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The impact of the sequence-dependent physical
properties of DNA on chromatin dynamics
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Abstract

The local mechanical properties of DNA depend on local
sequence. Here we review recent genomic, structural, and
computational efforts at deciphering the “mechanical code”,
i.e., the mapping between sequence and mechanics. We then
discuss works that suggest how evolution has exploited the
mechanical code to control the energetics of DNA-deforming
biological processes such as nucleosome organization, tran-
scription factor binding, DNA supercoiling, gene regulation,
and 3D chromatin organization. As a whole, these recent
works suggest that DNA sequence in diverse organisms can
encode regulatory information governing diverse processes via
the mechanical code.
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Introduction

Big strides in molecular biology have been marked by
advances in our understanding of how DNA sequence
encodes  information. That DNA  sequence
encodes protein-coding information was fueled by early
seminal works such as the solving of the DNA structure,
the decipherment of the genetic code, and the estab-
lishment of the central dogma of molecular biology.
Simultaneously, the idea that stretches of special
recognition sequence motifs along DNA can encode
regulatory information by recruiting trans-acting regu-
latory factors gained traction: the early discovery of the
TATA box as a core promoter element that binds the
TATA binding protein (TBP) [1], the discovery of the
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mechanism of regulation of the lac operon [2], and
subsequent discoveries of myriad promoters, enhancers,
or transcription factor binding sites have all contributed
to this understanding. Later still, from around the 1980s
onwards, it was discovered that the recruitment of trans-
acting factors to DNA is further modulated by the state
of DNA methylation, with significant consequences for
gene regulation and cell differentiation [3]. Thus,
epigenetic modifications of DNA bases were revealed to
be yet another means by which DNA encodes informa-
tion. More recently, the idea that sequence can encode
regulatory information by controlling the shape and
mechanical properties of chromatin at various scales has
gained traction. Three general observations suggest this
view: (1) almost all known processes involving
DNA such as DNA:protein interactions [4], DNA
supercoiling, or DNA packaging, involve some me-
chanical distortions of DNA such as bending, twisting,
stretching, or supercoiling [5], (2) DNA deformations
cost energy because DNA has measurable mechanical
properties such as persistence length or torsional rigid-
ity, that allow it to resist deformations [6,7], and (3) the
local mechanical properties of DNA are variable,
depending on local sequence [6,8]. Thus, sequence, via
its effect on the mechanical properties of DNA, can
potentially have a regulatory effect on the myriad critical
biological processes that require DNA deformations.
This review will focus on recent developments that
highlight how DNA can mechanically encode regulatory
information in certain selected contexts.

Sequence dependence of the mechanical
properties of DNA

Substantial evidence has been gathered to suggest: (i)
the existence of a “mechanical code”, i.e., a mapping
between local DNA sequence and the local mechanical
properties of DNA; and (ii) that evolution may have
taken advantage of the mechanical code to select for local
sequences with specific mechanical properties to regu-
late biological processes that require DNA deformations.

Various physical properties of DNA, such as mechanical
flexibility, shape, melting temperature, or propensity to
form plectonemes, are impacted by chemical in-
teractions between individual bases and thus depend on
local sequence. Interactions between bases include base
pairing and hydrogen bonding between bases on
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complementary strands and base stacking interactions
involving van der Waals forces between the aromatic
rings of adjacent bases on a single strand [9]. Differ-
ences in base pairing interactions between AT and GC
base pairs are directly reflected in the dependence of
DNA melting temperature on GC content [10]. Dif-
ferences in local DNA shape have also been linked to
structural differences in the interactions between bases.
Olson and coworkers compiled the structures of various
DNA sequences in available DNA:protein crystal
structures and quantified how local DNA sequence
impacts local DNA shape parameters (like twist, roll,
and tilt) and the energy function for fluctuations about
the mean shape [11]. Pyrimidine-purine dimers, and
particularly the TpA dimer, were identified as acting like
flexible hinges. Such sequence-dependent variations in
DNA shape parameters are linked to overall mechanical
flexibility and curvature. An early example was the poly-
A tract, which was shown in crystal structures to be
straight and rigid [12]. A high degree of propeller twist
(i.e., high deviation from coplanarity of bases within a
base pair) within the dA-dT tract was seen to be pre-
sent, which enhances stability by increasing purine-
purine base-stacking interactions [12] and allowing for
an additional system of bifurcated hydrogen bonding.
Structural analysis also revealed a high degree of roll
(angular deviation of DNA about its long axis), which
accumulates in phase if the tract is repeated at the he-
lical pitch, leading to overall curved DNA [12]. Subse-
quently, sequence-dependent, intrinsically curved DNA
has been observed in many instances to serve biological
functions, an early compilation of which can be found in
the introduction section of this reference [13].

In addition to observing static DNA structures, dynamic
experiments have played a big role in deciphering the
sequence dependence of DNA flexibility. Early experi-
ments involved performing DNase I digestion of DNA
minicircles, which were used to quantify how each
dinucleotide or trinucleotide step contributes to cutting
efficiency and, by proxy, minor groove width and
bending stiffness [14,15]. The bending propensity data
from trinucleotide contributions were shown to mimic
the observed local roll angles in various protein:DNA
crystals. DNA cyclization experiments that measure the
propensity of a short DNA duplex flanked by comple-
mentary single-stranded overhangs to undergo intra-
molecular cyclization have long been used to measure
the mechanical flexibility or bendability of the fragment
in question. Such measurements have been performed
on a limited set of short, 200 bp DNA sequences, to
determine how dinucleotide steps contribute to DNA
persistence length [16]. The data are consistent with
TA dinucleotides being very flexible and CG di-
nucleotides being very rigid. More recently, single-
molecule fluorescence resonance energy transfer
(smFRET)-based DNA looping assays were used to
measure the kinetics of DNA cyclization on the

mesoscale of about 100 bp [17] (Figure 1a). The authors
observed that such fragments can readily loop despite
being shorter than the persistence length of DNA
(~150 bp [18]). Looping can, however, be attributed to
nonsmooth bending modes such as kinking, base flip-
ping, and melting [19] or to the mechanical properties
of the 10 nucleotide single-stranded overhangs on either
end of the duplex [20], all of which would be wholly
consistent with the known persistence length of DNA.
Thus, the term looping encompasses any mode of DNA
distortion that brings distal points along DNA into
proximity, as is often required for the formation of
various DNA:protein complexes. Single-molecule loop-
ing [17,19] showed that looping times of different se-
quences can vary by more than an order of magnitude
(Figure 1b), once again demonstrating the strong
sequence dependence of the dynamic flexibility of
duplex DNA.

A recent approach to improving the decipherment of the
“mechanical code” involved carrying out looping mea-
surements on a large number of DNA sequences to
establish general rules that map sequence to DNA
cyclizability. A technique called loop-seq was developed
to accomplish this (Figure 1a), which has been
described and reviewed in detail earlier [6,19,21].
Brieflyy, DNA molecules in a large library containing
multiple copies of as many as ~ 100,000 different ~ 100
bp DNA sequences flanked by complementary single-
stranded overhangs is briefly allowed to undergo intra-
molecular cyclization. Unlooped molecules are enzy-
matically digested, while looped molecules are
preserved, thus enriching the library for the more flex-
ible sequences. The original library and the selected
library are subject to deep sequencing. The ratio of the
relative population of each sequence in the selected li-
brary to that in the original library is calculated and used
as a measure of cyclizability or bendability.

Recent works have used cyclizability measurements
obtained via loop-seq to attempt to decipher the me-
chanical code [22,23]. It was found that the overall GC
content of a DNA fragment does not contribute to its
cyclizability. However, the number of times individual
dinucleotides and tetranucleotides occur in the frag-
ment was shown to be correlated with cyclizability [22].
In particular, TpA dinucleotides were shown to be
associated with flexible DNA, consistent with several
other reports that TpA might serve as a flexible hinge
[11,16,24]. CpG dinucleotides were associated with
rigid DNA, consistent with earlier measurements based
on systematic evolution of ligands by exponential
enrichment (SELEX) [25]. In addition, the manner in
which dinucleotides are distributed along a sequence
was also found to impact cyclizability in a quantifiable
and predictive manner. Essentially, short A/Tor G/C rich
stretches were suggested to curve DNA when present at
the helical repeat and straighten it when present at half
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Figure 1
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(a) Schematic of the single-molecule DNA cyclization assay. Panel reproduced with permission from this reference [19]. (b) Looping kinetic curves
showing the percentage of molecules in the looped state as a function of time since the addition of 1M NaCl (which starts the process of looping). All
molecules are initially prepared in the unlooped state. Different colors reflect kinetic curves for different sequences. Inset: Looping times (obtained by
fitting the kinetic curves to single exponentials and extracting the time constant) of the 10 sequences. Panel reproduced with permission from this
reference [19]. (¢) Schematic of the loop-seq assay. For demonstration, the initial library contains just two different DNA sequences (dashed and
continuous) and only four copies of each sequence. The results of deep sequencing will indicate that the dashed sequence is relatively more enriched in
the selected library as compared to the original library and is thus more cyclizable. (d) Measured (via loop-seq [6]) and predicted (via the physical model
developed on the basis of loop-seq data [22]) intrinsic cyclizability of DNA along all annotated genes in chromosome V of yeast. The bottom panel also

shows the independently measured nucleosome occupancy [64].

the helical repeat. This is consistent with earlier struc-
tural studies that identified such short sequences as
capable of bending DNA towards the minor or major
grooves respectively [16,26,27]. The bends thus add in
phase or cancel out when repeated at the helical or half-
helical periods respectively. These observations were
used to develop both machine learning and correlative
models for the sequence dependence of DNA cycliz-
ability [22].

Molecular dynamics simulations have revealed more
subtle aspects of the sequence dependence of DNA
bendability — tightly bent DNA configurations, such as
in minicircles, undergo “inside-out” conformational
transitions, with the more likely configurations being
determined by sequence and methylation state. The
work found that minicircles comprise straight segments
interspersed by bends that compress the inward-facing
major groove and thereby favor configurations where

stiffer base pair sequences avoid such a compressed
major groove [28].

Impact of sequence-dependent DNA
mechanics on chromatin dynamics

Recent developments in characterizing the sequence-
dependence of DNA mechanics have made it possible
to understand the impact of sequence-encoded varia-
tion in DNA mechanics on diverse chromatin trans-
actions. Here we discuss a few select examples that have
been recently investigated.

Nucleosomes form ubiquitously along the entire
length of eukaryotic genomes. Each nucleosome in-
volves the tight wrapping of 145—147 bp DNA around
an octamer of histone proteins [29]. Nucleosomes
compact the genome and prevent aberrant transcription
[30]. This makes it imperative for cells to keep the
region of DNA immediately upstream of transcription
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start sites ('T'SSs) nucleosome-free, to allow proper as-
sembly of the transcription machinery. Additionally,
promoter proximal nucleosomes just downstream of the
TSS enable proper transcription (rather than repress it),
as these nucleosomes can bear important post-
translational modifications and otherwise contribute to
stages in transcription initiation and elongation. Thus
proper positioning of nucleosomes, especially around
TSSs, is critically important for cell function. It there-
fore raises the question of whether the sequence-
dependent mechanical properties of DNA play a role
in properly positioning nucleosomes around T'SSs.

Consistent with nucleosomes involving extensive DNA
bending, various experiments involving forming nucle-
osomes on special DNA sequences have highlighted
that nucleosomes form better on flexible DNA sub-
strates, and vice versa: (1) sequences known to prefer a
specific curvature direction maintain that direction
when incorporated into nucleosomes [31,32], (2)
specially-designed bendable sequences form nucleo-
somes more efficiently [32], and (3) sequences selected
for nucleosome formation efficiency show evidence of
greater bendability [33]. Sequence-dependent energy
functions for DNA bending, obtained from compiled
crystal structure data, have been used to predict the
propensity of various sequences to form nucleosomes
[34], suggesting that sequence-dependent DNA flexi-
bility plays a role in regulating the formation of highly
bent DNA-protein complexes.

Beyond studying nucleosome formation on isolated
short DNA sequences, several studies have investigated
how sequence, through its impact on DNA flexibility
and shape, can determine nucleosome positioning
genome-wide. A physical model in which both DNA
elastic energy and histone-DNA interaction terms were
used to calculate the penalty of deviation of nucleosomal
DNA from an ideal superhelix was successfully used
to predict  vitro nucleosome positioning [35]. Another
physical model that takes into account both bending and
shearing deformations of DNA predicted nucleosome
occupancy # vitro and iz vivo and suggested the domi-
nance of shearing deformation energy in nucleosome
positioning [36]. By isolating yeast nucleosomal DNA
and analyzing the sequences, Segal et al. constructed a
nucleosome-DNA interaction model and used it suc-
cessfully to predict 50% of iz vivo nucleosome positions
[37]. More recently, loop-seq was used to map DNA
cyclizability along an entire chromosome in yeast [19].
When compared to known nucleosome positioning data
[38], it confirms that nucleosomes, chromosome-wide,
tend to form in regions of flexible DNA and avoid
rigid DNA regions (Figure 1d). Nucleosome-depleted
promoter regions were found to be unusually rigid as
compared to neighboring regions, while regular arrays for
gene-body nucleosomes were found to be centered on

corresponding regions of flexible DNA. Moreover, the
choice of codons along gene body nucleosomes was
shown to have been optimized by evolution to establish
the pattern of DNA flexibility variations conducive to
nucleosome organization. Similar patterns of sequence-
encoded DNA cyclizability as measured by loop-seq,
correlating with nucleosome occupancy, have been re-
ported in other species as well, like Drosophila and
mouse [22,23].

Although accumulated evidence suggests a role for DNA
bendability in nucleosome positioning, it is worth noting
that the 601 DNA sequence, which very strongly posi-
tions nucleosomes # vitro [25], does not show strong
nucleosome positioning 7z vivo when inserted in the yeast
genome. Future analysis that compares loop-seq data on
DNA bendability along yeast genes with  vitro nucleo-
some positioning data on yeast genomic DNA [39] (as
has been obtained via salt-gradient dialysis in the absence
of any other DNA-binding factor) might serve to better
determine the extent of the causal role of DNA bend-
ability in positioning nucleosomes.

The discussion on nucleosome positioning thus far has
focused mainly on translational positioning — the loca-
tion of nucleosome dyads along the genome. The exact
position of a nucleosome within the helical repeat of
DNA is referred to as its rotational positioning, and
earlier evidence suggests a role for DNA sequence,
particularly the positions of specific dinucleotides, in
nucleosome rotational positioning [40]. It is possible
that sequence-dependent DNA curvature (rather than
dynamic flexibility) could favor a specific rotational
positioning that aligns the curvature direction with the
curvature of the dyad axis of DNA along the nucleo-
some. Indeed, examples of how A/T or G/C-rich short
nucleotide stretches bend DNA towards the minor or
major grooves and lead to overall curved molecules when
repeated at the helical pitch have been wellstudied in
previous works [16,26,27]. In loop-seq-based measure-
ments of DNA cyclizability, a similar “rotational” effect
impacting cyclizability has been observed — the location
of the biotin tether that attaches the looped molecule to
the bead surface imparts a phase term to cyclizability
that oscillates at the helical repeat. This is likely
because cyclizability has a contribution from the
intrinsic curvature of DNA, and tether orientations that
allow the looped molecule to curve away from the sur-
face (as opposed to curve towards it) would favor loop-
ing. This has been explained in detail in supplementary
note 7 of this [19] reference. Current loop-seq analysis
averages out this phased contribution by taking mea-
surements at various biotin tether locations. Though
speculative, it may be possible in future analyses or
experiments to explicitly use this effect to report on the
sequence-dependent contribution to the rotational
positioning of nucleosomes genome-wide.
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ATP-dependent chromatin remodelers have long been
known to play a major role in positioning and spacing
nucleosomes, especially around critical loci such as
T'SSs. As DNA mechanics has also been suggested to
influence nucleosome positioning, it raises the question
of whether nucleosome remodelers use or override the
information in sequence-dependent DNA mechanics to
properly position nucleosomes [41]. In 2007, Rippe
etal. observed the nucleosome sliding activities of seven
different nucleosome remodelers and showed that DNA
sequence plays a role in determining the remodeled
state of nucleosomes [42]. In particular, for the
remodeler ACF (ATP-utilizing chromatin assembly and
remodeling factor), a DNA sequence element that po-
sitions nucleosomes was identified, and it was shown
that nucleosomes, once formed on this sequence, show
reduced affinity for subsequent translocation. A similar
mechanism was suggested for the remodeler Chd1.

More recently, i vitro reconstitution of nucleosomes on
genomic DNA in the presence of various purified
chromatin remodelers and other factors was used to
show that the chromatin remodeler INOS80, even in the
total absence of any other factor, can correctly position
the +1 nucleosome (the first nucleosome downstream
of the TSS) and deplete nucleosomes upstream of the
TSS [39]. The implication, therefore, was that INO80
must detect some feature of DNA sequence around
'TSS, and this was suggested to be the local sequence-
dependent helical twist. Via loop-seq, a sharply
defined region of rigid DNA found ubiquitously at yeast
promoters. It was speculated to possibly provide a bar-
rier to the nucleosome translocation activity of INO80
[19], thereby allowing downstream nucleosomes to
stack against the barrier while depleting nucleosomes
upstream. It was later confirmed from structural studies
that INO8O requires bending of extranucleosomal DNA,
consistent with the idea that regions of very stiff DNA
will pose a barrier to INOS80O translocation [43,44].
Direct experimental confirmation of whether the rigid
DNA region at promoters can impede DNA bending by
INOS80 and whether this subsequently prevents nucle-
osome translocation will require future experiments.
The idea that DNA mechanics might impact other
remodelers in identifying and positioning promoter
proximal nucleosomes has also been suggested in the
context of the remodeled SWR1 [45].

Although many studies have focused on nucleosome
organization around transcription start sites, loop-seq
has recently been used to probe the role of nucleosome
organization around a different sort of locus. The bind-
ing site for the transcription factor CTCF [46] has been
shown to facilitate the formation of well-ordered
nucleosomal arrays on either side, while the site itself
may be occupied by a fragile nucleosome [47,48]. Both
predictive models [23] and direct loop-seq measure-
ments [22] have confirmed the presence of sequence-
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encoded local peaks in DNA cyclizability at and
around C'TCF binding sites in mouse embryonic stem
cells, co-centric with known nucleosome positions,
suggesting that sequence-encoded DNA mechanics
might have evolved to facilitate nucleosome organiza-
tion around C'TCF binding sites.

Predictive models for DNA cyclizability have recently
been used to suggest a wider role of DNA mechanics in
diverse biological processes that involve DNA bending,
extending beyond nucleosome dynamics. For example,
sequence-encoded DNA cyclizability might impact the
DNA supercoiling activity of the topoisomerase DNA
gyrase [22]. In addition, the location of DNA plecto-
nemes that are generated as a result of supercoiling has
been shown to be pinned by the sequence-dependent
local geometric properties of DNA [49], and in turn
likely regulates transcription. In fact, the expression
level of a large fraction of the genome is regulated by the
overall genomic superhelical density in complex ways
[50,51], though no mechanism for how overall super-
coiling up-regulates some promoters and down-regu-
lates others has been found. Certain sequence features
have been identified in these categories of promoters,
suggesting a possible role for the sequence-dependent
physical properties of DNA [50] in creating a depen-
dence of promoter expression level on superheli-
cal density.

The role of DNA mechanics in impacting transcription
factor ('TF) binding efficiency was recently probed by a
high-throughput method called saturation mismatch-
binding assay (SaMBA) [52]. TF binding ubiquitously
involves extensive DNA deformations [5]. For each
transcription factor studied, a library of all possible
single mismatches in a 60 bp DNA fragment surround-
ing its known binding sites was generated. Fluorescently
labeled transcription factors binding to members of this
library were quantified to measure equilibrium dissoci-
ation constants. The authors showed that mismatches,
which can significantly alter local DNA mechanics and
structure, can provide part of the energetic penalty for
the transcription factor to properly distort DNA. These
observations raise the possibility that sequence-encoded
variations in DNA mechanics may also have been
exploited by evolution to regulate TF binding dynamics,
though verification must await future experiments.

The mechanical properties of DNA on the mesoscale
might impact the local 3D architecture of chromatin.
The recent development of techniques such as Hi-CO
[53] and RICC-seq [54] have provided unprecedented
3D maps of nucleosome positioning and orientation on
the scale of a few nucleosomes. Special chromatin folds
on the tetranucleosome scale have been identified as
being associated with, or depleted at, transcription start
and end sites, suggesting a functional relevance associ-
ated with transcription [55]. Future works that integrate
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Hi-CO or RICC-seq data with the sequence depen-
dence of DNA bendability and torsional rigidity can
likely reveal how sequence-encoded mechanical prop-
erties of DNA can accommodate the required bends and
twists of linker DNA in order to attain specific func-
tional 3D arrangements of nucleosomes [55].

It is possible that local DNA mechanics and nucleosome
organization might impact higher-order chromatin
structure as well. Structural maintenance of chromo-
somes (SMC) proteins play a fundamental role in orga-
nizing higher-order chromatin structure. Well-known
examples of SMCs, such as cohesins, compact DNA via
loop-extrusion [56,57]. It is possible that loop-extrusion
initiation, which requires significant local DNA bending,
may be regulated by the local physical properties of
DNA as determined by sequence, epigenetic modifica-
tions, or even DNA damage. This is, however, purely a
conjecture and requires experimental testing. Likewise,
the formation of plectonemes as a result of negative
supercoiling of the bacterial genome has long been
suggested to both globally compact chromatin and
regulate gene expression [50,51]. Where and to what
extent supercoils partition into plectonemes depends on
the local relative energetic contribution of DNA bend-
ability and torsional rigidity. This in turn may both be
encoded in sequence via a mechanical code, as has
recently been demonstrated [49].

Very recently, the mechanical code was shown to be
modulated by the state of DNA methylation [22,58].
Cytosine methylation in the CpG context is a major
means of gene regulation in multicellular organisms [59].
Developmental programs and diseases like cancers are
known to alter gene expression by altering CpG
methylation patterns [59]. A major way in which CpG
methylation impacts downstream processes is undoubt-
edly via the recruitment of special transcription factors
that recognize it [59]. However, it has long been sug-
gested that CpG methylation might also impact gene
expression by altering the physical properties of chro-
matin [58,60—62]. Recently, the introduction of CpG
methylation in yeast, which natively lacks it and thus also
lacks transcription factors that recognize it, was shown to
still lead to several of the phenotypes associated with
CpG methylation in mammals [63] such as low levels of
CpG methylation at start sites of highly transcribed
genes. Loop-seq measurements on DNA libraries with
methylated CpGs suggested that CpG methylation de-
creases the dynamic flexibility of DNA and buffers
against the intrinsic curvature induced by CpG di-
nucleotides by preventing DNA from bending towards
the major groove [22]. Direct measurements suggested
that CpG methylation around TSSs in mouse would
alter the pattern of DNA bendability. This may alter
either downstream nucleosome positioning or the action
of chromatin remodelers, although confirmation must

await future experiments. Nevertheless, it raises the
possibility that part of the downstream biological effects
of developmental programs or diseases that alter the
epigenetic landscape of DNA may be achieved via the
impact such alterations have on the physical properties
of chromatin. The ongoing understanding of how the
sequence-dependent physical properties of DNA may
have been exploited by evolution to encode regulatory
information will likely impact both our understanding
of and ability to control diverse DNA transactions.
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