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1 Introduction

The origin of the matter-antimatter asymmetry remains one of the most compelling and
challenging open problems in cosmology and modern particle physics. Detailed studies of
antiparticles in cosmic rays [1], big-bang nucleosynthesis (BBN) measurements [2] and very
precise understanding of the cosmic microwave background radiation (CMBR) from the
Planck satellite [3] provide us with stringent constraints on the number density of baryons
per entropy density, YB = nb−nb̄

s = 8.8 × 10−11. To explain such a matter-antimatter
asymmetry dynamically, a baryogenesis mechanism has to satisfy the three well-known (and
necessary) Sakharov’s conditions [4]: (i) baryon number B-violation, (ii) violation of C- and
CP-symmetries, and (iii) having particle interactions out of thermal equilibrium. While
there are many proposed mechanisms of baryogenesis, the most well-studied are electroweak
baryogenesis [5–7] and baryogenesis via leptogenesis [8] from the decays of heavy right handed
(RH) neutrinos which are introduced as extension to the Standard Model (SM) to obtain
light neutrino masses via Type-I seesaw mechanism [9–12].

It is well known that non-standard cosmologies affect these baryogenesis mechanisms [13–
17]. Primordial Black Holes (PBH) [18, 19] are a rich non-standard cosmology that has
received renewed interest after the discovery of Gravitational Waves (GW) from black hole
mergers by the LIGO-Virgo-KAGRA collaboration [20–25]. With masses as tiny as MBH ≃ 0.1
g up to a few hundreds of solar masses, PBHs may lead to interesting physical signatures.1

In particular, ultralight PBHs with MBH ≲ 109g, which completely evaporate before BBN
(T ∼ 4MeV) can affect the production of dark matter [35–40] or dark radiation [38, 39, 41–
43], the generation of baryon asymmetry [44–46], resonant GW spectrum induced by scalar

1Long-lived PBHs with mass (MBH ≳ 1015g) that may survive until today may contribute to a significant
energy budget of Dark Matter (DM) [26–34].
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perturbations [47], GW from cosmic strings [48], GWs induced by ultralight primordial black
hole domination and evaporation [49, 50] and study of vacuum stability of the Standard Model
(SM) Higgs [51, 52]. While intermediate-mass black holes 109g ≲ MBH ≲ 1015g are subject
to several constraints (e.g., from BBN [33, 53, 54]) ultralight PBHs (0.1g ≲ MBH ≲ 109g)
face practically no cosmological or astrophysical constraints, if we assume that black holes
completely evaporate, ie.e, they do not leave any Planck mass-sized relics; see e.g. [33] for
constraints on light PBHs coming form Planck relics. As such, we are free to consider their
interplay with new physics scenarios and how the presence of such light PBHs affects the
viable parameter space of the new physics model.

PBHs may affect leptogenesis in two primary ways: (a) the production of heavy right
handed neutrinos via the Hawking evaporation, which enhances the efficiency of baryogenesis
via leptogenesis in some areas of the parameter space [44], and (b) entropy injection into the
primordial plasma, which somewhat reduces the efficiency of leptogenesis [45, 55, 56]. The
black hole-induced leptogenesis scenarios, based on a type-I seesaw mechanism [9, 10, 12, 57],
have been well investigated in the literature [44, 45, 55, 58, 59] and it was shown that how
these two effects impact leptogenesis. Generally speaking, heavy PBHs with initial masses
exceeding ≳ O(kg) are typically not efficient at producing heavy right handed neutrinos
with masses exceeding 106GeV, which are suitable for thermal leptogenesis but instead
lead to large entropy production [45, 55]. Due to this, there is significant tension between
such ultra-light PBH-dominated pre-BBN Universe and thermal leptogenesis. However, this
picture changes when an initially spinning PBH and the presence of a scalar, which couples
to the RH neutrinos, is taken into account due to the effects of superradiant instabilities.
This is the subject of the present analysis.

More specifically, we consider a scenario where the RH neutrinos are coupled to a scalar,
for instance, in a Majoron model. The final lepton asymmetry sourced from the PBHs is
affected firstly due to the production of the scalar and right handed neutrinos directly from
PBH evaporation via Hawking radiation, and their subsequent decays can source a lepton
asymmetry. Secondly, the PBHs are very efficient at producing photons, and such entropy
injections usually dilute the existing lepton asymmetry. Finally, and most importantly, since
we consider rotating PBHs, some of the energy and angular momentum of the PBHs will
be extracted to form bosonic clouds [60–64] of the scalar that couples to the right handed
neutrinos. The subsequent decays of this scalar can produce a lepton asymmetry leading
to what we call superradiant leptogenesis. We study the interplay of these three processes
and identify the regions of the parameter space that superradiance can impact the final
matter-antimatter asymmetry of the Universe. For other scenarios involving superradiant
production of SM and beyond-the-SM particles, see e.g. [65–69]

The structure of this work is as follows: in section 2, we discuss the Majoron model
we consider and follow in section 3 with a short review of the relevant primordial black
hole physics and superradiance. In section 4, we present the Friedmann and Boltzmann
equations of superradiant leptogenesis and discuss the solutions of these equations in section 5.
Finally, we summarise and conclude in section 7. In this work, we consider natural units
where ℏ = c = kB = 1, and define the Planck mass to be Mp = 1/

√
G = 1.22 × 1019GeV,

with G the gravitational constant.
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2 Spontaneous B − L symmetry breaking

Throughout, we consider a specific model that includes all the essential components for
superradiant leptogenesis. It extends the SM to include right handed neutrinos and an
additional scalar boson denoted as ϕ. Notably, ϕ will be produced via superradiance and
is also responsible for generating the RH neutrino masses. Specifically, the RH neutrino
fields, denoted as N , acquire heavy Majorana masses through the spontaneous breaking
of the global B − L symmetry by ϕ, often referred to as the Majoron. To achieve this,
we introduce an SM singlet complex scalar field called σ, which carries a B − L charge of
−2. The Lagrangian is as follows:

L=LSM+iN̄ /∂N+|∂µσ|2−
(

Y LH̃N+ g

2σNCN+h.c
)
−V (H,σ) ,

V (H,σ)=λH(|H|2−v2ew)2+λσ(|σ|2−v2B−L)2+λσH(|σ|2−v2B−L)(|H|2−v2EW ) ,

(2.1)

where L is the leptonic doublet, H denotes the Higgs doublet, and H̃ = iσ2H
∗. The symbols

Y , g, λH , λσH , and λσ represent dimensionless coupling constants. Additionally, we have
two dimensionful parameters, vEW and vB−L, which denote the electroweak and B − L

symmetry-breaking scales, respectively. Notably, g, which parameterises the strength of the
scalar coupling to the RH neutrinos, will play a key role in the superradiant leptogenesis
process from PBH. Around the B − L breaking vacuum, we parameterise σ by

σ = (vB−L + ρ/
√
2)eiϕ/(

√
2vB−L) , (2.2)

where ρ is a real part of σ, and ϕ corresponds to the Nambu-Goldstone boson, i.e. the
Majoron. After B − L symmetry breaking, N acquires the Majorana mass MN = gvB−L and
the Majoron acquiring a mass of order Mϕ ∼ λσvB−L in the limit the Majoron-Higgs coupling
is vanishing, λσH = 0. Also, this symmetry breaking leads to the formation of global cosmic
strings which results in the generation of gravitational waves as we will discuss in section 6.2.
After electroweak symmetry breaking, the familiar type-I seesaw mechanism [9, 10, 12, 57]
provides mass to the light neutrinos, mν = v2Y M−1

N Y T . In what follows, we will assume
that the Majoron mass always exceeds twice the right handed neutrino masses, Mϕ > 2MN1

where MN1 is the mass of the lightest RH neutrino. While at least two RH neutrinos are
required for the successful generation of SM neutrino masses via type-I seesaw; we assume that
Mϕ < MN2 , MN3 . Hence, the decays of ϕ to N1 are kinematically allowed while suppressed
to N2 and N3. The decay width of ϕ to RH neutrinos is

Γϕ→NN = g2Mϕ

16π

√√√√1− 4M2
N

M2
ϕ

, (2.3)

where, for simplicity, we denote N1 ≡ N and MN1 ≡ MN throughout the remainder of the
paper. Let us note, however, that there could be couplings between the Majoron and the
other SM degrees of freedom. To parametrise such a possibility in a model-independent
way, we define the branching ratio

BR ≡ Γϕ→NN

Γϕ
, (2.4)
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with Γϕ→NN the decay width into RH neutrinos, and Γϕ the total ϕ decay width. Essentially,
BR is dependent on the parameter λσH , so increasing or decreasing λσH will increase or
decrease BR. From here onwards, we treat the only independent variables for our analysis
to be MN , Mϕ, g and BR.

3 Rotating primordial black holes: Hawking radiation and superradiance

The formation PBHs during the Universe’s early stages of the Universe’s evolution [18, 70] may
occur when density fluctuations exceed a certain threshold and reenter the Hubble horizon
and collapse [71]. Alternatively, PBH may form from the collapse of cosmic string loops [72],
domain walls, or the collision of bubbles [73]. Since we are interested in superradiance
studies, initially spinning PBH can be formed during aspherical collapse or in the presence
of large inhomogeneities during a matter-domination era, as shown in refs. [74, 75] or from
collapse of domain walls involving gravitational torques [76] or from strong first-order phase
transitions [77, 78]. We assume that an initial density of PBHs was generated during a
radiation-dominated period after inflation. Considering the initial plasma temperature to
be T = Tin, the initial monochromatic mass of the PBH, Min, is proportional to the horizon
mass [33, 79]:

Min ≡ MBH (Tin) =
4π

3 κ
ρR (Tin)
H3 (Tin)

, (3.1)

where κ = 0.2, ρR (Tin) is radiation energy density at the time of PBH formation and H

is the Hubble rate at the time of PBH formation. The initial energy density of PBHs can
then be parametrised in terms of

β ≡ ρBH (Tin)
ρR (Tin)

= nBHMin
ρR (Tin)

, (3.2)

where ρBH (Tin) is the energy density of the PBHs at the formation time, and nBH is the
initial number density of PBHs. We assume that the population of PBHs are Kerr black holes
that carry non-zero total angular momentum, J [76, 80–85] which further is characterised by
the dimensionless quantity, a⋆ = JM2

p /M2
BH where MBH the instantaneous PBH mass. The

PBH population is assumed to have an initial monochromatic spin denoted by ain
⋆ .

The Hawking emission rate for any particle species is given by [70, 86]:

d2Ni

dp dt
= gi

2π

∑
l=si

l∑
m=−l

d2Nilm

dp dt
, (3.3)

with
d2Nilm

dp dt
=

Γlm
si

(M, p, a⋆)
e(Ei−mΩ)/TBH − (−1)2si

p

Ei
, (3.4)

where individual particle species i is characterised by its three-momentum p, total energy Ei,
and internal degrees of freedom gi, spin si. l and m are the total and axial angular momentum
quantum numbers, respectively, and Ω represents the angular velocity of the black hole’s
horizon and is given by Ω = (a⋆/2GMBH)(1/(1 +

√
1− a2

⋆)). Finally, Γlm
si

(M, p, a⋆) in the
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Hawking spectrum represents the absorption probability of the l, m mode. The evolution
of the spin and mass of a PBH without including superradiant effects is governed by the
following coupled equations [37, 87–89]

dMBH
dt

= −ε (MBH, a⋆)
M4

p

M2
BH

, (3.5)

da⋆

dt
= −a⋆ [γ (MBH, a⋆)− 2ε (MBH, a⋆)]

M4
p

M3
BH

, (3.6)

where ε (MBH, a⋆) and γ (MBH, a⋆) are dimensionless evaporation functions related to the
power and torque emission, respectively, and are obtained numerically via, see refs. [37, 38]

ε(MBH, a⋆) =
∑

i

gi

2π

∫ ∞

0

∞∑
l=si

l∑
m=−l

E
d2Nilm

dpdt
dE , (3.7)

γ(MBH, a⋆) =
∑

i

gi

2π

∫ ∞

0

∞∑
l=si

l∑
m=−l

m
d2Nilm

dpdt
dE . (3.8)

In addition to Hawking evaporation being an important source of particle production,
superradiance will play a key role in our scenario of interest.

Superradiance is an enhancement phenomenon that occurs for rotating black holes,
among other physical systems [90]. In a nutshell, a superradiant instability occurs when the
occupation number of massive bosonic fields gravitationally bound to a black hole grows
exponentially [60–63, 90]. Some conditions are required for such a phenomenon to take place.
First, the Compton wavelength of a massive bosonic field should be comparable to the BH
gravitational radius in order for a bound state to be formed. This can be parametrised via
the gravitational fine-structure constant, which indicates the strength of the gravitational
binding of such a state [90, 91]

α = MϕMBH
M2

p

≈ 0.38
(

MBH
10 g

) (
Mϕ

1013 GeV

)
, (3.9)

which naturally scales with the mass of the bosonic field and black hole.
The behaviour of the bounded state can be understood by solving the equation of motion

of the gravitationally coupled scalar field in the Kerr spacetime, see e.g. ref. [92]. The energies
of these quasinormal states will be complex, ω = ωR+ iωI , where the imaginary part indicates
whether the bound states decays, ωI < 0, or if the occupation number grows exponentially,
ωI > 0 [64, 90, 92–102]. Once the conditions for the formation of bound states are met, a
second requirement for superradiant instability to occur is that the real part of the energy
ωR must be less than a critical value ωc, ωR < ωc, with

ωc = mΩ , (3.10)

where m is the azimuthal quantum number. Defining Γsr = ωI as the decay or growth rate,
we can determine the time evolution of the number of particles Nϕ in the bound state through

dNϕ

dt
= ΓsrNϕ , (3.11)
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where we have neglected, at this moment, the possibility that the scalar field ϕ could decay
into other particles. Moreover, note that if the particles ϕ have significant self-interactions,
the time evolution of the cloud will be significantly modified, see ref. [103]. For simplicity,
we neglect the effect of ϕ self-interactions. The generation of these particles depletes the
BH mass and spin. Using energy conservation arguments, we have the system of equations
for MBH and a⋆,

dMBH
dt

= −MϕΓsrNϕ , (3.12a)

da⋆

dt
= −(

√
2− 2αa⋆)Γsr

Nϕ

G2M2
BH

. (3.12b)

Although there exist analytical approximations to determine the growth rate Γsr for different
limits, we will apply a numerical method that determines such a rate for all values of α

and the spin parameter a⋆. For such a purpose, we follow the procedure established in
ref. [92] to solve the Klein-Gordon equation in the Kerr background. To summarise, the
procedure is as follows. Using an ansatz in the form of a power series to solve the equations
obtained after a variable separation, one obtains a system of algebraic equations for the
bound state frequencies. Employing a root finder for such an algebraic system, we thus obtain
the frequencies ω that yield a bound state for a given set of quantum numbers l, m. Finally,
the growth rate is obtained by taking the imaginary part of the bound state frequencies. As
a cross-check, we have compared our results for the growth rate of instabilities with those
in ref. [92] and found a good agreement.

4 Boltzmann equations for superradiant leptogenesis

For the PBH mass and spin values that we investigate, the scalar ϕ will be sourced by both
Hawking evaporation and superradiance. In the case that such a scalar is unstable and decays
into right handed neutrinos, we will have an additional source of non-thermal leptogenesis.
In this section, we investigate the interplay between the two mechanisms. The set of coupled
Boltzmann equations that governs the evolution of this system is

aH
dnsr

ϕ

da
= Γsrn

sr
ϕ − Γϕ→NN nsr

ϕ

aH
dMBH

da
= −ε

M4
p

M2
BH

− MϕΓsrn
sr
ϕ

aH
da⋆

da
= −a⋆[γ − 2ε]

M4
p

M3
BH

−
[√

2− 2αa⋆

]
Γsrn

sr
ϕ

M2
p

M2
BH

aH
dnTH

N

da
= −

(
nTH

N − neq
N

)
ΓT

N

aH
dnBH

N

da
= −nBH

N ΓBH
N + nBHΓBH→N − nBH

N ΓBH
ϕ + nBHΓBH→ϕ→N

aH
dnϕ

N

da
= 2Γϕ→NN nsr

ϕ − ΓN nϕ
N

aH
dnB−L

da
= ϵ

[(
nTH

N − neq
N

)
ΓT

N + nBH
N ΓBH

N + nϕ
NΓN

]
−WnB−L ,

(4.1)

where a is the scale factor, nsr
ϕ , nTH

N , nBH
N , nϕ

N and nB−L denote the comoving number densities
of ϕ produced from superradiance, right handed neutrinos produced from the thermal bath,
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Hawking radiation, scalar decays, and B − L asymmetry respectively. The first line describes
the evolution of total ϕ numbers due to superradiant instability, including the possible decay
of ϕ. The first (gain) term on the right-hand side (r.h.s.), Γsrn

sr
ϕ , corresponds to the ϕ

production rate per BH. The second (loss) term denotes the rate of decay of these scalars
into right handed neutrinos where we defined the scalar decay width, Γϕ→NN in eq. (2.3),
and we approximate that the scalar ϕ decays at rest [66].

The second and third lines describe the evolution of PBH mass and spin discussed in
section 3, where we included terms coming from evaporation and superradiance, see eqs. (3.5)
and (3.12). The fourth tracks the number density of the right handed neutrinos produced
from the thermal plasma, nTH

N , where ΓT
N and neq

N are the thermally averaged decay rate and
the equilibrium abundance of the right handed neutrinos, respectively. Likewise, the fifth
line tracks the number density of the right handed neutrinos produced from the Hawking
radiation. In particular, the r.h.s. has several gain and loss terms: the second term denotes
the right handed neutrinos sourced by Hawking evaporation, while the first term provides the
decay rate. We note that ΓBH

N is the decay width of the right handed, to leptons and Higgses,
corrected by an average inverse time dilatation factor, ΓBH

N ≈ K1 (zBH)/K2 (zBH)Γrf
N with

K1,2(z) are modified Bessel functions of the first and second kind, respectively, and we defined
zBH = MN /TBH. We note, however, that for the equations’ full numerical solution, we use
the Hawking spectrum to compute the thermal average; see for further details refs. [44, 45].
There is an additional loss and gain term from the secondary decays of scalars produced
via Hawking evaporation given by the third and fourth terms, respectively, and we detail
these in appendix A.

The sixth line shows the dynamic evolution of the number density of right-hand neutrinos
from scalar decays, where a factor of two accounts for the scalar decays into two right handed
neutrinos. Finally, the last line involves the evolution of (B − L) asymmetry generated
due to N decays and washout, where the latter is denoted as W. The CP-asymmetry
parameter is denoted by ϵ and is a function of the Yukawa matrix, Y (see eq. (2.1)). We
note that the Yukawa matrix is given by the usual Casas-Ibarra parametrisation Y =
1/v

(
U
√

mνRT
√

M
)

[104]. Further, we assume that the light neutrinos are normally ordered
and approximated that the two lightest masses to be equal, m1 ≈ m2, since ∆m2

21 ≪ ∆m2
31.

This approximation implies that the R-matrix is a function by two real, z = x + iy, where we
fix x = π/4 and y = 0.44, which ensures we are always in the strong washout regime and
that ϵ is maximised allowing for the most conservative bound to be placed. Finally, we fix
the leptonic mixing angles, mass squared splitting, and CP-violating phase at their best-fit
values from global fit data [105] and fix the Majorana phases to be CP-conserving. This set of
coupled equations, together with the Hubble expansion rate, are numerically solved using the
facilities of ULYSSES [106, 107] to explore the parameter space of superradiant leptogenesis.

5 Leptogenesis via superradiance

Two example solutions for the coupled system of differential equations of eq. (4.1) are shown in
figure 1. In both plots, ain

⋆ = 0.999, β = 10−4 while the left (right) plot the RH neutrino mass
is fixed at MN = 4.7×1012 GeV (2.5×1012 GeV) and Mϕ = 2.05×MN (10×MN ) with initial
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10-1
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z =MN /T

|N
|/
n
γin

MN = 2.5×1012 GeV

Mϕ = 10MN

Min = 3.5 g

Figure 1. Evolution of RHN number densities normalised to the initial photon number density and the
baryon-to-photon ratio ηB for two benchmark points, MN = 4.7×1012 GeV, Mϕ = 2.05MN , Min = 10 g
(left) and MN = 2.5× 1012 GeV, Mϕ = 10MN , Min = 3.5 g (right). We present the different species
contributing to the baryon asymmetry: thermal (purple), primary from evaporation (blue), secondary
from evaporation (green), and superradiance (red). The baryon-to-photon ratio is presented for the
whole contribution (black) and from thermal leptogenesis only (black dashed). We assume ain

⋆ = 0.999,
and β = 10−4.

Figure 2. Left: baryon-to-photon ratio normalised to the observed value in the RHN mass vs. initial
PBH mass plane. The black line indicates the parameters consistent with the observed baryon
asymmetry, while the white dashed indicates the contribution from evaporation and the dotted
blue from superradiance. We assume ain

⋆ = 0.999, and β = 10−4. Right: ηB normalised to the
observed value in the initial PBH fraction β vs. mass plane. The black line indicates the parameters
consistent with the observed baryon asymmetry, while the white dashed indicates the contribution
from evaporation and the dotted blue from superradiance, assuming MN = 7× 1012 GeV. The shaded
region indicates the parameters excluded by GW production [108].
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mass of PBH Min = 10 g (3.5 g). Further, we fix the coupling of ϕ to the RH neutrinos to be
g = 10−4 throughout. These two benchmark points lead to the observed baryon asymmetry
once superradiance is included. The purple line shows the thermally produced RH neutrinos,
while the blue and green lines show the direct production of RH neutrinos from Hawking
evaporation and those produced from Hawking evaporation sourced ϕs that decay into RH
neutrinos. The red line shows the RH neutrino population sourced from the superradiantly
produced ϕ decays. Finally, the solid (dashed) lines represent the total (solely thermal)
baryon asymmetry. We observe from both plots that the primary RH neutrino production
via Hawking evaporation follows the typical scaling, with a rapid increase in the production
at the end of the PBH evaporation. The scenario with the lighter PBH (right) shows a more
efficient production of RH neutrinos since the PBH temperature is higher. The secondary
production occurs at later times since this relies on the initial production of the scalar ϕ. The
production of RH neutrinos from superradiantly produced ϕ decays occurs at higher z values
for the scenario with heavier ϕs (right plot) because a heavier ϕ leads to a more significant
superradiant instability growth rate and hence the bosonic cloud forms, and decays, earlier.
Moreover, since the right plot shows a scenario where the scalar is an order of magnitude
heavier than the RH neutrino (as opposed to a factor of a few, as shown on the left plot), the
production time for RH neutrinos from this superradiance is shorter due to the increase in
the ϕ decay width. As the superradiant instability exponentially amplifies ϕ production and
its occupation, the baryon-to-photon ratio (shown in solid black) increases by approximately
two orders of magnitude. However, this increase is diminished by the large entropy injections
towards the end of the PBHs lifetime. Therefore, superradiant leptogenesis can increase the
efficiency of leptogenesis in some areas of the parameter space; however, the entropy dilution
is always present, and we find this increase in available parameter space is rather modest.

This increase in the parameter space is presented in figure 2 where the left (right) plot
shows the ratio of the predicted over the observed baryon-to-photon ratio normalised to
the observed is shown in the RH neutrino mass (β) vs initial PBH mass plane. The black
line shows regions that are consistent with the observed baryon asymmetry for PBH with
aini = 0.999, β = 10−4, GeV and Mϕ = 2.05MN . Each contribution from Hawking evaporation
and superradiance is also shown. We observe that the effect of superradiant leptogenesis
on increasing the viable parameter space is localised in a horn-like region, indicated by the
contour on the MN −Mini plane that satisfies αGMBHMϕ ≈ 0.2 relation where superradiance
is most significant. From the right plot, this horn-like region is not sensitive to β (which
parametrises the number density of the PBHs).

The left plot of figure 3 shows the effect of varying the ϕ branching ratio on the viable
parameter space (red and green show the observed baryon asymmetry produced for branching
ratios of 1 and 0.75 respectively). As expected, the parameter space shrinks for smaller
branching ratios. Moreover, the effect of increasing the mass difference between the Majoron
and the RH neutrino is shown on the right plot of figure 3. Naturally, increasing the mass
of the Majoron, for a fixed RHN mass, increases the decay width and this leads to the
more rapid decay of the superradiantly-produced Majoron cloud and subsequently diminishes
the viable parameter space.

So far, we have exclusively examined monochromatic distributions in both PBH mass
and angular momentum. The potential implications of more realistic distributions within
superradiant leptogenesis is worth considering. Superradiance exhibits greater efficiency
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Figure 3. Dependence of the regions consistent with the observed baryon asymmetry on the branching
ratio of the scalar into RHNs (left) and the mass ratio between the scalar ϕ and the RHN mass MN

(right). We assume ain
⋆ = 0.999, and β = 10−4.

when α ∼ 0.3. Consequently, introducing extended angular momentum distributions into
our analysis is expected to reduce the contribution to leptogenesis arising from superradiant
clouds. When we introduce extended spin distributions, we anticipate a notable increase in the
number of PBHs with spins below the nearly maximal value αin

⋆ = 0.999 assumed previously.
Consequently, fewer PBHs will satisfy the necessary conditions to form ϕ superradiant clouds,
diminishing the overall effect we discussed earlier. However, if we consider extended mass
distributions, this could potentially mitigate such a reduction. This is because we might
have PBHs with masses greater than Min, which could compensate for the smaller PBH spin
values while maintaining α constant. We nevertheless refrain from analysing this scenario
quantitatively, leaving it for future work.

6 Primordial gravitational waves probes of PBH leptogenesis

In this section, we explore the various ways PBHs contribute to generating primordial gravi-
tational waves, potentially leaving discernible imprints for specific regions of the parameter
space. Firstly, it is worth noting that the formation of PBHs, characterised by significant
curvature perturbations, can induce gravitational waves, especially if these perturbations
are of inflationary origin [109] or from spectator fields present during inflation [110, 111].2

Secondly, PBHs are known to emit high-frequency gravitational waves through Hawking
evaporation, which serves as an additional source of such waves [114]. Thirdly, the merger of
PBHs results in the emission of gravitational waves, thus presenting another avenue for GW
production [115]. Fourthly, the evaporation of PBH may lead to unique GW spectral shapes
emitted via cosmic strings if present in the early universe [48, 116]. Finally, the presence of

2Certain scenarios may also explain the GW signal observed by NANOGrav [112, 113].
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inhomogeneities arising due to the distribution of PBHs also leads to density fluctuations
that can induce GWs in the form of isocurvature-induced tensor perturbations [117–119] as
well as resonant GW signals arising due to first-order adiabatic scalar perturbation inducing
second-order gravitational waves due to PBH evaporation [49, 50]. Each of these gravitational
wave spectra have distinct characteristics, and we will focus our discussion on the two primary
sources most relevant to our specific parameter space of interest.

6.1 Induced tensor perturbations

Once PBHs are formed, their distribution in space is random and act as sources of inhomo-
geneities present during inflation in the form of isocurvature perturbations [117]. If present
in the early Universe, these inhomogeneities lead to density fluctuations in the form of
isocurvature perturbations. Later on, when PBHs dominate the Universe’s energy density,
the isocurvature perturbations are converted to adiabatic perturbations that source tensor
perturbations at the second order. These tensor perturbations propagating as GWs are
probing the time of PBH formation. Next, the presence of adiabatic scalar perturbation
(either of inflationary origin or any other source) also induces tensor perturbations and
since these scalar modes are enhanced due to the almost instantaneous evaporation of PBHs
effectively changing the background from matter-domination to radiation domination. This
leads to unique resonant GW enhance signals that may be detected. Combining these two
effects leads to a unique double-peaked GW spectrum with the present-day dimensionless
energy density given by [49, 50, 118, 120]

Ωgw(t0, f) ≃ Ωpeak
gw

(
f

fpeak

)11/3
Θ

(
fpeak − f

)
, (6.1)

where the peak of the spectrum is determined by the number density and initial mass of
the PBHs

Ωpeak
gw ≃ 2× 10−6

(
β

10−8

)16/3 (
Min
107g

)34/9
. (6.2)

These analyses are valid only for distances larger than the mean separation between PBHs,
which in turn imposes an ultraviolet cutoff to the GW spectrum, with fpeak corresponding to
the co-moving scale representing the mean separation of PBHs at the time of PBH formation.
Therefore appears the Θ-function in eq. (6.1) with

fpeak ≃ 1.7× 103Hz
(

Min
104g

)−5/6
. (6.3)

6.2 Gravitational Waves from global cosmic strings

The spontaneous breaking of the global U(1)B−L symmetry, as discussed in section 2, can lead
to the generation of cosmic strings. After this symmetry breaking, a network of horizon-size
long strings can form whose length is characterised by a correlation length L =

√
µ/ρ∞ of

loop strings, where ρ∞ is the long-string energy density and µ is the string tension. These
strings can intersect and form loops that can oscillate and generate gravitational waves whose
energy density depends on the string tension.
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The cosmic string network can reach a scaling solution, where the string energy density
comprises a constant fraction of the Universe’s energy density. As seen in several simulations,
the size of a radiating loop at a cosmic time t is given by l(t) = αti − ΓGµ(t − ti), where
li = αti is the initial size of the loop, Γ ≃ 50 [121], and α ≃ 0.1. The energy loss from a loop
can written as a set of normal-mode oscillations with frequencies fk = 2k/lk = a(t0)/a(t)f ,
where k = 1, 2, 3 . . .∞. The kth mode GW density parameter is obtained as

Ω(k)
GW(f) = 2kGµ2Γk

fρc

∫ t0

tosc

[
a(t)
a(t0)

]5
n (t, lk) dt , (6.4)

where tosc is the oscillation time, n (t, lk) is the loop number density which maybe estimated
using the Velocity-dependent-One-Scale (VOS) model. The quantity Γj is given by Γj = Γj−δ

ζ(δ) ,
with δ = 4/3 for loops containing cusps [122].

Detectable GWs from the global cosmic string loops arise from the most recent epoch
of cosmic evolution. The whole GW amplitude may grow with µ, but in the presence of a
PBH-dominated era before the most recent radiation epoch at T = T∆, the GW spectrum at
higher frequencies are given by Ω(1)

GW(f ≲ f∆) ∼ f0 = const and Ω(1)
GW(f ≳ f∆) ∼ f−1, with

f∆ the frequency of the spectral-break. This leads to unique GW spectra due to the presence
of PBH-domination era and its subsequent evaporation leading to the onset of radiation era
and can be tested via several upcoming GW detectors as studied in detail in ref. [48].

In addition, global cosmic strings efficiently contribute to Neff via Goldstone boson
emission. However, the precise constraint is still debated among the various groups performing
lattice simulations (see e.g. refs. [123–126] and refs. [127–129]). To be safe from this we take
the upper bound to be vB−L ≲ 1015GeV following the most stringent among ref. [130] and
refs. [129, 131].3 This translates into a RH neutrino mass of around MN = 1011 GeV for
g = 10−4 (see figure 3). For this scenario, and PBH mass of 102 − 103g, the corresponding
GW spectrum will be probed via the Einstein Telescope (ET) GW detector with four years
of data-taking and the signal-to-ratio needed to claim discovery is needed to be 10 or larger
as studied in details in ref. [48]. However, with the same vB−L for larger g values (that
is, for larger MN ) we find that the superradiance cloud decays too quickly to have any
sizeable impact on the lepton asymmetry generation. Nonetheless, it could happen that
based on the uncertainties related to the lattice simulation of global cosmic strings, and
the sensitivity reaches of the ET GW detector, we may also be able to probe some regions
of the parameter space shown in figure 3 via this GW spectral shape and leave this for
future dedicated studies. Further, if we had considered a local B − L symmetry,4 then there
are clear overlaps between the parameter space shown in figure 6 of ref. [48] and figure 3.
However, such a theory also introduces a heavy ZB−L vector boson, which would also have its
superradiance effects, and those signatures would require a separate dedicated study which
is beyond the scope of our present analysis.

3The non-observation of B-modes in CMB provides another constraint on global strings from Hinf ≲ 3 ×
1013 GeV (scale of inflation) [132] via the maximum temperature of the Universe Tmax ≲ 4 × 1015 GeV to
vB−L ≲ 1015 GeV.

4Also see ref. [133] for a similar discussion, but without PBH spin.
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7 Discussion and conclusion

We have studied the impact of the superradiant primordial black holes on the production of the
baryon asymmetry of the Universe via high-scale leptogenesis. We investigated how a Majoron
model would be impacted in the context of high-scale leptogenesis from spinning black holes.
In particular, the spinning PBHs’ evaporation is associated with particle production bursts
due to superradiance and an injection of scalar Majoron ϕ, which decays into right handed
neutrinos. We found that such superradiance effects can enhance the production of a lepton
asymmetry beyond the region of the parameter space in the minimal scenario, and this occurs
where the superradiance condition is satisfied, αGMBHMϕ ≈ 0.2, see the horn-like region of
figure 2. This effectively rescues some regions of the parameter space otherwise, which did not
yield viable high-scale leptogenesis as the baryogenesis mechanism [45]. This additional viable
parameter space requires a PBH population with masses from 0.1 to 10 grams with an initial
abundance β ≳ 10−7 (see figure 2). This impact on the parameter space is also governed by
the microphysics BSM parameters involving RH neutrino masses and the coupling of the
Marojon to SM, depicted in terms of BR (see figure 3).

As described in section 6, recent studies regarding presence of PBH-dominated epoch [49,
50, 108, 117–119, 134–136] have shown that inevitable scalar-induced gravitational waves
resulting from adiabatic and isocurvature perturbations (model-independent) can produce
distinctive resonant peaks and double-peaks in the GW spectrum, which can be used to probe
the formation time and decay time of PBHse. The unique spectral shapes of those GW are key
to the understanding if PBHs ever came to dominate the Universes’ energy density [49, 50]. If
such spectra cover the regions where superradiance can increase the number density of right
handed neutrinos produced by PBHs (via intermittent production of ϕ) one may perhaps
have a complementary test of superradiant leptogenesis via primordial GW. However, such a
study is beyond the scope of the present analysis. Moreover, gauging the B-L symmetry will
have interesting consequences due to the presence of massive ZB−L boson, which could have
its own superradiance effects as well as the GW signatures coming from local cosmic strings
would show up as signatures in the GW spectrum that LISA would be able to detect.
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A Secondary decays

The PBHs produce RH neutrinos via Hawking radiation, which can decay and produce a
lepton asymmetry. The rate of this is given by:

ΓBH→N =
∫

d2NN

dEN dt
dEN . (A.1)

However, the PBHs will also produce the scalar, ϕ, via Hawking radiation which can undergo
a secondary decay to RHNs which will decay. These secondary RHNs (denoted by superscript
‘sec’) will have a slightly different energy spectrum than the primaries. Their differential
number density is given by

d2N sec
N

dEN dt
=

∫
dEϕ

d2Nϕ

dEϕdt

dNϕ→NN

dEN
, (A.2)

where the rate of the RHNs sourced from ϕ decays is found by integrating the above
differential number density over the energy of the RHNs:

ΓBH→ϕ→N =
∫

d2N sec
N

dEN dt
dEN .
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