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1 Introduction

Rare B decays are decays of B mesons with small branching ratios of the order of 10−6

or less. In the Standard Model (SM) these tiny rates are explained by the fact that they
are loop-mediated processes with CKM or GIM suppression. The fact that experimental
measurements of these rates are of the same order magnitude of the SM predictions already
poses strong indirect constraints on Beyond-the-SM (BSM) physics, most prominently in
models where these processes arise at tree level. This ability to pose strong constraints on
BSM physics is the same as discovery power [1].

A class of rare B decays that has been discussed extensively in over ten years of
LHC operations are the Flavour-Changing Neutral Current (FCNC) exclusive processes
of the type b → s`+`−, such as B̄ → K̄`+`−, B̄ → K̄∗`+`−, and B̄s → φ`+`−. While
the importance of these measurements was clear and had been discussed before [2–7], a
generalised interest was driven by the “anomalies” observed starting from 2013 [8–19].
While the deviations in the observables measuring lepton-flavour non-universality seem
to be now more in agreement with the SM, the deviations in the muonic observables are
still puzzling. Independently of this, the original motivations to study these rare decays
have only been strengthened by the sheer amount and the precision of the experimental
measurements. These measurements will clearly be one of the legacies of the LHC era.
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On the theoretical side, efforts are focused on the control of hadronic uncertainties that
are crucial to the unambiguous interpretation of the data. All such exclusive b→ s`+`−

observables can be computed from a handful of decay amplitudes given by (see, e.g., [20])

AL,Rλ = N
[
(C9 ∓ C10)Fλ(q2) + 2mbMB

q2

{
C7FT,λ(q2)− 16π2MB

mb
Hλ(q2)

}]
+O(αem).

(1.1)
Here, q is the four-momentum of the lepton pair, L/R indicates the lepton chirality, λ is
the dilepton polarisation, Ci are Wilson coefficients of the Effective Field Theory (EFT)
below the weak scale, and F(T ),λ(q2), Hλ(q2) are respectively local and non-local hadronic
form factors (FFs). These hadronic FFs depend on the initial and final states and on
QCD infrared scales, and cannot be calculated in perturbation theory. Both types of FFs
have been the subject of intensive research [12, 21–44]. Although the non-local type is
considerably more complicated, they can be written in terms of local FFs at leading power
in an operator product expansion (OPE) [36, 37, 39, 43]. Hence, understanding the local
FFs precisely seems a more urgent matter.

The FFs F(T ),λ are functions of the momentum transfer q2 and different determinations
of the FFs apply at different values of q2. For instance, determinations based on Light-Cone
Sum Rules (LCSRs) apply at low values of q2, while those based on Lattice QCD (LQCD)
calculations have (until recently) only applied to the high end of the q2 spectrum. Combining
all the known information on the FFs in order to be able to predict observables in any given
region of q2 thus requires to understand the q2 dependence. Fortunately, this q2 dependence
is simpler than the normalisation itself, and rigorous parametrizations of the q2 dependence
of the FFs can be derived from the fundamental principles of analyticity and unitarity [45].

These parametrizations are based on Taylor expansions of analytic functions, and while
rigorous, in real applications they must be truncated in order to feature a finite number
of parameters to be fitted. This truncation introduces a systematic uncertainty that is
difficult to assess. Fortunately, one can derive absolute bounds on some combinations of
FFs integrated over a kinematic region, by relating the exclusive to the inclusive rates and
making use of a dispersion relation. These bounds are called “dispersive” or “unitarity”
bounds, and effectively constrain the truncation error in specific parametrizations. The
dispersive bounds have been used within the so-called BGL and BCL parametrizations [46–
48], and have been proven extremely useful in B̄ → D(∗) [49] and Λb → Λ(∗) semileptonic
transitions [50, 51].

The purpose of this paper is to revisit the parametrizations and the dispersive bounds
for B̄ → P̄ and B̄ → V̄ FFs. We shall demonstrate that a stronger version of the dispersion
bounds of ref. [47] exists, and that the parametrization of ref. [44] is advantageous when
below-threshold branch cuts appear. We will also apply these improvements to carry out a
dispersive analysis of B̄ → K(∗) and B̄s → φ FFs.

We begin in section 2 with a detailed discussion of the theoretical framework, first
defining the FFs and the parametrizations, and then discussing the dispersive bounds and
our improved version. In section 3 we present a complete numerical analysis where we fit
the to the parameters of our FF parametrization including the improved dispersive bounds.
Our conclusions are presented in section 4. Supplementary material and a discussion of the
polynomials used in the parametrization are provided in appendix A and appendix B.
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2 Theoretical framework

In this section we provide the theoretical framework that we use to perform our analysis
of section 3. In section 2.1, we define the B̄ → M̄ form factors (FFs) starting from the
corresponding matrix elements. Then, we briefly review the FF parametrizations written
in terms of the conformal variable usually denoted by z, which have been commonly used
in the literature. In section 2.2, we introduce the dispersive bounds, which constrain the
parameters of certain z parametrizations. We derive new improved dispersive bounds that
supersede the common ones of ref. [47] by removing some of the spurious correlations among
the FFs that arise in dispersive analyses and by giving stronger constraints for some FFs. In
section 2.3, we give an accurate description of the FF parametrization that we adopt, which
is based on the parametrization of ref. [44] and allows for a straightforward implementation
of the dispersive bounds.

2.1 Form factor definitions and z parametrizations

Hadronic FFs are scalar functions of the momentum transfer squared q2 = (p− k)2 that
arise in the Lorentz decomposition of exclusive hadronic matrix elements. We define the
B̄ → P̄ (seudoscalar) or B̄ → V̄ (ector) meson FFs following the same notation as used in
ref. [31], which relies on a commonly-used Lorentz decomposition. In this work we focus on
the B̄ → K̄, B̄ → K̄∗, and B̄s → φ transitions — which we collectively denote as B̄ → M̄

— although both the definitions given below and our results of section 2.2 and section 2.3
can be used for any B̄ → P̄ , V̄ transition. Note that we do not make any attempt here to
account for the instability of the vector meson [32].

The three local B̄ → P̄ FFs are defined by

〈P̄ (k)|JµV |B̄(p)〉 =
[
(p+ k)µ − M2

B −M2
P

q2 qµ
]
fB→P+ + M2

B −M2
P

q2 qµfB→P0 , (2.1)

〈P̄ (k)|JµT |B̄(p)〉 = ifB→PT

MB +MP

[
q2(p+ k)µ − (M2

B −M2
P )qµ

]
. (2.2)

The seven local B̄ → V̄ FFs are defined by

〈V̄ (k, η)|JµV |B̄(p)〉 = εµνρση∗νpρkσ
2V B→V

MB +MV
, (2.3)

〈V̄ (k, η)|JµA|B̄(p)〉 = iη∗ν

[
gµν(MB +MV )AB→V1 − (p+ k)µqν AB→V2

MB +MV

− 2MV
qµqν

q2 (AB→V3 −AB→V0 )
]
, (2.4)

〈V̄ (k, η)|JµT |B̄(p)〉 = εµνρση∗νpρkσ 2TB→V1 , (2.5)

〈V̄ (k, η)|JµAT|B̄(p)〉 = iη∗ν

[(
gµν(M2

B −M2
V )− (p+ k)µqν

)
TB→V2

− qν
(
qµ − q2

M2
B −M2

V

(p+ k)µ
)
TB→V3

]
, (2.6)
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where η is the polarisation four-vector of the vector meson, and we abbreviate

AB→V3 ≡ MB +MV

2MV
AB→V1 − MB −MV

2MV
AB→V2 . (2.7)

The local currents JµΓ used above read

JµV = s̄ γµb , JµA = s̄ γµγ5b ,

JµT = s̄ σµαqαb , JµAT = s̄ σµαqαγ5b .
(2.8)

Throughout this work, we keep the q2 dependence of the FFs implicit, unless necessary. In
order to diagonalize the dispersive bounds (see section 2.2), we introduce the helicity FFs

AB→V12 = (MB +MV )2(M2
B −M2

V − q2)AB→V1 − λkinA
B→V
2

16MBM2
V (MB +MV ) , (2.9)

TB→V23 = (M2
B −M2

V )(M2
B + 3M2

V − q2)TB→V2 − λkin T
B→V
3

8MBM2
V (MB −MV ) , (2.10)

where λkin ≡ λkin(q2) ≡ λ(M2
B,M

2
M , q

2) = (M2
B − M2

M − q2)2 − 4M2
Mq

2 is the Källén
function. The absence of dynamic singularities at q2 = 0 and the antisymmetry of σµν
under the exchange µ↔ ν imply the following relations

fB→P+ (0) = fB→P0 (0), AB→V0 (0) = AB→V3 (0), TB→V1 (0) = TB→V2 (0) . (2.11)

Due to the symmetries of the helicity amplitudes at the kinematical endpoint q2 = s− ≡
(MB −MV )2, there are two additional constraints on the FFs [52]:

AB→V12 (s−) = (MB +MV )(M2
B −M2

V − s−)
16MBM2

V

AB→V1 (s−) , (2.12)

TB→V23 (s−) = (MB +MV )(M2
B + 3M2

V − s−)
8MBM2

V

TB→V2 (s−) . (2.13)

The FFs are sensitive to infrared QCD scales and thus cannot be directly calculated
in perturbation theory. Lattice QCD (LQCD) provides a means to perform such non-
perturbative calculations. However, most of the presently available LQCD calculations
for the FFs provide results only in the high-q2 region of the semileptonic phase-space.
Therefore, one needs to either extrapolate the LQCD results to the low-q2 region or to
combine them with results obtained at low-q2 using other methods. In both cases a suitable
parameterization of the FFs is needed. In the absence of LQCD data at all or in parts of
the phase space, an alternative QCD-based method is the framework of light-cone sum
rules (LCSRs). The LCSRs provide estimates of the FFs at low q2, which can be used to
anchor their parametrizations. Their use incurs an irreducible systematic uncertainty due
to the modelling of the corresponding distribution amplitudes and the use of semi-global
quark-hadron duality [53].

The most frequently-used parametrizations in the literature describing the B̄ → M̄ FFs
are the Boyd-Grinstein-Lebed (BGL) [46, 47], the Bourrely-Caprini-Lellouch (BCL) [48],

– 4 –
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Figure 1. Illustration of the relevant regions in momentum space of the FFs both in the q2 and the
z plane. The semileptonic (SL) region extends from q2 = 0 to q2 = s− ≡ (MB −MM )2, the branch
cut starts at q2 = sΓ, while the region for q2 ≥ s+ is the one relevant for the dispersive bounds (see
section 2.2).

and the Bharucha-Straub-Zwicky (BSZ) [30] parametrizations. Even though the BSZ
parametrization was proposed more than thirty years later than the BGL one and is inspired
by it, the former has a much simpler form than the latter since it is not devised to implement
the dispersive bounds. For this reason, we first review the BSZ parametrization in this
section in order to introduce the relevant notation, while we discuss the BGL parametrization
in section 2.2 and section 2.3.

To understand how these parametrizations have been introduced, one first needs to
understand the analytical structure of the B̄ → M̄ FFs. Due to on-shell particle production,
a FF arising from a specific current JµΓ contains a number of simple poles from QCD-stable
one-particle states, and develops a branch cut on the positive real axis for q2 ≥ sΓ, where
sΓ is the first multi-particle threshold. The dispersively bounded parametrizations BGL
and BCL are only valid in the particular case where sΓ coincides with s+ ≡ (MB +MM )2.
We note that sΓ = s+ holds for processes like B̄ → π or D → π, but it does not hold for
the processes considered in this work: B̄ → K̄, B̄ → K̄∗, and B̄s → φ. In fact, the vector
and tensor B̄ → M̄ FFs have sV = sT = (MBs + Mπ0)2 and the axial and axial-tensor
B̄ → M̄ FFs have sA = sAT = (MBs + 2Mπ0)2. In order to deal with the case sΓ < s+,
we use the parametrization first proposed in ref. [44], which we review in section 2.3. A
recent alternative way to achieve the application of the dispersive bounds when sΓ < s+ is
discussed in ref. [54] for Bs → K transitions. The improvements to the dispersive bounds
presented in this work can be straightforwardly applied to the approach of ref. [54].

Following these considerations, we use the conformal mapping

q2 7→ z(q2) ≡ z(q2; sΓ, s0) =

√
sΓ − q2 −

√
sΓ − s0√

sΓ − q2 +
√
sΓ − s0

, (2.14)

where s0 is a free parameter that can be chosen in the interval (−∞, sΓ). It is convenient
to set s0 = (MB +MM )

(√
MB −

√
MM

)2, which minimises |z| in the semileptonic phase
space. The transformation eq. (2.14) maps the complex q2 plane onto the complex z plane.

– 5 –
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In particular, the first Riemann sheet of the complex q2 plane is mapped onto the open
unit disk centred around the origin z = 0, and the second Riemann sheet is mapped onto
the complement of the closed unit disk. The branch cut connecting both sheets is mapped
onto the unit circle. We provide an illustration in figure 1.

The FFs are analytic functions of z on the open unit disk, except for a finite number
of simple poles due to the aforementioned on-shell one-particle states, and which can be
easily accounted for (see section 2.3). Once the poles are removed, the resulting FFs can
be expanded in a Taylor series that converges for |z| < 1. This is the essence of all z
parameterizations, including BCL, BGL and BSZ. The latter parametrization reads

FB→MΓ,λ (q2) = 1
1− q2

M2
F

∞∑
n=0

cFn

[
z(q2)− z(0)

]n
, (2.15)

where FB→MΓ,λ is a B̄ → M̄ FF and MF is the mass of the lowest-lying one-particle state
with same spin, parity, and flavour quantum numbers as FB→MΓ,λ . These masses can be
found in table 3 of ref. [30].

The simple form of eq. (2.15) makes this parameterization convenient and its conver-
gence in the semileptonic region is ensured by the analytic properties of the FFs. In any
phenomenological application, the parametrization (2.15) would be truncated at some order
n = N . However, it is not readily possible to estimate the truncation error, that is to
estimate the uncertainty due to the truncated terms with coefficients cn for n > N . To
estimate the truncation error, one needs to use additional constraints. These constraints
can be obtained using unitarity and analyticity, and are usually called dispersive (or uni-
tarity) bounds. In section 2.2 and section 2.3 we provide the derivation of these constraints,
discussing both their original form of refs. [46, 47], where they have been applied to B
decays for the first time. Then, we introduce our suggested modifications that strengthen
these bounds and remove spurious correlations between FF parameters.

2.2 Improved dispersive bounds

The application of dispersive bounds is commonplace for charged-current heavy-to-heavy
transitions, such as B̄ → D(∗) [47, 54–56]. Their application to the local FFs in B̄ → K̄(∗)

transitions has been discussed for the first time in ref. [57]. In this work, we improve upon
this analysis in two ways. First, by analysing simultaneously the B̄ → K̄, B̄ → K̄∗, and
B̄s → φ transitions, and second, by strengthening the BGL-style bounds [46, 47] that were
used in ref. [57]. To derive dispersive bounds for any of the B̄ → M̄ FFs, one commonly
uses the two-point correlation functions

Πµν
Γ (q) ≡ i

∫
d4x eiq·x 〈0|T

{
JµΓ (x)J†,νΓ (0)

}
|0〉 , (2.16)

where the currents JµΓ have been defined in eq. (2.8). It is convenient to decompose the
tensor-valued correlator Πµν

Γ (q) in terms of scalar-valued functions Π(i)
Γ (q2),

Πµν
Γ (q) ≡

∑
i

Sµν(i) (q) Π(i)
Γ (q2) . (2.17)

– 6 –
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One possibility is to use structures with definite total angular momentum J :

Sµν(J=1)(q) =
(
qµqν

q2 − g
µν
)
, Sµν(J=0)(q) = qµqν

q2 . (2.18)

This decomposition has been frequently used in the literature [47, 54, 57]. Its connection to
the total angular momentum J provides insights into the FFs’ properties. However, it is
not the most general decomposition possible.

In this article, we suggest to decompose the rank-two tensor in terms of a full set of
polarisation vectors ε(λ) ≡ ε(λ; q) for λ = t, 0,⊥, ‖. These polarisation vectors arise in the
description of a virtual vector boson with four-momentum q and form a basis of Lorentz
vectors. Our proposal then reads

Πµν
Γ (q) ≡

∑
λ,λ′

εµ(λ)εν∗(λ′) Π(λ,λ′)
Γ (q2) . (2.19)

One readily finds that the quantities Π(λ,λ′)
Γ vanish for λ 6= λ′. This is a consequence of

conservation of angular momentum of the (hypothetical) virtual vector boson described by
the vectors ε. Thus, we introduce the following short-hand notation for the diagonal terms:

Π(λ)
Γ (q2) ≡ Π(λ,λ)

Γ (q2) . (2.20)

As we show below, our proposed decomposition brings along a tangible benefit to our
analysis. In fact, it splits the contributions from B̄ → P̄ and B̄ → V̄ FFs into individual
helicity-specific bounds and hence it removes spurious correlations between FF parameters
for a single exclusive process. At the same time, it retains the correlations between helicity
FFs across different exclusive processes, e.g., between AB→K∗1 and ABs→φ1 . To derive these
improved dispersive bounds, we work within the rest frame of the q momentum. We define
the polarisation vectors as

εµ(t) = 1√
q2 qµ = 1√

q2 (q0, 0, 0, |~q |) , εµ(0) = 1√
q2 (|~q |, 0, 0, q0) ,

εµ(⊥) = (0,−1, 0, 0) , εµ(‖) = (0, 0,−i, 0) .
(2.21)

It is easy to show that1

Π(J=0)
Γ = Π(t)

Γ , Π(J=1)
Γ = Π(0)

Γ = Π(⊥)
Γ = Π(‖)

Γ . (2.22)

Using that σµα is an antisymmetric tensor, one finds that Π(t)
Γ = 0 for Γ = T,AT .

The discussion so far is only helpful if a connection can be made between the scalar
functions Π(λ)

Γ as defined in eq. (2.19) and the hadronic FFs. Key to this connection is that
the former fulfil a subtracted dispersion relation:

χ
(λ)
Γ (Q2) = 1

n!

[
∂

∂q2

]n
Π(λ)

Γ (q2)
∣∣∣∣
q2=Q2

= 1
π

∞∫
0

ds
ImΠ(λ)

Γ (s)
(s−Q2)n+1 . (2.23)

1One way of seeing this is to use a complete set of projectors [P (λ)]µν = ε∗µ(λ)εν(λ).
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χ
(λ)
Γ χ

(λ)
Γ
∣∣
OPE × 102 Form factor Pole RF (mass, decay constant) [GeV]

χ
(t)
V 1.42 fB→K0 —

χ
(0)
V 1.20/m2

b fB→K+ B̄∗s (5.416, 0.2231(56))

χ
(⊥)
V 1.20/m2

b V B→K∗ , V Bs→φ B̄∗s (5.416, 0.2231(56))

χ
(t)
A 1.57 AB→K

∗
0 , ABs→φ0 B̄s (5.367, 0.2307(13))

χ
(0)
A 1.13/m2

b AB→K
∗

12 , ABs→φ12 —

χ
(‖)
A 1.13/m2

b AB→K
∗

1 , ABs→φ1 —

χ
(0)
T 0.803/m2

b fB→KT B̄∗s (5.416, 0.236(22))

χ
(⊥)
T 0.803/m2

b TB→K
∗

1 , TBs→φ1 B̄∗s (5.416, 0.236(22))

χ
(0)
AT 0.748/m2

b TB→K
∗

23 , TBs→φ23 —

χ
(‖)
AT 0.748/m2

b TB→K
∗

2 , TBs→φ2 —

Table 1. List of the functions χ(λ)
Γ considered in this work with the corresponding OPE results

(taken from ref. [57]), affected FFs, and sub-threshold poles. The reference value for the b-quark
mass is mb = 4.2GeV. The parameters of the poles are taken from refs. [58–62].

Here Q2 is the subtraction point and n is the number of subtractions, which is chosen a
posteriori such that the integral on the r.h.s. of eq. (2.23) converges. On the one hand, the
discontinuities of Π(λ)

Γ are known from a computation within a local OPE, and the results
are valid for Q2 � (mb +ms)2. These results, denoted here as Π(λ)

Γ
∣∣
OPE, manifestly fulfil

eq. (2.22). We use the results provided in ref. [57], which include perturbative corrections
up to next-to-leading order in αs for the dimension-0 term and power corrections due to
operators up to dimension 5. For convenience, we quote the numerical results of ref. [57] in
table 1, alongside further information.

On the other hand, unitarity of the S-matrix implies that the imaginary part of the
functions Πλ

Γ can be expressed as an infinite sum of exclusive hadronic matrix elements of
the currents JΓ (see, e.g., refs. [47, 54, 57]):

ImΠ(λ)
Γ (s + iε) = 1

2
∑∫
H

dρH(2π)4δ(4)(pH − q)ε∗µ(λ)εν(λ) 〈0|JµΓ |H(q)〉 〈H̄(q)|J†,νΓ |0〉
∣∣∣
q2=s

.

(2.24)

Here we sum over all hadronic states H with flavour quantum numbers S = −B = 1 and we
integrate over the corresponding phase space. For every state H, we can isolate a positive
semidefinite exclusive contribution to χ(λ)

Γ , which we denote as χ(λ)
Γ
∣∣
H
. These terms are not

expected to fulfil eq. (2.22), since they can — in general — resolve the polarisation of the
incoming/outgoing virtual vector boson, but they still obey the relation

χ
(0)
Γ
∣∣
H

+ χ
(⊥)
Γ
∣∣
H

+ χ
(‖)
Γ
∣∣
H

= 3χ(J=1)
Γ

∣∣
H
. (2.25)
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Nevertheless, the one-particle contributions fulfil eq. (2.22) since they cannot resolve the
polarisation of the incoming/outgoing virtual vector boson:

χ
(0)
Γ
∣∣
1pt = χ

(⊥)
Γ
∣∣
1pt = χ

(‖)
Γ
∣∣
1pt = χ

(J=1)
Γ

∣∣
1pt . (2.26)

For one-particle bound states H = B̄
(∗)
s , the contributions read

χ
(J=1)
V

∣∣
1pt =

M2
B∗s
f2
B∗s

(M2
B∗s
−Q2)3 , χ

(J=0)
A

∣∣
1pt =

M2
Bs
f2
Bs

(M2
Bs
−Q2)2 , χ

(J=1)
T

∣∣
1pt =

M4
B∗s

(fTB∗s )2

(M2
B∗s
−Q2)4 .

(2.27)
The decay constants are defined as

〈0|JµV |B̄∗s (q,η)〉= iMB∗
s
fB∗

s
ηµ, 〈0|JµA|B̄s(q)〉= iqµfBs , 〈0|JµT |B̄∗s (q,η)〉= iM2

B∗
s
fTB∗

s
ηµ,

where η is the polarisation four-vector of the B̄∗s meson. Some comments are in order: we
do not include all known one-particle bs̄ states. Rather, we consider only bound states, i.e.,
only states with masses below the current-specific threshold sΓ. This is necessary, since bs̄
states above their respective threshold(s) are resonances within the two-particle spectrum.
As such, they emerge on the FFs’ second (or higher) Riemann sheets rather than the first
sheets. As a consequence, the resonances’ contributions are accounted for by contributions
of the various FFs, both two-particle FFs and those for higher multiplicities. In this way,
we avoid double counting of the resonances’ contributions.

If H is a two-particle state, the H-to-vacuum matrix elements can be related through
crossing symmetry to hadronic FFs. For this work, we restrict our analysis to the states
H = B̄M ≡ B̄K, B̄K∗, B̄sφ. We obtain the exclusive contributions χ(λ)

Γ
∣∣
H

following the
derivation of ref. [47], and for λ = t we recover the results in that reference. For H = B̄K,
they read

χ
(t)
V

∣∣
B̄K

= ηB→K

16π2

∞∫
(MB+MK)2

ds
λ

1/2
kin (s)

s2(s−Q2)2

(
M2
B −M2

K

)2
|fB→K0 (s)|2 , (2.28)

χ
(0)
V

∣∣
B̄K

= ηB→K

16π2

∞∫
(MB+MK)2

ds
λ

3/2
kin (s)

s2(s−Q2)3 |f
B→K
+ (s)|2 , (2.29)

χ
(0)
T

∣∣
B̄K

= ηB→K

16π2

∞∫
(MB+MK)2

ds
λ

3/2
kin (s)

(s−Q2)4
1

(MB +MK)2 |f
B→K
T (s)|2 . (2.30)

For H = B̄K∗, they read

χ
(⊥)
V

∣∣
B̄K∗

= ηB→K
∗

8π2

∞∫
(MB+MK∗ )2

ds
λ

3/2
kin (s)

s(s−Q2)3
1

(MB +MK∗)2 |V
B→K∗(s)|2, (2.31)

χ
(t)
A

∣∣
B̄K∗

= ηB→K
∗

16π2

∞∫
(MB+MK∗ )2

ds
λ

3/2
kin (s)

s2(s−Q2)2 |A
B→K∗
0 (s)|2, (2.32)
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χ
(0)
A

∣∣
B̄K∗

= ηB→K
∗

π2

∞∫
(MB+MK∗ )2

ds
λ

1/2
kin (s)

s2(s−Q2)3 4M2
BM

2
K∗ |AB→K

∗
12 (s)|2, (2.33)

χ
(‖)
A

∣∣
B̄K∗

= ηB→K
∗

8π2

∞∫
(MB+MK∗ )2

ds
λ

1/2
kin (s)

s(s−Q2)3 (MB +MK∗)2 |AB→K∗1 (s)|2, (2.34)

χ
(⊥)
T

∣∣
B̄K∗

= ηB→K
∗

8π2

∞∫
(MB+MK∗ )2

ds
λ

3/2
kin (s)

s(s−Q2)4 |T
B→K∗
1 (s)|2, (2.35)

χ
(0)
AT

∣∣
B̄K∗

= ηB→K
∗

π2

∞∫
(MB+MK∗ )2

ds
λ

1/2
kin (s)

(s−Q2)4
M2
BM

2
K∗

(MB +MK∗)2 |T
B→K∗
23 (s)|2 , (2.36)

χ
(‖)
AT

∣∣
B̄K∗

= ηB→K
∗

8π2

∞∫
(MB+MK∗ )2

ds
λ

1/2
kin (s)

s(s−Q2)4

(
M2
B −M2

K∗

)2
|TB→K∗2 (s)|2, (2.37)

where λkin was defined below (2.10). The contributions arising from H = B̄sφ can be
obtained from those arising from H = B̄K∗ with obvious replacements. We assume that
isospin symmetry holds for the transition FFs discussed here. The isospin factor ηB→M is
equal to 2 for B̄ → K̄ and B̄ → K̄∗ transitions, while is equal to 1 for B̄s → φ.

The dispersive bound is now obtained by equating the OPE result and the unitarity
relation in eq. (2.24):

χ
(λ)
Γ
∣∣
OPE = χ

(λ)
Γ
∣∣
1pt + χ

(λ)
Γ
∣∣
B̄K

+ χ
(λ)
Γ
∣∣
B̄K∗

+ χ
(λ)
Γ
∣∣
B̄sφ

+ . . . . (2.38)

Analogously, equating the OPE result and the unitarity relation for χ(J)
Γ instead of χ(λ)

Γ ,
one obtains the common BGL dispersive bound:

χ
(J=1)
Γ

∣∣
OPE = χ

(J=1)
Γ

∣∣
1pt + χ

(J=1)
Γ

∣∣
B̄K

+ χ
(J=1)
Γ

∣∣
B̄K∗

+ χ
(J=1)
Γ

∣∣
B̄sφ

+ . . . . (2.39)

Here, the ellipsis denotes the contribution of further states with the right quantum numbers,
such as ΛbΛ̄ or B̄Kππ. Each individual hadronic contribution to χ(λ)

Γ is a manifestly positive
quantity since it can be expressed as the modulus squared of a hadronic matrix element.
Hence, eq. (2.38) can be converted from an equality to an inequality simply by dropping
unknown but positive exclusive contributions. Here, we drop the terms represented by the
ellipsis. Using our knowledge of χ(λ)

Γ
∣∣
OPE, eq. (2.38) now provides an upper bound on some

positive definite integral involving at least one of B̄ → M̄ FF. This inequality is commonly
called the dispersive (or unitarity) bound. The dispersive bound as expressed in eq. (2.38)
has two clear advantages with respect to the common one as expressed in eq. (2.39).

First, each FF of any of the transitions considered in this work obeys an individual
dispersive bound. This becomes apparent from the results shown in eqs. (2.28)–(2.37), and
it is one of the major results of this work. Obtaining independent bounds for each hadronic
FF is beneficial also from a statistical perspective, since it removes spurious correlations
between the parameters of any two FFs that happen to contribute to a common bound of
the form of eq. (2.39).
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Second, although the OPE results cannot resolve between the polarizations λ = 0, ‖,⊥,
we find that the individual exclusive hadronic representations do. As a consequence, the
dispersive bounds are stronger when they are formulated for the polarizations λ = 0, ‖,⊥.2
To illustrate this statement, consider two FFs (e.g., AB→K∗1 and AB→K∗12 ) that contribute
jointly to a common correlator in the common decomposition of eq. (2.18):

3χ(J=1)
A

∣∣
OPE > 3χ(J=1)

A

∣∣
B̄K∗

= χ
(0)
A

∣∣
B̄K∗︸ ︷︷ ︸

∝|A12|2

+χ
(‖)
A

∣∣
B̄K∗︸ ︷︷ ︸

∝|A1|2

+χ
(⊥)
A

∣∣
B̄K∗︸ ︷︷ ︸

= 0

. (2.40)

Here, the contribution with λ =⊥ emerges only once baryon-to-baryon FFs are taken into
account [50, 51]. In the common setup of the bounds, the λ =‖ term can overfluctuate, i.e.
exceed our proposed improved bound, as long as it either

• does not exceed the size allocated to the λ =⊥ term by the OPE; or

• is compensated by an underfluctuation of the λ = 0 term.

The latter can readily emerge, e.g., from anticorrelations amongst the FF parameters. In
our proposed setup, neither of these methods of evasion are successful, since each of the
FFs is individually bounded.

We conclude this section by emphasising that the improved dispersive bounds are not
the spurious effect of additional assumptions. Instead, they arise naturally when considering
the origin of the dispersive bounds from physical observables. The correlation functions Πµν

Γ
introduced for the purpose of the bounds are related, by a dispersion relation and the optical
theorem, to certain kinematic moments of the inclusive cross section σ(e+e− → hadrons),
where the hadronic final state must feature S = −B = 1. The improved bounds proposed
here arise when considering kinematic moments of the cross section for polarized e+e−

beams. Clearly, our improved bounds can be applied in the same fashion to other transitions
like B̄q → D

(∗)
q .

2.3 Dispersively bounded parametrization

The dispersive bound of eq. (2.38) is not written in a form that allows us to use it easily in
phenomenological applications. To express it in a more convenient form, the dispersively
bounded z-series parametrization has been developed [44, 47, 54, 57, 63]. In the following,
we revisit the parametrization of ref. [44] and propose minor modifications that improve
its usefulness and accuracy. To this end, we first briefly review the analytic structure of
the B̄ → M̄ FFs. As anticipated in section 2.1, the FFs arising from a current JµΓ develop
a branch cut at the first multi-particle threshold, that is q2 ≥ sΓ. For vector and tensor
FFs, this threshold corresponds to the B̄sπ0 pair production: sV = sT = (MBs + Mπ0)2.
For axial and axial-tensor FFs, simultaneous conservation of angular momentum and parity
requires at least two pions in the final state, leading to sA = sAT = (MBs + 2Mπ0)2.

2Incidentally, the modified bounds also facilitate global analyses by disentangling FFs belonging to
different hadronic transitions.
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By applying the mapping eq. (2.14) to the dispersive representation of the two-particle
contributions in eqs. (2.28)–(2.37), we can rewrite eq. (2.38) as

1 >
∑
B→M

+αB→MΓ∫
−αB→MΓ

dθ
∣∣∣F̂B→MΓ,λ (eiθ)

∣∣∣2 , (2.41)

where the sum runs over the transitions considered in this work and we abbreviate

αB→MΓ ≡ arg z((MB +MM )2; sΓ, s0) . (2.42)

In writing eq. (2.41), we introduce the functions F̂B→MΓ,λ , which are related to the FFs
FB→Mλ as introduced in section 2.1. Their definition reads

F̂B→MΓ,λ (z) = PF (z)φF (z)FB→MΓ,λ (z) , (2.43)

where PF is the FF’s Blaschke factor, and φF is the FF’s outer function. The Blaschke
factors PF are needed to cancel any simple poles in FB→MΓ,λ within the open unit disk in
the z plane. These poles are due to the bound states RF discussed in section 2.2, listed in
table 1 alongside the corresponding FFs. We define the Blaschke factors as

PF (z) ≡ z(s(z); sΓ,M
2
RF ) . (2.44)

The expressions (2.28)–(2.37), once normalised by their respective χ(λ)
Γ
∣∣
OPE, fix the norms

of the outer functions φF on the unit circle

|φF (z)|2 =
∣∣∣∣dzdθ dsdz

∣∣∣∣ NF ηB→M32π2χ
(λ)
Γ
∣∣
OPE

λ
m/2
kin

sp (s−Q2)n+1 for s = s(z = eiθ). (2.45)

Here the parameters {NF , p, n,m} are FF-specific and listed in table 2. Given that the
modulus squared of an outer function is fixed only for |z| = 1, there is some leeway in how
to continue the outer functions into the open unit disk. One requirement is that they be free
of (kinematical) singularities in the open unit disk. Another one is to choose their overall
phase to be real-valued on the real z axis, reflecting the fact that their corresponding FFs
only develop a branch cut at sΓ and their global phase can be chosen to be zero. Setting
Q2 = 0, one obtains (see e.g. refs. [47, 57, 63])

φF (z) =
√√√√ NF ηB→M

32π2χ
(λ)
Γ
∣∣
OPE

(
λkin

−z(s, s−)

)m
4
(−z(s, 0)

s

)n+p+1
2

√
4(1 + z)(sΓ − s0)

(z − 1)3 . (2.46)

Since F̂B→MΓ,λ (z) is analytic on the open unit disk, it can be expanded in a Maclau-
rin series,

F̂B→MΓ,λ =
∞∑
n=0

bFn z
n . (2.47)
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Form factor NF p n m

fB→P0 s+s− 2 1 1
fB→P+ 1 2 2 3
fB→PT 1/s+ 0 3 3

V B→V 2/s+ 1 2 3
AB→V0 1 2 1 3
AB→V1 2 s+ 1 2 1
AB→V12 64M2

BM
2
M 2 2 1

TB→V1 2 1 3 3
TB→V2 2 s+s− 1 3 1
TB→V23 16M2

BM
2
M/s+ 0 3 1

Table 2. Parameters of the outer functions of the B̄ → P̄ and B̄ → V̄ FFs, with s± = (MB±MM )2.

The BGL parametrization only works in the special case where sΓ = s+ ≡ (MB +MM )2,
such that αB→MΓ = π. This implies that

+π∫
−π

dθ
∣∣∣F̂B→MΓ,λ (eiθ)

∣∣∣2 =
∞∑
n=0

∣∣∣bFn ∣∣∣2 < 2π , (2.48)

where the equality follows from the fact that the z monomials are orthogonal on the unit
circle. Since here we deal with the case where sΓ < s+, we follow ref. [44] and instead of
using eq. (2.47) expand F̂B→MΓ,λ (z) in a series of polynomials pn(z) that are orthonormal on
a symmetric arc on the unit circle {eiθ : −αB→MΓ < θ < αB→MΓ }:

F̂B→MΓ,λ (z) =
∑
n≥0

aFn p
F
n (z) (2.49)

with

pFn (z) ≡ pFn (z, αB→MΓ ) ,
+αB→MΓ∫
−αB→MΓ

dθ pFm(eiθ)pFn (e−iθ) = δmn , (2.50)

and hence eq. (2.43) can be written as

FB→MΓ,λ (z) = 1
PF (z)φF (z)

∑
n≥0

aFn pn(z, αB→MΓ ) . (2.51)

Here it suffices to say that pFn is a polynomial of degree n. Some mathematical properties
of these objects as well as a discussion on the convergence of the series aFn are relegated
to appendix B. The advantage of using the expansion eq. (2.49) is that the dispersive
bound eq. (2.41) — including the one-particle contribution — can now be written in the
simple form

χ
(λ)
Γ
∣∣
1pt

χ
(λ)
Γ
∣∣
OPE

+
∑
F

∑
n≥0

∣∣∣aFn ∣∣∣2 < 1, (2.52)

where the first sum runs over all the FFs FB→MΓ,λ .
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To summarise, using unitarity and analyticity one obtains the dispersive bound eq. (2.38).
The derivation of this bound is similar to the original derivation of ref. [47], with the crucial
difference that in our case FFs with different indices λ obey different dispersive bounds.
Then, applying a conformal mapping, we recast the bound eq. (2.38) in the more convenient
form of eq. (2.52). In doing this, we took into account the analytic properties of the FFs
FB→MΓ,λ and in particular the branch cuts that appear for q2 < (MB +MM )2 due to on-shell
B̄sπ

0(π0) states. These branch cuts have always been neglected for B-meson decays, which
introduces a hard-to-quantify systematic uncertainty. Here, we take them into account
following the procedure proposed in ref. [44] for the non-local FFs in B̄ → M̄`+`− decays.
The dispersive bound eq. (2.52) is an extremely powerful and model-independent constraint
on the coefficients of the expansion eq. (2.49). In practice, it allows us to control the
systematic uncertainties due to the truncation of same expansion.

3 Analysis and results

3.1 Analysis setup

We now study the available theoretical data on the FFs within a Bayesian analysis. Its
central element, the posterior PDF P (~a |D), is a function of the data D and our parameters
~a ≡ (aF0 , . . . , aFN , aF

′
0 , . . . , aF

′
N , . . . ). We use the same value of N as the order of truncation

of the series eq. (2.51) for each FF. The posterior definition

P (~a |D) = P (D |~a)P0(~a)
Z(D) (3.1)

involves our choice of the prior PDF P0(~a), the likelihood P (D |~a), and the data-dependent
normalisation (also called the evidence) Z(D).

We use different choices of fit model and prior. We label all our fits models by
N ∈ {2, 3, 4}, the truncation order applying to all FFs. The choice of the prior PDF is
motivated by the weakest-possible form of the dispersive bound, i.e., |ak| ≤ 1 for all k. This
prior factorises to

P0(~a) =
K=dim~a∏
k=1

U−1,+1(ak) , (3.2)

where U−1,+1 is the uniform PDF on the interval [−1,+1]. Since we have 17 independent
FFs and 9 end-point relations, the number of independent parameters is K = 17(N + 1)− 9.

We face two types of likelihoods in this analysis: linear constraints on the FF parame-
ters provided by LQCD and LCSR determinations; and quadratic constraints on the FF
parameters provided by the dispersive bounds eq. (2.52). The linear multivariate Gaussian
likelihoods arising from a single hadronic transition are labelled appropriately, i.e., either
B → K, B → K∗, or Bs → φ. The data underlying each likelihood are summarised
as follows:

B → K We use three LQCD analyses of the three B̄ → K̄ FFs. The underlying LQCD
analyses have been performed by the Fermilab Lattice and MILC collaborations
(FNAL + MILC) [64] and by the HPQCD collaboration [33, 65]. Although an
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average of the FNAL+MILC and the 2013 HPQCD results is available from the
Flavour Lattice Averaging Group (FLAG) [35], we choose to use the individual
results rather than their average here. This enables us to diagnose which of the
individual analyses are in mutual agreement. As indicated in the FLAG report,
the FNAL+MILC and the 2013 HPQCD analyses rely — at least partially — on
the same underlying gauge ensembles. However, their overall uncertainties are
dominated by systematic sources, rather than the purely statistical uncertainty.
Hence, we combine the results of both analyses under the assumption that they
are uncorrelated, just as has been done to obtain the FLAG average [35]. The
third analysis, HPQCD 2022 [33], uses N = 2 + 1 + 1 gauge ensembles that
are statistically independent of the previous analyses. The results of the three
analyses are provided as multivariate Gaussian distributions in the parameters
of a BCL expansion [48]. We use the parametrized results of the various LQCD
analyses to produce synthetic data points across the three FFs, making sure
that the number of data points matches the number of degrees of freedom in the
parametrizations. For the FNAL+MILC and HPQCD 2013 analyses, we generate
points close to the q2 values of the lattice ensembles, q2 = {17, 20, 23}GeV2. The
HPQCD 2022 results provides for the first time access to an exclusive B̄ → K̄

FF at q2 = 0. Consequently, we spread the points over the entire physical range,
q2 = {0, 12, 22.9}GeV2.

The B̄ → K̄ FFs are also available from LCSR analyses with kaon distribution
amplitudes. The most recent results obtained in this framework are available
from ref. [66]. Compared to the LQCD results, these estimates feature large
parametric uncertainties and hardly-quantifiable systematic uncertainties. As
a consequence, we do not use these estimates to obtain any of our numerical
results and only use them for illustrative purposes and cross checks.

B → K∗ The full set of FFs is available from a LQCD analysis and a subsequent adden-
dum [67, 68]. The authors of that analysis have provided us with twelve synthetic
data points per FF, corresponding to the extrapolation of their LQCD ensem-
bles. Correlations between the FFs arising from (axial)vector and (axial)/tensor
currents are not presently available and can therefore not be accounted for in
our analysis.

Beside from this LQCD analysis, numerical results for the full set of FFs are also
available from LCSR with B-meson distribution amplitudes [31]. The authors of
this calculation provide five synthetic data points at q2 = {−15,−10,−5, 0, 5}GeV2

for each FF, and the full correlation matrix across FFs and data points are avail-
able. Following the argument in our previous paper [20], we do not use LCSR
with light-meson distribution amplitude for FFs with vector final states.

Bs → φ The inputs are similar to the B̄ → K̄∗ ones. Refs. [67, 68] provide the mean to
create two synthetic data points per FF, reflecting the smaller number of LQCD
ensembles for this transition. Ref. [44] provides LCSR estimates of these FFs
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using a previous calculation published in ref. [31]. Five synthetic data points
including their correlations are available at q2 = {−15,−10,−5, 0, 5} GeV2 for
each FF.

The dispersive bounds discussed in section 2.2 are labelled by their respective spin
structure Γ and polarisation state λ. The penalty for violating the dispersive bounds is
implemented following ref. [55]:

− 2 lnP (dispersive bound | rΓ,λ) =


0 if rΓ,λ < 1,
(rΓ,λ − 1)2

σ2 otherwise.
(3.3)

Here σ reflects the relative uncertainty on the computation of χ(λ)
Γ
∣∣
OPE, which is estimated

to be 10% [57], and rΓ,λ is defined as

rΓ,λ ≡ r1pt
Γ,λ + rB→KΓ,λ + rB→K

∗
Γ,λ + rBs→φΓ,λ =

χ
(λ)
Γ
∣∣
1pt

χ
(λ)
Γ
∣∣
OPE

+
∑
F

N∑
n=0

∣∣∣aFn ∣∣∣2 . (3.4)

The quantity rΓ,λ is the statistical estimator for the saturation of the bound with polarisation
λ for the current JΓ defined in eq. (2.52).

Imposing the dispersive bounds as expressed in eq. (2.39) makes a combined analysis
of the FFs worthwhile but also challenging. It is worthwhile since in the presence of the
dispersive bounds some of the parameterization uncertainties are shared among the fitted
transitions. It is challenging due the large number of fit parameters K, e.g., K = 59 in
our nominal analysis with N = 3. Our proposed decomposition of the correlator eq. (2.19)
renders the dispersive bounds stronger (see section 2.2). It also has an additional advantage
at the level at which we are working: in the absence of baryon-to-baryon FFs, our overall
likelihood factorises, thereby decoupling pseudoscalar-to-pseudoscalar from pseudoscalar-to-
vector transitions. This allows to perform a dispersively bounded fit for B̄ → K̄ transitions
separately from a joint fit to B̄ → K̄∗ and B̄s → φ transitions. Since a joint fit to the latter
two involves only correlations due to the dispersive bound, we can further simplify the
analysis. Separating B̄ → K̄∗ and B̄s → φ transitions into individual fits, we can achieve
the results of the joint fit by re-weighting their individual parameter samples with their
dispersive bounds’ likelihood. Taking B̄ → K̄∗ as an example, the current-specific sample
weight is computed as

w(rB→K∗Γ,λ ) =
∫
dr pBs→φΓ,λ (r) × P

(
dispersive bound for Γ, λ | r1pt

Γ,λ + rB→K
∗

Γ,λ + r
)
, (3.5)

where r1pt
Γ,λ and rB→K

∗
Γ,λ are the saturations of the corresponding bound due to the one

particle and the B̄ → K̄∗ process respectively, and pBs→φΓ,λ is the PDF of the saturation due
to the B̄s → φ process. The global event weight is obtained by multiplying these statistically
independent weights,

wB→K
∗ =

∏
Γ,λ

w(rB→K∗Γ,λ ) . (3.6)

This procedure can be extended to account for other transitions, e.g., baryonic transitions.
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Goodness of fit
N = 2 N = 3

Transition χ2 d.o.f. p-value [%] χ2 d.o.f. p-value [%]

B̄ → K̄ 13.32 18 77.25 7.42 15 94.48
B̄ → K̄∗ 50.72 100 100 46.43 93 100
B̄s → φ 1.19 30 100 0.40 23 100

Table 3. Goodness-of-fit values for the fit models N = 2 and N = 3.

It permits us to split the production of Monte Carlo samples for our joint analysis
into three individual samplings, one per transition, which facilitates the overall analysis
significantly.

We carry out the fitting and sampling parts of our analysis using the open-source EOS
software [69] version v1.0.7 [70]. For each value of the truncation order N , we determine the
best-fit point and overall goodness-of-fit diagnostics. Our a-priori p-value threshold for an
acceptable fit is 3%. We draw all posterior samples using the nested sampling algorithm [71]
as implemented in the dynesty software [72, 73]. The results are investigated in form of
posterior-predictive distributions for a variety of pseudo observables, including all of the
FFs and the relative saturation of the various dispersive bounds.

3.2 Numerical results

Our analysis is repeated for three values of the truncation order N ∈ {2, 3, 4}, as anticipated
in the previous section. In agreement with the literature [30, 31, 33, 57, 64, 65, 67, 68], we
already find a good fit to all FFs at N = 2. The substantial uncertainties attached to both
LQCD and LCSR estimates of the FFs lead to local p-values close to 1 for both B̄ → K̄∗

and B̄s → φ transitions; we find all local p-values to be in excess of 77%.3 We summarise
the goodness-of-fit diagnostics for N = 2 and N = 3 in table 3 and we consider the N = 3
analysis to yield our nominal results. We find that higher truncation orders do not have an
adverse impact on the overall goodness of fit for nearly all individual likelihoods. However,
in the case of B̄s → φ the χ2 value is so low that increasing the truncation order beyond
N = 3 can only lower the local p-value.

We illustrate the results of our analyses at the hand of a representative subset of FFs
in figure 2. Plots for the full set of FFs are contained in the supplementary material [74],
alongside the EOS analysis file that has been used to obtain all numerical results shown in
this section. Using eq. (2.52), we further compute the saturations of the full set of dispersive
bounds and present them in table 4 and figure 3. We use this information later on to
determine if the parametric uncertainties account for the truncation error.

We summarise our findings arising from the individual fits as follows:
3Here the local p-value refers to the computation of the p-value of a single likelihood given its effective

degrees of freedom, i.e., the number of observations minus the number of fit parameters specific to this
likelihood. Neither the local p-values nor the global p-value account for the non-Gaussian effect of the
dispersive bounds, which we do not include in our discussion of the goodness of fit whatsoever.
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Figure 2. Selection of local B̄ → M̄ FFs. fB→K+ is multiplied by P (q2) = 1− q2/M2
B∗

s
for legibility.

Additional plots, including plots of the other FFs are provided as supplementary material.

Fit with N = 2 We confirm the observation of ref. [57] that for this value of N most
bounds are not yet saturated and only play a marginal role in the fit. We
can quantify this finding by determining the saturation at 68% cumulative
probability based on the samples’ posterior-predictive distributions. We
find that only the bounds with (Γ, λ) = (V,⊥), (A, ‖), and (T,⊥) exhibit a
saturation of more than 50% at 68% cumulative probability, while all other
bounds are saturated at less than 40%. The bounds for (Γ, λ) = (V, 0)
and (V, t), which receive two-particle contributions only from B̄ → K̄ FFs,
exhibit a very low saturation below 10%.

Fit with N = 3 As shown in table 3, increasing the truncation order leads to a decrease of
both χ2 and χ2/d.o.f. across all the transitions. Increasing the truncation
order mostly impacts the FF values and uncertainties at low and at negative
q2, which is expected due to the dominance of the LQCD information at
high q2 values. Since the FF results in the region of low and negative q2

are crucial for the estimation of non-local effects [20], this behaviour raises
concerns toward the uncertainty estimation for the non-local effects.
We observe that the saturations of the posterior predictive samples now
peak at larger values. We quantify this change by comparing the sat-
urations at 68% cumulative probability for both N = 2 and N = 3 in
table 4. Although the bounds for (Γ, λ) = (V, 0) and (V, t) increase slightly
in their saturation, we still find them to be saturated well below 20%
at 68% cumulative probability. All other bounds now reach substantial
saturations of 48% or larger.

Fit with N ≥ 4 For completeness, we also perform the fit with N = 4. We find that
for all transitions the minimal χ2 reaches a plateau, i.e., it does not
significantly reduce as we increase the truncation order. As indicated
above, this inevitably leads to a lowering of its local p-value as N increases.
All bounds now exhibit a saturation of at least 50% at 68% cumulative
probability.
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We find that the average saturation of all bounds increases with increasing truncation
order N . This is expected, since the parametric uncertainties on the posterior predictions
of the FFs start to accurately include the extrapolation uncertainties. We find that this
is achieved for N ≥ 3. Our interpretation is supported by the “comparison”-type plots
contained in our supplementary material [74]; see appendix A. Nevertheless, two of the
bounds exhibit low saturations below 20% even for N = 3, which requires further discussion.
The bounds at hand feature Γ = V and λ = 0, t and receive only contributions from B̄ → K̄

FFs in our analysis.
In a general dispersively-bounded analysis, there is an intrinsic ambiguity in how to

interpret the fact that these bounds only receive comparatively small increases to their
respective saturation as we increase the truncation order.

On the one hand, the uncertainties attached to the theory estimates of the FFs might
prevent our fit model from accurately capturing details on the shape of the FFs, which can
lead to small saturations.4 In this case, the problem can be addressed by increasing the
precision of the FFs’ theory estimates.

On the other hand, our fit model might accurately capture the saturation. Hence
the observed low saturation values might be a physical feature of the responsible FFs. In
this case, one would expect that including further relevant two-particle transitions and
transitions with even higher multiplicities would drive the saturations to higher values.

In our analysis specifically, the data leads us to conclude that the second interpretation is
the correct one. We hence argue that including baryonic transition FFs in the analysis could
yield a significant impact of B̄ → K̄ FFs. As discussed above the bounds for (Γ, λ) = (V, 0)
and (V, t) are only weakly saturated even for N = 3. First, we have explicitly checked that
this is not leading to underestimated uncertainties in the FFs fB→K+ and fB→K0 , which are
the only FFs that contribute to these two bounds in our setup. Our check is performed by
evaluating these FFs for N = 4 at two phase space points: q2 = −5 GeV2 and q2 = +25 GeV2,
since in this scenario, these two bounds start to be saturated. The largest increase in the
uncertainties with respect to the scenario N = 3 is obtained for fB→K+ (−5 GeV2) and is
of the order of 0.2%. This very small increase in the uncertainties can also be seen in the
“comparison”-type plots contained in our supplementary material [74]. It is in line with
our conclusion that N ≥ 4 is generally not needed to achieve an accurate estimate of the
truncation error for all other FFs, and therefore further supports our choice of N = 3 as
the nominal fit. Next, we compare our results with those of dispersively bounded analyses
for baryonic transition FFs as presented in refs. [50, 51]. We find that in both of these
analyses the saturation of the Γ = V bound complements our results. Our interpretation
of these findings is that the Γ = V , λ = 0, t bounds receive substantial contributions to
their relative saturation from the baryonic transitions. This points to a tangible benefit of
analysing mesonic and baryonic transition FFs simultaneously and might lead to even more
precise predictions for the FF fB→K+,0 .

4Recall that in the strict BGL parametrization the fit parameters correspond to a series of derivatives
of the corresponding FF at the zero-recoil point. Hence, large saturations limit the magnitude of these
derivatives and vice versa.
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χ
(λ)
Γ 1-pt saturations [%]

2-pt sat. at 68% cum. prob. [%]
N = 2 N = 3 N = 4

χ
(t)
V — 6.6 14.4 59.5
χ

(0)
V 2.8± 0.2 2.6 3.8 51.5
χ

(⊥)
V 2.8± 0.2 68.9 82.1 87.3
χ

(t)
A 11.8± 0.6 33.4 69.7 77.9
χ

(0)
A — 10.2 71.3 85.9
χ

(‖)
A — 57.5 81.1 88.7
χ

(0)
T 4.7± 0.9 13.0 48.6 73.9
χ

(⊥)
T 4.7± 0.9 53.3 76.3 83.9
χ

(0)
AT — 39.2 79.5 88.5
χ

(‖)
AT — 29.8 75.7 86.9

Table 4. Relative saturations of the dispersive bounds due to the one-particle and two-particle
contributions. Two-particle contributions are shown for the different truncation orders and the table
shows the saturation at 68% cumulative probability.

0.0 0.5 1.0
rt,V

N = 2

N = 3

N = 4

0.0 0.5 1.0
rt,A

0.0 0.5 1.0
r0,V
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r⊥,V

0.0 0.5 1.0
r0,A

EOS v1.0.7
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r‖,A

0.0 0.5 1.0
r0,T
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r⊥,T

0.0 0.5 1.0
r0,AT

0.0 0.5 1.0
r‖,AT

Figure 3. Saturations of the dispersive bounds due to one- and two-particle contributions. The
lines represent Gaussian-smoothed distributions of the saturations in our samples that we combined
following the discussion in section 3.1. The shaded area comprise the 68% probability interval for
each scenario. The distributions are scaled with arbitrary factors for readability.
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4 Conclusions

We propose novel dispersive bounds for local form factors (FFs) in B decays that improve
upon the commonly-used BGL bounds of ref. [47] Our improved bounds exploit the fact that
the vacuum-to-vacuum correlator is not sensitive to the polarisation of the incoming/outgoing
virtual vector boson, while the exclusive two-particle contribution to the correlator’s hadronic
representation is. Following this consideration, we split the BGL bound for FFs with total
angular momentum J = 1 into three different parts, one for each physical polarisation. As a
consequence, each FF of a single exclusive mesonic process now obeys a distinct dispersive
bound. This has two advantages. First, it makes the dispersive bounds more constraining.
This is possible since overfluctuations of one FF cannot be hidden by underfluctuations
of another FF. Second, it avoids the introduction of redundant correlations. These arise
in the common BGL-bound by merging contributions arising from different transitions or
from different polarisations.

We apply our dispersive bounds by fitting a recently proposed parametrization to
existing theoretical data on B̄ → K̄(∗) and B̄s → φ FFs. This data is available from lattice
QCD analyses and light-cone sum rule calculations. The latter data is used to anchor the
respective FFs at low q2 whenever lattice QCD results for this region are unavailable. The
proposed parametrization is needed in our analysis due to the appearance of below-threshold
branch cuts in the FFs, generated by B̄sπ0 and B̄sπ0π0 states. These branch cuts have
not been considered in previous analyses, giving rise to unwanted and hard-to-quantify
systematic uncertainties.

We obtain numerical results for the fitted parameters from a comprehensive Bayesian
analysis of the thee transitions B̄ → K̄(∗) and B̄s → φ. We provide the N = 2 results in a
machine readable form as supplementary material [74]. Our results include the central values,
standard deviations, and correlations of both the coefficients obtained in our framework and
the coefficients of the BSZ parametrization. The parameters within both parametrizations
follow multivariate Gaussian distributions to a good approximation, with relative perplexities
in excess of 95%. At the current level of precision on the estimation of the FFs describing
B̄ → K̄(∗) and B̄s → φ transitions, we find that at present a simplified series expansion à
la BSZ provides an accurate estimation of the FF uncertainties at positive q2, although this
may change once more and more precise lattice QCD results become available. However, at
negative q2, the coupled effect of a larger truncation order and the impact of the dispersive
bounds are already essential to correctly estimate the extrapolation uncertainties. This fact
is particularly important for the determination of the non-local FFs for these transitions
since at low and negative values of q2 they are proportional to the local FFs at leading
power in the light-cone OPE. Therefore, we conclude that our proposed approach is crucial
for this determination.

We emphasise that present and future lattice QCD analyses must fulfil the dispersive
constraints. Hence we encourage the implementation of our framework to perform a
posteriori checks. Nevertheless, we caution that dispersive bounds should not be applied
directly or exclusively in theoretical calculations; doing so would prohibit their use in
simultaneous FF fits.
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Our present analysis is both a benchmark of what is possible within the framework of
dispersively bounded FF parametrizations and a step stone towards more precise predictions
of the non-local FFs at negative q2. A key advantage of this framework is the possibility of
including further transitions in the analysis, in particular baryonic ones. We expect this
to lead to a reduction of the uncertainties of all the transitions considered within a global
analysis. Thus, we regard the work presented here as an important step towards a truly
global analysis of rare B-decay observables that simultaneously uses dispersive bounds to
control all systematic uncertainties, thereby advancing the precision frontier in indirect
BSM searches.
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A Supplementary material

The full set of posterior samples and the EOS analysis files used to conduct the analysis
presented in this paper are made public as part of our supplementary material [74].

A.1 Additional figures

We provide the following types of figures in addition to the figures contained in this article:

overview These figures show plots of each FFs in relation to the inputs used within
their analysis. In the case of B̄ → K̄ FFs, we also illustrate the relation to
LCSR results that have not been used in the analysis. The names follow the
pattern “TRANSITION_FF.pdf”, where “TRANSITION” can be either “BToK”,
“BToKstar”, or “BsToPhi“ and “FF” can be either “fp”, “f0”, “fT”, “V”, “A0”,
“A1”, “T1”, “T2”, “T23“. We do not provide plots for “A2” or “A12”, since
one of them is redundant and the available constraints are not consistently
available for either choice.

comparison These figures show plots of the FFs as the envelopes at 68% probability based
on their posterior predictive distributions. Each figure shows plots of the FF in
the dispersively bounded fit for N = 2 and N = 3 as well as the results of an
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additional BSZ fit for N = 2. In each plot, the FF is normalized to its central
results of our nominal fit at N = 3 and in the presence of a dispersive bound.
Hence, these figures can be used to infer the behaviour of the systematic
uncertainty inherent in the extrapolation of the adhoc BSZ parametrization
and the size of the truncation uncertainty in the dispersively bounded approach.
The names follow the pattern “TRANSITION_NFF.pdf”, where the “N” is meant
literally; see above for the possible values of “TRANSITION” and “FF”.

A.2 Form factor parameters

For N = 2, the effects of the dispersive bounds are too small to distort the distributions of
the posterior samples. The later can therefore be approximated by multivariate Gaussian
distributions to a good accuracy, with perplexities of 99.8%, 95.1% and 94.2% for B̄ → K̄,
B̄ → K̄∗ and B̄s → φ respectively. We provide these distributions for the three transitions
that are part of our analysis, both for the parameters arising in our parametrization
and also for the BSZ parametrization (i.e., the simplified series expansion of ref. [30]).
These distributions are provided in the ancillary files GRvDV-parameters-N2.yaml and
BSZ-parameters-N2.yaml respectively.

Some comments are due on our results in the BSZ parametrization:

• We find overall a good fit to the available data even for N = 2, not unlike the case of
our dispersively bounded analysis.

• At present, this parametrization accurately covers the uncertainties for the dispersively
bounded analysis when we restrict the q2 interval to [0, s−]. This is a consequence of the
fact that in this region the uncertainties are presently dominated by purely parametric
sources and the truncation error is not (yet) relevant. It also strengthens BSM analyses
that rely on these FFs in this phase space and within this parametrization.

• At q2 < 0, we start to see that BSZ parametrization does not faithfully capture the
uncertainty envelope of the dispersively bounded analysis. This is not unexpected,
given the fact that the truncation error becomes relevant for this type of extrapolation
of the available LQCD data. It gives rise to concern for the theory prediction of
non-local FFs, which are crucially reliant on this extrapolation. The biggest concern
here is the FF fB→KT , which shows deviations of the order of 10%.

B Orthonormal polynomials

Our parametrization of the FFs involves orthonormal polynomials on the unit circle. For
the purpose of our analysis, orthonormality is defined with respect to the scalar product
eq. (2.50), i.e., orthonormality with respect to integration over the arc Aα = {eiθ,−α <
θ < α}. We could not find a closed analytic formula for these polynomials in the literature.
Instead, we evaluate them recursively using the Szegő recurrence relation [75]:

ϕn+1(z) = z ϕn(z)− ρ̄n ϕ∗,nn (z), (B.1)
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where ϕn is the nth orthogonal polynomial. We adopt here the common notation used
in the mathematical literature ϕ∗,nn (z) ≡ znϕ̄n(1/z̄) [75]. The coefficients ρn, known as
the Verblunsky coefficients, uniquely define the set of polynomials and only depend on
the integration measure. In our approach the relevant integration measure is the constant
Lebesgue measure on the arc Aα.

Since this arc is symmetric under complex conjugation, the Verblunsky coefficients are
real numbers [75]. The orthonormal polynomials pn appearing in eq. (2.49) are obtained
using [75]

pn = ϕn
||ϕn||

, ||ϕn||2 = 2π
n−1∏
k=0

(1− |ρk|2). (B.2)

Calculation of Verblunsky coefficients. The Verblunsky coefficients can be calculated
by applying the Gram-Schmidt orthonormalisation procedure to the basis of monomials
zk. A faster evaluation can however be obtained recursively and does not require any
analytic calculation. To illustrate our approach to this evaluation, we first define Φn ≡
(ϕn(z), ϕ∗,nn (z))T , which fulfils the recurrence relation

Φn+1 =
(

z −ρn
−z ρn 1

)
Φn. (B.3)

This equation can be used to evaluate the orthogonal polynomials at any point z, provided
that the set of Verblunsky coefficient is known. To compute the later, we introduce two
sets of integrals,

In,k ≡
∫ α

−α
eikθϕn(eiθ)dθ and Jn,k ≡

∫ α

−α
eikθϕ∗,nn (eiθ)dθ. (B.4)

For any non-zero integers k, n one readily finds

I0,0 = J0,0 = 2α, I0,k = J0,k = 2 sin kα
k

, In,0 = 0. (B.5)

Integrating eq. (B.3) on the arc Aα yields(
In+1,k
Jn+1,k

)
=
(

1 −ρn
−ρn 1

)(
In,k+1
Jn,k

)
. (B.6)

The Verblunsky coefficient ρm can then be obtained by recursively filling the triangular
matrices In,k, Jn,k for k < n ≤ m and using ρm = Im,1/Jm,0. This method is implemented
in the open-source EOS software [69] used for numerical aspects of this paper.

Asymptotic behaviours. The asymptotic behaviours of the orthonormal polynomials
have been studied in details, see e.g. [76] and references therein. Using eq. (1.7) of ref. [77]
and applying the transformation θ′ = π − θ, we find that at large n,

ρn ∼ (−1)n cos α2 . (B.7)
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This result can be used when diagonalising the matrix in eq. (B.3) to obtain asymptotic
values for any z 6= 0. In particular one finds that at large n,

pn+2(1)
pn(1) ∼ 1 and pn+1(−1)

pn(−1) ∼ − cot α4 < −1. (B.8)

The values of the polynomial thus form a finite alternating series at z = 1 and an alternating
and exponentially divergent series at z = −1, pn(−1) = O

(
(cot α4 )n

)
.

Convergence of the form factor expansion. Following the approach of ref. [78], we
evaluate eq. (2.43) at the branch point z(sΓ) = −1,(

PF (z)φF (z)FB→MΓ,λ (z)
)∣∣∣
z=z(sΓ)

=
∑
n≥0

aFn p
F
n (−1) . (B.9)

As shown in eq. (B.8), the series pFn (−1) diverges exponentially with n. This, however, is
not an issue for the parametrization. The power series element of the parametrization is
analytic for |z| < 1. Moreover, this element is also finite at z = −1. By Abel’s theorem, the
value at z = −1 can be expressed as∑

n

aFn p
F
n (−1) <∞ . (B.10)

Together with eq. (B.8), this implies that the coefficients an must fall off at least exponentially
to compensate the divergence of the series {pn(−1)}.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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