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On the asymptotic behavior of solutions to a class of grand
canonical master equations

Sabine Bögli and Pierre-A. Vuillermot

Abstract. In this article, we investigate the long-time behavior of solutions to a class of infi-
nitely many master equations defined from transition rates that are suitable for the description
of a quantum system approaching thermodynamical equilibrium with a heat bath at fixed tem-
perature and a reservoir consisting of one species of particles characterized by a fixed chemical
potential. We do so by proving a result which pertains to the spectral resolution of the semigroup
generated by the equations, whose infinitesimal generator is realized as a trace-class self-adjoint
operator defined in a suitably weighted sequence space. This allows us to prove the existence
of global solutions which all stabilize toward the grand canonical equilibrium probability dis-
tribution as the time variable becomes large, some of them doing so exponentially rapidly but
not all. When we set the chemical potential equal to zero, the stability statements continue to
hold in the sense that all solutions converge toward the Gibbs probability distribution of the
canonical ensemble which characterizes the equilibrium of the given system with a heat bath at
fixed temperature.

1. Introduction and outline

It is well known that the grand canonical ensemble of statistical mechanics provides
a formalism suitable for the description of the properties of classical or quantum sys-
tems in thermodynamical equilibrium with a heat bath, a fixed temperature, and a
reservoir of possibly different species of particles, each of which being character-
ized by a chemical potential (see, e.g., [1] and [10] for definitions and applications
of the above notions in various concrete situations). From the microscopic proper-
ties of the systems it is then possible in principle to derive all their macroscopic
thermodynamical properties by means of the so-called grand canonical partition func-
tion, which depends on the temperature and on the chemical potentials we alluded to
above. In order to achieve that for systems that are not in thermodynamical equilib-
rium initially, an important link may be provided by the solutions to certain master
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equations. In the simplest setting of a system described by a Hamiltonian having a
discrete point spectrum, those solutions represent time-dependent probabilities which
determine the chance for jumps to occur between the various quantum states. They
also play a significant role in the stochastic approach to equilibrium and non equilib-
rium thermodynamics of chemical reactions (see, e.g., the theory and the applications
developed in [14, 15] and their numerous references, as well as in [16, Chapter V].
For the investigation of master equations in a different or more general context with
many important applications we also refer the reader to [3–7, 9, 12, 13]).

It is precisely the long-time behavior of solutions to a class of various initial-
value problems for infinitely many master equations which is the main theme of this
article. The class in question is associated with sequences of real numbers .�m/ and
of non-negative integers .Nm/ indexed by m 2 NC, where the former may be inter-
preted for instance as the point spectrum of some Hamiltonian and the latter as the
sequence of number of particles of a single species in the corresponding quantum
states. More specifically, we organize the remaining part of this article in the fol-
lowing way: in Section 2 we define the relevant initial value problems in which the
transition rates depending on .�m/ and .Nm/ are chosen in such a way that the so-
called detailed balance conditions of statistical mechanics hold with respect to the
grand canonical equilibrium probability distribution. We then interpret the master
equations as a dynamical system defined on a suitable infinite-dimensional weighted
sequence space, which allows us to realize the infinitesimal generator of the system as
a trace-class self-adjoint operator whose spectral properties we investigate in detail.
This eventually leads us to the spectral resolution of the corresponding semigroup
whose consequences we analyze in Section 3, where we show that the system of
master equations we consider possesses global solutions which all stabilize toward
the grand canonical equilibrium probability distribution as the time variable becomes
large, some of them doing so exponentially rapidly but not all. In the important par-
ticular case where the chemical potential is set equal to zero, the stability statements
remain true in the sense that all solutions converge toward the Gibbs equilibrium
probability distribution of the canonical ensemble, some of them again exponentially
rapidly. Finally, we also consider there a concrete example involving the quantum har-
monic oscillator which shows how the decrease properties of the Fourier coefficients
of the initial conditions can impact on the speed of convergence of the solutions, end-
ing up with power-law and even logarithmic rates of decay.

We conclude this introduction by noting that the mere idea of making the gen-
erator of a system of master equations a formally self-adjoint operator by using the
detailed balance conditions already appears as a set of remarks scattered in [16, Chap-
ter V] (see also, e.g., [11, Proposition 4.3 in Appendix 1]). As we shall see below, the
method of investigation we use in this article represents a systematic and rigorous
implementation of those remarks in a very specific context.
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2. On the spectral resolution of the semigroup generated by a class of
master equations

As outlined in the introduction, we start out with a sequence of real numbers .�m/
and of non-negative integers .Nm/ indexed by m 2 NC, such that the grand canonical
partition function satisfies

‚ˇ;� WD

C1X
mD1

exp
�
�ˇ.�m � �Nm/

�
< C1 (1)

for each ˇ > 0 and every � 2 R, where ˇ may be interpreted as the inverse tem-
perature and � as the chemical potential. By means of (1) we then define the grand
canonical equilibrium probabilities by

pˇ;�;m WD ‚
�1
ˇ;� exp

�
�ˇ.�m � �Nm/

�
(2)

for each m 2 NC, and with every such m we associate the class of initial-value prob-
lems for master equations of the form

dpm.�/

d�
D

C1X
nD1

.rm;npn.�/ � rn;mpm.�//; � 2 Œ0;C1/;

pm.0/ D p
�
m

(3)

where .p�m/ stands for any sequence of initial-data satisfying

p�m > 0;

C1X
mD1

p�m D 1: (4)

In (3), the transition rates rm;n > 0 from level n to level m are chosen in such a way
that the so-called detailed balance conditions

rm;npˇ;�;n D rn;mpˇ;�;m (5)

are satisfied for each ˇ > 0, every � 2 R and all m; n 2 NC. In this manner, the
pˇ;�;m provide a time-independent solution to (3) when we choose p�m D pˇ;�;m for
everym, in addition to the fact that they make the corresponding entropy production as
defined in [13] equal to zero (see also, e.g., [14, Section II A] for a thorough discussion
of this point). Therefore, they do provide genuine equilibrium probabilities indeed.
Furthermore, owing to (2) we may rewrite (5) as

rm;n

rn;m
D exp

�
�ˇ.�m � �n/C ˇ�.Nm � Nn/

�
; (6)
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which is the starting point for the analysis of chemical reactions by means of stochas-
tic thermodynamics put forward in [15] (see, in particular, [15, Section III]). In par-
ticular, we may take

rm;n D cm;n exp
h
�
ˇ

2
.�m � �n/C

ˇ�

2
.Nm � Nn/

i
; (7)

where the prefactors stand for any choice of real coefficients satisfying the symme-
try condition cm;n D cn;m for all m; n 2 NC. In what follows we investigate (3) as a
dynamical system on a suitable weighted sequence space with rates of the form (7),
which requires a specific and of course non unique choice of the cm;n to ensure that the
dynamical system in question be well defined. In fact, in order to keep our upcoming
computations as simple as possible, we shall settle for

cm;n D exp
�
�ˇ.�m C �n/ � ˇ�.Nm C Nn/

�
; (8)

which will play the role of convergence factors in Proposition 1 below as we shall
soon explain. Thus, let us denote by l2C;wˇ;� the set of all complex sequences p WD .pm/
satisfying

kpk22;wˇ;� WD
C1X
mD1

wˇ;�;mjpmj
2 < C1 (9)

where wˇ;�;m WD expŒˇ.�m � �Nm/�, which becomes a complex separable Hilbert
space when endowed with the usual operations and the sesquilinear form

.p; q/2;wˇ;� WD
C1X
mD1

wˇ;�;mpm Nqm (10)

defined with respect to the weight sequence wˇ;� WD .wˇ;�;m/. Furthermore, let us
reformulate (3) as

dpm.�/

d�
D

C1X
nD1

am;npn.�/; � 2 Œ0;C1/;

pm.0/ D p
�
m

(11)

where

am;n D

´
�
PC1

kD1;k¤m rk;m for m D n;

rm;n for m ¤ n:
(12)

Then the following preliminary result holds, which is interesting in its own right:

Proposition 1. For each p 2 l2C;wˇ;� , the expression

.Ap/m WD
C1X
nD1

am;npn (13)
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defines a linear, self-adjoint trace-class operator A W l2C;wˇ;� 7! l2C;wˇ;�
whose trace

is given by
TrA D ‚2ˇ;�� �‚ˇ

2 ;�3�
‚ 3ˇ

2 ;�
�
3

< 0: (14)

Proof. We begin by showing that A is a bounded operator. Rewriting (13) as

.Ap/m D
C1X
nD1

�
am;nw

� 12
ˇ;�;n

��
w
1
2

ˇ;�;npn
�

and using the Cauchy–Schwarz inequality, we first obtain

kApk22;wˇ;� 6
C1X
mD1

wˇ;�;m

C1X
nD1

w�1ˇ;�;njam;nj
2
� kpk22;wˇ;� : (15)

Furthermore, using (12) we may write and estimate the right-hand side in (15) as

C1X
mD1

wˇ;�;m

C1X
nD1

w�1ˇ;�;njam;nj
2

D

C1X
mD1

�
jam;mj

2
C wˇ;�;m

C1X
nD1;n¤m

w�1ˇ;�;nr
2
m;n

�

6
C1X
mD1

��C1X
nD1

rn;m

�2
C wˇ;�;m

C1X
nD1

w�1ˇ;�;nr
2
m;n

�
: (16)

In addition, putting (8) into (7) gives

rm;n D exp
h
�
ˇ

2
.3�m C �Nm/ �

ˇ

2
.�n C 3�Nn/

i
; (17)

so that by taking (1) and the expression for wˇ;�;m into account we obtain

C1X
nD1

rn;m D ‚ 3ˇ
2 ;�

�
3

exp
h
�
ˇ

2
.�m C 3�Nm/

i
and

C1X
nD1

w�1ˇ;�;nr
2
m;n D ‚2ˇ;�� exp

�
�ˇ.3�m C �Nm/

�
:

The substitution of these expressions into the last line of (16) and a straightforward
computation then lead to the estimate

C1X
mD1

wˇ;�;m

C1X
nD1

w�1ˇ;�;njam;nj
2 6 ‚ˇ;�3�‚

2
3ˇ
2 ;�

�
3

C‚22ˇ;�� < C1; (18)

which proves that A is indeed a bounded operator.
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Next, we observe that the detailed balance conditions (5) may be rewritten as

am;nwˇ;�;m D an;mwˇ;�;n

for all m; n 2 NC, which immediately implies the relation

.Ap; q/2;wˇ;� D
C1X
m;nD1

wˇ;�;mam;npn Nqm D

C1X
m;nD1

wˇ;�;nan;mpn Nqm D .p; Aq/2;wˇ;�

so thatA is self-adjoint. Moreover, a simple argument based on the preceding relations
and relation (12) shows that A is negative semi-definite, that is,

.Ap; p/2;wˇ;� 6 0

for every p 2 l2C;wˇ;� . Therefore, in order to show that A is trace-class it is necessary
and sufficient to prove that there exists an orthonormal basis .fm/ in l2C;wˇ;� such that

C1X
mD1

j.Afm; fm/2;wˇ;� j < C1:

To this end, let us introduce the sequence of canonical vectors .em/ given by .em/n D
ım;n for all m; n 2NC, and let us consider the sequence defined by fm D w

� 12
ˇ;�;mem for

each m 2NC. From this and (10) it follows immediately that the fm form an orthonor-
mal system in l2C;wˇ;� . Moreover, we have .fm; q/2;w;ˇ;� D w

1
2

ˇ;�;m Nqm for every q 2
l2C;wˇ;�

, so that if .fm; q/2;wˇ;� D 0 for eachm then q D 0 and .fm/ is thus an orthonor-
mal basis. In addition, a direct computation leads to

.Afm; fn/2;wˇ;� D w
1
2

ˇ;�;nan;mw
� 12
ˇ;�;m (19)

for all m; n 2 NC, and consequently

TrA WD
C1X
mD1

.Afm; fm/2;wˇ;� D
C1X
mD1

am;m D �

C1X
mD1

C1X
nD1;
n¤m

rn;m

as a consequence of (12) and (19), which eventually leads to (14).

Remark. If we had chosen (7) for the rates with cm;n D 1 for all m; n 2 NC instead
of (17), some of the series in the proof of Proposition 1 would have been divergent,
for instance the very last series on the right-hand side of (16). That is the reason why
we referred to (8) as convergence factors.
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In what follows we state and prove the main result of this section, in which we
investigate in detail the spectral properties of A. In this context, the sequence .bm/
given by

bm D ‚ 3ˇ
2 ;�

�
3

exp
h
�
ˇ

2
.�m C 3�Nm/

i
(20)

plays an important role.

Theorem 1. Let A be the operator defined by (13). Then the spectrum of A, �.A/, is
a compact set with infinitely many real elements .�k/ indexed by k 2 NC which are
all eigenvalues including �1 D 0, the latter being its unique accumulation point.

Assuming in addition that

�mC1 � �m > 3�.Nm � NmC1/ (21)

for every m 2 NC, the following two statements also hold:

(a) Each eigenvalue of A is simple and the corresponding eigenspace is spanned
by Opk D . Opk;m/ where

Opk;m D
exp

�
�
ˇ
2
.3�m C �Nm/

�
�k C bm

:

Moreover, each such an eigenvalue is implicitly characterized by the relation

C1X
mD1

exp
�
�ˇ.3�m C �Nm/

�
�k C bm

D 1: (22)

Furthermore, the set of normalized eigenvectors given by

Oqk WD
Opk

kOpkk2;wˇ;�

for every k 2 NC constitutes an orthonormal basis of l2C;wˇ;� .

(b) If the nonzero eigenvalues ofA are ordered as �k<�kC1 for every k2¹2;3; : : :º,
then they are localized according to

�k 2 .�bk�1;�bk/ (23)

for every such k. In particular, all the nonzero elements of �.A/ are negative
and furthermore, for every p 2 l2C;wˇ;� we have the norm-convergent spectral
resolution

expŒ�A�p D
C1X
kD1

.p; Oqk/2;wˇ;� expŒ��k�Oqk (24)

of the semigroup expŒ�A��2Œ0;C1/ generated by A.
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Proof. From (2) it is straightforward to check that pˇ;� WD .pˇ;�;m/ 2 l2C;wˇ;� , and
that

Apˇ;� D 0 (25)

as a consequence of (5), (12) and (13). Moreover, we infer from Proposition 1 that
A is a compact self-adjoint operator in l2C;wˇ;� that does not have finite rank, which
implies in particular that its spectrum contains infinitely many real eigenvalues includ-
ing � D 0 according to (25), this value being its unique accumulation point.

As for the proof of statement (a), we first note that the eigenvalue equation

Ap D �kp

is equivalent to having the relation

C1X
nD1

rm;npn D

�
�k C

C1X
nD1

rn;m

�
pm (26)

satisfied for all m; k 2 NC. We then use (17) in (26) to get

cp;ˇ;� exp
h
�
ˇ

2
.3�m C �Nm/

i
D .�k C bm/pm (27)

where we took (20) into account and defined

cp;ˇ;� WD
C1X
nD1

exp
h
�
ˇ

2
.�n C 3�Nn/

i
pn: (28)

Now, for any p 2 l2C;wˇ;� we evidently have either cp;ˇ;� ¤ 0 or cp;ˇ;� D 0. In the first
case, (27) implies that .�k C bm/pm ¤ 0 for each m 2 NC, so that we may solve for
pm and get

pk;m D cpk;ˇ;� Opk;m (29)

where

Opk;m WD
exp

�
�
ˇ
2
.3�m C �Nm/

�
�k C bm

: (30)

Moreover, with the Opk;m given by (30) we claim that Opk WD . Opk;m/2 l2C;wˇ;� . On the one
hand, this is clear if �k D 0 for then (30) reduces to pˇ;� up to a trivial multiplicative
constant. On the other hand, if �k ¤ 0 we have

C1X
mD1

wˇ;�;mj�k C bmj
2
j Opk;mj

2

D

C1X
mD1

expŒ�2ˇ.�m C �Nm/� D ‚2ˇ;�� < C1 (31)
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from (30) and (1), the latter also implying that limm!C1 bm D 0. Therefore we have

lim
m!C1

j�k C bmj D j�kj ¤ 0

so that (31) implies
C1X
mD1

wˇ;�;mj Opk;mj
2 < C1

by asymptotic comparison, as desired. In this manner, the Opk provide a set of eigen-
vectors ofA associated with the �k, and we now prove that there are no others. Indeed,
in the second case we alluded to above where cp;ˇ;� D 0, we have .�k C bm/pm D 0
for each m 2NC and therefore there exists an m� 2NC such that �kC bm� D 0 since
p D 0 is not an eigenvector. But the spectral condition (21) is equivalent to having
bmC1 < bm for each m 2 NC, so that the m� in question is unique. Consequently, we
necessarily have pm D 0 for every m ¤ m� and pm� ¤ 0, which implies the relation

cp;ˇ;� D exp
h
�
ˇ

2
.�m� C 3�Nm�/

i
pm� ¤ 0;

and thereby a contradiction. Finally, the characterization (22) of the eigenvalues is a
direct consequence of the substitution of (29) into (28). The preceding considerations
thus prove the first part of statement (a), while the second part follows immediately
from the fact that A is a compact self-adjoint operator.

Let us now prove statement (b) by first ordering the nonzero eigenvalues of A as
�k < �kC1 for every k 2 ¹2; 3; : : :º. To this end we consider the auxiliary function
a W .�1; 0/ n ¹�bm;m 2 NCº defined by

a.�/ WD
C1X
mD1

exp
�
�ˇ.3�m C �Nm/

�
� C bm

;

and remark that this series is absolutely convergent by virtue of (1) and the fact that
bm ! 0 as m!C1. Furthermore, it is easily verified that

lim
�&�bk�1

a.�/ D C1; lim
�%�bk

a.�/ D �1;

and that a0.�/ < 0 for every � 2 .�bk�1;�bk/, which implies the existence of a unique
��k 2 .�bk�1;�bk/ satisfying a.��k / D 1. Therefore, from the characterization (22)
of the eigenvalues we necessarily have ��k D �k for every k 2 ¹2; 3; : : :º, thereby
proving the first part of statement (b). Finally, for every p 2 l2C;wˇ;�we have the norm-
convergent expansion

p D
C1X
kD1

.p; Oqk/2;wˇ;� Oqk

from the last part of statement (a), which implies (24) at once.

In the next section, we investigate some consequences of the preceding result.
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3. On the eigenspace associated with the zero eigenvalue of A as a
global attractor

Since �1 D 0 is an accumulation point of �.A/, we might want to truncate expansion
(24) in order to get an exponential decay of some sort for the solutions to (3), or else
proceed more generally to obtain convergence statements without error bounds, or
more specifically with bounds that may be slower than exponential. We first make
the idea of truncation precise by writing

WN
kD1E�k.A/ for the closed linear hull ofSN

kD1E�k.A/ in l2C;wˇ;� for any N 2 NC, where E�k.A/ stands for the eigenspace of
A associated with the eigenvalue �k. Then we have:

Theorem 2. Let A be the operator defined by (13), and let p� 2 l2C;wˇ;� be any initial
condition satisfying (4). Then

.expŒ�A�p�/m > 0;

C1X
mD1

.expŒ�A�p�/m D 1 (32)

for every � 2 Œ0;C1/.
Assuming moreover that (21) holds, and that the ordering �k < �kC1 for every

k 2 ¹2; 3; : : :º is still valid, then for each N 2 NC with N > 2 and p� 2
WN

kD1E�k.A/

satisfying (4) we have the exponential decay estimate

k expŒ�A�p� � pˇ;�k2;wˇ;� 6 expŒ�� j�Nj�kp�k2;wˇ;� (33)

for every � 2 Œ0;C1/, where pˇ;� is given by (2).

Proof. Relations (32) are an immediate consequence of some continuity arguments
and of the summation of (3) over m 2 NC.

As for the proof of (33), we start out from (24) to get

expŒ�A�p� � .p�; Oq1/2;wˇ;� Oq1 D
NX

kD2

.p�; Oqk/2;wˇ;� expŒ��k�Oqk

since p� is orthogonal to Oqk in l2C;wˇ;� for each k > NC 1, so that from Parseval’s
relation we obtain

k expŒ�A�p� � .p�; Oq1/2;wˇ;� Oq1k
2
2;wˇ;� 6 expŒ�2� j�Nj�kp�k22;wˇ;� (34)

for every � 2 Œ0;C1/. It remains to show that

.p�; Oq1/2;wˇ;� Oq1 D pˇ;�: (35)
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From (2) and (9) we first have

kpˇ;�k22;wˇ;� D ‚
�2
ˇ;�

C1X
mD1

exp
�
�ˇ.�m � �Nm/

�
D ‚�1ˇ;�

as a consequence of (1), so that we may choose Oq1 D ‚
1
2

ˇ;�
pˇ;� as one of the unit

eigenvectors associated with �1 D 0. Moreover, using (9) on the left-hand side of (34)
we eventually get

j.expŒ�A�p�/m � .p�; Oq1/2;wˇ;� Oq1;mj

6 exp
h
�
ˇ

2
.�m � �Nm/

i
expŒ�� j�Nj�kp�k2;wˇ;�

for every m. Therefore, the summation of both sides of this expression over m 2 NC

leads to ˇ̌̌
1 � .p�; Oq1/2;wˇ;�

C1X
mD1

Oq1;m
ˇ̌̌

6 ‚ˇ
2 ;�

expŒ�� j�Nj�kp�k2;wˇ;�

where we have used (1) and the normalization condition in (32), so that letting � !
C1 in the preceding relation necessarily gives

.p�; Oq1/2;wˇ;�

C1X
mD1

Oq1;m D 1: (36)

But from our choice of Oq1 we have

C1X
mD1

Oq1;m D ‚
1
2

ˇ;�

C1X
mD1

pˇ;�;m D ‚
1
2

ˇ;�

and thereby

.p�; Oq1/2;wˇ;� D ‚
� 12
ˇ;�

independently of p�. Consequently, we end up with

.p�; Oq1/2;wˇ;� Oq1 D ‚
� 12
ˇ;�
Oq1 D pˇ;�;

as desired.

Remark. All the p� 2
WN

kD1 E�k.A/ satisfying (4) provide a large supply of initial
data for which estimate (33) holds, which obviously grows with N. But this is at the
expense of having a smaller exponential rate of decay whenever N becomes large since
j�Nj > j�NC1j and limN!C1 expŒ�� j�Nj� D 1.
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We can avoid the truncation method and yet obtain convergence results for the
solutions to (3) by modifying the basic argument, but that is at the expense of hav-
ing no error bounds in general unless we impose additional conditions regarding the
Fourier coefficients of the initial data, as in Corollary 2 below. We begin with the
crucial observation that (35) still holds for an arbitrary initial condition p� 2 l2C;wˇ;�
satisfying (4). More precisely we have:

Lemma 1. Let p� 2 l2C;wˇ;� satisfy the second relation in (4). Then we have

.p�; Oq1/2;wˇ;� Oq1 D pˇ;�:

Proof. From (2) and the definition of the weights wˇ;�;m we have

.pˇ;�; Oqk/2;wˇ;� D ‚
�1
ˇ;�

C1X
mD1

Oqk;m D 0

for each k 2 ¹2; 3; : : :º by virtue of the orthogonality of the eigenvectors of A, so that

C1X
mD1

Oqk;m D 0 (37)

for every such k. Furthermore, for p� 2 l2C;wˇ;� we have the norm-convergent series
expansion

p� D .p�; Oq1/2;wˇ;� Oq1 C
C1X
kD2

.p�; Oqk/2;wˇ;� Oqk

and therefore
C1X
mD1

p�m D .p
�; Oq1/2;wˇ;�

C1X
mD1

Oq1;m D 1

as a consequence of (37) and the second relation in (4). In this way, (36) holds again,
so that we may conclude as in the proof of Theorem 2.

Lemma 1 now allows us to get the following generalization of Theorem 2:

Theorem 3. Let A be the operator defined by (13), and let p� 2 l2C;wˇ;� be any initial
condition satisfying (4). Assuming moreover that (21) holds, and that the ordering
�k < �kC1 for every k 2 ¹2; 3; : : :º is still valid, we have

lim
�!C1

k expŒ�A�p� � pˇ;�k2;wˇ;�D 0:

Proof. From the preceding lemma and its proof we may write

p� D pˇ;� C
C1X
kD2

.p�; Oqk/2;wˇ;� Oqk
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and therefore

k expŒ�A�p� � pˇ;�k22;wˇ;� D
C1X
kD2

j.p�; Oqk/2;wˇ;� j
2 expŒ2��k� < C1 (38)

for every � 2 Œ0;C1�, without truncation. Now, for every fixed k 2 ¹2;3; : : :ºwe have

lim
�!C1

j.p�; Oqk/2;wˇ;� j
2 expŒ2��k� D 0

since �k < 0, and moreover

j.p�; Oqk/2;wˇ;� j
2 expŒ2��k� 6 j.p�; Oqk/2;wˇ;� j

2

for every k uniformly in � 2 Œ0;C1�, with

C1X
kD2

j.p�; Oqk/2;wˇ;� j
2 6 kp�k22;wˇ;� < C1:

The result then follows from dominated convergence.

All the preceding results remain valid when � D 0, which corresponds to the
description of a quantum system in thermodynamical equilibrium with a heat bath at
inverse temperature ˇ > 0, and to transition rates in (3) of the form

rm;n D exp
h
�
ˇ

2
.3�m C �n/

i
(39)

according to (17). Furthermore, in this case the components (30) of the eigenvectors
of A reduce to

Opk;m D
exp

�
�
3ˇ
2
�m
�

�k C bm
(40)

where

bm D Z 3ˇ
2

exp
h
�
ˇ

2
�m

i
: (41)

In the preceding expression we have defined

Zˇ WD ‚ˇ;0 D

C1X
mD1

expŒ�ˇ�m� < C1

for every ˇ > 0, which stands for the usual partition function of the canonical ensem-
ble. Eigenvectors (40) then constitute an orthonormal basis of l2C;wˇ where wˇ WD
wˇ;�D0 D .wˇ;�D0;m/ D .expŒˇ�m�/, and moreover, the grand canonical equilibrium
distribution pˇ;� reduces to pˇ WD pˇ;�D0 whose components are given by

pˇ;m D Z
�1
ˇ expŒ�ˇ�m� (42)

for every m 2NC. In the next result we state two consequences of Theorems 2 and 3:
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Corollary 1. Let A be the operator defined by (13), with the am;n given by (12)
and (39). Then A W l2C;wˇ 7! l2C;wˇ

is a linear, self-adjoint trace-class operator whose
trace is given by

TrA D Z2ˇ �Zˇ
2

Z 3ˇ
2

< 0:

Moreover, let us assume in addition that

�mC1 � �m > 0 (43)

for every m 2 NC, and that the ordering �k < �kC1 of the eigenvalues still holds for
every k 2 ¹2; 3; : : :º. Then the following statements are valid:

(a) For each N 2 NC with N > 2 and p� 2
WN

kD1E�k.A/ satisfying (4) we have
the exponential decay estimate

k expŒ�A�p� � pˇk2;wˇ 6 expŒ�� j�Nj�kp�k2;wˇ

for every � 2 Œ0;C1/, where pˇ is given by (42).

(b) Let p� 2 l2C;wˇ be any initial condition satisfying (4). Then we have

lim
�!C1

k expŒ�A�p� � pˇk2;wˇ D 0:

Remark. The operatorA of the preceding corollary may also be realized as a non nor-
mal and non dissipative trace-class operator in the usual unweighted Hilbert space l2C
consisting of all square summable complex sequences. This approach was imple-
mented in [2], with the goal of putting the analysis of A into the perspective of the
spectral theory of linear non self-adjoint operators as developed in [8]. However, this
was at the expense of having to deal with a host of more complicated technical issues
while imposing a more restrictive condition on the spectral condition (43), namely,

�mC1 � �m > c expŒ���m�

for every m 2 NC, with both c > 0, � > 0 independent of m.

We complete this section by analyzing a concrete example which illustrates the
direct impact of the decrease properties of the initial data in (3) on the speed of con-
vergence of the corresponding solutions. The example involves the quantum harmonic
oscillator whose spectrum we rescaled and shifted by irrelevant constants, and shows
that even if the oscillator is initially steered away from thermodynamic equilibrium
due to its interaction with a heat bath at inverse temperature ˇ > 0, it will eventually
return there at a rate which strongly depends on the decrease properties of the initial
conditions (4), a result that is complementary to those in [4, Section 3]. We assume
throughout that � D 0.
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Corollary 2. Let us consider the initial-value problem (3)–(4) where the transition
rates are given by (39) and �m D m 2 NC. Moreover, let us assume that the ordering
�k < �kC1 of the eigenvalues of the operator A still holds for every k 2 ¹2; 3; : : :º.
Then the following statements are valid:

(a) If the Fourier coefficients of p� 2 l2C;wˇ along the orthonormal basis .Oqk/k2NC

of l2C;wˇ satisfy
j.p�; Oqk/2;wˇ j

2 6 � expŒ�ık� (44)

for every k 2 ¹2; 3; : : :º and some �; ı > 0, then we have

k expŒ�A�p� � pˇk2;wˇ 6 cˇ;�;ı�
� ı
ˇ (45)

for all sufficiently large � and for some cˇ;�;ı > 0 depending solely on ˇ, �
and ı.

(b) If the Fourier coefficients of p� 2 l2C;wˇ along the orthonormal basis .Oqk/k2NC

of l2C;wˇ satisfy
j.p�; Oqk/2;wˇ j

2 6 �k�ı (46)

for every k 2 ¹2; 3; : : :º and some � > 0, ı > 1, then we have

k expŒ�A�p� � pˇk2;wˇ 6 cˇ;�;ı.ln �/�
ı�1
2 (47)

for all sufficiently large � and for some cˇ;�;ı > 0 depending solely on ˇ; �
and ı.

Proof. The starting point is the relation

k expŒ�A�p� � pˇk22;wˇ D
C1X
kD2

j.p�; Oqk/2;wˇ j
2 expŒ2��k�

which is (38) with � D 0, where we assume that � > 0. Using (44) along with �k <
�bk, the latter being a consequence of (23), we first obtain

k expŒ�A�p� � pˇk22;wˇ 6 �

C1X
kD2

exp
h
�ık � 2�Z 3ˇ

2

exp
h
�
ˇ

2
k
ii

(48)

by using (41). In order to extract an explicit dependence in � from the preceding
expression let us now consider the function f .:; �/ W .0;C1/ 7! RC given by

f .x; �/ WD exp
h
�ıx � 2�Z 3ˇ

2

exp
h
�
ˇ

2
x
ii
: (49)

We remark that f .:; �/ possesses a unique critical point at

xc.�/ D ln
�cˇ �
ı

� 2
ˇ

(50)
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where cˇ D ˇZ 3ˇ
2

. Furthermore, we choose � sufficiently large so that the integer
part of (50) satisfies Œxc.�/� > 3, with f .:; �/ monotone increasing for x 2 .0; xc.�//
and monotone decreasing for x 2 .xc.�/;C1/. For the right-hand side of (48) we then
obtain the estimate

C1X
kD2

f .k; �/ D
Œxc.�/��1X

kD2

f .k; �/C
C1X

kDŒxc.�/��1

f .kC 1; �/

6
Z Œxc.�/�

2

dxf .x; �/C f .Œxc.�/�; �/C f .Œxc.�/�C 1; �/

C

Z C1
Œxc.�/�C1

dxf .x; �/

6
Z C1
2

dxf .x; �/C f .Œxc.�/�; �/C f .Œxc.�/�C 1; �/: (51)

It is now easy to extract the desired dependence in � for each term in the preced-
ing expression. For the integral this follows from the change of variables x! y D
� expŒ�ˇ

2
x�, which leads to the estimateZ C1

2

dx exp
h
�ıx � 2�Z 3ˇ

2

exp
h
�
ˇ

2
x
ii

D
2

ˇ

�Z � expŒ�ˇ�

0

dyy
2ı
ˇ
�1 exp

�
�2Z 3ˇ

2

y
��
��

2ı
ˇ

6
2

ˇ

�Z C1
0

dyy
2ı
ˇ
�1 exp

�
�2Z 3ˇ

2

y
��
��

2ı
ˇ

D cˇ;ı�
�2ı
ˇ

�
��

2ı
ˇ (52)

for some cˇ;ı > 0 depending only on ˇ and ı, where � stands for Euler’s Gamma
function.

As for the second and third terms on the right-hand side of (51), we first note that
the direct substitution of (50) into (49) gives

f .xc.�/; �/ D Ocˇ;ı�
� 2ı
ˇ

where Ocˇ;ı > 0, and therefore we get

f .Œxc.�/�; �/ 6 Ocˇ;ı��
2ı
ˇ

since Œxc.�/� 6 xc.�/ and since f .:; �/ is monotone increasing there. An identical
estimate holds for f .Œxc.�/�C 1; �/ since xc.�/ < Œxc.�/�C 1 with f .:; �/ monotone
decreasing there. The substitution of all the gathered information into (51) and the use
of (48) then lead to (45).
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The proof of (47) follows a similar pattern but is a little bit trickier. We start with

k expŒ�A�p� � pˇk22;wˇ 6 �

C1X
kD2

k�ı exp
h
�2�Z 3ˇ

2

exp
h
�
ˇ

2
k
ii

(53)

and

f .x; �/ WD x�ı exp
h
�2�Z 3ˇ

2

exp
h
�
ˇ

2
x
ii
: (54)

It is easily seen that the possible critical points of (54) are solutions to the equation

exp
�
ˇ
2
x
�

x
D
cˇ �

ı
(55)

where cˇ is as in (50), and that the function on the left-hand side of (55) is convex,
possesses an absolute minimum at x� D 2

ˇ
and is strictly increasing for x 2 .x�;C1/.

Then for every sufficiently large � there exists a unique critical point xc.�/2 .x�;C1/
of f .:; �/, this function being monotone increasing for x 2 .x�; xc.�// and monotone
decreasing for x 2 .xc.�/;C1/. Moreover, writing Œx�� for the integral part of x�, we
may break up the right-hand side of (53) as

C1X
kD2

f .k; �/

D

Œx��C2X
kD2

f .k; �/C
Œxc.�/��1X
kDŒx��C3

f .k; �/C
C1X

kDŒxc.�/��1

f .kC 1; �/

6
Œx��C2X
kD2

f .k; �/C
Z C1
Œx��C3

dxf .x; �/C f .Œxc.�/�; �/C f .Œxc.�/C 1�; �/:

(56)

We now claim that the first term on the right-hand side of the preceding inequality
satisfies the exponential decay estimate

Œx��C2X
kD2

f .k; �/ 6 cˇ;ı expŒ�cˇ �� (57)

for some cˇ;ı , cˇ > 0. Indeed we have

Œx��C2X
kD2

k�ı exp
h
�2�Z 3ˇ

2

exp
h
�
ˇ

2
k
ii

6 2�ı.Œx��C 1/ exp
h
�2�Z 3ˇ

2

exp
h
�
ˇ

2
.Œx��C 2/

ii
since 2 6 k 6 Œx��C 2, which is (57) with an obvious choice for cˇ;ı and cˇ as Œx��
depends only on ˇ.
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As for the integral we haveZ C1
Œx��C3

dxx�ı exp
h
�2�Z 3ˇ

2

exp
h
�
ˇ

2
x
ii

D cˇ;ı

Z � expŒ�ˇ2 .Œx
��C3/�

0

dy
y

�
ln
�

y

��ı
exp

�
�2Z 3ˇ

2

y
�

following the same change of variables as in (52), for some cˇ;ı > 0. Therefore, inte-
grating by parts and using the fact that ı > 1 to control the completely integrated term
we obtain, changing the value of cˇ;ı if necessary,Z C1

Œx��C3
dxf .x; �/

D cˇ;ı expŒ�cˇ ��C Ocˇ;ı

Z � expŒ�ˇ2 .Œx
��C3/�

0

dy
�

ln
�

y

�1�ı
exp

�
�2Z 3ˇ

2

y
�

(58)

for some cˇ , Ocˇ;ı > 0, thereby exhibiting the exponential decay of the first term on
the right-hand side. In order to extract the dependence in � of the second term, we
start with Z � expŒ�ˇ2 .Œx

��C3/�

0

dy
�

ln
�

y

�1�ı
exp

�
�2Z 3ˇ

2

y
�

D

Z p�
0

dy
�

ln
�

y

�1�ı
exp

�
�2Z 3ˇ

2

y
�

C

Z � expŒ�ˇ2 .Œx
��C3/�

p
�

dy
�

ln
�

y

�1�ı
exp

�
�2Z 3ˇ

2

y
�
;

which leads to the estimateZ p�
0

dy
�

ln
�

y

�1�ı
exp

�
�2Z 3ˇ

2

y
�

6 cı

�Z C1
0

dy exp
�
�2Z 3ˇ

2

y
��
.ln �/1�ı D cˇ;ı.ln �/1�ı (59)

for the first term on the right-hand side where cı , cˇ;ı > 0. As for the second term we
get Z � expŒ�ˇ2 .Œx

��C3/�

p
�

dy
�

ln
�

y

�1�ı
exp

�
�2Z 3ˇ

2

y
�

6
�Z � expŒ�ˇ2 .Œx

��C3/�

p
�

dy
�

ln
�

y

�1�ı�
exp

�
�2Z 3ˇ

2

p
�
�

D

�Z expŒ�ˇ2 .Œx
��C3/�

1p
�

dy
�

ln
1

y

�1�ı�
� exp

�
�2Z 3ˇ

2

p
�
�
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6
�Z expŒ�ˇ2 .Œx

��C3/�

0

dy
�

ln
1

y

�1�ı�
� exp

�
�2Z 3ˇ

2

p
�
�

D Ocˇ;ı� exp
�
�2Z 3ˇ

2

p
�
�

(60)

for some Ocˇ;ı > 0, the last improper integral being convergent. The combination of
(58)–(60) thus leads to Z C1

Œx��C3
dxf .x; �/ 6 cˇ;ı.ln �/1�ı (61)

for some appropriate cˇ;ı > 0.
It remains to estimate the last two terms on the right-hand side of inequality (56).

We begin by observing that (54) implies

f .xc.�/; �/ 6 x�ıc .�/ (62)

for every � 2 .0;C1/, while (55) and the fact that xc.�/ > x� for � sufficiently large
lead to

exp
hˇ
2
xc.�/

i
D xc.�/

cˇ �

ı
> x�

cˇ �

ı
:

Since x� D 2
ˇ

, we may therefore change the value of cˇ if necessary and thus obtain
the lower bounds

xc.�/ >
2

ˇ
ln
cˇ �

ı
>
1

ˇ
ln � (63)

for the critical point, where the second inequality follows from the fact that we may
take cˇ�

ı
>
p
� for � sufficiently large since cˇ

ı
> 0. From (62) and (63) we then get

f .xc.�/; �/ 6 cˇ;ı.ln �/�ı

for some suitably chosen cˇ;ı > 0, so that arguing as in the proof of statement (a) we
end up with

f .Œxc.�/�; �/ 6 cˇ;ı.ln �/�ı

and with an identical bound for f .Œxc.�/�C 1; �/. The substitution of this information
along with (57) and (61) into (56) then leads (47).

Remark. Throughout this article we carried out our computations with transition
rates given by (7) and (8) mainly because of their important role in Stochastic Ther-
modynamics and Chemical Physics. However, there are plenty of other choices for
them that lead to similar results, as long as they satisfy the detailed balance condi-
tions (6).
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