max

𝛼𝔇=1

∑
𝛽𝑑=1∶

𝛽𝔡=𝛼

|𝛽(𝑥; 𝜒)| = max
𝛼𝔇=1

|𝛼(𝑥; 𝜓)|≪ 𝑥

(log(1∕𝜂))1∕16
,

as claimed. □

Proof of Theorem 1 assuming Theorems 1.1 and 1.2. Set 𝜂 = 𝛿 and take 0 < 𝑐1 ⩽ 𝑐4∕2 small, so that
𝜂𝛿 ⩾ (log 𝑞)−𝑐4 whenever 𝛿 ⩾ (log 𝑞)−𝑐1 . Using (7) and the hypothesis

1

𝛿2
≪ 𝑐21

log 𝑑

log log(𝑒𝑑)
,

choosing 𝑐1 smaller if needed we also have the required lower bound

𝑑 ⩾ 𝐶4𝜌(
𝐶5
𝜂𝛿
)−1,
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LARGE SUMS OF HIGH ORDER CHARACTERS 17 of 44

with 𝐶4, 𝐶5 as in the statement of Corollary 1.3. Moreover, since 𝑞 > 𝑑,

log(1∕𝜂) =
1

2
min
{
𝑐1 log log 𝑞, log log 𝑑 − log log log(𝑒𝑑) + 𝑂(1)

}
≫ log log 𝑑.

Thus, when 𝑥 > 𝑞𝛿 Theorem 1 follows from Corollary 1.3. □

3.3 Strategy of proof of theorem 1.2

Let 𝑑 ⩾ 2, 𝑥0 ⩾ 3 and 𝑓 ∈ (𝑥0; 𝑑). Let also 1 ⩽ 𝑥 ⩽ 𝑥0. In Section 4 we will prove Theorem 1.2.
Since its proof is somewhat involved, we will explain here our strategy toward its proof.

3.3.1 Initial setup

To prove Theorem 1.2 we will show that for a judicious choice of 𝜀 = 𝜀(𝑑) > 0,

1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

≪ 𝜀2𝑥2. (12)

We will eventually show that we may take 𝜀 ≪ (log Σ)∕Σ1∕15, from which the theorem follows.
In this direction, define

𝑑(𝜀) ∶=
{
1 ⩽ 𝓁 ⩽ 𝑑 − 1 ∶

1

𝑥
|||∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
||| ⩾ 𝜀
}
.

Since |𝑓| ⩽ 1 it is immediately clear that

1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

⩽
1

𝑑

∑
1⩽𝓁⩽𝑑−1
𝓁∉𝑑(𝜀)

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

+
1

𝑑

∑
1⩽𝓁⩽𝑑−1
𝓁∉𝑑(𝜀)

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

+
𝑥2

𝑑
⩽ (𝜀2 + 1∕𝑑)𝑥2 + 𝑥2

|𝑑(𝜀)|
𝑑

.

Wemay suppose that 𝑑 > 𝜀−2. Thus, if |𝑑(𝜀)| ⩽ 𝜀2𝑑 then (12) is verified, and so our task is reduced
to understanding the case |𝑑(𝜀)| > 𝜀2𝑑.
It turns out that this lower bound on |𝑑(𝜀)| puts rigid constraints on 𝑓. Consequently, we

show that for almost all 𝓁 ∈ 𝑑(𝜀) we still obtain some cancellation in the partial sums of 𝑓𝓁 ,
more precisely

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
||||| = 𝑜𝜀→0(𝑥) for all but 𝑜𝜀→0(𝑑) values 𝓁 ∈ 𝑑(𝜀).
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18 of 44 MANGEREL

For this to be the case, according to (11) it would be sufficient to show that the minimal distances

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) = min|𝑡|=𝑂(𝜀−2) 𝔻(𝑓𝓁 , 𝑛𝑖𝑡; 𝑥) (13)

grow as a function of 1∕𝜀 for all but 𝑜𝜀→0(𝑑) powers𝓁.We endeavour to verify this type of condition
in the sequel.

3.3.2 Proving the theorem assuming 𝑡𝓁 ≡ 0

Our task turns out to be significantly simplified if we can show, roughly speaking, that 𝑡𝓁 may be
replaced by 0, or more precisely

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) = 𝔻(𝑓𝓁 , 1; 𝑥) + 𝑂(1) for all 0 ⩽ 𝓁 ⩽ 𝑑 − 1. (14)

Let us assume this is the case for themoment. Thenwemay bound the partial sums of 𝑓𝓁 in terms
of the level sets

𝜎𝑗 = 𝜎𝑗(𝑥) ∶=
∑
𝑝⩽𝑥

𝑓(𝑝)=𝑒(𝑗∕𝑑)

1

𝑝
, 1 ⩽ 𝑗 ⩽ 𝑑 − 1,

by decomposing

𝔻(𝑓𝓁 , 1; 𝑥)2 =
∑

0⩽𝑗⩽𝑑−1

∑
𝑝⩽𝑥

𝑓(𝑝)=𝑒(𝑗∕𝑑)

1 − cos(2𝜋𝑗𝓁∕𝑑)
𝑝

=
∑

1⩽𝑗⩽𝑑−1

(1 − cos(2𝜋𝑗𝓁∕𝑑))𝜎𝑗. (15)

Note that while we know nothing about the sizes of the individual 𝜎𝑗 , we do know that their sum
satisfies

𝑆𝑓(𝑥) ∶=
∑

1⩽𝑗⩽𝑑−1

𝜎𝑗 =
∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1

1

𝑝
⩾ Σ.

Weheuristically expect that the (non-zero) prime values 𝑓(𝑝)with 𝑝 ⩽ 𝑥 are uniformly distributed
in 𝜇𝑑, so that each 𝜎𝑗 should be of roughly the same size 𝜎𝑗 ≈ 𝑆𝑓(𝑥)∕𝑑. In particular, 𝜎𝑗 should
be small relative to 𝑆𝑓(𝑥) as 𝑑 → ∞ for every 𝑗. However, we do not know that this is the case in
practice. As is reflected in the bound in Theorem 1.2, we instead seek lower bounds for𝔻(𝑓𝓁 , 1; 𝑥)2

in terms of 𝑆𝑓(𝑥), at least formost 0 ⩽ 𝓁 ⩽ 𝑑 − 1.
Using a simple Fourier analytic argument we are able to show (Lemma 4.4) that if the prime

factors of 𝑑 are all large in terms of 𝜀, and each 𝜎𝑗 satisfies 𝜎𝑗 < 𝜀𝑆𝑓(𝑥) then for most 1 ⩽ 𝓁 ⩽

𝑑 − 1,

∑
1⩽𝑗⩽𝑑−1

‖𝓁𝑗∕𝑑‖2𝜎𝑗 = (∫ 1

0
‖𝑡‖2𝑑𝑡 + 𝑜𝜀→0(1)

)
𝑆𝑓(𝑥) = (1∕12 + 𝑜𝜀→0(1))𝑆𝑓(𝑥).
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LARGE SUMS OF HIGH ORDER CHARACTERS 19 of 44

Thus using 1 − cos(2𝜋𝑥) ⩾ 8‖𝑥‖2 in (15), for most 𝓁 we obtain
𝔻(𝑓𝓁 , 1; 𝑥)2 ⩾ (2∕3 + 𝑜𝜀→0(1))𝑆𝑓(𝑥).

As 𝑆𝑓(𝑥) ⩾ Σ, (11) then yields an estimate of the shape

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ 𝜀2 + Σ𝑒−𝑐Σ,

for some 𝑐 > 0. This bound is more than sufficient.
The possibility remains that some 𝜎𝑗0 is large in the sense that 𝜎𝑗0 ⩾ 𝜀𝑆𝑓(𝑥). We show in this

case (see Proposition 4.5) that if |𝑑(𝜀)| > 𝜀2𝑑 and 𝓁 ∈ 𝑑(𝜀) then as long as 𝓁𝑗0∕𝑑 (mod 1) is
≫𝜀 1, thus bounded away from zero, we still obtain

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
||||| = 𝑜𝜀→0(1). (16)

To prove this we use the Turán–Kubilius inequality [27, Theorem III.3.1] and the complete
multiplicativity of 𝑓 to obtain a decomposition

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛) ≈
1

𝜎𝑗0𝑥

∑
𝑚𝑝⩽𝑥

𝑓(𝑝)=𝑒(𝑗0∕𝑑)

𝑓𝓁(𝑝𝑚) =
𝑒(𝓁𝑗0∕𝑑)

𝜎𝑗0

∑
𝑝⩽𝑥

𝑓(𝑝)=𝑒(𝑗0∕𝑑)

1

𝑝
⋅
𝑝

𝑥

∑
𝑚⩽𝑥∕𝑝

𝑓𝓁(𝑚).

Since the normalized partial sums 𝑦 ↦ 𝑦−1
∑

𝑛⩽𝑦 g(𝑛) of a multiplicative function g are known to
be slowly-varying† with 𝑦, we show roughly speaking that

𝑝

𝑥

∑
𝑚⩽𝑥∕𝑝

𝑓𝓁(𝑚) ≈
1

𝑥

∑
𝑚⩽𝑥

𝑓𝓁(𝑚)

uniformly in the range 𝑝 ⩽ 𝑥𝑜(1). Combined with the decomposition above, this leads to an
estimate of the shape

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛) ≈ 𝑒(𝓁𝑗0∕𝑑)
1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛).

It is not hard to show (for example, using the Erdős–Turán inequality) that |𝑒(𝓁𝑗0∕𝑑) − 1|≫𝜀 1

for all but 𝑜𝜀→0(𝑑) values 1 ⩽ 𝓁 ⩽ 𝑑 − 1, which then forces (16) to hold, as required.

3.3.3 Reducing to the case 𝑡𝓁 ≡ 0

It remains to show that (14) holds, and so effectively 𝑡𝓁 = 0 for all 𝓁. What we actually prove (see
Proposition 4.1) is that |𝑡𝓁|≪𝜀

1

log 𝑥
uniformly in 𝓁.

† This is an oversimplification; in order to apply the appropriate Lipschitz estimates we must first twist 𝑓𝓁 by a suitable
character 𝑛𝑖𝑦𝓁 ; luckily, we may show that |𝑦𝓁|, like |𝑡𝓁|, is small and therefore negligible in the arguments.
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20 of 44 MANGEREL

To motivate this, suppose for convenience that 1 ∈ 𝑑(𝜀). Then 𝑓 is 𝑛𝑖𝑡1 -pretentious for some|𝑡1|≪ 𝜀−2. Now assume instead that |𝑡1|were bounded away from 0. Then 𝑓(𝑝) ≈ 𝑝𝑖𝑡1 for typical
primes 𝑝, and (at least for 𝓁 not too large, see Remark 8), 𝑓𝓁 should be 𝑛𝑖𝓁𝑡1 pretentious and
𝑡𝓁 ≈ 𝓁𝑡1. Now if 𝓁 ∈ 𝑑(𝜀) then 𝑓𝓁 must have large partial sums as well. On the other hand, it can
be shown (see (23)) that

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ 𝑥

1 + |𝑡𝓁| ≪ 𝑥

1 + 𝓁|𝑡1| .
Thus, 𝓁|𝑡1| cannot be large. However, |𝑑(𝜀)| contains many large values of 𝓁, thus |𝑡1| itself must
be quite small.
Unfortunately this argument is too simplistic, as when 𝓁 is large the powers (𝑓(𝑝)𝑝−𝑖𝑡1 )𝓁 may

be significantly different from 1 even if the values 𝑓(𝑝)𝑝−𝑖𝑡1 typically are not. To make it rigorous
we appeal to the theory of sumset arithmetic in additive combinatorics. Using an inverse sumset
result due to Freiman [4], we show that if 𝑑 has no small prime factors then every 0 ⩽ 𝓁 ⩽ 𝑑 − 1

has an efficient representation

𝓁 ≡ 𝓁1 +⋯ + 𝓁𝑚,

where 𝓁𝑗 ∈ 𝑑(𝜀) for each 1 ⩽ 𝑗 ⩽ 𝑚 and 𝑚 = 𝑂𝜀(1) (see Corollary 4.3). Under these conditions,
we leverage properties of the pretentious distance to show that

𝑡𝓁 = 𝑡𝓁1 +⋯ + 𝑡𝓁𝑚 + 𝑂𝜀

(
1

log 𝑥

)
,

and as a result, that the map 𝜙 ∶ ℤ∕𝑑ℤ → ℝ given by 𝜙(𝓁) ∶= 𝑡𝓁 satisfies the approximate
homomorphism condition

|𝑡𝓁1+𝓁2 − 𝑡𝓁1 − 𝑡𝓁2 |≪𝜀
1

log 𝑥
.

By applying a result due to Ruzsa on approximate homomorphisms [26], we find that there is a
genuine homomorphism 𝜓 ∶ ℤ∕𝑑ℤ → ℝ such that

max
𝓁∈ℤ∕𝑑ℤ

|𝑡𝓁 − 𝜓(𝓁)|≪𝜀
1

log 𝑥
.

Since ℤ∕𝑑ℤ is a finite group and ℝ is torsion-free, 𝜓 must be identically zero, which leads to
max𝓁∈ℤ∕𝑑ℤ |𝑡𝓁|≪𝜀 1∕ log 𝑥, as claimed.

4 PROOF OF THEOREM 1.2

Following the outline provided in Section 3.3, we prove Theorem 1.2 in this section.
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LARGE SUMS OF HIGH ORDER CHARACTERS 21 of 44

4.1 The structure of the minimizers 𝒕𝓵

In this subsection we show the following proposition, which bounds the minimizers 𝑡𝓁 uniformly
over 𝓁 under the assumptions that |𝑑(𝜀)| is large and 𝑑 has no small prime factors.
Proposition 4.1. Let 𝑑 be a positive integer and let 𝑐 > 0 be chosen such that 𝑃−(𝑑) > 1∕𝑐. Set
𝑚 ∶= ⌈2∕𝑐2⌉ and for each 1 ⩽ 𝓁 ⩽ 𝑑 − 1 choose 𝑡𝓁 = 𝑡𝓁(𝜀) ∈ [−2𝑚∕𝜀2, 2𝑚∕𝜀2] such that

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) = min|𝑡|⩽(2𝑚)∕𝜀2 𝔻(𝑓𝓁 , 𝑛𝑖𝑡; 𝑥).

If 𝜀 is sufficiently small, |𝑑(𝜀)| ⩾ 𝑐𝑑 and𝑚2 log(1∕𝜀) < 1

32
log log 𝑥 then

max
1⩽𝓁⩽𝑑−1

|𝑡𝓁| ⩽ 3𝜀−32𝑚
2

log 𝑥
.

Remark 8. If 𝑑 grows sufficiently slowly then a simpler argument would suffice. By the minimal
property of 𝑡𝓁 and repeated applications of (10),

𝔻(1, 𝑛𝑖(𝑡𝓁−𝓁𝑡1); 𝑥) ⩽ 𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) + 𝔻(𝑓𝓁 , 𝑛𝑖𝓁𝑡1 ; 𝑥) ⩽ 2𝔻(𝑓𝓁 , 𝑛𝑖𝓁𝑡1 ; 𝑥) ⩽ 2𝓁𝔻(𝑓, 𝑛𝑖𝑡1 ; 𝑥).

If 𝑑 = 𝑜(
√
log log 𝑥) and 1 ∈ 𝑑(𝜀) then (using (11)) the right-hand side is 𝑜(√log log 𝑥). It can

then be shown that

𝑡𝓁 = 𝓁𝑡1 + 𝑂𝜀(1∕ log 𝑥) for all 1 ⩽ 𝓁 ⩽ 𝑑 + 1.

Since 𝑡1 = 𝑡𝑑+1, we deduce that |𝑡1| = 𝑂𝜀(1∕ log 𝑥) as a result.
The novelty of Proposition 4.1 is that the same conclusion still holds, evenwhen 𝑑 is fairly large,

provided many of the powers 𝑓𝓁 have large partial sums.

To prove Proposition 4.1 we will need the following inverse sumset result, which follows from
classical work of Freiman [4] in additive combinatorics (see [28] for an accessible proof).

Lemma 4.2. Let 𝑐 > 0. Let 𝐺 be a finite Abelian group and let 𝐴 ⊂ 𝐺 be a symmetric subset† that
satisfies |𝐴| ⩾ 𝑐|𝐺|. If𝐴 is not contained in a coset of a proper subgroup of𝐺 then‡2𝑘𝐴 = 𝐺 for some
1 ⩽ 𝑘 ⩽ ⌈ log(1∕𝑐)

log(3∕2)
⌉.

Proof. Call 𝐾 ∶= 1 + ⌈ log(1∕𝑐)
log(3∕2)

⌉. Since 𝐴 is symmetric, we have 𝐴 = −𝐴. Now, by Freiman’s theo-
rem, we see that if 𝐵 ⊂ 𝐺 is symmetric and 𝐵 is not contained in a coset of a proper subgroup of
𝐺 then either 𝐵 + 𝐵 = 𝐺 or else |𝐵 + 𝐵| ⩾ 3

2
|𝐵|. Applying this iteratively, we find that if 𝑗 ⩾ 1 and

†We say that a subset 𝑆 of a finite Abelian group is symmetricwhenever 𝑠 ∈ 𝑆 if, and only if, −𝑠 ∈ 𝑆. Equivalently, −𝑆 ∶=
{−𝑠 ∶ 𝑠 ∈ 𝑆} = 𝑆.
‡Given a finite Abelian group 𝐺, sets 𝐴, 𝐵 ⊆ 𝐺 and an integer 𝑟 ⩾ 2 we define the sumset 𝐴 + 𝐵 as

𝐴 + 𝐵 ∶= {𝑎 + 𝑏 ∶ (𝑎, 𝑏) ∈ 𝐴 × 𝐵},

and inductively define 𝑟𝐴 ∶= 𝐴 + (𝑟 − 1)𝐴.
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22 of 44 MANGEREL

we assume that none of the sets 𝐴, 2𝐴,… , 2𝑗−1𝐴 is contained in a coset of a proper subgroup of 𝐺
then either 2𝑗𝐴 = 𝐺, or else

|𝐺| ⩾ |2𝑗𝐴| ⩾ 3

2
|2𝑗−1𝐴| ⩾ ⋯ ⩾

(
3

2

)𝑗|𝐴| ⩾ (3
2

)𝑗
𝑐|𝐺|.

If 𝑗 ⩾ 𝐾 this is impossible, and so we deduce that 2𝑗𝐴 = 𝐺 for some 1 ⩽ 𝑗 ⩽ 𝐾 − 1, as long as we
can verify that 2𝑗𝐴 is not contained in a coset of a proper subgroup of 𝐺 for any 1 ⩽ 𝑗 ⩽ 𝐾 − 1.
But observe that if 𝐵 + 𝐵 ⊆ 𝑏 + 𝐻 for some𝐻 < 𝐺 and 𝑏 ∈ 𝐺 then for any 𝑏′ ∈ 𝐵 we have 𝐵 ⊆

(𝑏 − 𝑏′) + 𝐻. It follows by induction that if 2𝑗𝐴 were contained in a coset of a proper subgroup
of 𝐺 for some 𝑗 ⩾ 1 then the same is true of 2𝑖𝐴 for any 0 ⩽ 𝑖 ⩽ 𝑗. Since, by hypothesis, 𝐴 is not
contained in a coset of a proper subgroup of 𝐺 wemay conclude that none of the iterated sets 2𝑗𝐴
are, and the conclusion follows. □

Corollary 4.3. Let 𝑐 > 0 and let 𝑑 ⩾ 1 be an integer such that 𝑃−(𝑑) > 1∕𝑐. If 𝐴 ⊆ ℤ∕𝑑ℤ is
symmetric with |𝐴| ⩾ 𝑐𝑑 then 2𝑗𝐴 = ℤ∕𝑑ℤ for some 1 ⩽ 𝑗 ⩽ ⌈ log(1∕𝑐)

log(3∕2)
⌉.

Proof. If 𝐴 = ℤ∕𝑑ℤ then the result is trivial, so we may assume instead that 𝐴 is a proper subset
of ℤ∕𝑑ℤ. By Lemma 4.2, it suffices to verify that any symmetric subset 𝐴 in ℤ∕𝑑ℤ cannot be a
subset of a coset of a proper subgroup of ℤ∕𝑑ℤ. But if this were the case then𝐴 ⊂ 𝑏 + 𝐻 for some
𝐻 < 𝐺 and 𝑏 ∈ 𝐺, in which case

𝑐𝑑 ⩽ |𝐴| ⩽ |𝑏 + 𝐻| = |𝐻|,
whereas if 𝐻 ≠ 𝐺 then |𝐻| = 𝑑′ for some 𝑑′|𝑑, 𝑑′ < 𝑑. It follows that 𝑑′ ⩽ 𝑑∕𝑃−(𝑑) < 𝑐𝑑, which
is a contradiction. The claim follows. □

Proof of Proposition 4.1. Write 𝑑 = 𝑑(𝜀). By (11), for each 𝓁 ∈ 𝑑 we have

𝜀𝑥 ⩽
|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ 𝑥

(
𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥)2𝑒−𝔻(𝑓

𝓁 ,𝑛𝑖𝑡𝓁 ;𝑥)2 + 𝜀2 +
1

log 𝑥

)
,

where here 𝑡𝓁 ∈ [−1∕𝜀2, 1∕𝜀2] is chosen to minimizemin|𝑡|⩽1∕𝜀2 𝔻(𝑓𝓁 , 𝑛𝑖𝑡; 𝑥) (note that 𝑡𝓁 ≠ 𝑡𝓁 in
general). If 𝜀 is small enough (and thus 𝑥 is large enough), then upon rearranging we deduce that

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥)2 ⩽ 2 log(1∕𝜀) for all 𝓁 ∈ 𝑑. (17)

Now, since 𝑃−(𝑑) > 1∕𝑐 and |𝑑| ⩾ 𝑐𝑑, by Corollary 4.3 we know that ℤ∕𝑑ℤ = 𝐽𝑑 for some 𝐽 ⩽
2
⌈ log(1∕𝑐)
log(3∕2)

⌉
⩽ 2𝑐−2 ⩽ 𝑚. Thus, for any 1 ⩽ 𝓁 ⩽ 𝑑 − 1 we have a representation

𝓁 ≡ 𝑟1 +⋯ + 𝑟𝜆 (mod 𝑑),
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LARGE SUMS OF HIGH ORDER CHARACTERS 23 of 44

where 𝑟𝑗 ∈ 𝑑 and 1 ⩽ 𝜆 ⩽ 𝑚. But by (17), (10) and induction,

𝔻(𝑓𝑟1+⋯+𝑟𝜆 , 𝑛
𝑖(𝑡𝑟1+⋯+𝑡𝑟𝜆

)
; 𝑥) ⩽

∑
1⩽𝑗⩽𝜆

𝔻(𝑓𝑟𝑗 , 𝑛
𝑖𝑡𝑟𝑗 ; 𝑥) ⩽ 𝑚

√
2 log(1∕𝜀).

Since |∑1⩽𝑗⩽𝜆 𝑡𝑟𝑗 | ⩽ 2𝑚∕𝜀2, by the minimality property for 𝑡𝓁 ∈ [−2𝑚∕𝜀2, 2𝑚∕𝜀2] (9) yields

𝔻(𝑛𝑖𝑡𝓁 , 𝑛
𝑖(𝑡𝑟1+⋯+𝑡𝑟𝜆

)
; 𝑥) ⩽ 𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) + 𝔻(𝑓𝑟1+⋯+𝑟𝜆 , 𝑛

𝑖(𝑡𝑟1+⋯+𝑡𝑟𝜆
)
; 𝑥) ⩽ 2𝑚

√
2 log(1∕𝜀).

By the Vinogradov–Korobov zero-free region for the Riemann zeta function, it follows that if |𝑡| ⩾
100 then for large 𝑥,

𝔻(1, 𝑛𝑖𝑡; 𝑥)2 =
∑
𝑝⩽𝑥

1 − Re(𝑝𝑖𝑡)
𝑝

= log log 𝑥 − log |𝜁(1 + 1∕ log 𝑥 + 𝑖𝑡)| + 𝑂(1) ⩾
1

4
log log 𝑥, (18)

so with 𝑢𝓁 ∶= 𝑡𝓁 − 𝑡𝑟1 −⋯ − 𝑡𝑟𝜆 this would give the contradiction

1

4
log log 𝑥 ⩽ 𝔻(1, 𝑛𝑖𝑢𝓁 ; 𝑥)2 ⩽ (2𝑚

√
2 log(1∕𝜀))2 = 8𝑚2 log(1∕𝜀),

if |𝑢𝓁| ⩾ 100. Thus, we may assume that |𝑢𝓁| ⩽ 100. Taking squares and instead using

𝔻(1, 𝑛𝑖𝑡; 𝑥)2 = log(1 + |𝑡| log 𝑥) + 𝑂(1) (19)

whenever |𝑡| ⩽ 100, say, we thus deduce that

|||𝑡𝓁 − ∑
1⩽𝑗⩽𝜆

𝑡𝑟𝑗
||| ⩽ 𝜀−8𝑚

2

log 𝑥
.

Now let 1 ⩽ 𝓁1,𝓁2 ⩽ 𝑑 − 1. Choose any additive representations

𝓁1 ≡ 𝑟1 +⋯ + 𝑟𝜆1 (mod 𝑑), 𝓁2 ≡ 𝑠1 +⋯ + 𝑠𝜆2 (mod 𝑑),

with 𝜆1, 𝜆2 ⩽ 𝑚, then by the same argument applied with 𝓁 ∈ {𝓁1,𝓁2,𝓁1 + 𝓁2} we obtain,
uniformly over 𝓁1,𝓁2 ∈ ℤ∕𝑑ℤ,

|𝑡𝓁1+𝓁2 − 𝑡𝓁1 − 𝑡𝓁2 |
⩽ |𝑡𝓁1+𝓁2 − (𝑡𝑟1 +⋯ + 𝑡𝑟𝜆1

+ 𝑡𝑠1 +⋯ + 𝑡𝑠𝜆2
)| + |𝑡𝓁1 − (𝑡𝑟1 +⋯ + 𝑡𝑟𝜆1

)| + |𝑡𝓁2 − (𝑡𝑠1 +⋯ + 𝑡𝑠𝜆2
)|

⩽
𝜀−8(2𝑚)

2

log 𝑥
+ 2

𝜀−8𝑚
2

log 𝑥
⩽ 3

𝜀−32𝑚
2

log 𝑥
.
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24 of 44 MANGEREL

Since wemay always select 𝑡0 ∶= 0, and as 𝑓𝓁+𝑘𝑑 = 𝑓𝓁 we can choose 𝑡𝓁+𝑘𝑑 = 𝑡𝓁 for all 𝑘 ∈ ℤ, the
map 𝜙 ∶ ℤ∕𝑑ℤ → ℝ given by 𝜙(𝑚) ∶= 𝑡𝑚 satisfies the approximate homomorphism condition

|𝜙(𝓁1 + 𝓁2) − 𝜙(𝓁1) − 𝜙(𝓁2)| ⩽ 3
𝜀−32𝑚

2

log 𝑥
, 𝓁1,𝓁2 ∈ ℤ∕𝑑ℤ.

By a generalization due to Ruzsa of a result of Hyers [26, Statement (7.3)], there is a genuine
homomorphism 𝜓 ∶ ℤ∕𝑑ℤ → ℝ such that

max
𝓁∈ℤ∕𝑑ℤ

|𝜙(𝓁) − 𝜓(𝓁)| ⩽ 3
𝑒−32𝑚

2

log 𝑥
.

But there are no non-trivial homomorphisms from ℤ∕𝑑ℤ to ℝ since the latter is torsion-free.
Hence, 𝜓(𝓁) = 0 for all 𝓁 and we deduce that

max
1⩽𝓁⩽𝑑−1

|𝑡𝓁| ⩽ 3𝜀−32𝑚
2

log 𝑥
,

as claimed. □

4.2 Studying the distances 𝔻(𝒇𝓵, 𝟏; 𝒙) using the level sets of 𝒇(𝒑)

Having shown that the minimizers |𝑡𝓁| are uniformly small, we next study the sizes of the
distances 𝔻(𝑓𝓁 , 1; 𝑥), which control the partial sums of 𝑓𝓁 . We write

𝜎𝑗 = 𝜎𝑗(𝑥) ∶=
∑
𝑝⩽𝑥

𝑓(𝑝)=𝑒(𝑗∕𝑑)

1

𝑝
, 1 ⩽ 𝑗 ⩽ 𝑑 − 1.

Our analysis now splits into two cases, according to how large each 𝜎𝑗 is relative to the sum

𝑆𝑓(𝑥) ∶=
∑

1⩽𝑗⩽𝑑−1

𝜎𝑗.

4.2.1 Case 1: each 𝜎𝑗 is small

When each 𝜎𝑗 is small relative to 𝑆𝑓(𝑥) the following lemma provides lower bounds on the
distances 𝔻(𝑓𝓁 , 1; 𝑥)2, for almost all 1 ⩽ 𝓁 ⩽ 𝑑 − 1.

Lemma 4.4. Let 𝜀 ∈ (0, 1) be small and satisfy 𝜀𝑃−(𝑑) > 1, and assume that

max
1⩽𝑟⩽𝑑−1

𝜎𝑟 < 𝜀𝑆𝑓(𝑥).
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LARGE SUMS OF HIGH ORDER CHARACTERS 25 of 44

Then for all but 𝑂(𝜀1∕2 log2(1∕𝜀)𝑑) choices of 1 ⩽ 𝓁 ⩽ 𝑑 − 1 we have

𝔻(𝑓𝓁 , 1; 𝑥)2 ⩾
(
2

3
+ 𝑂(log(1∕𝜀)−1)

)
𝑆𝑓(𝑥).

Proof. Given 𝑡 ∈ ℝ, observe first of all the inequality

1 − cos(2𝜋𝑡) = 2 sin2(𝜋‖𝑡‖) ⩾ 8‖𝑡‖2.
It follows that for any 𝓁 ≠ 0,

𝔻(𝑓𝓁 , 1; 𝑥)2 ⩾
∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1

1 − Re(𝑓𝓁(𝑝))

𝑝
=
∑

1⩽𝑗⩽𝑑−1

(1 − cos(2𝜋𝑗𝓁∕𝑑))
∑
𝑝⩽𝑥

𝑓(𝑝)=𝑒(𝑗∕𝑑)

1

𝑝
⩾ 8

∑
1⩽𝑗⩽𝑑−1

‖‖‖𝓁𝑗𝑑 ‖‖‖2𝜎𝑗. (20)

We now seek upper bounds for the variance

Δ ∶=
1

𝑑

∑
1⩽𝓁⩽𝑑

( ∑
1⩽𝑗⩽𝑑−1

‖‖‖𝓁𝑗𝑑 ‖‖‖2𝜎𝑗 − 𝑆𝑓(𝑥)∫
1

0

‖𝑡‖2𝑑𝑡)2

=
1

𝑑

∑
1⩽𝓁⩽𝑑

( ∑
1⩽𝑗⩽𝑑−1

‖‖‖𝓁𝑗𝑑 ‖‖‖2𝜎𝑗 − 1

12
𝑆𝑓(𝑥)

)2

.

The 1-periodic function 𝑡 ↦ ‖𝑡‖2 has the absolutely convergent Fourier series
‖𝑡‖2 = 1

12
+

1

2𝜋2

∑
𝑟≠0

(−1)𝑟

𝑟2
𝑒(𝑟𝑡).

Thus, expanding the square in Δ and inputting this expression yields

Δ =
∑

1⩽𝑗1,𝑗2⩽𝑑−1

𝜎𝑗1𝜎𝑗2
1

𝑑

∑
1⩽𝓁⩽𝑑

(‖‖‖𝓁𝑗1𝑑 ‖‖‖2 − 1

12

)(‖‖‖𝓁𝑗2𝑑 ‖‖‖2 − 1

12

)

=
1

4𝜋4

∑
𝑟1,𝑟2≠0

(−1)𝑟1+𝑟2

(𝑟1𝑟2)
2

∑
1⩽𝑗1,𝑗2⩽𝑑−1

𝜎𝑗1𝜎𝑗2
1

𝑑

∑
1⩽𝓁⩽𝑑

𝑒

(
𝓁
𝑑
(𝑗1𝑟1 − 𝑗2𝑟2)

)

=
1

4𝜋4

∑
1⩽𝑗1,𝑗2⩽𝑑−1

𝜎𝑗1𝜎𝑗2

∑
𝑟1,𝑟2≠0

𝑗1𝑟1≡𝑗2𝑟2 (mod 𝑑)

(−1)𝑟1+𝑟2

(𝑟1𝑟2)
2
.

Note first of all that in the inner double sum, if 𝑚 = max{(𝑟1, 𝑑), (𝑟2, 𝑑)} > 1 then 𝑚 ⩾ 𝑃−(𝑑),
and thus alsomax{|𝑟1|, |𝑟2|} ⩾ 𝑃−(𝑑). Since (𝑟1𝑟2, 𝑑) > 1 if and only ifmax{(𝑟1, 𝑑), (𝑟2, 𝑑)} > 1, the
contribution to Δ from 𝑟1, 𝑟2 ≠ 0 with (𝑟1𝑟2, 𝑑) > 1 is thus

≪
∑

1⩽𝑗1,𝑗2⩽𝑑−1

𝜎𝑗1𝜎𝑗2

∑
𝑟1,𝑟2≠0

max{|𝑟1|,|𝑟2|}⩾𝑃−(𝑑)
1

(𝑟1𝑟2)
2
≪

1

𝑃−(𝑑)
𝑆𝑓(𝑥)

2.

We next consider the contribution from those 𝑟1, 𝑟2 ≠ 0 with (𝑟1𝑟2, 𝑑) = 1. Fix 1 ⩽ 𝑗1, 𝑗2 ⩽ 𝑑 −

1 for the moment, and suppose 𝑗1𝑟1 ≡ 𝑗2𝑟2 (mod 𝑑). Then (𝑗1, 𝑑) = (𝑗2, 𝑑) =∶ 𝜆. Since 𝜆 < 𝑑

and 𝜆|𝑑 we have 𝑑∕𝜆 ⩾ 𝑃−(𝑑). Setting 𝐽𝑖 ∶= 𝑗𝑖∕(𝑗1, 𝑗2) for 𝑖 = 1, 2, the congruence is equiv-

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12841 by T

est, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26 of 44 MANGEREL

alent to 𝐽1𝑟1 ≡ 𝐽2𝑟2 (mod 𝑑∕𝜆), with (𝐽1, 𝐽2) = (𝐽1𝐽2, 𝑑∕𝜆) = 1. Separating the contribution of
max{|𝑟1|, |𝑟2|} ⩾ 𝑑∕𝜆 from the remainder, we find

Δ =
1

4𝜋4

∑
𝜆|𝑑
𝜆<𝑑

∑
1⩽𝐽1,𝐽2⩽𝑑∕𝜆
(𝐽1,𝐽2)=1

(𝐽1𝐽2,𝑑∕𝜆)=1

𝜎𝜆𝐽1𝜎𝜆𝐽2

⎛⎜⎜⎜⎜⎜⎜⎝
∑

1⩽|𝑟1|,|𝑟2|<𝑑∕𝜆
(𝑟1𝑟2,𝑑)=1

𝐽1𝑟1≡𝐽2𝑟2 (mod 𝑑∕𝜆)

(−1)𝑟1+𝑟2

(𝑟1𝑟2)
2

+ 𝑂

(
𝜆

𝑑

)⎞⎟⎟⎟⎟⎟⎟⎠
+ 𝑂

(
1

𝑃−(𝑑)
𝑆𝑓(𝑥)

2

)

=
1

4𝜋4

∑
𝜆|𝑑
𝜆<𝑑

∑
1⩽|𝑟1|,|𝑟2|<𝑑∕𝜆
(𝑟1𝑟2,𝑑)=1

(−1)𝑟1+𝑟2

(𝑟1𝑟2)
2

∑
1⩽𝐽1,𝐽2⩽𝑑∕𝜆
(𝐽1,𝐽2)=1

(𝐽1𝐽2,𝑑∕𝜆)=1
𝐽1𝑟1≡𝐽2𝑟2 (mod 𝑑∕𝜆)

𝜎𝜆𝐽1𝜎𝜆𝐽2 + 𝑂

(
1

𝑃−(𝑑)
𝑆𝑓(𝑥)

2

)
. (21)

Note that, fixing 1 ⩽ |𝑟1|, |𝑟2|, 𝐽1 < 𝑑∕𝜆, any possible choice of 𝐽2 is unique and fixed by the con-
gruence in the inner sum. By hypothesis 𝜎𝜆𝐽2 ≪ 𝜀𝑆𝑓(𝑥), and therefore the first expression in (21)
is

≪ 𝜀𝑆𝑓(𝑥)

⎛⎜⎜⎜⎜⎝
∑

1⩽|𝑟1|,|𝑟2|<𝑑
(𝑟1𝑟2,𝑑)=1

1

(𝑟1𝑟2)
2

⎞⎟⎟⎟⎟⎠
∑
𝜆|𝑑
𝜆<𝑑

∑
1⩽𝐽⩽𝑑∕𝜆
(𝐽,𝑑∕𝜆)=1

𝜎𝜆𝐽 ≪ 𝜀𝑆𝑓(𝑥)
2.

It follows, therefore, that

Δ ≪

(
𝜀 +

1

𝑃−(𝑑)

)
𝑆𝑓(𝑥)

2 ≪ 𝜀𝑆𝑓(𝑥)
2.

By Chebyshev’s inequality, we therefore deduce that for all but 𝑂(𝜀1∕2 log2(1∕𝜀)𝑑) choices of 1 ⩽
𝓁 ⩽ 𝑑 − 1,

∑
1⩽𝑗⩽𝑑−1

‖𝓁𝑗
𝑑
‖2𝜎𝑗 = ( 112 + 𝑂(log(1∕𝜀)−1)

)
𝑆𝑓(𝑥).

Therefore, invoking (20), we deduce that for all but 𝑂(𝜀1∕2 log2(1∕𝜀)𝑑) choices of 1 ⩽ 𝓁 ⩽ 𝑑 − 1,

𝔻(𝑓𝓁 , 1; 𝑥)2 ⩾ 8 ⋅
(
1

12
+ 𝑂(log(1∕𝜀)−1)

)
𝑆𝑓(𝑥) =

(
2

3
+ 𝑂(log(1∕𝜀)−1)

)
𝑆𝑓(𝑥),

as claimed. □

4.2.2 Case 2: some 𝜎𝑗0 is large

We next consider the case in which some 𝜎𝑗0 is large relative to 𝑆𝑓(𝑥). When 𝑑(𝜀) is large the
following propositionwill provide an alternative bound for the partial sums of𝑓𝓁 when 𝓁 ∈ 𝑑(𝜀).
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LARGE SUMS OF HIGH ORDER CHARACTERS 27 of 44

Proposition 4.5. Let 𝑑 ⩾ 2, 𝜀 ∈ (0, 1) and 3 ⩽ 𝑥 ⩽ 𝑥0. Let 𝑐 > 0 satisfy 𝑃−(𝑑) > 1∕𝑐, and assume
that |𝑑(𝜀)| ⩾ 𝑐𝑑. Put𝑚 ∶= ⌈2∕𝑐2⌉ and suppose that

𝑚2 log(1∕𝜀) <
1

32
log log 𝑥.

Then for any 1 ⩽ 𝑗,𝓁 ⩽ 𝑑 − 1 and 𝜆 ∈ (0, 1) at least one of the following bounds hold:

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
||||| ⩽ 𝜀,

or else

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ ‖𝓁𝑗∕𝑑‖−1

(
𝜆𝜀−32𝑚

2
+ log(𝑒∕𝜆)

(
𝜆1−2∕𝜋 +

1

𝜎𝑗

)
+

1√
𝜎𝑗

+
1

(log 𝑥)1−2∕𝜋+𝑜(1)

)
.

Proof. We may assume that 𝑥 is as large (and 𝜀 as small) as desired, otherwise at least one of
the alternatives is trivial. We may also assume that 𝜎𝑗 ⩾ 1 and 𝜆𝜀−32𝑚2

< 1∕2, since otherwise the
second alternative is trivial.
Suppose the first alternative fails. Arguing as in the proof of Proposition 4.1,

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥)2 ⩽ 2 log(1∕𝜀) <
1

16𝑚2
log log 𝑥.

for 𝜀 small enough.
Seeking to apply [12, Theorem 4] below, we must introduce some notation. For each 1 ⩽ 𝓁 ⩽

𝑑 − 1 define

𝐹𝓁(𝑠) ∶=
∏
𝑝⩽𝑥

(
1 +
∑
𝑗⩾1

𝑓𝓁(𝑝𝑗)

𝑝𝑗𝑠

)
, 𝑠 ∈ ℂ.

Let 𝑦𝓁,0 ∈ [−2 log 𝑥, 2 log 𝑥] be chosen so that |𝐹𝓁(1 + 𝑖𝑦𝓁,0)| = max|𝑦|⩽2 log 𝑥 |𝐹𝓁(1 + 𝑖𝑦)|, and set
𝑦𝓁 ∶=

{
𝑦𝓁,0 if |𝑦𝓁,0| < 1

2
log 𝑥

0 otherwise.

We will need an upper bound for |𝑦𝓁|whenever 𝑦𝓁 ≠ 0, so assume for the moment that this is the
case. By Mertens’ theorem, given any 𝑦 ∈ ℝ,

|𝐹𝓁(1 + 𝑖𝑦)|
log 𝑥

≍
1

log 𝑥
exp

(∑
𝑝⩽𝑥

Re(𝑓𝓁(𝑝)𝑝−𝑖𝑦)

𝑝

)
≍ 𝑒−𝔻(𝑓,𝑛

𝑖𝑦;𝑥)2 .

Thus, if 𝑦𝓁 ≠ 0 then

𝔻(𝑓𝓁 , 𝑛𝑖𝑦𝓁 ; 𝑥)2 = min|𝑦|⩽2 log 𝑥 𝔻(𝑓𝓁 , 𝑛𝑖𝑦; 𝑥)2 + 𝑂(1) ⩽ 𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥)2 + 𝑂(1) ⩽ 2 log(1∕𝜀) + 𝑂(1).
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28 of 44 MANGEREL

By (10) and the crude bound |𝑡𝓁 − 𝑦𝓁| ⩽ 2 log 𝑥 we thus obtain

𝔻(1, 𝑛𝑖(𝑡𝓁−𝑦𝓁); 𝑥) ⩽ 𝔻(𝑓𝓁 , 𝑛𝑖𝑦𝓁 ; 𝑥) + 𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) ⩽ 2
√
2 log(1∕𝜀) + 𝑂(1).

In light of (18) and the hypothesis log(1∕𝜀) < 1

32
log log 𝑥, we see that |𝑡𝓁 − 𝑦𝓁| ⩽ 100. Thus, (19)

delivers

log(1 + |𝑡𝓁 − 𝑦𝓁| log 𝑥) ⩽ 10 log(1∕𝜀) + 𝑂(1).

Using Proposition 4.1, we therefore conclude that

|𝑦𝓁| ⩽ |𝑦𝓁 − 𝑡𝓁| + |𝑡𝓁|≪ 𝜀−10 + 𝜀−32𝑚
2

log 𝑥
≪

𝜀−32𝑚
2

log 𝑥
, (22)

a bound that we will employ momentarily.
With this setup complete wemay now proceedwith the proof of the proposition. By [12, Lemma

7.1] we have

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛) =
𝑥𝑖𝑦𝓁

1 + 𝑖𝑦𝓁

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 + 𝑂

(
𝑒𝔻(𝑓

𝓁 ,𝑛𝑖𝑦𝓁 ;𝑥)
√
(2+𝑜(1)) log log 𝑥

log 𝑥

)

=
𝑥𝑖𝑦𝓁

1 + 𝑖𝑦𝓁

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 + 𝑂

(
(log 𝑥)

1

2
√
2
−1+𝑜(1)

)
. (23)

Let now 𝑆𝑗 ∶= {𝑝 ⩽ 𝑞 ∶ 𝑓(𝑝) = 𝑒(𝑗∕𝑑)} and define the completely additive function

Ω𝑆𝑗
(𝑛) ∶=

∑
𝑝𝑘||𝑛
𝑝∈𝑆𝑗

𝑘 =
∑
𝑚𝑝=𝑛
𝑝∈𝑆𝑗

1,

whose mean-value over 𝑛 ⩽ 𝑥 is asymptotically

∑
𝑝𝑘⩽𝑥
𝑝∈𝑆𝑗

1

𝑝𝑘

(
1 −

1

𝑝

)
+ 𝑂
⎛⎜⎜⎝
√

log log 𝑥

log 𝑥

⎞⎟⎟⎠ = 𝜎𝑗 + 𝑂
⎛⎜⎜⎝
√

log log 𝑥

log 𝑥

⎞⎟⎟⎠.
By the Turán–Kubilius inequality [27, Theorem III.3.1] and complete multiplicativity, we deduce
that

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 =
1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 ⋅
Ω𝑆𝑗

(𝑛) + (𝜎𝑗 − Ω𝑆𝑗
(𝑛))

𝜎𝑗

=
1

𝜎𝑗
⋅
1

𝑥

∑
𝑚𝑝⩽𝑥
𝑝∈𝑆𝑗

𝑓𝓁(𝑝)𝑝−𝑖𝑦𝓁𝑓𝓁(𝑚)𝑚−𝑖𝑦𝓁 + 𝑂

(
1

𝑥
√
𝜎𝑗

∑
𝑛⩽𝑥

|Ω𝑆𝑗
(𝑛) − 𝜎𝑗|√
𝜎𝑗

)
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LARGE SUMS OF HIGH ORDER CHARACTERS 29 of 44

=
1

𝜎𝑗

∑
𝑝⩽𝑥
𝑝∈𝑆𝑗

𝑓𝓁(𝑝)𝑝−𝑖𝑦𝓁

𝑝

𝑝

𝑥

∑
𝑚⩽𝑥∕𝑝

𝑓𝓁(𝑚)𝑚−𝑖𝑦𝓁 + 𝑂

(
1√
𝜎𝑗

)
.

We split the sum over 𝑝 ⩽ 𝑥 into the segments 𝑝 ⩽ 𝑥𝜆 and 𝑥𝜆 < 𝑝 ⩽ 𝑥. The contribution from the
second segment to the above is

≪
1

𝜎𝑗

∑
𝑥𝜆<𝑝⩽𝑥

1

𝑝
≪

log(𝑒∕𝜆)

𝜎𝑗
.

Now, for each 𝑝 ⩽ 𝑥𝜆 we apply the Lipschitz bound [12, Theorem 4], which yields

𝑝

𝑥

∑
𝑛⩽𝑥∕𝑝

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 =
1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 + 𝑂

(
𝜆1−2∕𝜋 log(𝑒∕𝜆) +

1

(log 𝑥)1−2∕𝜋+𝑜(1)

)
.

We thus conclude that

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁 =

⎛⎜⎜⎜⎜⎝
1

𝜎𝑗

∑
𝑝⩽𝑥𝜆

𝑝∈𝑆𝑗

𝑓𝓁(𝑝)𝑝−𝑖𝑦𝓁

𝑝

⎞⎟⎟⎟⎟⎠
1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)𝑛−𝑖𝑦𝓁

+ 𝑂

(
1√
𝜎𝑗

+ log(𝑒∕𝜆)

(
1

𝜎𝑗
+ 𝜆1−2∕𝜋

)
+ (log 𝑥)

2

𝜋
−1+𝑜(1)

)
.

For each 𝑝 ⩽ 𝑥𝜆, (22) yields

𝑝−𝑖𝑦𝓁 = 1 + 𝑂(𝜆𝜀−32𝑚
2
),

and therefore

1

𝜎𝑗

∑
𝑝⩽𝑥𝜆

𝑝∈𝑆𝑗

𝑓𝓁(𝑝)𝑝−𝑖𝑦𝓁

𝑝
=

1

𝜎𝑗

∑
𝑝⩽𝑥
𝑝∈𝑆𝑗

𝑓𝓁(𝑝)

𝑝
+ 𝑂

(
𝜆𝜀−32𝑚

2
+
log(𝑒∕𝜆)

𝜎𝑗

)

= 𝑒(𝓁𝑗∕𝑑) + 𝑂

(
𝜆𝜀−32𝑚

2
+
log(𝑒∕𝜆)

𝜎𝑗

)
.

Hence, appealing once again to [12, Lemma 7.1], we find

1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛) = 𝑒(𝓁𝑗∕𝑑)
1

𝑥

∑
𝑛⩽𝑥

𝑓𝓁(𝑛)

+ 𝑂

(
1√
𝜎𝑗

+ log(𝑒∕𝜆)

(
1

𝜎𝑗
+ 𝜆1−2∕𝜋

)
+ 𝜆𝜀−32𝑚

2
+ (log 𝑥)

2

𝜋
−1+𝑜(1)

)
.
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30 of 44 MANGEREL

Rearranging the above and using |1 − 𝑒(𝓁𝑗∕𝑑)|≫ ‖𝓁𝑗∕𝑑‖, the claim follows. □

Proof of Theorem 1.2. Let 𝜀 > 0 be a small parameter to be chosen later in terms of

Σ ∶= min{𝑃−(𝑑), 2 +
∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1
𝑝−1},

subject only to the constraints

𝜀 ⩾ Σ−1∕3 ⩾ 𝑃−(𝑑)−1∕3. (24)

Wemay assume inwhat follows thatΣ (and thus also𝑥 and𝑑) is larger than any specified constant,
since otherwise the claim is trivial (by adjusting the implicit constant appropriately).
Set 𝑀 ∶= ⌈2∕𝜀⌉. Note that as Σ ⩽ log log 𝑥 + 𝑂(1), the constraint (24) implies that when 𝑥 is

large enough,

32𝑀2 log(1∕𝜀) ⩽
512

3
Σ2∕3 log Σ < log log 𝑥.

As above, write

𝑑(
√
𝜀) =
{
1 ⩽ 𝓁 ⩽ 𝑑 − 1 ∶

1

𝑥
|||∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
||| ⩾ 𝜀1∕2

}
.

We consider several cases.
Case 1: Suppose first that |𝑑(√𝜀)| ⩽√𝜀𝑑. Adding in the contribution from 𝓁 = 0, we trivially

have

 ∶=
1

𝑑

∑
0⩽𝓁⩽𝑑−1

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||
2

⩽
|𝑑(√𝜀)| + 1

𝑑
𝑥2 +

√
𝜀𝑥2 ≪

√
𝜀𝑥2.

Case 2: Suppose next that |𝑑(√𝜀)| >√𝜀𝑑. For each 1 ⩽ 𝓁 ⩽ 𝑑 − 1 we choose 𝑡𝓁 ∈

[−2𝑀∕𝜀, 2𝑀∕𝜀] so that

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) = min|𝑡|⩽2𝑀∕𝜀
𝔻(𝑓𝓁 , 𝑛𝑖𝑡; 𝑥).

Since
√
𝜀𝑃−(𝑑) ⩾ 𝑃−(𝑑)5∕6 > 1, by Proposition 4.1 we have

max
1⩽𝓁⩽𝑑−1

|𝑡𝓁| ⩽ 3𝜀−(20∕𝜀)
2

log 𝑥
. (25)

As above, let

𝑆𝑗 ∶= {𝑝 ⩽ 𝑞 ∶ 𝑓(𝑝) = 𝑒(𝑗∕𝑑)}, 𝜎𝑗 ∶= 𝜎𝑗(𝑥) =
∑
𝑝⩽𝑥
𝑝∈𝑆𝑗

1

𝑝
,
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LARGE SUMS OF HIGH ORDER CHARACTERS 31 of 44

and define

𝑆𝑓(𝑥) ∶=
∑

1⩽𝑗⩽𝑑−1

𝜎𝑗.

We consider two subcases.
Case 2(a): Suppose there is 1 ⩽ 𝑗0 ⩽ 𝑑 − 1 such that

𝜎𝑗0 ⩾ 𝜀𝑆𝑓(𝑥) ≫ 𝜀Σ. (26)

Take 𝐽 ∶= ⌊𝜀−1∕2⌋. By the Erdős–Turán inequality [27, Theorem I.6.15] we have

| |{1 ⩽ 𝓁 ⩽ 𝑑 ∶ ‖𝓁𝑗0∕𝑑‖ ⩽ 𝜀1∕2}| − 2𝜀1∕2𝑑 |≪ 𝑑

𝐽
+ 𝑑
∑
1⩽𝑘⩽𝐽

1

𝑘

||||||
∑

1⩽𝓁⩽𝑑

𝑒

(
𝑘𝑙𝑗0
𝑑

)||||||
≪ 𝜀1∕2𝑑 + 𝑑2

∑
1⩽𝑘⩽𝐽
𝑑|𝑘𝑗0

1

𝑘
. (27)

We observe that if 𝑑|𝑘𝑗0, then as 𝑗0 < 𝑑,

𝐽 ⩽ 1∕𝜀 < 𝑃−(𝑑) ⩽ 𝑑∕ (𝑗0, 𝑑) ⩽ 𝑘.

Thus, the sum on the RHS of (27) is zero, and hence

|{1 ⩽ 𝓁 ⩽ 𝑑 ∶ ‖𝓁𝑗0∕𝑑‖ ⩽ 𝜀1∕2}| = 2𝜀1∕2𝑑 + 𝑂(𝜀1∕2𝑑) ≪ 𝜀1∕2𝑑.

It follows that

‖𝓁𝑗0∕𝑑‖ > 𝜀1∕2 for all but 𝑂
(
𝜀1∕2𝑑

)
choices of 1 ⩽ 𝓁 ⩽ 𝑑 − 1.

Now, let 𝜆 ∈ (0, 1) be a parameter to be chosen shortly, and let 𝓁 satisfy ‖𝓁𝑗0∕𝑑‖ > 𝜀1∕2. By
Proposition 4.5 (taking 𝑐 =

√
𝜀 and

√
𝜀 in place of 𝜀 there), either

|||∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
||| ⩽√𝜀𝑥,

or else

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ 𝜀−1∕2

(
𝜆𝜀−(20∕𝜀)

2
+ log(𝑒∕𝜆)

(
𝜆1−2∕𝜋 +

1

𝜎𝑗0

)
+

1√
𝜎𝑗0

)
.

We select

𝜆 ∶= min{𝜀1+(20∕𝜀)
2
, 𝑒
−
√
𝜎𝑗0 },
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32 of 44 MANGEREL

so that for all but 𝑂(𝜀1∕2𝑑) choices of 𝓁,

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ 𝜀−1∕2

(
𝜀 +

1√
𝜎𝑗0

+
log(1∕𝜀)

𝜀2𝜎𝑗0
+ 𝜎

1∕2

𝑗0
𝑒
− 1
3

√
𝜎𝑗0

)
≪ 𝜀1∕2 +

1√
𝜀𝜎𝑗0

+
log(1∕𝜀)

𝜀5∕2𝜎𝑗0

.

For the remaining≪ 𝜀1∕2𝑑 choices of 𝓁 we simply apply the trivial bound. Averaging over 0 ⩽ 𝓁 ⩽

𝑑 − 1 and using (26), we thus obtain

 ≪ 𝜀1∕2𝑥2 + 𝑥2

(
𝜀 +

1

𝜀𝜎𝑗0
+
log(1∕𝜀)2

𝜀5𝜎2
𝑗0

)
≪

(
𝜀1∕2 +

1

𝜀2Σ
+
log(1∕𝜀)2

𝜀7Σ2

)
𝑥2.

Case 2(b): Suppose finally that 𝜎𝑟 < 𝜀𝑆𝑓(𝑥) for all 1 ⩽ 𝑟 ⩽ 𝑑 − 1.
By Lemma 4.4, we find that for all but 𝑂(𝜀1∕2 log2(1∕𝜀)𝑑) choices of 𝓁 we have

𝔻(𝑓𝓁 , 1; 𝑥)2 ⩾
(
2

3
+ 𝑂(log(1∕𝜀)−1)

)
Σ.

By (9) we also have

𝔻(𝑓𝓁 , 1; 𝑥) ⩽ 𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥) + 𝔻(1, 𝑛𝑖𝑡𝓁 ; 𝑥), (28)

and moreover by (25),

𝔻(1, 𝑛𝑖𝑡𝓁 ; 𝑥)2 = log(1 + |𝑡𝓁| log 𝑥) + 𝑂(1) ⩽
400

𝜀2
log(1∕𝜀) + 𝑂(1). (29)

Since 𝜀 ⩾ Σ−1∕3 by assumption, we have

400

𝜀2
log(1∕𝜀) ⩽ 400Σ2∕3 log Σ ⩽

1

20
Σ

whenever Σ is large enough. Combining this with (29), we thus find that 𝔻(1, 𝑛𝑖𝑡𝓁 ; 𝑥)2 ⩽ Σ∕20.
Inserting this into (28) and using the inequality (𝑎 + 𝑏)2 ⩽ 2(𝑎2 + 𝑏2) we deduce that

𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥)2 ⩾
1

2
𝔻(𝑓𝓁 , 1; 𝑥)2 − 𝔻(1, 𝑛𝑖𝑡𝓁 ; 𝑥)2 ⩾

(
1

3
+ 𝑂(log(1∕𝜀)−1)

)
Σ −

400

𝜀2
log(1∕𝜀)

⩾
(
1

4
+ 𝑂(log(1∕𝜀)−1)

)
Σ,

Therefore, on applying (11) we obtain

1

𝑥

|||||
∑
𝑛⩽𝑥

𝑓𝓁(𝑛)
|||||≪ 𝜀

𝑀
+

1

log 𝑥
+ 𝔻(𝑓𝓁 , 𝑛𝑖𝑡𝓁 ; 𝑥)2𝑒−𝔻(𝑓

𝓁 ,𝑛𝑖𝑡𝓁 ;𝑥)2 ≪ 𝜀2 + Σ𝑒−
1
5
Σ,
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LARGE SUMS OF HIGH ORDER CHARACTERS 33 of 44

all but 𝑂(𝜀1∕2 log2(1∕𝜀)𝑑) choices of 𝓁. Bounding trivially the partial sums corresponding to the
exceptional 𝓁, we obtain

 ≪ 𝑥2
(
𝜀1∕2 log2(1∕𝜀) + Σ2𝑒−

2
5
Σ
)

in this case.
Conclusion: Combining Cases 1, 2(a) and 2(b) together,

 ≪ 𝑥2
(
𝜀1∕2 log2(1∕𝜀) +

1

𝜀2Σ
+
log2(1∕𝜀)

𝜀7Σ2
+ Σ2𝑒−

2
5
Σ

)
≪ 𝑥2

(
𝜀1∕2 log2(1∕𝜀) +

1

𝜀2Σ
+
log2(1∕𝜀)

𝜀7Σ2

)
.

We choose 𝜀 = Σ−4∕15, which yields the bound

 ≪ 𝑥2
(log Σ)2

Σ2∕15
,

as claimed. □

5 PROOF OF THEOREM 1.1

We now turn to the proof of Theorem 1.1, concerning lower bounds for the sum∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1

1

𝑝
, with 𝑓 ∈ 1(𝑥0; 𝑑), 𝑥 ⩾ 𝑥𝛿0 .

We will analyze the prime values (𝑓(𝑝))𝑝⩽𝑥 using the obvious implication

𝑓(𝑝) = 1 for all 𝑝|𝑛 ⇒ 𝑓(𝑛) = 1

and the (weak) equidistribution property of the integer values (𝑓(𝑛))𝑛⩽𝑥0 .
Our general argument will allow us to handle 𝑑 ≪ (𝜂𝛿)−1𝑒(log 𝑥0)

𝑐 for some absolute constant
𝑐 > 0. Using zero-density estimates for Dirichlet 𝐿-functions, we may extend this range when 𝑓 is
a character of order 𝑑 as follows.

Proposition 5.1. Fix 𝑐 ∈ (0, 1). If 𝜒 is a primitive character modulo prime 𝑞 with order 𝑑 ⩾ 𝑒(log 𝑞)
𝑐

then ∑
𝑝⩽𝑞

𝜒(𝑝)≠1

1

𝑝
⩾ (𝑐 − 𝑜(1)) log log 𝑞, 𝑞 → ∞.

Proof. We will estimate the product∏
1⩽𝓁⩽𝑑

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| (30)
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34 of 44 MANGEREL

in two ways.
For the first, note that if 𝜒𝓁 is a non-exceptional, non-principal character (see, for example, [10,

Section 4.2] for a precise definition) then by, for example, [10, (4.3)],

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| = exp

(
Re

(
−
∑
𝑝⩽𝑞

log

(
1 −

𝜒𝓁(𝑝)

𝑝1+1∕ log 𝑞

)
+ 𝑂(1)

))

= exp

(∑
𝑝⩽𝑞

𝜒𝓁(𝑝)

𝑝
+ 𝑂(1)

)
.

This estimate also holds when 𝓁 = 𝑑 using properties of the Riemann zeta function. This bound
thus holds for all but at most one 1 ⩽ 𝓁 ⩽ 𝑑 − 1, and if such an exception exists then the
corresponding character must be real.
If 𝑑 is even then let 𝓁0 ∈ {1, … , 𝑑 − 1} be such that 𝜒𝓁0 is real (there is a unique such choice);

otherwise, choose 𝓁0 arbitrarily. Whether 𝜒𝓁0 is exceptional or not, [27, Theorems II.8.20 and
II.8.21] implies that if 𝑞 is sufficiently large then

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁0 )|∏
𝑝⩽𝑞

(
1 −

𝜒𝓁0 (𝑝)

𝑝

)
≫

1√
𝑞 log 𝑞

.

Therefore, by the preceding estimates and orthogonality,

∏
1⩽𝓁⩽𝑑

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| ⩾ 1√
𝑞 log 𝑞

exp

( ∑
1⩽𝓁⩽𝑑

(∑
𝑝⩽𝑞

𝜒𝓁(𝑝)

𝑝
+ 𝑂(1)

))

=
1√

𝑞 log 𝑞
exp

⎛⎜⎜⎜⎝𝑑
⎛⎜⎜⎜⎝
∑
𝑝⩽𝑞

𝜒(𝑝)=1

1

𝑝
+ 𝑂(1)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠. (31)

For the second estimation of (30) we invoke zero-density estimates. Let 𝜃 ∈ (0, 𝑐) be fixed, and
set

𝜎0 ∶= 1 −
1

(log 𝑞)1−𝜃
, 𝑇 ∶= (log 𝑞)3.

We define

 ∶= (𝜎0, 𝑇) ∶= {𝜒𝓁}1⩽𝓁⩽𝑑−1 ∩ {𝜓 (mod 𝑞) ∶ 𝐿(𝑠, 𝜓) ≠ 0 for all Re(𝑠) ∈ (𝑠g0, 1], |Im(𝑠)| ⩽ 𝑇}

 ∶= (𝜎0, 𝑇) ∶= {𝜒𝓁}1⩽𝓁⩽𝑑∖.
If 1 ⩽ 𝓁 ⩽ 𝑑 − 1 then by, for example, [27, Theorem II.8.18],

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)|≪ log 𝑞.
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LARGE SUMS OF HIGH ORDER CHARACTERS 35 of 44

When 𝓁 = 𝑑 this bound is also valid since by Mertens’ theorem,

|𝐿(1 + 1∕ log 𝑞, 𝜒0)|≪ exp

(∑
𝑝

1

𝑝1+1∕ log 𝑞

)
≪ exp

(∑
𝑝⩽𝑞

1

𝑝

)
≪ log 𝑞.

Therefore, there is an absolute constant 𝐶 > 0 such that∏
1⩽𝓁⩽𝑑

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| ⩽ ∏
1⩽𝓁⩽𝑑
𝜒𝓁∈

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| ⋅ (𝐶 log 𝑞)||. (32)

Since (1 − 𝜎0) log 𝑞 ≫ 1, replacing 1with 1 + 1∕ log 𝑞 and following the proof of [20, Lemma 5.4]
mutatis mutandis, we find that for each 𝜒𝓁 ∈  and any 𝑋 ⩾ 2,

log 𝐿(1 + 1∕ log 𝑞, 𝜒𝓁) = −
∑
𝑝⩽𝑋

log

(
1 −

𝜒𝓁(𝑝)

𝑝1+1∕ log 𝑞

)
+ 𝑂

(
1

log 𝑞
+ (log 𝑞)4𝑒

−
(log 𝑞)𝜃

2

log𝑋

log 𝑞

)
.

Taking 𝑋 ∶= exp(10(log 𝑞)1−𝜃 log log 𝑞) and bounding the prime sum trivially, we obtain

log |𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| ⩽ log log𝑋 + 𝑂(1) = (1 − 𝜃 + 𝑜(1)) log log 𝑞,

for each𝜒𝓁 ∈ . Furthermore, increasing𝐶 if needed, the log-free zero density estimate [19, (18.9)]
shows that

||≪ (𝑞𝑇)𝐶(1−𝜎0) ⩽ 𝑒2𝐶(log 𝑞)
𝜃
.

As 𝜃 < 𝑐, we obtain || = 𝑜(𝑑) when 𝑞 is sufficiently large. Invoking both of these estimates in
(32), we deduce that∏

1⩽𝓁⩽𝑑

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)| ⩽ (𝐶 log 𝑞)(1−𝜃+𝑜(1))(𝑑−||)(𝐶 log 𝑞)||

⩽

(
𝐶(log 𝑞)

1−𝜃+𝜃
||
𝑑
+𝑜(1)
)𝑑

= (log 𝑞)𝑑(1−𝜃+𝑜(1)).

Comparing this with (31), we find

1√
𝑞 log 𝑞

exp

⎛⎜⎜⎜⎝𝑑
⎛⎜⎜⎜⎝
∑
𝑝⩽𝑞

𝜒(𝑝)=1

1

𝑝
+ 𝑂(1)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ⩽
∏

1⩽𝓁⩽𝑑

|𝐿(1 + 1∕ log 𝑞, 𝜒𝓁)|
⩽ (log 𝑞)𝑑(1−𝜃+𝑜(1)) = exp

(
𝑑(1 − 𝜃 + 𝑜(1))

∑
𝑝⩽𝑞

1

𝑝

)
.
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36 of 44 MANGEREL

Since (
√
𝑞 log 𝑞)1∕𝑑 ≪ 1, on taking 𝑑th roots and rearranging we obtain

∑
𝑝⩽𝑞

𝜒(𝑝)≠1

1

𝑝
=
∑
𝑝⩽𝑞

1

𝑝
−
∑
𝑝⩽𝑞

𝜒(𝑝)=1

1

𝑝
⩾ (𝜃 − 𝑜(1)) log log 𝑞.

As this bound holds for every 𝜃 ∈ (0, 𝑐) the claim follows. □

Proof of Theorem 1.1. The conclusion is strongest when 𝑥 = 𝑥𝛿
0
, so we assume this in what

follows.

(a) Write

𝐸≠0,1(𝑥) ∶=
∑
𝑝⩽𝑥

𝑓(𝑝)≠0,1

1

𝑝
,

and as above set

𝑐𝑓 = 𝑐𝑓(𝑥0) ∶=
∏
𝑝⩽𝑥0
𝑓(𝑝)=0

(
1 −

1

𝑝

)
.

Since 𝑓 weakly equidistributes at scale 𝑥0,

|{𝑛 ⩽ 𝑥0 ∶ 𝑓(𝑛) = 1}| ⩽ 100𝑐𝑓
𝑥0
𝑑
. (33)

We now derive a corresponding lower bound. Let g be the non-negative completely
multiplicative function defined at primes by

g(𝑝) ∶=

{
1 if 𝑝 ⩽ 𝑥 and 𝑓(𝑝) = 1

0 otherwise.

We then observe that

|{𝑛 ⩽ 𝑥0 ∶ 𝑓(𝑛) = 1}| ⩾ ∑
𝑛⩽𝑥0

g(𝑛). (34)

Now if 𝑥0 is large enough then by [18, Theorem 2] there are absolute constants 𝐴, 𝛽 > 0 such
that

∑
𝑛⩽𝑥0

g(𝑛) ⩾ 𝐴𝑥0
∏
𝑝⩽𝑥0
𝑓(𝑝)=0

(
1 −

1

𝑝

)
⋅
∏
𝑝⩽𝑥0
𝑓(𝑝)≠0

(
1 −

1

𝑝

)(
1 −

1𝑓(𝑝)=11𝑝⩽𝑥

𝑝

)−1

⋅
(
𝜎−

(
𝑒𝔻(g ,1;𝑥0)

2
)
+ 𝑂(𝑒−(log 𝑥0)

𝛽
)
)
, (35)
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LARGE SUMS OF HIGH ORDER CHARACTERS 37 of 44

where 𝜎−(𝑢) ∶= 𝑢𝜌(𝑢). Evaluating the various factors in this expression, we see that

𝑥0
∏
𝑝⩽𝑥0
𝑓(𝑝)=0

(
1 −

1

𝑝

)
⋅
∏
𝑝⩽𝑥0
𝑓(𝑝)≠0

(
1 −

1

𝑝

)(
1 −

1𝑓(𝑝)=11𝑝⩽𝑥

𝑝

)−1

≫ 𝑐𝑓𝑥0 exp

⎛⎜⎜⎜⎝−
∑
𝑝⩽𝑥

𝑓(𝑝)≠0

1 − 1𝑓(𝑝)=1

𝑝
−
∑

𝑥<𝑝⩽𝑥0

1

𝑝

⎞⎟⎟⎟⎠≫ 𝑐𝑓𝑥0𝛿𝑒
−𝐸≠0,1(𝑥),

and also

𝑒𝔻(g ,1;𝑥0)
2
= exp

⎛⎜⎜⎜⎝
∑
𝑝⩽𝑥0
𝑓(𝑝)=0

1

𝑝
+
∑

𝑥<𝑝⩽𝑥0

1

𝑝
+ 𝐸≠0,1(𝑥)

⎞⎟⎟⎟⎠≪ (𝑐𝑓𝛿)
−1𝑒𝐸≠0,1(𝑥).

We set 𝑐3 = 𝛽, take 𝐶3 > 0 to be a large constant and assume that

𝑑 ⩽ 𝐶3(𝜂𝛿)
−1𝑒(log 𝑥0)

𝑐3 . (36)

Suppose for the sake of contradiction that 𝐸≠0,1(𝑥) < log(1∕𝜂). Since 𝜎−(𝑢) is a decreasing
function of 𝑢, there is an absolute constant 𝐶′ > 0 such that

𝜎−(𝑒
𝔻(1,g ;𝑥0)

2
) ⩾ 𝜎−

(
𝑐−1
𝑓

𝐶′

𝜂𝛿

)
.

Thus on combining (33), (34) and (35) we find that for some absolute constant 𝐵 > 0,

𝑐𝑓
𝑥0
𝑑

⩾
1

100

∑
𝑛⩽𝑥0

g(𝑛) ⩾ 𝐵𝑐𝑓𝑥0𝜂𝛿

(
𝜎−

(
𝑐−1
𝑓

𝐶′

𝜂𝛿

)
+ 𝑂(𝑒−(log 𝑥0)

𝛽
)

)
. (37)

If𝐶3 is large enough relative to𝐵, the error term in (37) will contribute⩽ 1

2
𝑐𝑓𝑥0∕𝑑 to the right-

hand side. Thus, rearranging (37) and suitably modifying the implicit constant, this termmay
be deleted from (37). Incorporating the definition of 𝜎−(𝑢), we thus get

𝑐𝑓
𝑥0
𝑑

≫ 𝑐𝑓𝑥0𝜂𝛿 ⋅ 𝑐
−1
𝑓

1

𝜂𝛿
𝜌

(
𝑐−1
𝑓

𝐶′

𝜂𝛿

)
≫ 𝑥0𝜌

(
𝑐−1
𝑓

𝐶′

𝜂𝛿

)
.

Since 𝑓 ∈ 1(𝑥0; 𝑑) by assumption we have 𝑐𝑓 ≫ 1, whence

𝑑 ≪ 𝜌(𝐶
′′

𝜂𝛿
)−1

for some absolute 𝐶′′ > 0. Choosing 𝐶1, 𝐶2 > 0 large enough, we obtain a contradiction
whenever 𝑑 ⩾ 𝐶1𝜌(

𝐶2
𝜂𝛿
), and part (a) follows.
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38 of 44 MANGEREL

(b) Assume next that 𝑑 ⩾ 𝐶3(𝜂𝛿)
−1𝑒(log 𝑥)

𝛽 and 𝑓 = 𝜒 a primitive character modulo prime 𝑞, of
order 𝑑 (taking 𝑥0 = 𝑞3∕2+𝜀, say). If 𝑞 is large enough then for any 𝑐 ∈ (0, 𝛽) we have 𝑑 ⩾

𝑒(log 𝑞)
𝑐 . Thus, by Proposition 5.1,∑

𝑝⩽𝑥
𝜒(𝑝)≠0,1

1

𝑝
⩾
∑
𝑝⩽𝑞

𝜒(𝑝)≠1

1

𝑝
−
∑

𝑥<𝑝⩽𝑞

1

𝑝
−
∑

𝑝∶𝜒(𝑝)=0

1

𝑝
⩾ (𝛽 − 𝑜(1)) log log 𝑞 − log(1∕𝛿).

Since log(1∕(𝜂𝛿)) ⩽ 𝑐 log log 𝑞 for some 0 < 𝑐 < 𝛽, once 𝑞 is large enough we have

⩾ log(1∕𝜂) + ((𝛽 − 𝑜(1)) log log 𝑞 − log(1∕𝜂𝛿)) ⩾ log(1∕𝜂),

and the claim follows.

□

Proof of Theorem 2. Wemay assume that 𝑑 is larger (and thus 𝛿 is smaller) than any fixed constant,
otherwise 𝐺(𝑑) ≪ 1 and the claimed bound is trivial.
Taking 𝑥0 = 𝑞3∕2+𝜀 we have 𝜒 ∈ 1(𝑥0; 𝑑). Let 𝜂 = 𝛿 and 0 < 𝑐2 < 𝑐3∕2, so that 𝜂𝛿 > (log 𝑞)−𝑐

for some 𝑐 ∈ (0, 𝑐3). Since 1∕𝛿2 ≪ 𝑐2
2

log 𝑑

log log 𝑑
and taking 𝑐2 > 0 smaller if needed, by (7) we find

𝑑 ⩾ 𝐶1𝜌(𝐶2∕(𝜂𝛿
′)), 𝛿′ ∶= 2𝛿∕3.

As in the proof of Theorem 1 we have

log(1∕𝜂) ≫ log log 𝑑,

and so by Theorem 1.1(b), ∑
𝑝⩽𝑥

𝜒(𝑝)≠0,1

1

𝑝
⩾ log(1∕𝜂) ≫ log log 𝑑, 𝑥 > 𝑞𝛿.

We thus conclude that

Σ = min
{
𝑃−(𝑑), 2 +

∑
𝑝⩽𝑥

𝜒(𝑝)≠0,1
𝑝−1
}
≫ min{𝑃−(𝑑), log log(𝑒𝑑)} = 𝐺(𝑑).

The theorem now follows from Theorem 1.2. □

6 IMPROVEMENTS TO PÓLYA–VINOGRADOV ON AVERAGE

Let 𝜀 > 0 and let 𝜒 be a primitive character of order 𝑑 modulo a prime 𝑞. We define

Ξ𝑑(𝜀) ∶= {𝓁 ∈ ℤ∕𝑑ℤ ∶ 𝓁 ≠ 0, 𝑀(𝜒𝓁) > 𝜀
√
𝑞 log 𝑞}.
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LARGE SUMS OF HIGH ORDER CHARACTERS 39 of 44

ToproveTheorem3wewill show, usingwork ofGranville and Soundararajan [13], that the iterated
sumsets of Ξ𝑑(𝜀) satisfy rigid conditions; see Lemma 6.3. When 𝑑 has no small prime factors this
rigidity puts limits on the size of Ξ𝑑(𝜀).

Proposition 6.1. Let 𝑞 ⩾ 10 be large. Then there is an absolute constant 𝐶 > 0 such that if 𝑘 ⩾ 1

and 𝜀 > 0 satisfy

𝑘 ⩽
log log 𝑞

10 log log log 𝑞
, 𝜀 ⩾ 𝐶(log 𝑞)

−
1

3(2𝑘+1)2

then

|Ξ𝑑(𝜀)|≪ 𝑑

(
1

𝑘
+

1

𝑃−(𝑑)

)
.

To prove Proposition 6.1 we need the following (slight) extension of [13, Theorem 2] that gives
a precise dependence of the bound on the number of characters involved.

Lemma6.2. Let 𝑞 ⩾ 10 be large and let 3 ⩽ g ⩽
log log 𝑞

log log log 𝑞
be odd. Then there is an absolute constant

𝐶0 > 0 such that the following holds.
Let 𝜒1, … , 𝜒g be primitive characters with respective conductors 𝑞𝑗 ⩽ 𝑞 and for which

𝑀(𝜒𝑗) >
√
𝑞𝑗(log 𝑞𝑗)

1−1∕g for all 1 ⩽ 𝑗 ⩽ g .

Suppose in addition that 𝜒1⋯𝜒g is principal. Then as 𝑞 → ∞,

∏
1⩽𝑗⩽g

𝑀(𝜒𝑗)√
𝑞𝑗 log 𝑞

⩽ 𝐶g

0
(log 𝑞)

−
1+𝑜(1)

2g .

Proof. By [10, Proposition 3], there is an absolute constant𝐴 > 0 such that for each 1 ⩽ 𝑗 ⩽ g there
are

(i) a primitive character 𝜉𝑗 (mod 𝑚𝑗)with𝑚𝑗 ⩽ (log 𝑞)
2

g (log log 𝑞)4 and 𝜉𝑗(−1) = −𝜒𝑗(−1); and
(ii) a scale 1 ⩽ 𝑁𝑗 ⩽ 𝑞𝑗 , such that

𝑀(𝜒𝑗) ⩽ 𝐴

√
𝑞𝑗𝑚𝑗

𝜙(𝑚𝑗)

||||||
∑
𝑛⩽𝑁𝑗

𝜒𝑗𝜉𝑗(𝑛)

𝑛

||||||.
By [13, Lemma 4.3], there is an absolute constant 𝐵 > 0 such that

||||||
∑
𝑛⩽𝑁𝑗

𝜒𝑗𝜉𝑗(𝑛)

𝑛

|||||| ⩽ 𝐵(log𝑁𝑗)𝑒
− 1
2
𝔻(𝜒𝑗,𝜉𝑗;𝑁𝑗)

2
⩽ 𝐵(log 𝑞)𝑒−

1
2
𝔻(𝜒𝑗,𝜉𝑗;𝑞)

2
,
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40 of 44 MANGEREL

using in the last step the fact that for any sequence {𝑓(𝑝)}𝑝 ⊂ 𝕌 the map

𝑡 ↦
∑
𝑝⩽𝑡

2 − (1 − Re(𝑓(𝑝)))
𝑝

is non-decreasing. Choosing 𝐷 ⩾ 1 absolute so that
√
𝑚 ⩽ 𝐷𝜙(𝑚) for all 𝑚 ⩾ 1 and then setting

𝐶0 ∶= 𝐴𝐵𝐷, we deduce that

𝑀(𝜒𝑗)√
𝑞𝑗 log 𝑞

⩽ 𝐶0𝑒
− 1
2
𝔻(𝜒𝑗,𝜉𝑗;𝑞)

2
.

Taking the product over 1 ⩽ 𝑗 ⩽ g and using the inequality∑
1⩽𝑗⩽g

𝔻(𝜒𝑗, 𝜉𝑗; 𝑞)
2 ⩾

1

g
𝔻(1, 𝜉1⋯ 𝜉g ; 𝑞)

2

from the proof of [13, Lemma 3.3], we thus obtain

∏
1⩽𝑗⩽g

𝑀(𝜒𝑗)√
𝑞𝑗 log 𝑞

⩽ 𝐶g

0
𝑒
− 1
2g
𝔻(1,𝜉1⋯𝜉g ;𝑞)

2

. (38)

Set now 𝜉 ∶= 𝜉1⋯ 𝜉g , which is non-trivial since 𝜉(−1) = (−1)g𝜒1⋯𝜒g (−1) = −1. The conductor
of 𝜉 is

𝑀 ∶= [𝑚1,… ,𝑚g ] ⩽ 𝑚1⋯𝑚g ⩽ (log 𝑞)2(log log 𝑞)4g ⩽ (log 𝑞)6,

by our hypothesis on g . Thus, by the Siegel–Walfisz theorem (as in, for example, [13, (3.1)]) we
obtain

𝔻(1, 𝜉; 𝑞)2 ⩾
∑

𝑀<𝑝⩽𝑞

1 − Re(𝜉(𝑝))
𝑝

⩾
∑

𝑎 (mod 𝑀)
(𝑎,𝑀)=1

(1 − Re(𝜉(𝑎)))
∑

𝑀<𝑝⩽𝑞
𝑝≡𝑎 (mod 𝑀)

1

𝑝

=
1 + 𝑜(1)

𝜙(𝑀)

(
𝜙(𝑀) − Re

( ∑
𝑎 (mod 𝑀)

𝜉(𝑎)

))
log log 𝑞

= (1 + 𝑜(1)) log log 𝑞.

We hence deduce from (38) that as 𝑞 → ∞,

∏
1⩽𝑗⩽g

𝑀(𝜒𝑗)√
𝑞𝑗 log 𝑞

⩽ 𝐶g

0
(log 𝑞)

−
1+𝑜(1)

2g ,

as claimed. □
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Lemma 6.3. Let 𝑞 ⩾ 10 be large. Then there is an absolute constant 𝐶 ⩾ 1 such that whenever 1 ⩽

𝑘 ⩽
log log 𝑞

10 log log log 𝑞
and 𝐶(log 𝑞)

−
1

3(2𝑘+1)2 < 𝜀 < 1,

2𝑘Ξ𝑑(𝜀) ∩ Ξ𝑑(𝜀) = ∅.

Proof. For ease of notation,write𝐴 ∶= Ξ𝑑(𝜀). Suppose for the sake of contradiction that𝑎 ∈ 2𝑘𝐴 ∩

𝐴. Then we can find 𝑎1, … , 𝑎2𝑘 ∈ 𝐴 such that

𝑎1 +⋯ + 𝑎2𝑘 − 𝑎 ≡ 0 (mod 𝑑). (39)

For convenience, write 𝑎2𝑘+1 ≡ −𝑎 (mod 𝑑), noting that𝑀(𝜒𝑎2𝑘+1) = 𝑀(𝜒𝑎).
Since 0 ∉ 𝐴 and 𝑞 is prime, 𝜒𝑎𝑗 is primitive for all 1 ⩽ 𝑗 ⩽ 2𝑘 + 1. Also, by (39), 𝜒𝑎1 ⋯𝜒𝑎2𝑘+1 is

principal. Finally, since 𝜀 log 𝑞 ⩾ (log 𝑞)1−1∕(2𝑘+1), Lemma 6.2 yields

∏
1⩽𝑗⩽2𝑘+1

𝑀(𝜒𝑎𝑗 )√
𝑞 log 𝑞

⩽ 𝐶2𝑘+1
0

(log 𝑞)
−
1+𝑜(1)

2(2𝑘+1) .

On the other hand, since 𝑎𝑗 ∈ 𝐴 for all 1 ⩽ 𝑗 ⩽ 2𝑘 + 1 (as 𝐴 is symmetric), we obtain

∏
1⩽𝑗⩽2𝑘+1

𝑀(𝜒𝑎𝑗 )√
𝑞 log 𝑞

> 𝜀2𝑘+1 ⩾ 𝐶2𝑘+1(log 𝑞)
−

1

3(2𝑘+1) .

This gives a contradiction whenever 𝐶 ⩾ 𝐶0 and 𝑞 is large enough, and the claim follows. □

Let 𝐺 be a finite Abelian group, written additively. For 𝑘,𝓁 ⩾ 1 we say that 𝐴 ⊆ 𝐺 is a (𝑘,𝓁)-
set if 𝑘𝐴 ∩ 𝓁𝐴 = ∅. Lemma 6.3 shows that, under the claimed constraints on 𝑘 and 𝜀, Ξ𝑑(𝜀) is a
(2𝑘, 1)-set. It is clear that if 𝐵 ⊆ 𝐴 and𝐴 is a (𝑘,𝓁)-set then 𝐵 is also a (𝑘,𝓁)-set, so that (𝑘,𝓁)-sets
form a partially-ordered set under inclusion. We say that𝐴 is amaximal (𝑘,𝓁)-set if𝐴 is maximal
with respect to this partial order.

Theorem (Bajnok [1], Theorem 3; Hamidoune–Plagne [15], Theorem 2.4). Let 𝑘,𝓁, 𝑛 ⩾ 1 with
𝑘 ≠ 𝓁. Suppose 𝐺 = ℤ∕𝑛ℤ, and let 𝐴 ⊆ 𝐺 be a maximal (𝑘,𝓁)-set. Then

|𝐴| ⩽ max
𝑓|𝑛 𝑛

𝑓

(
1 +

⌊
𝑓 − 2

𝑘 + 𝓁

⌋)
.

□

Proof of Proposition 6.1. By Lemma 6.3, Ξ𝑑(𝜀) is a (2𝑘, 1) set, and thus must be contained inside of
a maximal (2𝑘, 1)-set. By the Bajnok–Hamidoune–Plagne theorem,

|Ξ𝑑(𝜀)| ⩽ max
𝑓|𝑑 𝑑

𝑓

(
1 +

⌊
𝑓 − 2

2𝑘 + 1

⌋)
.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12841 by T

est, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 of 44 MANGEREL

When𝑓 = 1 the term inside the floor function here is−1∕(2𝑘 + 1) ∈ [−1, 0), and so the expression
is 0. Thus,

|Ξ𝑑(𝜀)| ⩽ 𝑑max
𝑓|𝑑
𝑓>1

(
1

𝑓
+

1

2𝑘 + 1

)
.

The right-hand side is maximized at the smallest divisor of 𝑑 greater than 1, which is 𝑃−(𝑑). The
claim thus follows. □

Proof of Theorem 3. Let 𝑞 ⩾ 10 be large, and let 1 ⩽ 𝑘 ⩽
log log 𝑞

10 log log log 𝑞
be a parameter to be chosen

later. Setting 𝜀 ∶= 𝐶(log 𝑞)
−

1

3(2𝑘+1)2 and splitting the sum over 𝑗 according to whether or not 𝑗 ∈
Ξ𝑑(𝜀), Proposition 6.1 implies that

1

𝑑

∑
1⩽𝓁⩽𝑑−1

𝑀(𝜒𝓁) ≪ (
√
𝑞 log 𝑞)

(
𝜀 +
|Ξ𝑑(𝜀)|
𝑑

)
≪ (
√
𝑞 log 𝑞)

(
𝜀 +

1

𝑘
+

1

𝑃−(𝑑)

)
.

If we set 𝑘 ∶= ⌊ 1
10

√
log log 𝑞

log log log 𝑞
⌋ then 𝜀 ⩽ 𝐶(log log 𝑞)

−
1

2 , and the claimed bound follows. □

Proof of Corollary 4. Note that since 𝑑 ⩾ 3 is prime, 𝜒𝓁 has odd order 𝑑 for all 𝑑 ∤ 𝓁. Applying
Lemma 6.2 with 𝜒𝑗 = 𝜒𝓁 for all 1 ⩽ 𝑗 ⩽ 𝑑, we obtain† (whether or not𝑀(𝜒𝓁) ⩽

√
𝑞(log 𝑞)1−1∕𝑑)

𝑀(𝜒𝓁) =

( ∏
1⩽𝑗⩽𝑑

𝑀(𝜒𝑗)√
𝑞 log 𝑞

) 1
𝑑√

𝑞 log 𝑞 ⩽ 𝐶0(
√
𝑞 log 𝑞)(log 𝑞)

−
1+𝑜(1)

2𝑑2

for each 1 ⩽ 𝓁 ⩽ 𝑑 − 1. Combined with Theorem 3, as 𝑞 → ∞ this gives

1

𝑑

∑
1⩽𝓁⩽𝑑−1

𝑀(𝜒𝓁) ≪ (
√
𝑞 log 𝑞)min

{
(log 𝑞)

−
1

3𝑑2 ,

(
log log log 𝑞

log log 𝑞

)1∕2
+
1

𝑑

}
.

The transition point in these bounds occurs for 𝑑 ≍
√

log log 𝑞

log log log 𝑞
, and with a suitable implicit

constant the claimed upper bound follows. □

Remark 9. Let 𝐾 ∶= ⌊√ log log 𝑞

100 log(1∕𝜀)
⌋, and for each 1 ⩽ 𝑘 ⩽ 𝐾 let 𝐴𝑘 ⊆ ℤ∕𝑑ℤ be a maximal (2𝑘, 1)-

set that contains Ξ𝑑(𝜀). The Bajnok–Hamidoune–Plagne theorem stated above establishes an
upper bound for each |𝐴𝑘|, and therefore also for the rightmost expression in the chain of
inequalities

|Ξ𝑑(𝜀)| ⩽ | ⋂
1⩽𝑘⩽𝐾

𝐴𝑘| ⩽ min
1⩽𝑘⩽𝐾

|𝐴𝑘|. (40)

†Note that this bound could be trivial if 𝑑 ≫ (log log 𝑞)1∕2.
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LARGE SUMS OF HIGH ORDER CHARACTERS 43 of 44

It is reasonable to ask whether there could be a substantial difference in size between the inter-
section of the𝐴𝑘 and the minimal |𝐴𝑘|. However, note that any symmetric set𝐴 satisfies (2𝑘)𝐴 ⊆

(2𝑘 + 2)𝐴, as we can express any𝑚-fold sum of terms in 𝐴 as an (𝑚 + 2)-fold sum via

𝑎1 +⋯ + 𝑎𝑘 = 𝑎1 +⋯ + 𝑎𝑘 + 𝑎′ + (−𝑎′)

for any 𝑎′ ∈ 𝐴. It follows that any (2(𝑘 + 1), 1)-set is also a (2𝑘, 1)-set, and it is possible therefore
that𝐴𝑘+1 ⊆ 𝐴𝑘, that is, the sums are nested. In such an event, the latter inequality in (40) is sharp.
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