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Abstract 

This paper presents a remote sensing-based method to efficiently generate multi-temporal 

landslide inventories and identify recurrent and persistent landslides. We used free data from 

Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to 

develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 

to 2021. The model successfully delineated more than 265,000 landslides, accurately identifying 

83% of manually mapped landslide areas and 94% of reported landslide events in the region. 
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Surprisingly, only 14% of landslide areas each year were first occurrences, 55-83% of landslide 

areas were persistent and 3-24% had reactivated. On average, a landslide-affected pixel persisted 

for 4.7 years before recovery, a duration shorter than findings from small-scale studies following 

a major earthquake event. Among the recovered areas, 50% of them experienced recurrent 

landslides after an average of five years. In fact, 22% of landslide areas in the Himalaya 

experienced at least three episodes of landslides within 30 years. Disparities in landslide 

persistence across the Himalaya were pronounced, with an average recovery time of 6 years for 

Western India and Nepal, compared to 3 years for Bhutan and Eastern India. Slope and elevation 

emerged as significant controls of persistent and recurrent landslides. Road construction, 

afforestation policies, and seismic and monsoon activities were related to changes in landslide 

patterns in the Himalaya. 

Keywords: landslide inventory, landslide evolution, vegetation recovery, multi-temporal, 

spatiotemporal analysis, machine learning   
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1. Introduction 

Landslides triggered by earthquakes and extreme rainfall are known to persist and/or reoccur 

over time, posing ongoing challenges to infrastructure and human safety (Hovius et al., 2011; 

Lin and Lin, 2015; Marc et al., 2015; Kincey et al., 2021). Their impacts can affect communities 

and landscapes for years, sometimes decades (Mansour et al., 2011; Chen et al., 2021). Such 

effects are apparent at both large-scale over extensive areas, such as that impacted by an 

earthquake (e.g., Chen et al., 2019; Kincey et al., 2023), or at individual landslides or catchments 

(e.g., Samia et al., 2017; Temme et al., 2020). At both scales, data describing the spatial and 

temporal nature of landslides, would allow us to characterise their persistence (how long do 

landslides remain in the landscape after they have occurred?) and recurrence (how often 

landslide occur in the same location more than once). This knowledge is crucial for unpicking 

the components of long-term landslide hazard and risk, as well as understanding the physical and 

anthropogenic factors influencing landslide evolution (Gariano and Guzzetti, 2016; Jones et al., 

2021; Muñoz-Torrero Manchado et al., 2021). Comparative analyses of these data across 

different territories can aid in resource allocation, mitigation and recovery strategies (Lee and 

Jones, 2023). However, the scarcity of comprehensive, multi-temporal landslide datasets, which 

are time-intensive and costly to produce, currently limits our understanding of persistent and 

recurrent landslides. 

Optical remote sensing offers a proven approach for the multi-temporal analysis of landslides. 

Numerous studies have utilized expert knowledge to visually interpret landslides from time-

series satellite data, enabling the identification of shifting landslide patterns (Fan et al., 2018; 

Jones et al., 2021; Kincey et al., 2021). However, such large-scale manual mapping is both time-
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consuming and open to potential inaccuracies due to the subjectivity involved in the digitization 

of individual landslides (Meena and Tavakkoli Piralilou, 2019). In contrast, while automated 

analysis of satellite imagery alone may not provide sufficiently detailed information on all 

relevant factors pertinent to landsliding such as ground water, it can offer valuable information 

on vegetation cover and density, a crucial indicator of previous landslides and surface recovery 

(Shen et al., 2020). As optical satellite images can describe the distribution, they hold the 

potential to measure persistence and recurrence of landslides across large areas and over long 

time periods. 

Automated methods of mapping landslides, such as thresholding vegetation indices from satellite 

time series to identify likely landslide footprints, have been developed to create multi-temporal 

landslide inventories and evaluate surface recovery (Behling et al., 2014; Behling et al., 2016; 

Yunus et al., 2020; Chen et al., 2021). By examining changes in vegetation index, studies can 

estimate the timing of landslide initiation and recurrence (Muñoz-Torrero Manchado et al., 

2021). It is however important to note that the threshold for identifying landslides from a 

vegetation index can vary across landscapes, especially across elevation or precipitation 

gradients. This variability poses a challenge when attempting to apply a universal threshold at 

scale across extensive transboundary regions, such as the Himalaya. As a result, most existing 

multi-temporal analyses of landslides focus on catchment areas or earthquake affected regions to 

track landslide changes following a major disturbance. At larger scales, the occurrence, 

persistence and recurrence of landslides can be influenced by various factors such as climate 

change, infrastructure development, and the interplay between landslide preconditioning and 

triggering factors, which each exhibit spatial variations and require large-scale information to 

assess the resultant landslide dynamics. 
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In this study, we develop a methodology to identify the dynamic properties of landslide 

recurrence and persistence over a large geographic region. This large-scale analysis is an 

advance over existing remote sensing of landslide studies which identify a single landslide event 

or for a relatively small geographic region. Machine learning models can set up complex 

thresholds of surface reflectance for landslide detection using data-driven approaches, and so are 

able to map landslides across large extents (Chen et al., 2019). We use such an approach to 

generate a 30-year inventory of landslide scars using publicly available satellite data and deep 

learning techniques. Then, we validate the method using multiple landslide catalogs from media 

reports and manually mapped high-resolution data. The approach unveils the distribution and 

timing characteristics including first occurrence, persistence, and recurrence of landslides over 

30 years across the Himalaya. 

2. Study area 

Our study area is the contiguous Himalaya mountain arc including the Indian states of Jammu 

and Kashmir, Himachal Pradesh, Uttarakhand (hereafter Western India), Sikkim, and Arunachal 

Pradesh (hereafter Eastern India), and the countries of Nepal and Bhutan (Fig. 1). As one of the 

most geologically active mountain regions, the Himalaya is experiencing rapid change, including 

expansion of built-up areas, infrastructure development and social and political change (Tiwari et 

al., 2018; Chen et al., 2023). We focused on areas below 4000 m elevation and aim to identify 

landslides that could pose risks to the population. Areas above this elevation are sparsely 

populated, and identifying landslides becomes challenging due to spectral similarities with the 

surrounding landscape above the tree line. The study area spans a land area of 365,021 km
2
.  
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Fig. 1. (A) The Himalaya study area outlined in black where we mapped landslides through time, 

overlaid with topography from NASA's Blue Marble seamless image mosaic, (B) landslide 

reports across the Himalaya, represented by dots sourced from the Global Landslide Catalog 

(GLC) and the Global Fatal Landslide Database (GFLD), serve as the first testing dataset 

(Kirschbaum et al., 2010; Froude and Petley, 2018), and (C) manually mapped landslide data in 

Central and Western Nepal, which serve as training dataset and the second testing dataset for our 

machine learning model.  
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3. Data and methodology 

3.1 Satellite data  

To ensure the replicability of our methodology for identifying landslides through time, we 

leveraged free satellite data with global coverage (Fig. 2). We selected relevant datasets known 

for their predictive capabilities in landslide analysis, including optical satellite images, nighttime 

light images, and topography data, and obtained them from Google Earth Engine (Reichenbach 

et al., 2018; Chen et al., 2019; Tehrani et al., 2022). Optical satellite images capture the spectral 

contrast of bare ground exposed by landslides from surrounding vegetation, where the landslide 

clears the surface material from the slope. Nightlight data aid in distinguishing landslides from 

visually similar features associated with human settlements and quarries. Additionally, slope is a 

key contributor to conditions that favor landsliding, such as the movement of water and the 

increase of shear stresses. As vegetation density typically varies along an elevation gradient, 

incorporating elevation into the deep learning model can be beneficial as it allows for the 

automatic exploration of interactive weights between elevation and surface reflectance. 

Hydrological networks denote the cells with rivers and can potentially help separate landslides 

from spectrally similar river gravels (Reichenbach et al., 2018). Mapped landslide inventories 

derived from sub-seasonal imagery are known to be sensitive to fluctuations in vegetation 

encroachment into landslide scars (Kincey et al., 2023). These largely predictable and small 

magnitude variations in sum can mask longer-term incremental changes in landslide 

characteristics, and hence we deliberately compared the same period between years, rather than 

within year changes. 
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Fig. 2. Flowchart of the identification of landslides and their recurrence and persistence based on 

open-access Landsat daytime imagery, the digital elevation model, and the Defense 

Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite 

(VIIRS) nighttime imagery datasets. 

3.1.1 Daytime images 

We obtained all available Landsat surface reflectance data from atmospherically corrected 

Collection 2, Tier 1, as well as the Quality Assessment band that we used to remove pixels 

covered by clouds, cloud shadows with a high confidence level, and scan-line corrector (SLC)-

off gaps (USGS, 2020). This includes the blue, green, red, near-infrared, first and second 

shortwave infrared bands at 30-m spatial resolution. We collected all available images from 
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February to July to avoid low-quality observations affected by snow and cloud cover, while 

remaining close to the pre-monsoon period (i.e., January to May) covered by the training data 

from Kincey et al. (2021). Additionally, we used a three-year window, including the target year, 

the previous year, and the following year to increase the number of high-quality observations. 

We then calculated the 40
th

 percentile among available observations per pixel to represent the 

pre-monsoon reflectance of the middle year. This resulted in a total of 30 pre-monsoon image 

composites, covering the period from 1992 to 2021, at 30-m resolution for the Himalaya. The 

resolution defines the minimum size threshold of the landslides that we are able to detect, which 

is the size of a single pixel, 900 m
2
. We standardized all images using the 98

th
 percentile of 

surface reflectance over the study area and years.  

3.1.2 Nighttime images 

We collected nighttime light imagery from the Defense Meteorological Satellite Program 

(DMSP) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS data are 

preferable as it has a finer resolution (463 m) than the DMSP data (1,000 m). Because VIIRS 

data are not available before 2014, we incorporated nighttime light imagery from the DMSP 

spanning 1992-2013 and the VIIRS for 2014-2021. We utilized processed DMSP data from the 

Consistent And Corrected Nighttime Light Dataset (Zhao et al., 2022). The VIIRS data were 

monthly average radiance composites and we transformed them into annual median values. Both 

datasets were resampled to 30-m resolution to match the daytime images. To account for the 

different luminosity units between VIIRS and DMSP, we used the method proposed by Chen et 

al. (2019) to generate VIIRS-like DMSP data with linear regression (R
2
 = 0.59). 

V' = 0.157486 + 0.1249074 × D 
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where V' denotes the VIIRS-like DMSP data and D denotes the original DMSP data. 

3.1.3 Topography data 

Our topographical variables include elevation, slope, and hydrological networks. We used 

NASA’s digital elevation model (DEM), which is the 2000 reprocessing of the Shuttle Radar 

Topography Mission data (Jpl, 2020). These data were remotely sensed by radar interferometry 

with a resolution of 1 arc-second and improved by using ICESat GLAS data for control. Slope is 

derived by determining the highest magnitude first derivative across each cell of the elevation in 

Google Earth Engine. We used HydroSHEDS to represent hydrological networks, which is also 

based on NASA’s digital elevation model (Lehner et al., 2008). 

3.2 Reference data 

3.2.1 Visually interpreted landslide data 

We used manually mapped landslide data based on an area of 25,575 km
2
 from Central and 

Western Nepal reported in Kincey et al. (2021) as training and testing data for the machine 

learning model. This dataset has the advantage of: (1) being internally consistent; (2) having a 

systematically collected time-series of data; (3) being mapped from imagery of a resolution (i.e. 

Sentinel-2) better than our input satellite imagery (4) being mapped from an area that 

encompasses elevation, slope, land use and land cover; and climate typical of much of the wider 

Himalaya. The boundary of individual landslides, including combined source areas and deposits, 

was identified by the spectral contrast between exposed sediment or bedrock within the landslide 

and the surrounding vegetation. We used the data of 2016-2019 because the landslides in this 

period are generated from higher resolution Sentinel-2 images (10 m) and are of better quality 
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than our input satellite data. From 2016 to 2019, the number of landslides recorded in each pre-

monsoon period ranged from 15,627 to 17,641. We converted the vector dataset into a 30 m × 30 

m raster dataset to be consistent with the input satellite data.  

We divided Kincey et al.'s dataset into training and testing data, with similar coverage of high-, 

mid-, and low-elevation areas (Fig. 1). Then, for the training data, we further split it into 80% 

and 20% for training and validation for the deep learning model’s parameterization. We also 

aggregated the testing data by wards, which are the local government entities in Nepal, and 

Kincey et al.'s dataset includes 131 wards.  

3.2.2 Reported landslide data 

To assess the model's applicability across the Himalaya, we utilized two landslide impact and 

occurrence catalogs: the Global Landslide Catalog (GLC) and the Global Fatal Landslide 

Database (GFLD) (Kirschbaum et al., 2010; Froude and Petley, 2018). Both catalogs focus on 

precipitation-triggered landslides only, with the GFLD specifically highlighting events causing 

human casualties, and both being heavily reliant upon event reporting which results in an 

inherent bias to inhabited areas. The GFLD recorded 1,000 landslide events in the Himalaya 

from 2004 to 2017, while the GLC documented a total of 1,268 events from 2007 to 2017. 

Latitude and longitude information in the catalogs were estimated from location names found in 

newspapers, government or scientific reports, providing an average precision of 5 km for the 

GFLD.  
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3.3 Machine learning model 

The convolutional neural network (CNN) works by identifying patterns in the stack of satellite 

data that correspond to landslide and non-landslide examples from training data. The first step 

involves preparing pairs of satellite images and training labels in a "patch" format, which serves 

as the fundamental data unit for a CNN. CNNs showed higher accuracies than other machine 

learning models that do not automatically utilize spatial information for landslide detection 

(Ghorbanzadeh et al., 2019). A patch is a small image extracted from a portion of the training 

data that provides spatial information, with dimensions of n × n pixels. Once the model begins its 

training process, we feed the model with various sets of parameters, such as learning rate, patch 

size, and loss function, to optimize its performance. The validation data is then utilized to 

determine the most favorable parameter sets. The model returned an output image of landslide 

probability, ranging from 0-1. In order to convert the probability into a binary landslide map, we 

conducted an iterative resampling process and measured accuracies across a range of probability 

thresholds. Through this analysis, we determined that a threshold of 0.14 achieved the desired 

precision-recall trade-off (Fig. 3). Finally, we assess the accuracy of the final model using 

independent testing data that was neither used during training nor validation. 
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Fig. 3. Sensitivity analysis of the accuracy trade-offs with respect to the probability threshold 

used to classify the occurrence of landslides. Gray shading indicates the 95% confidence 

interval. 

 

3.3.1 The U-Net architecture 

We utilized the U-Net architecture as our CNN segmentation model to estimate the probability of 

a pixel being a landslide scar (Ronneberger et al., 2015). The U-Net has demonstrated its 

efficacy in land cover mapping in mountainous regions, where spectral similarities among 

different land covers exist (Chen et al., 2023). Unlike scene-based CNN, which assign a single 

label for each image patch, the U-Net architecture enables the extraction of spatial information 

pertaining to landslides across various scales while preserving spatial resolution between the 

input and output images. For the encoder, we employed the ResNet-18 backbone (He et al., 

2016). Our implementation of the model utilized the Python packages TensorFlow and 

segmentation_models. 
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3.3.2 Parameterization 

The U-Net models were trained with the Adam optimizer (Kingma and Ba, 2014). Based on 

experimentation, we used an initial learning rate of 0.001, a decay rate of 0.8, a batch size of 

eight, and 40 epochs for training. We stratified and split original training data into training (80%) 

and validation sets (20%) to validate the stopping point during training. To address class 

imbalance, we combined Dice loss and Focal loss as the loss function. Dice loss minimizes 

overall errors, while Focal loss assigns higher weights to challenging examples (i.e., landslides). 

The ratio between Dice loss and Focal loss was set to 1:100 based on initial experiments. We 

used a patch size of 64 × 64 pixels, as it provided higher accuracy than 32 × 32 pixels for our U-

Net model. 

3.4 Accuracy assessment  

Our accuracy assessment comprised three components. First, we evaluated the model's 

performance in predicting visually interpreted landslides from higher resolution images (i.e., 

Sentinel-2) and examined the impact of different input features on its accuracy. In the testing 

areas, we randomly sampled 400 landslide and 2,800 non-landslide points, with an accuracy 

standard error of 1%. We tested accuracies for different input combinations: daytime images 

alone, addition of topographical features and nighttime images, and varying training data 

duration (one, two, and three years).  

Each data point was evaluated as one of four validation categories: true positive (TP), true 

negative (TN), false negative (FN), false positive (FP). Based on these categories, we calculated 

overall accuracy ((TP + TN / (TP + TN + FP + FN)), precision (TP / (TP + FP)), recall (TP / (TP 
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+ FN)), and F1 score ((2 × precision × recall) / (precision + recall)). The precision represents the 

model performance in reducing landslide overestimation, recall refers to the ability to minimize 

landslide underestimation, and F1 score is the harmonic mean of recall and precision. 

In the second component, we evaluated the model's performance in detecting historical landslide 

events across the broader Himalayan region. We organized the GFLD and GLC datasets by year 

and season, specifically the pre-monsoon (January-May, N = 419) and post-monsoon (June-

November, N = 1,849) seasons. During testing, we utilized the pre-monsoon reports from a given 

year and the post-monsoon reports from the previous year since the model was trained using 

observed landslide scars from the pre-monsoon period. We calculated the detection rate (recall) 

of our model for each year. Considering the limitations of spatial precision in crowdsourced 

landslide databases, as documented by Froude and Petley (2018), we adopted a 5-km buffer to 

test whether the model can detect events in the surrounding area of the GFLD and GLC 

coordinates. 

Third, we investigated potential biases in administrative interpretation at the ward level. For each 

ward, we calculated the landslide area, landslide areal density, and the number of landslide 

objects using the machine learning model’s output. We then correlated these metrics with the 

reference metrics derived from visually interpreted data and analyzed the geographic context of 

wards experiencing under- or over-estimation. We used R
2
 and scatter plot to present correlation 

and bias. 
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3.5 Time-series analysis 

After testing the model, we applied it to generate an annual landslide inventory from 1992 to 

2021. We derived the attributes related to persistence and recurrence at both the annual and 

aggregated levels in R (see the code in the data availability statement). At the annual level, the 

total landslide area each year consisted of those that were present in the previous year 

(persistent), those that reactivated after vegetation regrowth (recurrent), and those that newly 

occurred. We also identified the area of recovery for each year if there was observed revegetation 

following a landslide event. To calculate the number and size of landslides, we converted raster 

maps into vector data using ArcGIS. 

As the aggregated level, we attributed first occurrence, persistence, and recurrence for each pixel 

over the period 1992-2021 (Fig. 4). The first occurrence indicates the year when a landslide was 

initially observed. Since our study period is from 1992 to 2021, we can only identify landslides 

that occurred after 1992. The persistence metric measures the longest consecutive period, in 

years, during which a pixel was classified as a landslide scar. The recurrence metric captures the 

frequency of landslide reactivation. Additionally, we calculated the kernel density of recurrence 

and persistence against elevation and slope. The difference in kernel density signifies the 

landslide density that was either higher or lower than the background density of the 

topographical features (further details in Kincey et al. (2021)). We used R’s density function for 

the kernel density analysis.  
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Fig. 4. Examples of first occurrence, persistence, and recurrence attributes at the pixel level. 

4. Results 

4.1 Persistent and recurrent landslides over 30 years  

We found that on average, of the entire landslide area mapped each year, only 14% of this area 

had not been a landslide previously. Each year, 55-83% of the landslide area mapped was 

classified as persistent and 3-24% as reactivated (Fig. 5); over this timescale landslides 

therefore predominantly persist or reoccur in locations where they have occurred previously. 

The satellite imagery also shows many landslide areas experienced vegetation regrowth a year 

after the landslide event (27%). However, despite instances of quick recovery, more than 50% 

of the previously recovered areas experienced recurrent landslides after an average of 5.2 years 

(SD = 4.9 years). 
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Fig. 5. Annual area estimate across 1992-2021. Recovered represents a landslide scar that was 

detected a year before but revegetated. Persistent scars are scars present in a previous year in the 

time series. First occurrence scars are those that were not previously detected in the study period. 

Recurrent scars are those that were detected previously, revegetated and then experienced a 

landslide again.  

 

We observed the highest total area of landslides in 1998 (4,005 km
2
) and the lowest in 2006 

(3,292 km
2
), representing 1.07% and 0.81 % of the ground surface respectively. Although the 

Himalaya’s size makes it challenging to attribute the overall pattern to a single seismic or storm 

event, we observed a significant correlation between the temporal variation in the new landslide 

area and South Asian Summer Monsoon Index in July and August (p < 0.05) (Li and Zeng, 

2002), showing the effect of monsoon strength and its interannual variability. Furthermore, our 
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analysis showed an overall decreasing trend in the new landslide area over time, although this 

observation may be biased due to the longer historical record available for the later years in our 

analysis.  

4.2 Geographical distribution of landslides and first occurrence 

We found highly heterogeneous trends in landslides across the Himalaya (Table 1; Appendix 

Table S1). Western India, which has the fastest population growth in the region, experienced the 

most rapid increase in the number and area of landslides, adding landslides at a rate of > 0.01% 

yr
-1 of the ground surface area per year, with larger than average landslides (~17,000 m

2
). Nepal 

exhibited the second-highest rate of change in landslide area (0.005% yr
-1), which was notably 

increased following the 2015 Gorkha earthquake. The rate of change in Bhutan and Eastern India 

was still positive, but in comparative terms minimal (<0.0001% yr
-1). At this broad 

administrative scale, all parts of our study area have therefore experienced increased rates of 

landsliding over the study period. 

 

Table 1.  Total number and area of landslides by time period and region. For each period the 

average number and area of landslides are derived from annual data. Annual rates of change in 

landslide area (% yr
-1) are derived from simple ordinary least squares linear regression models 

for 10 km × 10 km cells over 1992 to 2020 and then averaged by region excluding cells without 

landslides. 

Period Country/Region 

N of landslides Western India Nepal Bhutan Eastern India 

1992-1999 66536 78749 16406 83039 

2000-2005 76364 81894 20547 82907 
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2006-2014 89082 69889 15213 72508 

2015-2021 95171 82356 17387 70317 

Area of landslides (km
2
) 

   
1992-1999 1232 1169 178 740 

2000-2005 1379 1120 225 796 

2006-2014 1541 1007 176 742 

2015-2021 1460 1142 194 732 

Average size (m
2
)     

1992-1999 18513 14840 10834 8915 

2000-2005 18057 13680 10966 9600 

2006-2014 17299 14412 11552 10235 

2015-2021 15336 13861 11152 10412 

Annual rate of change  

(% 
 
yr

-1
) 

               0.0133               0.0047              0.00008                    0.00006  
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Furthermore, we captured highly heterogenous trends in landsliding even within the same 

country (Fig. 6). Notable higher rates of landslide area change were observed in Northern 

Bagmati (Nepal) the 2015 Mw 7.8 Gorkha earthquake (Fig. 6). Additionally, we identified 

another hotspot of increased landslide activity associated with intensive road development 

between 2014 and 2017 in Tehri Garhwal, Uttarakhand. Constructing new roads led to extensive 

landslides nearby the National Highway 7, as hillside along the already cultivated slope were 

cut (Fig. 6) (Kumar and Anbalagan, 2016). Extreme rainfall events in Western India in 2013 

and subsequent years may also serve as another trigger (Martha et al., 2015; Pham et al., 2018). 

Interestingly, at this scale of analysis, the landslide impacts of road building are comparable in 

intensity to those associated with earthquakes. Conversely, we observed a declining landslide 

area in Karnali, the Mid-Western region of Nepal and in Sirmour in Himachal Pradesh, India. 

This decrease may involve a combination of afforestation and artifacts in high-elevation areas 

(Fig. 6). For example, the decrease in Sirmour was aligned with the increase in open forest 

cover, which doubled between 1997 and 2003 due to afforestation efforts after the 1986 ban on 

green felling in Himachal Pradesh and the 1993 forestry act across Nepal (Gupta 2007; Van Den 

Hoek et al. 2021). It is also plausible that some landslides persisted from before our analysis 

(i.e., pre-1992) and recovered during our study period, a factor we were unable to quantify. 
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Fig. 6. Annual rate of change in landslide area (% yr
-1

) from 1992 to 2020 by fitting simple 

ordinary least squares linear regression models to timeseries data on landslide area for each 10 

km × 10 km cell. Increasing cases are overlaid with the first occurrence layer, showing road-

related increases in Tehri Garhwal and Ramban, as well as earthquake related increases in 

Bagmati. Decreasing cases present landscapes that experienced vegetation recovery (e.g., 

Sirmour (India)) and noise from glacial terrain (e.g., higher elevations in Karnali (Nepal)).  

 

The calculation of first occurrence from our time-series results is a valuable tool for identifying 

triggering factors, revealing distinct regional heterogeneity (Fig. 7). In Western India, the areal 

landslide density of first occurrences decreased from 1.3% to 0.5% over the period 2006-2014 

to 2015-2021. In contrast, Nepal's areal landslide density slightly increased from 0.42% to 

0.47% across the same period. The disparity between Western India and Nepal could potentially 

be attributed to the impact of the 2005 Kashmir earthquake in Western India (Fig. 7A) and the 

2015 Gorkha earthquake in Nepal (Fig. 7C). For comparison, the mean areal density of 
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landslides after the 2015 Gorkha earthquake was reported as 0.72% by Kincey et al. (2021) and 

0.25% by Martha et al. (2017), and as 0.38% over the period 1998-2018 by Jones et al. (2021) 

in central-eastern Nepal. While we anticipated a lower areal density in our analysis due to our 

broader geographical scope and resolution limits on minimum detectable events, the eventual 

higher estimates are likely to be attributed to overestimation in high-elevation areas, which were 

excluded in the two reference studies.  

 

Fig. 7. First occurrence of landslides across the HKH. Inset maps (A) landslides triggered right 

after road construction in Tehri Garhwal, Uttarakhand in 2020, (B) substantial increases in 

landslides after the 2015 Gorkha Earthquake in Bagmati, north of Kathmandu, and (C) noisy 

results on glacial terrain in Eastern India. Inset graphs (D) total area and (E) percentage of first 

occurrences by region and period.   
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4.3 Cumulative landslide persistence, recurrence and topography 

Results stacking our 30-year timeseries into per pixel counts of landslide occurrence showed 

that a landslide pixel’s longest continuous mapped period (i.e., persistence) was on average 4.7 

years before full recovery, with a standard deviation of 6.4 years. Breaking the frequency of 

landsliding per pixel down, about 39% of the landslide area revegetated within two years, 50% 

took two to ten years, and 11% over a decade, including 5% over two decades (Fig. 8). This 

means that 89% of our mapped landslide scar area (equivalent to 14767 km
2
) persisted for a 

sub-decadal period. Despite this 5% remained longer, representing 850 km
2 

of the landslide 

scars within the Himalayas, that took at least two decades to revegetate. Although a significant 

portion of the mapped landslide area revegetated, 43% of our mapped landslide area then 

experienced further landsliding or recurrence, and 22% of the landslide area experienced at least 

two further episodes of landslides in the time series, including 1.5% which experienced 

landslides in at least five discrete episodes.  

The spatial distribution of landslide persistence and recurrence showed evolutionary 

characteristics of individual landslides at the local level and revealed regional disparities. At the 

local level, the peripheral area of a landslide recovered sooner than the central area whereby 

landslide footprint constricted through time (Fig. 8A, B). Larger landslides tended to persist 

longer, and landslides in higher relief areas reoccurred more frequently (Fig. 8C). Over the 

Himalaya, landslide persistence was higher in the west, with an average recovery time of 6 

years across Western India and Nepal, compared to 3 years for Bhutan and Eastern India. 

Recurrent landslides are more prevalent in Western India (90
th

 percentile: reoccurred 2 times) 

than other Himalayan regions (90
th

 percentile: 1 time) (Fig. 8). 
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Persistent landslides were observed to occur on steeper slopes and lower elevations than those 

which were more short-lived in the landscape (Fig. 9). Landslides that persisted for four years or 

longer were more likely to occur on steep slopes between 40 and 55°, suggesting recovery is 

impeded by topography. Landslides that persisted for four years or more are also more likely to 

occur at middle elevations in our study are, below 3000 m, compared to shorter-term landslides. 

Across all degrees of persistence and recurrence, landslides occurred much less frequently at 

lower (< 2,000 m) elevations, despite this representing 63% of our HKH study area. 

Landslide recurrence varied in relation to slope and elevation (Fig. 9). Higher recurrence rates 

were observed on steeper slopes, peaking at 44°, indicating again the influence of shear stresses 

in controlling reactivation. Landslides with higher recurrence rates were also found to occur at 

higher elevations. The distribution of landslide scars with low persistence and high recurrence 

significantly increased above 3,000 m. However, these short-term observations could be 

influenced by false positives resulting from variable snow cover, shadow effects, and loose 

debris. 
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Fig. 8. Geographical distribution of landslide persistence and recurrence. The histogram 

illustrates the overall frequency, and the box plot displays region-specific statistics. Insets: (A) 

earthquake-triggered landslides in Kashmir 2005, (B) recurrent landslides (three clusters) near 

roadsides, (C) a wide temporal spectrum of landslide clusters, and (D) heterogeneity of 

persistence within landslide objects. 
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Fig. 9. Topographic controls on landslide persistence and recurrence, displayed as difference in 

kernel density values relative to the density distribution from the overall study area. The area 

under the curve of a kernel density plot within a specific range of values can be interpreted as 

the probability of this range of values. Slopes below 10 degrees were excluded as these areas are 

unlikely to experience landslides (Meunier et al., 2008).   
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5. Validating the location and timing of landslides 

5.1 Visually interpreted accuracy: topography, nightlights, and multi-year data  

We initiated the accuracy assessment by evaluating various input combinations. Including 

Digital Elevation Model data resulted in a notable improvement in accuracy compared to using 

Landsat imagery alone, with the F1 score increasing from 76.9% to 82.8% (p < 0.05). 

Additionally, incorporating nightlight data further enhanced the precision (user’s accuracy) 

significantly (p < 0.05). This enhancement is likely attributed to the ability of nightlights to 

reduce false positive landslides associated with clustered settlements that are observable in 

nightlight data with a resolution of 500 m. This complements earlier landslide mapping using 

nightlight data (Chen et al., 2019), showing that it is helpful for machine learning classification 

in rural developing countries with generally lower luminosity. 

In terms of multi-year data, using two-year data for training the model yielded higher accuracy 

compared to utilizing only one-year data. However, there was no significant difference in 

accuracy when comparing two-year and three-year data (Table 2). Overall, the combination of 

daytime imagery, nighttime data, and the DEM, along with two years of training data, resulted in 

the highest accuracy.  
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Table 2.  Accuracy comparison for different remote sensing inputs by multi-sensor data (Landsat, 

DEM, nightlight) and the number of years. Standard error was measured at p < 0.05 from 20 

iterations with resampling. The accuracy is assessed by the visual interpretation of historical 

time-series data on Google Earth. 

Multitemporal data Overall accuracy Precision (UA) Recall (PA) F1 

Landsat 94.2 ± 0.8 76.9 ± 4.1 77 ± 5.5 76.9 ± 3.5 

Landsat + DEM 95.7 ± 0.7 82.6 ± 3.4 83 ± 3.7 82.8 ± 2.9 

Landsat + DEM + Nightlight 95.9 ± 0.7 83.7 ± 2.6 83.3 ± 4.5 83.5 ± 3 

Input features     

One year 95.6 ± 1.9 82.1 ± 3.9 82.3 ± 14.8 82.1 ± 9.2 

Two years 95.9 ± 0.7 83.7 ± 2.6 83.3 ± 4.5 83.5 ± 3 

Three years 95.8 ± 0.6 83.5 ± 2.5 83.2 ± 3.7 83.3 ± 2.6 

 

5.2 Reported landslide events across the Himalaya 

Our time-series mapping of landslides detected events with timing and locations proximal to 

94% of the landslide events recorded in both the Global Fatal Landslide Dataset and the Global 

Landslide Catalog, ranging from 84% to 100% from 2005 to 2017 (Fig. 10). The lowest 

detection rate, 84% in 2006, was primarily due to false reports, as all six false negatives were 

located in plain areas with flat agricultural fields, situated at elevations below 150 m. 
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Fig. 10. Detection rate measured as recall score for reported landslide events across the HKH 

region between 2005 and 2017. The report-based datasets include NASA’s Global Landslide 

Catalog and the Global Fatal Landslide Database. The low recall value (84%) for 2006 was 

affected by mis-reported events (five among six undetected events were reported at lowland – 

elevation < 150 m). 

5.3 Ward-level correlation  

At the ward level, our predictions showed a strong correlation (R
2
 > 0.8) with the reference maps 

across all four years between 2016 and 2019 for the total landslide area, landslide areal density, 

and the number of mapped landslide objects (Fig. 11). Correlations for the training years (i.e., 

2016 and 2017) were higher than for the other years (R
2
 training: 0.88-0.95 vs. out-of-sample: 

0.83-0.87). Overestimation was more likely to occur in higher-elevation regions, with Chum 

Nubri, a ward where 80% of land is above 3000 m, having the highest overestimation. The 

correlation for object number was slightly lower than that for area and areal density among the 
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three assessments, which could be attributed to Landsat's 30-m resolution blurring the boundaries 

between neighboring landslide objects. 

 

Fig. 11. Predicted landslide area, areal density, and object number at the ward level in 

comparison with visually interpreted reference map (Kincey et al. 2021).  
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6. Discussion 

6.1 Multi-temporal landslide mapping at scale 

The ability to generate landslide inventory data at this scale has previously proven a bottleneck 

in systematic landslide mapping, meaning that large scale controls on landslides, and their 

variability across space and through time, have remained elusive. The methodology presented 

here allows for generating a continuous 30-year inventory that has a wide range of potential uses. 

The spatial coverage in this study is unique, including over 265,000 landslides across North India 

(~165,500), Nepal (~82,400), and Bhutan (~17,400) that encompass broadly comparable 

physiographic characteristics.  

The persistence of these landslides is highly heterogeneous, with 39% (6470 km
2
) recovered 

within two years and 11% (850 km
2
) over a decade. The distribution of recovery time over the 

Himalaya was faster than after the 2005 Kashmir earthquake, which shows post-earthquake 

landslide area only recovered 15% within five years and 80% after eleven years. This is possibly 

due to our larger study area than the Kashmir case study (only focusing on part of Northwestern 

India) and rainfall-triggered landslides may recover faster than landslides triggered by a major 

earthquake (Wu and Lin, 2021). More research is needed on the relative persistence of landslides 

as a function of the preconditioning and triggering factors. Comparing landslide persistence in 

the Himalaya with local cases in other regions, we find that the vegetation recover rates were 

very similar to the vegetation recovery after  the 2008 Wenchuan earthquake (39% recovered 

within two years, and 89% within a decade) (Yunus et al., 2020; Chen et al., 2021) and after 

Typhoon Morakot (80% after 8 years) (Wu, 2021), but slower than after the 1999 Chi-Chi 

earthquake (recovered 50% within two years and 90% over six years) (Lin et al., 2005).  
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Faster vegetation recovery has been found related to lower elevations (Yang et al., 2018; Yunus 

et al., 2020; Chen et al., 2021; Kincey et al., 2021; Saito et al., 2022), shallower slopes (Yunus et 

al., 2020; Chen et al., 2021; Kincey et al., 2021), shady slope aspects with higher soil moisture 

(Lin et al., 2005; Saito et al., 2022) , sunny slope aspects (Yunus et al., 2020), slope aspects away 

from the direction of monsoonal rains (Kincey et al., 2021), El Niño Southern Oscillation (Wu 

and Lin, 2021), and for smaller landslide sizes (Wu, 2021). Frequent reactivation has also been 

related to precipitation (Shou et al., 2011; Chen et al., 2021) and steeper slopes (Chen et al., 

2021). While these studies are mostly based on watershed-scale assessments, our results provide 

an opportunity to evaluate these controls over a wider gradient.    

6.2 Future research: four emerging directions  

Our study provides a comprehensive dataset of recurrent and persistent landsliding that enables 

progress to be made in our understanding of landscape-scale hazard evolution. This approach 

moves beyond typical studies that are limited by administrative boundaries or small-scale event-

based assessments and allows four key questions at mountain range scale to be tackled. First, the 

scale of this dataset covers a variety of covariates and thus allows for analyzing complex 

anthropogenic and climatic drivers of landscape evolution. Looking at patterns of landsliding at 

this scale provides opportunities to detect the impact of (1) discrete events (e.g., earthquakes and 

cloudbursts), (2) changing human activities, which vary considerably across the HKH, and (3) 

potentially the impact of climatic changes over decadal timescales, on landslide occurrence and 

their aggregate impact on erosion, denudation and landscape evolution rates. These data also 

provide a useful temporal baseline against which to test ideas around the long-term interplay of 

erosion and orogenesis in active mountain ranges.  
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Second, the time-series landslide information has the potential to improve landslide susceptibility 

models. Multi-temporal information is likely to capture a greater and more long-term 

representative range of landslide triggering conditions (Jones et al. 2021). Wide spatial coverage, 

on the other hand, provides a greater variety of topographical, geological, and hydrological 

conditions to further improve susceptibility models. We also know that in general terms 

'landslides follow landslides' (Samia et al., 2017), but the degree to which landslides occur at 

specific individual locations, and how this varies through time and space, has not been 

previously demonstrated at scale. Here we show that 43% of landslides occur in locations of 

previous landslides within our 30-year timescale. The annual resolution of the data also, 

excitingly, allows us to show the decreasing rate of occurrence through time, which provides 

insight on over what timescale all susceptible areas within a mountain landscape could be 

expected to fail and reset, opening up a new dimension to landslide susceptibility models and 

maps.  

Third, recurrence and persistence can inform engineering strategies and policies. A key 

challenge in the mitigation of landslides in the HKH is that many are of a scale that renders them 

difficult to engineer to a point of stability. As a result, developing mitigation strategies that are 

cognizant of the time over which any individual landslide is likely to remain active has potential 

value in allocating resources in a more informed manner. The recurrence of landslides has been 

identified in specific locations in our study, and it may be that these are too costly or complex to 

mitigate. The transboundary nature of recurrent landslide hazards and the sediment that they 

release also holds implications for risk sensitive location of infrastructure development, such as 

hydroelectric power.  
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Fourth, the historical information regarding landslides provides insight into the effectiveness of 

policy interventions. For example, the long-term implications of significant investment in 

infrastructure, such as the Himalayan rural road network, remain largely anecdotal due to the 

lack of high-resolution landslide data at the scale presented here. Our results have the potential to 

identify key learning around, for example, the physiographic conditions that are conducive to 

safe and sustainable rural road construction, and those which are not. For example, the recovery 

of the landscape after road construction can indicate whether the construction is successful. 

Similar insight on the short- and long-term implications of complex social and political changes 

may also become apparent, including the often cited but rarely evidenced impacts of terrace 

abandonment (Tarolli et al., 2021), civil war and informal settlements (Petley et al., 2007), and 

changes associated with regulation around conversation (e.g., community forestry groups) 

(Dhungana et al., 2020). We also have the potential to identify the relative significance of the 

covariates of risk through time, and hence to unpick the costs and benefits of risk reduction 

policies that focus on reducing hazard versus tackling exposure and vulnerability.  

6.3 Machine learning achievement, complexity and uncertainty 

Built upon a visually interpreted training data in Nepal, our model captured > 94% of the 

reported landslide events across the Himalayan region including Bhutan and India, which 

demonstrate the model’s generalizability. This is a major strength of the machine learning 

methodology: it amplifies the value of visually interpreted data and enables the identification of 

persistent and recurrent landslides across an area > ten times larger than the training data. 

Furthermore, it allows for the tracing of landslides back to 1992, a period predating the 

availability of the training data in 2016. Based on the publicly available datasets, Landsat optical 
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imagery, nighttime lights, and the digital elevation model, the methodology has potential to 

identify persistent and recurrent landslides in other mountain areas around the world. The model 

based on convolutional neural networks achieved precision and recall rates exceeding 83% in 

independent test sites, which is superior to earlier Landsat-based landslide mapping at national 

and sub-national scales using other algorithms (32-86%) (Yu and Chen, 2017; Chen et al., 2019) 

and is comparable in accuracy to studies using object-based imagery analysis based on high 

resolution images (2-10 m) (69-87%) (Martha et al., 2010; Stumpf and Kerle, 2011; Amatya et 

al., 2021). 

Nevertheless, this model is not without uncertainty and bias arising from model assumptions, 

limited spatiotemporal resolution, and inherent landscape variability. The spatial resolution of 30 

m can be particularly challenging in areas which suffer from spectral similarity between 

landslides and other land covers (Kincey et al., 2021), including gravels and talus at higher 

elevations above tree line, landslides occurring within built-up areas, and landslides smaller than 

the minimum detectable area (900 m
2
) (Appendix Fig. S1). As multi-temporal elevation data over 

the study region is not available, we cannot capture changes in stream course over the years, and 

artifacts from streams and riverbeds are present in our landslide output. Similar challenges arise 

in identifying landslides from shadows in gullies and on north-facing slopes, where fieldwork is 

necessary to observe landslides. 

6.4 Strengths and limitations compared to other RS-based methods  

Other current approaches for generating multi-temporal inventories include manual mapping, 

vegetation index-based metrics (Behling et al., 2014; Scheip and Wegmann, 2021; Milledge et 

al., 2022), and object-based imagery analysis (OBIA) and machine learning (Li et al., 2015; 
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Amatya et al., 2021; Ghorbanzadeh et al., 2022). Our CNN-based deep learning approach offers 

distinct advantages. First, CNN-based deep learning requires the least expert knowledge while 

enabling the model to automatically learn from spatial and spectral information in training data, 

without the need for segmentation and rulesets as required by OBIA. Second, CNN-based 

methods demonstrate enhanced landslide detection capabilities, reducing the salt-and-pepper 

effect through their utilization of spatial information, which contrasts with vegetation-based 

metrics or pixel-based machine learning models that rely solely on spectral information (Liu et 

al., 2022). Thirdly, the proposed approach is particularly advantageous for large-scale mapping 

given its automatic nature. While vegetation-based metrics offer quick insights into vegetation 

changes, their applicability is constrained in regions with cloud cover like the Himalaya, as they 

hinge on temporal differences (Milledge et al., 2022).   

However, the major limitation of the CNN-based deep learning lies in the demand for a large and 

representative training dataset – how the landslide labels related to the spatial patterns of surface 

reflectance, nightlights, elevation, and slope. Thus, the model’s performance might decrease if 

applied to other regions where the optical and topographical features of landslides and non-

landslide areas are very different from the Himalaya. Given its reliance on spatial information, 

complete landslide objects in polygon format are indispensable for preparing training data, 

unlike pixel-based machine learning models which can utilize discrete point data. The increasing 

popularity of open science has led to more regional landslide studies publishing their manually 

mapped datasets (e.g., Jones et al., 2021; Kincey et al., 2021), thus fortifying the potential of 

leveraging these datasets to facilitate CNN-based deep learning approaches. 
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7. Conclusions  

We are in an era where petabytes of images recorded by satellites every year are publicly 

available. Their potential benefits for science and society are revolutionized through the 

alignment of artificial intelligence, which has reduced human labor for identifying risks at large 

scales. Our findings draw three main conclusions:  

First, it is possible to use data from a small area to train a machine learning model for a region 

ten times larger if they have similar geography. We used a dataset in Central Nepal to map out 

landslides over the Himalaya, successfully capturing 94% of the reported landslides in the region. 

This mountain range scale, exceeding previous catchment or even national administrative 

boundary scales, has the potential to enhance studies in landscape evolution, susceptibility 

models, engineering strategies, transboundary collaboration, and policy validation, all together 

working towards sustainable mountain development.   

Second, the current trend of landslide risks in the Himalaya exhibits several clusters, including 

patterns related to road construction, climate, and recent seismic events. Future research using 

this large-scale multitemporal dataset will be essential for disaggregating these various sources 

of risk and for aiding in mitigation strategies.  

Third, the lifecycle of landslides proves to be highly dynamic. The methodology allows for the 

identification of persistent and recurrent landslides, particularly at elevations below 3,000 m, 

where the contrast between vegetation and landslides is more visible. The time dimension 

regarding recurrent and persistent landslides can be instrumental in alerting and informing 

awareness of cascading effects to vulnerable communities. While this study focused on 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof   

39 

 

landslides, the power of combined earth observation and artificial intelligence can be harnessed 

for other types of hazards and their intersections. It is our hope that open science will further 

accelerate this advancement.  
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Highlights: 

● Large-scale understanding of landslide dynamics is lacking for risk mitigation. 

● We propose a method to detect recurrent and persistent landslides. 

● 86% of landslide areas were persistent or recurrent in the Himalaya.  

● 22% of landslide area experienced at least three episodes of landslides in 30 years. 

● Transboundary landslide patterns related to anthropogenic, climate, and seismic factors. 


