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Three-dimensional electron diffraction (3D-ED) is a powerful technique for

crystallographic characterization of nanometre-sized crystals that are too small

for X-ray diffraction. For accurate crystal structure refinement, however, it is

important that the Bragg diffracted intensities are treated dynamically. Bloch

wave simulations are often used in 3D-ED, but can be computationally

expensive for large unit cell crystals due to the large number of diffracted beams.

Proposed here is an alternative method, the ‘scattering cluster algorithm’

(SCA), that replaces the eigen-decomposition operation in Bloch waves with a

simpler matrix multiplication. The underlying principle of SCA is that the

intensity of a given Bragg reflection is largely determined by intensity transfer

(i.e. ‘scattering’) from a cluster of neighbouring diffracted beams. However, the

penalty for using matrix multiplication is that the sample must be divided into a

series of thin slices and the diffracted beams calculated iteratively, similar to the

multislice approach. Therefore, SCA is more suitable for thin specimens. The

accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS)

pentacene and rubrene, two exemplar organic materials with large unit cells.

1. Introduction

The wide range of electron diffraction tomography techniques,

known collectively as either 3D electron diffraction (3D-ED)

or MicroED, have demonstrated considerable success in

solving complex structures of crystals that are otherwise too

small for X-ray methods (Kolb et al., 2007; Shi et al., 2013;

Gemmi et al., 2019; Jones et al., 2018). Care must be taken to

minimize dynamical electron diffraction, for example by

avoiding major crystal zone axes where scattering is strong, as

well as integrating a given Bragg reflection over its rocking

beam pattern. The latter can be achieved through either

continuous rotation of the specimen holder (Nederlof et al.,

2013), or rotation of the holder in discrete steps combined

with precession (Mugnaioli et al., 2009) or tilting (Zhang et al.,

2010) of the electron beam. In the case of beam precession, it

is known that the diffracted intensities approach the kinematic

values assumed in most structure refinement models, although

residual dynamical effects can still remain, especially for

thicker samples and/or smaller precession angles (Own et al.,

2006; White et al., 2010). Hence, the quality of structure

refinement is improved if the intensities are treated dynami-

cally (Palatinus et al., 2015a; Klar et al., 2023), to the extent

that detection of hydrogen atoms is possible (Palatinus et al.,

2017).

There are two widely used techniques for simulating high-

energy dynamical electron diffraction, namely multislice

(Jansen et al., 1998) and Bloch wave (Palatinus et al., 2015b;

Cleverley & Beanland, 2023) methods. Both are derived from

the fundamental Schrödinger equation for a high-energy
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electron in a crystal (Kirkland, 2010), the key difference being

the manner in which the simulations are implemented. In

multislice the specimen is divided into a series of thin slices

along the thickness direction, with transmission and propa-

gation of the electron beam calculated for each slice until the

specimen exit surface is reached (Cowley & Moodie, 1957).

On the other hand, the Bloch wave method is based on Bloch’s

theorem for the electron wavefunction in a periodic potential

(Kittel, 2005), the characteristic equation for the Bloch wave

being expressed as an eigenvalue problem (Spence & Zuo,

1992; Hirsch et al., 1965). Multislice is faster than Bloch waves

for thin specimens of large unit cell crystals, and can also deal

with complex specimen shapes such as nanoparticles.

However, it is not practical for 3D-ED electron tomography

simulations, since a separate supercell must be generated at

each specimen tilt, which must be periodic (the multislice

algorithm relies on Fourier transforms) or else sufficiently

large so that aliasing artefacts are minimized. Simulating

different specimen orientations is comparatively easier with

Bloch waves, and furthermore, analytical expressions can be

used for crystal structure refinement (Palatinus et al., 2015b),

thus speeding up the analysis.

Although the Bloch wave technique is the method of choice

for 3D-ED, it is still limited by the relatively slow eigen-

decomposition routine required for calculating Bloch wave-

functions. This is especially true for large unit cell crystals,

which require a larger matrix size for accurate results. In an

electron tomography simulation, eigen decomposition must

also be repeated at each specimen rotation, as well as the

different incident-beam directions if the electron beam is

being precessed or tilted. For precession, as many as a few

hundred incident-beam directions are required to achieve

numerical convergence (Own et al., 2006). Thus, the simulation

time for Bloch waves can become prohibitively expensive. To

overcome this, we propose here a novel ‘scattering cluster

algorithm’ (SCA) that retains the benefits of both multislice

(fast computing time for thin specimens) and Bloch waves (no

supercell required), and is therefore ideally suited for electron

tomography simulations. The underlying principle of SCA is

that only intensity transfer or ‘scattering’ from neighbouring

reflections around a given Bragg beam, i.e. the ‘scattering

cluster’, can significantly contribute to the intensity of that

beam. Eigen decomposition is replaced with a simpler matrix

multiplication operation, but the cost of this is that the beam

intensity must be calculated at successive specimen depths in

sequence, similar to multislice. The scattering cluster algo-

rithm works best for thin specimens of large unit cell crystals

consisting of light elements. This includes biological macro-

molecules, functional organic materials and pharmaceuticals.

The paper is organized as follows. In Section 2 the theory

behind the scattering cluster algorithm is presented, with

details of the simulation given in Section 3. Tri-isopropyl silane

(TIPS) pentacene and rubrene, two workhorse organic elec-

tronic materials, are used to demonstrate the potential of the

scattering cluster algorithm. In Section 4 the performance of

SCA, i.e. accuracy and speed, is compared against standard

multislice and Bloch wave simulation methods. Major zone

axes, where dynamical scattering is strongest, are simulated as

an extreme test of the robustness of the technique, although in

an actual 3D-ED experiment zone axes are to be avoided if

possible. Both normal beam incidence and precession electron

diffraction patterns are simulated.

2. Scattering cluster algorithm

The Bloch wave characteristic equation is given by (Spence &

Zuo, 1992)

2KnsgCg þ
X

h6¼0

Ug� hCh ¼ 2Kn 1þ
gn

Kn

� �

�ðjÞCg; ð1Þ

where �(j) and Cg are, respectively, the eigenvalue and Fourier

coefficient of the Bloch wavefunction. Ug is directly propor-

tional to the Fourier coefficient Vg of the crystal potential, i.e.

Vg = h2Ug/2me, where h is Planck’s constant and m and e are

the electron mass and charge, respectively. gn and Kn are the

projections of, respectively, the reciprocal vector g and inci-

dent wavevector K along the specimen unit surface normal n.

K is corrected for the mean inner potential of the crystal

(Spence & Zuo, 1992), although this is usually a small change

compared with the wavevector in a vacuum. The deviation

parameter sg is determined by the electron beam illumination,

2Knsg ¼ K2 � Kþ gð Þ
2
: ð2Þ

In electron diffraction tomography gn and Kn are constantly

changing with specimen tilt, but due to the short wavelength of

the incident electrons and large missing wedge angle, gn � Kn

at all times for a parallel-sided specimen. As an example, for

gn = 1 Å� 1 and 60� maximum tilt, gn/Kn = 0.05 for 200 kV

electrons. Equation (1) can therefore be simplified into the

matrix form

AcðjÞ ¼ �ðjÞcðjÞ; ð3Þ

where A is the so-called ‘structure matrix’ and c(j) is a column

vector of Bloch wave Fourier coefficients (bold font is used for

vectors and matrices). The matrix elements of the former are

given by

Agh ¼
sg ðg ¼ hÞ,

K
Kn

� �
Ug� h

2K ¼
K
Kn

� �
1

2�g� h
ðg 6¼ hÞ.

(

ð4Þ

�g is the extinction distance, which can be calculated from the

structure factor Fg,

�g ¼ �K�=Fg; ð5aÞ

Fg ¼
X

j

fj exp � 2�ig � rj

� �
; ð5bÞ

where � is the unit cell volume and the summation in equation

(5b) is carried out over all atoms in the unit cell with position

vector rj (expressed in fractional coordinates) and atom scat-

tering factor fj. Since the crystal potential is real, it follows that

Ug� h = U�h� g, and therefore Agh = A�hg, where the asterisk

denotes the complex conjugate.
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The diffracted beams at depth z within the specimen can be

expressed as

ugðzÞ ¼ exp 2�izAð Þugð0Þ: ð6Þ

ug is a column vector of the diffracted-beam wavefunctions.

The matrix exponential is most conveniently evaluated using

eigenvalues �(j) and eigenvectors c(j) (Spence & Zuo, 1992). It

is nevertheless instructive to consider the series expansion of

equation (6),

ugðzÞ ¼ ugð0Þ þ 2�izAugð0Þ þ . . .þ
ð2�izÞ

p

p!
Apugð0Þ þ . . . :

ð7Þ

Each term in the expansion represents different orders of

scattering. The following iterative equation is valid for the nth-

order scattered Bragg reflection �ðnÞg :

�ðnÞg ðzÞ ¼
2�iz

n

X

h

Agh�
ðn� 1Þ
h ðzÞ: ð8Þ

Equation (8) has a straightforward physical interpretation:

it implies that �ðnÞg is determined by ‘cross-scattering’ of all

�
ðn� 1Þ
h beams via the scattering potential Ug� h for g 6¼ h, as well

as ‘self-scattering’ of �ðn� 1Þ
g by the deviation parameter sg

[equation (4)]. This is illustrated schematically in Fig. 1(a).

Generally speaking, Ug� h decreases with reciprocal distance

|g � h|, albeit non-monotonically, so that scattering from only

a ‘cluster’ of beams centred around the Bragg beam of interest

(g) need be considered. The cluster will be smaller if the solid

consists only of light elements, since then the magnitude of

Ug� h decreases faster. The non-diagonal structure matrix

terms Agh depend only on the vector difference g � h [equa-

tion (4)]. Therefore, it is only necessary to calculate non-

diagonal Ag0 terms for a cluster centred around the unscat-

tered beam [Fig. 1(b)]. Ag0 terms outside the cluster are set to

zero. The corresponding non-diagonal terms for the cluster

centred around a Bragg beam readily follow by symmetry. The

Hermitian property of the structure matrix, i.e. Agh = A�hg,

further reduces the number of ‘unique’ non-diagonal terms

that must be calculated. As an example, for g = 111 and h = 112

the vector difference g � h = 001, so that Agh = A111, 112 =

A001;000 = A�001;000.

Although the scattering cluster concept does not alter the

size of the structure matrix A, it does simplify computation of

the important non-diagonal terms, which can be computa-

tionally expensive for large unit cells with a large number of

diffracted beams. However, this is a one-off computing cost,

since, apart from a trivial geometric factor in the form of Kn

[equation (4)], the non-diagonal terms do not need re-calcu-

lating during the course of an electron diffraction tomography

simulation. The computationally intensive part is finding the

eigen decomposition of the structure matrix [equation (3)],

which can then readily be used to calculate equation (6). The

series expansion in equation (7) does not require solving

equation (3), but we have found that this series converges

extremely slowly, too slowly to be of any practical use. A more

appropriate method is to express equation (6) in differential

form (Hirsch et al., 1965):

dug

dz
¼ 2�iAugðzÞ: ð9Þ

Note that equation (9) represents single scattering from the

scattering cluster, unlike equations (6) and (7) which include

multiple scattering, so that potentially all beams can contri-

bute to the intensity of a given Bragg reflection. Furthermore,

equation (9) requires only a matrix multiplication, which is

considerably faster than eigen decomposition. The disadvan-
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Figure 1
(a) A schematic of the principle behind the scattering cluster algorithm.
The intensity of a Bragg reflection depends on scattering from neigh-
bouring diffracted beams, i.e. the scattering cluster (red circle) centred
around the reflection of interest. Panel (a) is symmetry-related to scat-
tering from the 000 beam to Bragg reflections within an equivalent cluster
centred around the reciprocal-lattice origin, as shown in (b). (c) A
flowchart for the scattering cluster algorithm.



tage is that we obtain only the gradient in ug. To obtain ug at

the specimen exit surface, equation (9) must be numerically

integrated throughout the specimen depth, which is a similar

procedure to multislice. For thin specimens and large unit

cell crystals, however, multislice can be computationally

more efficient than a standard Bloch wave calculation (Kirk-

land, 2010). Therefore, the scattering cluster algorithm

(SCA), which is based on equation (9), could also be similarly

efficient.

Implementation of the scattering cluster algorithm requires

three input parameters, namely the cluster radius size gmax in

reciprocal space, the real-space slice thickness �z and the

maximum deviation parameter smax. gmax is determined by

how fast the scattering potential decays away from the reci-

procal-space origin. �z must be sufficiently small to ensure

that equation (9) gives convergent results when integrated

over the specimen depth. In Section 4 it will be shown that

Bragg beams with larger deviation parameters require a

smaller �z for convergence. It is therefore appropriate to

place an upper limit smax on the deviation parameter magni-

tude. Reflections with larger sg values are assigned an intensity

of zero and are not included in the calculation. So long as smax

is suitably chosen, there will be a negligible effect on the final

result, since reflections far away from the Bragg condition are

inherently weak. A flowchart of the scattering cluster algo-

rithm is shown in Fig. 1(c).

Table 1 gives a quantitative comparison of the computa-

tional costs for Bloch wave, multislice and SCA in a contin-

uous-rotation 3D-ED simulation. In Bloch waves, the

computational cost for eigen decomposition of the Nbeam �

Nbeam square matrix A isOðN3
beamÞ, where Nbeam is the number

of beams (Kirkland, 2010). The time taken to calculate the

non-diagonal elements of the structure matrix is not consid-

ered, since it is performed only once at the start of the

diffraction tomography simulation and can thereafter be used

repeatedly with slight modification. Multislice involves fast

Fourier transforms (FFTs) and matrix multiplications, which

have complexity OðN2
pixel log2 NpixelÞ and OðN!

pixelÞ, respec-

tively (Kirkland, 2010). The multislice diffraction patterns are

assumed to be Npixel � Npixel square, where Npixel must be a

power of two for FFT operations. The exponent ! in square

matrix multiplication is between 2 and 3. Standard square

matrix multiplication requires N3
pixel multiplication steps.

However, it is possible to use fewer steps (Strassen, 1969) and

the current best algorithms have ! ’ 2.4. Furthermore, FFT

and matrix multiplications are performed for each slice within

the specimen, so that the computational cost increases linearly

with the total number of slices ZMS. The cost of calculating

projected potentials, i.e.OðN2
pixelÞ, must also be included, since

this must be performed at each specimen tilt.

For the scattering cluster algorithm, equation (9) multiplies

the square matrix A with the column vector ug, which requires

OðN2
beamÞ multiplication steps. This is repeated for the total

number of slices ZSCA within the specimen. Note that the

number of slices for the scattering cluster algorithm need not

be the same as for multislice, since the two converge at

different rates. The comparison of computational costs in

Table 1 suggests that the scattering cluster algorithm is faster

than Bloch waves, provided the number of slices is less than

the number of beams, i.e. ZSCA < Nbeam.

3. Simulation method

Normal beam incidence and precession electron diffraction

patterns at 200 kV were simulated for [001]-oriented TIPS

pentacene and rubrene using Bloch wave, multislice and SCA

methods. Kirkland’s (2010) atom scattering factors were used

throughout. TIPS pentacene has a triclinic crystal structure

with lattice parameters a = 7.565 Å, b = 7.750 Å, c = 16.835 Å,

� = 89.15�, � = 78.42� and � = 83.63� (Anthony et al., 2001).

Rubrene has an orthorhombic crystal structure with lattice

parameters a = 26.789 Å, b = 7.170 Å and c = 14.211 Å

(Jurchescu et al., 2006). Fig. 2 shows projections of the TIPS

pentacene and rubrene crystal structures along the [001] axis.

Both materials consist of light elements carbon and hydrogen,

while TIPS pentacene also has a few silicon atoms [indicated

in blue in Fig. 2(a)]. The atom coordinates within the unit cell

were extracted from the corresponding CIF files using the

VESTA software (Momma & Izumi, 2008) and used for

calculating the non-diagonal structure matrix terms [equations

(4), (5a) and (5b)], as well as for constructing the multislice

supercells. The simulations in this work model only elastic

scattering, and do not take into account phonon (Loane et al.,

1991) or plasmon scattering (Mendis, 2019). The role of

inelastic scattering on Bragg beam intensities is considered in

the accompanying paper (Mendis, 2024).

For Bloch wave and SCA methods, the ‘projection

approximation’ (Spence & Zuo, 1992) is assumed. This states

that high-energy electron diffraction is largely governed by

zero-order Laue zone (ZOLZ) Fourier coefficients of the

crystal potential. However, since both TIPS pentacene and

rubrene have large c-axis lattice parameters, the projection

approximation may not be valid for the [001] diffraction

pattern. To test this, Bloch wave calculations were performed

with only ZOLZ plane Fourier coefficients in TIPS pentacene,

and compared with simulations that included both ZOLZ and

higher-order Laue zone (HOLZ) reflections. The results were

similar, both for normal-incidence and precessed beams. All

Bloch wave and SCA results reported in this paper therefore

assumed the projection approximation. For TIPS pentacene,

the Bragg intensities for normal beam incidence had
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Table 1
Computational cost per specimen tilt for continuous-rotation 3D-ED
simulations using Bloch wave, multislice and scattering cluster algorithm
methods.

Nbeam is the number of beams in the Bloch wave and scattering cluster algo-
rithm, while Npixel is the number of pixels for the side length of a (square)
diffraction pattern in multislice. ZMS and ZSCA are the total number of slices in

multislice and the scattering cluster algorithm, respectively.

Algorithm Complexity

Bloch wave OðN3
beamÞ

Multislice OðN2
pixelÞ þ ZMS � ½OðN

2:4
pixelÞ þ OðN

2
pixel log2 NpixelÞ�

Scattering cluster ZSCA �OðN
2
beamÞ



converged for a total of 441 ZOLZ reflections, which span a

�10g100 � �10g010 rectangular grid, where g100 and g010 are

reciprocal vectors for the (100) and (010) crystal planes,

respectively. Precession electron diffraction patterns, however,

contain many more reflections (Own et al., 2006) and therefore

the number of ZOLZ reflections was increased to 1681 (i.e. a

�20g100 � �20g010 grid), which is large enough for the 2�

beam precession angle assumed in the simulations. The

precession cone was divided into a total of 500 incident

wavevectors with a uniform step size in azimuthal angle. The

Bragg beam intensities for the different incident wavevectors

were incoherently summed and averaged. For rubrene, the

number of ZOLZ reflections was 1105 (�32g100 � �8g010)

and 4257 (�64g100 � �16g010), respectively, for normal-inci-

dence and 2� precession angle simulations. The higher

sampling along g100 was due to the larger a-axis lattice para-

meter for the rubrene unit cell.

For multislice, the TIPS pentacene supercell had a (square)

side length of 54.25 Å (= 7b) in the plane of the specimen and

a slice thickness of 1.05 Å (= c/16). The lateral dimensions

must be sufficiently large to minimize aliasing artefacts from

non-periodic boundary conditions, which is especially impor-

tant for precession diffraction, since the incident beam is

highly tilted. For a 1024 � 1024 pixel diffraction pattern, the

bandwidth-limited maximum scattering angle is 9�, which is

significantly larger than the 2� precession angle. For higher

multislice accuracy the slice thickness must be as small as

possible, although it must also be sufficiently thick to

encompass the full projected potential of atoms within the

slice. For the organic materials in this study, a slice thickness of

�1 Å was chosen as a suitable compromise. Simulations

performed with thicker slices of 2.10 Å (= c/8) produced

similar results, indicating that the results had converged with

respect to slice thickness. Artefacts in the HOLZ beam

intensities can appear if the crystal periodicity in the specimen

thickness direction is not an integer multiple of the slice

thickness (Kilaas et al., 1987), although this is not important

for the present study. For rubrene the supercell had a (square)

side length of 136.23 Å (= 19b) in the plane of the specimen

and a slice thickness of 1.02 Å (= c/14). Larger supercell

dimensions are required to prevent overlapping of the 100

systematic reflections, while maintaining periodic boundary

conditions as much as possible (recall that the a and b lattice

parameters for rubrene are very different). Consequently, the

bandwidth-limited maximum scattering angle is reduced to

3.6� for 1024 � 1024 pixel sampling, although this is still larger

than the 2� precession angle.

Multislice simulated diffraction intensities for TIPS penta-

cene were extracted by placing a 7�7 pixel mask around select

Bragg reflections. For rubrene the mask size was reduced to

3�3 pixels to avoid overlap with neighbouring reflections

along the 100 systematic row. To simulate the diffraction

pattern, the multislice electron wavefunction was multiplied

by a Hanning window before calculating its power spectrum.

This minimizes aliasing artefacts due to non-periodicity in the

supercell and/or incident beam. For precession the cone of

incident wavevectors is discretely sampled in uniform azimu-

thal angle steps. A total of 500 incident wavevectors were

simulated. Individual diffraction patterns were aligned to

remove beam tilt and averaged to give the overall precession

electron diffraction pattern. All simulations were run in

MATLAB and CPU times for a standard 8 GB RAM desktop

PC were recorded using the tic toc command.

4. Results and discussion

We first compare results for the traditional Bloch wave and

multislice simulation methods. Fig. 3 shows intensity pendel-

lösung data for select Bragg beams in [001]-oriented TIPS

pentacene and rubrene at normal electron beam incidence.

The Bragg beams chosen are the unscattered 000 beam, a low-

index Bragg beam at �0.1 Å� 1 reciprocal distance (i.e. 100

and 010 in TIPS pentacene and rubrene, respectively) and a

high-index Bragg beam at �0.7 Å� 1 (i.e. 500 and 050 in TIPS
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Figure 2
[001] projections of (a) TIPS pentacene and (b) rubrene crystal struc-
tures. The blue parallelogram is an outline of the unit cell. a and b
crystallographic axes are also indicated. Carbon, hydrogen and silicon
atoms are shown as brown, pink and blue spheres, respectively.



pentacene and rubrene, respectively). This choice of Bragg

beams covers a large dynamic range and provides a structural

resolution better than 1.5 Å. For TIPS pentacene there is

satisfactory agreement between the Bloch wave and multislice

simulated pendellösung data [Figs. 3(a)–3(c)]. However, for

rubrene all reflections show substantial discrepancies [Figs.

3(d)–3(f)]. As indicated in Section 3, the convergence of the

Bloch wave results was tested with respect to the number of

reflections (ZOLZ and HOLZ), while the multislice results

converged with respect to the supercell lateral dimensions,

number of pixels and slice thickness. Therefore, any differ-

ences in the pendellösung data must be due to systematic

errors between the two methods, rather than numerical

convergence. Systematic errors in conventional multislice, and

strategies to mitigate them, have been discussed in detail by

Chen & Van Dyck (1997) and Chen et al. (1997). Improved

multislice algorithms have not been investigated here, since

they are not the main topic of interest in this work. Instead, it

is assumed that the Bloch wave results are accurate and can

therefore be used as a reference for testing the validity of the

scattering cluster algorithm.

In Fig. 4(a) the convergence of the scattering cluster algo-

rithm is compared against the Bloch wave calculation for the

000 beam pendellösung data in TIPS pentacene. There are

three input parameters, gmax, �z and smax, that can be varied

in an SCA simulation. For simplicity, no limit was initially set

on smax, i.e. the intensities of all Bragg reflections were

calculated. A �z value of 0.2 Å produced converged results

for TIPS pentacene, which is considerably smaller than the

�1–2 Å slice thickness typically used for multislice. Larger

values of �z resulted in non-physical results, e.g. beam

intensities greater than unity, the breakdown first being

observed at larger specimen depths (see the supporting

information). gmax determines the number of neighbouring

reflections contributing to the intensity of a given Bragg beam

[Fig. 1(a)]. Clearly, larger values of gmax would give more

accurate results. This is observed in Fig. 4(a), which shows

SCA results for gmax values of 5|g100| (0.7 Å� 1) and 10|g100|

(1.4 Å� 1). The numbers of reflections within a scattering

cluster are 84 and 334, respectively. SCA convergence

for other select Bragg beams shows a similar trend

(see the supporting information). The R factor is used

to quantify overall convergence. It is defined by R =
P
jIðSCAÞ � IðBlochÞj=

P
IðBlochÞ, where the summation is

over all Bragg beam intensities (I) in the SCA and Bloch wave

simulations. The dynamic range of the diffracted intensities

can vary over ten orders of magnitude, and inclusion of the

weakest beams in the R factor can sometimes lead to

unusually high values. Such weak reflections are unlikely to be

selected for structure refinement in a real experiment.

Fig. 4(b) plots the R factor as a function of specimen depth for

the larger 10|g100| cluster radius simulation. The R factor is

below 2% for specimens thinner than 1000 Å but rapidly

increases thereafter. The convergence for specimens thicker
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Figure 3
Bloch wave and multislice simulated intensity pendellösung data for normal beam incidence in [001]-TIPS pentacence and rubrene. For TIPS pentacene
the intensities are plotted for (a) the 000, (b) the 100 and (c) the 500 reflections, while for rubrene the intensities correspond to (d) the 000, (e) the 010
and (f) the 050 beams. The total electron intensity is normalized to unity.

http://doi.org/10.1107/S2053273323010689
http://doi.org/10.1107/S2053273323010689
http://doi.org/10.1107/S2053273323010689


than 1000 Å can be improved by using a smaller slice thickness

�z (see the supporting information).

The role of gmax and �z on numerical convergence can be

understood through equation (9). In particular, gmax must be

sufficiently large so that the non-diagonal elements of the

structure matrix A, or equivalently the Fourier component of

the crystal potential [equation (4)], have decreased to a

negligible value. Fig. 4(c) shows the Fourier component of the

TIPS pentacene crystal potential along the 100 systematic row.

The potential decreases sharply within the first few reflections,

although there is a long tail of much weaker potential.

Therefore, a small cluster radius (e.g. 5|g100|) is sufficient to

give converged results, provided the specimen is thin. At

larger specimen thicknesses, however, the outer reflections at

the cluster perimeter and beyond will accumulate greater

intensity, and scattering from these beams cannot be ignored

despite the smaller crystal potentials. Therefore, a larger

cluster radius is required for convergence [Fig. 4(a)]. Speci-

mens consisting of light elements have smaller crystal poten-

tials and therefore smaller gmax values as well. Furthermore,

structure matrix elements Agh with large amplitude produce

large changes in ug [equation (9)], so that the slice thickness

�z must be made sufficiently small to ensure numerical

convergence. For our simulations the diagonal elements of A

have the largest amplitudes. The diagonal terms are propor-

tional to the deviation parameter [equation (4)] and hence

decrease with increasing electron-beam voltage and unit cell

size. SCA is therefore suitable for organic materials, due to

their weaker crystal potentials and relatively large unit cells.

Fig. 4(d) shows the 000 beam pendellösung convergence in

rubrene for SCA cluster sizes of 5|g010| (0.7 Å� 1) and 8|g010|

(1.1 Å� 1), which have 286 and 73 reflections, respectively. As

expected, the results for the larger cluster are in better

agreement with Bloch waves (see the supporting information

for convergence of other select Bragg beams). The R factor

[Fig. 4(e)] for this cluster is smaller than 5% for specimens

thinner than 1000 Å, and remains within 15% for thicknesses

up to 2000 Å. The overall convergence for thick specimens is

therefore better than for TIPS pentacene [Fig. 4(b)], probably

due to the smaller deviation parameters for the larger unit cell

rubrene crystal. The Fourier component of the rubrene crystal

potential decreases rapidly along the 010 systematic row

[Fig. 4(f)] and is consistent with the observed SCA conver-

gence for an 8|g010| cluster size.

Having established the accuracy of the SCA, we now focus

on its computational efficiency. To this end, we look to

precession electron diffraction, which is widely used in elec-

tron diffraction tomography (Mugnaioli et al., 2009) but

computationally demanding to simulate, due to the fine

sampling of the beam azimuthal angle that is required to
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Figure 4
(a) A comparison of SCA-calculated 000 beam intensity pendellösung data in [001]-TIPS pentacene with Bloch wave results (normal beam incidence).
SCA results for two different gmax values are presented, i.e. 5|g100| and 10|g100|. (b) R factor plotted as a function of specimen depth for the 10|g100| cluster-
size simulation. The R factor increases rapidly beyond �1000 Å (for visual clarity, the vertical scale is truncated to 10%). (c) The Fourier component of
the TIPS pentacene crystal potential along the 100 systematic row. (d) A comparison of SCA-calculated 000 beam intensity pendellösung fringes in [001]-
rubrene with Bloch wave results (normal beam incidence). SCA results for two different gmax values are presented, i.e. 5|g010| and 8|g010|. (e) R factor
plotted as a function of specimen depth for the 8|g010| cluster-size simulation. (f) The Fourier component of the rubrene crystal potential along the 010
systematic row.
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achieve convergence (Own et al., 2006; White et al., 2010).

Improving the speed of precession electron diffraction simu-

lations is therefore highly desirable for crystal structure

refinement. Fig. 5 shows precession intensity pendellösung

data for [001]-oriented TIPS pentacene and rubrene, calcu-

lated using Bloch wave and multislice methods. Intensities are

plotted for the 000 unscattered beam, as well as example low-

and high-index Bragg reflections (i.e. 100/500 and 010/050 for

TIPS pentacene and rubrene, respectively). Compared with

normal beam incidence (Fig. 3), the precession intensity

contains fewer oscillations with respect to specimen depth,

which suggests that the 2� beam precession angle has

suppressed dynamical diffraction to some degree. This is

especially true for small specimen depths (<� 500 Å), where

the precession intensity pendellösung data show approxi-

mately linear behaviour. Once again there are systematic

differences between the Bloch wave and multislice results,

which are tentatively assigned to the limited accuracy of the

latter.

Next, we consider precession simulations using the SCA.

gmax is set to the values established previously for normal

beam incidence, i.e. 10|g100| for TIPS pentacene [Fig. 4(a)] and

8|g010| for rubrene [Fig. 4(d)]. During beam precession the

Bragg reflections will sweep across large sections of the

rocking beam pattern (Palatinus et al., 2019). Therefore, �z

must be made exceedingly small to achieve convergence for

the very large deviation parameters encountered during

precession. This makes the simulation impractical, even for

reasonably thin specimens. The smax parameter overcomes this

limitation by calculating the intensities of only those reflec-

tions which satisfy |sg| � smax for a given incident wavevector.

We have found smax = (�/2)(gmax/2)2 to be a suitable value,

where � is the electron wavelength. This value corresponds to

the deviation parameter magnitude at half the cluster size

(gmax/2) for normal beam incidence. At 200 kV smax has values

of 5.8� 10� 3 Å� 1 and 3.9� 10� 3 Å� 1 for TIPS pentacene and

rubrene, respectively. As a guide, in two-beam dynamical

diffraction, the rocking beam pattern has its first minimum at a

specimen thickness t = ðs2
g þ �

� 2
g Þ
� 1=2 (Hirsch et al., 1965). The

extinction distance �g is relatively large for organic materials

consisting of light elements, and can therefore be ignored in

the expression for t. For the smax values in the present study,

the simple two-beam model predicts a specimen thickness t of

172 Å for TIPS pentacene and 256 Å for rubrene. Specimens

thinner than these values would require a larger smax for

accurate simulation.

The introduction of smax enables thicker slices �z to be used

for calculating precession beam intensities. Fig. 6 compares the

convergence of the SCA with Bloch wave precession intensity

pendellösung data for [001]-TIPS pentacene and rubrene. A

maximum deviation parameter was imposed on the SCA

simulation, and results for 0.5 Å and 1.0 Å slice thicknesses

are plotted. The two �z values give similar results for

specimen depths below �1000 Å in TIPS pentacene [Figs.
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Figure 5
Bloch wave and multislice simulated precession intensity pendellösung data for [001]-TIPS pentacence and rubrene. The electron-beam precession angle
is 2�. For TIPS pentacene, intensities are plotted for (a) the 000, (b) the 100 and (c) the 500 reflections, while for rubrene the intensities correspond to (d)
the 000, (e) the 010 and (f) the 050 beams. The total electron intensity is normalized to unity.



6(a)–6(c)], while for rubrene the agreement extends to larger

depths [Figs. 6(d)–6(e)]. Thus we do not observe the break-

down in accuracy at small depths due to a finite smax predicted

by two-beam theory. This could be because a two-beam model

is an oversimplification of the more complex many-beam

scattering geometry valid for a flat Ewald sphere. Further-

more, at shallow specimen depths, i.e. depths much smaller

than �g/2, the diffracted beam intensities are inherently weak,

so that the main scattering mechanism is due to intensity

transfer from the 000 beam to the diffracted beams. This

suggests that it is less important to include a larger number of

diffracted beams in the scattering cluster, so that smax need not

be prohibitively large. It is clear that the chosen values for smax

produce SCA results that are in good agreement with Bloch

wave calculations for a large range of specimen thicknesses

(Fig. 6). The larger slice thicknesses are also similar to what is

used in multislice, so that simulation times are kept reason-

able.

In Table 2 the computational times for precession simula-

tions using Bloch wave, SCA and multislice methods are

compared for 500 Å and 1000 Å thick TIPS pentacene and

rubrene in [001] orientation. In each case, 500 incident

wavevectors were simulated to ensure convergence. The other

simulation parameters are as indicated in Section 3. It is

possible that less-stringent parameters could have been

chosen without sacrificing much accuracy, such as fewer beams

in a Bloch wave calculation, a larger �z for SCA, a smaller

number of pixels in multislice etc. Furthermore, the MATLAB

code in this work is an interpreted language and not optimized

for speed. Therefore, the absolute values in Table 2 are not

important, but what is useful are the relative trends between

the different values. Bloch wave simulation times are inde-

pendent of specimen thickness, while for SCA and multislice

the simulation time increases monotonically with thickness

(Table 1). Overall, for TIPS pentacene Bloch wave is the most

efficient simulation method. SCA is slower and also has a large

R factor (Table 2), indicating poor overall accuracy. The R

factor can be reduced by increasing smax and/or reducing �z,

although this increases the SCA simulation time even further.

The simulation times for multislice are, however, considerably

longer than either Bloch wave or SCA methods. This is

because of the large supercell dimensions for TIPS pentacene,

which must then be sampled with a large number of pixels to

accommodate the extra reflections in precession electron

diffraction.

For rubrene, SCA consistently outperforms both Bloch

wave and multislice methods, and has a satisfactory R factor

(Table 2). For example, SCA simulations with 1.0 Å slice

thickness are faster than Bloch waves by factors of �4 and 2

for 500 Å and 1000 Å thick rubrene, respectively (Table 2). In
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Figure 6
A comparison of SCA-simulated precession intensity pendellösung data for [001]-TIPS pentacene and rubrene with Bloch wave results. The electron-
beam precession angle is 2�. smax values of 5.8 � 10� 3 Å� 1 and 3.9 � 10� 3 Å� 1 were used for SCA simulations of TIPS pentacene and rubrene,
respectively. The SCA slice thickness �z was either 0.5 Å or 1.0 Å. For TIPS pentacene, precession intensities are plotted for (a) the 000, (b) the 100 and
(c) the 500 reflections, while for rubrene the intensities correspond to (d) the 000, (e) the 010 and (f) the 050 beams. The SCA pendellösung data for the
two �z values directly overlap in panels (a) and (d). The total electron intensity is normalized to unity.



an electron tomography measurement, which contains several

specimen tilts, there would be a large saving in computing

time. Rubrene has a much larger number of beams than TIPS

pentacene (4257 versus 1681; Section 3). Therefore, for the

specimen thicknesses of interest here, the matrix multi-

plication operation in SCA is more efficient than Bloch wave

eigen decomposition (Table 1). Larger unit cell crystals

contain many more Bragg beams, resulting in a further

reduction in SCA computing times compared with Bloch

waves. For example, the lattice parameters for a lysozyme

protein crystal are a = b = 77 Å and c = 37 Å (Shi et al., 2013),

significantly larger than rubrene. However, the thicknesses of

protein crystals tend to be quite large [e.g. �5000 Å in the

work of Shi et al. (2013)], which would reduce the efficiency of

SCA. For SCA to outperform Bloch waves the unit cell must

be large and the specimen thickness below a critical value, the

critical thickness increasing with the number of beams in the

simulation.

SCA is also considerably faster at calculating the non-

diagonal terms of the structure matrix. In principle, this

method of calculating the structure matrix could also be

applied to Bloch waves, although not all the non-diagonal

terms are evaluated. Nevertheless, as is clear from the SCA

results, this ‘partial’ structure matrix is still sufficiently accu-

rate to produce converged results. Although the non-diagonal

structure matrix terms need only be calculated once in elec-

tron diffraction tomography, for large unit cell crystals with

many diffracted beams this task can be computationally non-

trivial. As an example, for rubrene, with 290 unit cell atoms

and 4257 reflections, the time taken to calculate the non-

diagonal structure matrix elements is 0.5 min for SCA and

22 min for Bloch waves. The number of non-diagonal terms is

42572 � 4257 = 18 117 792, compared with only 734 non-

diagonal terms calculated with SCA (ignoring the Hermitian

property of the structure matrix, which would reduce the

number of ‘unique’ non-diagonal terms still further). The

increase in SCA computational efficiency (i.e. 22/0.5 = 44) is,

however, considerably less than the reduction in non-diagonal

terms (i.e. 18 117 792/734 ’ 24 684), due to the fact that pre-

calculated values must be assigned to other non-diagonal

terms based on symmetry. Nevertheless, the increase in speed

is still significant for rubrene, and could potentially be

enhanced further by optimizing the symmetry-based assign-

ment part of the algorithm. If the specimen is also thick, Bloch

waves may be more appropriate than SCA and, in such cases,

combining the SCA method for structure matrix calculation

with Bloch wave eigen decomposition may provide the most

efficient simulation method.

5. Summary

A scattering cluster algorithm (SCA) is proposed as an

alternative method for calculating dynamical electron

diffraction densities. SCA shares some common features with

traditional Bloch wave and multislice simulation methods. The

underlying principle of SCA is that the intensity of any given

Bragg reflection is governed by intensity transfer or ‘scat-

tering’ from neighbouring diffracted beams, i.e. the scattering

cluster. Using this principle, the important non-diagonal terms

in the structure matrix can be rapidly calculated, resulting in

significant computational savings for large unit cell crystals,

where the number of diffracted beams is large. Implementa-

tion of SCA relies on matrix multiplication, which is much

faster than the eigen-decomposition routine of Bloch waves.

However, the cost of matrix multiplication is that the specimen

must be divided into thin slices and the wavefunction within

the specimen solved iteratively, similar to multislice. There-

fore, SCA will only outperform Bloch waves for ‘thin’ speci-

mens, the crossover thickness increasing monotonically with

the number of diffracted beams in the simulation. For this

reason, SCA is more suitable for simulating the complex

organic crystals that are of interest in 3D electron diffraction,

such as biological macromolecules, organic electronic mater-

ials and pharmaceuticals.

The computer code for this work is available open access

from the Durham University research data repository (DOI:

https://doi.org/10.15128/r29g54xh72z).
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TIPS pentacene (1000 Å) 25.5 68.8 (62.5%) 31.6 (�106%) 703.4
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Rubrene (1000 Å) 367.7 349.1 (6.0%) 179.4 (6.1%) 755.2

https://doi.org/10.15128/r29g54xh72z
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tw5006&bbid=BB6


Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan,
M. J. (1965). Electron Microscopy of Thin Crystals. Oxford:
Butterworth.

Jansen, J., Tang, D., Zandbergen, H. W. & Schenk, H. (1998). Acta
Cryst. A54, 91–101.

Jones, C. G., Martynowycz, M. W., Hattne, J., Fulton, T. J., Stoltz,
B. M., Rodriguez, J. A., Nelson, H. M. & Gonen, T. (2018). ACS
Cent. Sci. 4, 1587–1592.

Jurchescu, O. D., Meetsma, A. & Palstra, T. T. M. (2006). Acta Cryst.
B62, 330–334.

Kilaas, R., O’Keefe, M. A. & Krishnan, K. M. (1987). Ultramicro-
scopy, 21, 47–61.

Kirkland, E. J. (2010). Advanced Computing in Electron Microscopy,
2nd ed. New York: Springer.

Kittel, C. (2005). Introduction to Solid State Physics, 8th ed. New
York: John Wiley and Sons.

Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Pala-
tinus, L. (2023). Nat. Chem. 15, 848–855.
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