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Abstract

We consider 3d N = 4 theories on the geometry Σ×R, where Σ is a closed and connected
Riemann surface, from the point of view of a quantum mechanics on R. Focussing on the
elementary mirror pair in the presence of real deformation parameters, namely SQED
with one hypermultiplet (SQED[1]) and the free hypermulitplet, we study the algebras
of local operators in the respective quantum mechanics as well as their action on the
vector space of supersymmetric ground states. We demonstrate that the algebras can
be described in terms of Heisenberg algebras, and that they act in a way reminiscent of
Segal-Bargmann (B-twist of the free hypermultiplet) and Nakajima (A-twist of SQED[1])
operators.
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1 Introduction

3d N = 4 gauge theories and their infrared dualities, known as 3d mirror symmetry, have
turned out to be a rich playground for researchers interested in geometry and representation
theory. For example, the study of the vacuum structure of mirror dual theories has inspired
a conjectural mathematical duality known as symplectic duality, which in its simplest form
relates deformations and hamiltonian isometries of two different hyperkähler manifolds. This
relation can be generalized by studying the mathematical definitions and properties of more
sophisticated physical observables [1–5].

In the last few years, some attention has been paid to 3d N = 4 theories topologically
twisted on Σ × R or Σ × R+ where Σ is a closed and connected Riemann surface, not least
because of its relation to the Geometric Langlands Program [6–9]. One basic observable in
this set-up is the space of supersymmetric ground states of the 3d theory on Σ×R, which can
be studied from the point of view of a supersymmetric quantum mechanics on R [10,11] and
refines twisted indices [12–17]. Another related observable comes from the study of deformed
(0,4) boundary conditions on Σ × {0} ⊂ Σ × R+ that support non-unitary Vertex Operator
Algebras [18–20].

The aim of this note is to highlight a simple representation-theoretic structure underpin-
ning the vector spaces of supersymmetric ground states in the presence of generic real defor-
mation parameters, which are introduced to ensure the gapness of the underlying supersym-
metric quantum mechanical systems. The algebra in question is the algebra of local operators
in the quantum mechanics, which contains local operators in 3d as well as their descendants
along Σ. Focussing on the simplest mirror pair, namely a free hypermultiplet and SQED[1],
we show that on very general grounds these algebras organise themselves into Heisenberg
algebras that are governed by the intersection pairing on Σ as well as the secondary product
defined in [21]. The spaces of supersymmetric ground states can be understood as Fock spaces
for these Heisenberg algebras.

Mirror symmetry relates two different topological twists, known as A- and B-twist, which
give the mirror, isomorphic Fock spaces distinct and interesting incarnations. The Hilbert space
of a free hypermultiplet in the B-twist is reminiscent of a Segal-Bargmann space [22, 23] as-
sociated with the space of constant maps from the curve Σ to the Higgs branch MH = T∨C.
In fact, the Fock space is generated by creation and annihilation operators that act by multi-
plication and differentiation on certain bosonic and fermionic polynomial functions that are
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square-integrable with respect to a Gaussian measure.
The Hilbert space in the A-twist of SQED[1] can be understood in terms of the de Rham

cohomology of vortex moduli spaces, on which monopole operators and their descendants act
by creating and annihilating vortices along prescribed cycles on Σ. This action is the analogue
for the symmetric product of a curve of the action introduced by Nakajima on the Hilbert
scheme of points on surfaces [24], and it is reminiscent of the Fock spaces associated to sym-
metric products that appeared in the physics literature in [25]. The B-twist of SQED[1] and
the A-twist of the free hypermultiplet become interesting only upon turning on background
superfields, something that we only briefly mention here. This combination has already been
studied from a mathematical point of view in [4].

Besides being interesting in their own right, we hope that these actions (when properly
extended to more general theories, and to the presence of line operators) will help us to un-
derstand the relation between boundary conditions, supersymmetric ground states, and con-
formal blocks. We leave this to future work.

This paper is organised as follows. We first review the topological twists and the effec-
tive supersymmetric quantum mechanics on R, and derive the Heisenberg algebras from the
commutators of local operators and their descendants. We then describe the action of these
algebras in the B-twist of the free hypermultiplets and in the A-twist of SQED[1] in turns.

2 SUSY Quantum Mechanics from 3d N = 4 theories

We start by introducing the topological twists, emphasizing some algebraic facts. We work in
euclidean signature. The supersymmetry algebra of a 3d N = 4 gauge theory in flat space
reads

¦

QAȦ
α ,QBḂ

β

©

= εABεȦḂ Pαβ − εABεαβ Z ȦḂ − εȦḂεαβ ZAB , (1)

where Pαβ are the momenta and ZAB, Z ȦḂ are central charges.1 Throughout this paper, the

only non-zero central charges will be Z12 = Z21, Z 1̇2̇ = Z 2̇1̇.
The central charges break the R-symmetry to a maximal torus

U(1)H × U(1)C ⊂ SU(2)H × SU(2)C . The unbroken R-symmetry is still sufficient to perform a
topological twist on Σ×R, where Σ is a compact, connected and closed Riemann surface. The
first step corresponds to identifying R3 ∼= R2 × R, and to singling out the U(1) subgroup of
the isometry group of R3 that rotates the R2 factor. We call this subgroup U(1)L . The second
step corresponds to selecting a U(1) ⊂ U(1)H × U(1)C subgroup and to mix it with U(1)L to
defined an “improved" isometry group. We consider two twists that mix U(1)L with a subgroup
U(1)H ⊂ SU(2)H and U(1)C ⊂ SU(2)C respectively, the Rozanksy-Witten twist and its mirror.

2.1 A-twist

The mirror Rozansky-Witten twist will be dubbed “A-twist". Let

U(1)A ⊂ U(1)L × U(1)H (2)

be the diagonal subgroup. The nilpotent combination of supercharges

QmRW :=Q11̇
1 +Q21̇

2 (3)

is a scalar with respect to U(1)A. Furthermore, if we set

Qαβ := −ε(αγQ
γ2̇
β) , (4)

1Our convention for the Levi-Civita tensors is ε12 = ε21 = 1.
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where (α · · ·β) denotes symmetrisation in α and β , then
�

QmRW ,Qαβ
	

= Pαβ + Zαβ , (5)

with P12 corresponding to translations along the R direction, and we recall that Z ȦḂ ̸= 0 only
for Ȧ ̸= Ḃ. Thus, if we consider a modification of the Lorentz group where U(1)L is replaced by
(2) and work in the cohomology of the scalar, nilpotent supercharge QmRW , translations along
R2 become exact. In particular, in QmRW -cohomology we can define the theory on Σ×R, for
Σ a compact, connected and closed Riemann surface.

The constituents of the mirror Rozansky-Witten supercharge (3) are a subset of four su-
percharges that are scalars under U(1)A

QȦ :=Q1Ȧ
1 , eQȦ :=Q2Ȧ

2 . (6)

They satisfy the algebra of a N = 4 supersymmetric quantum mechanics

{QȦ, eQḂ}= εȦḂ
�

P12 + Z12
�

+ Z ȦḂ , (7)

with all other anti-commutator vanishing. Their conjugates are (Q1̇)† = eQ2̇ and (Q2̇)† = −eQ1̇.
In this paper, we shall be interested in the space of supersymmetric ground states of this quan-
tum mechanics, i.e. the states annihilated by the four supercharges QȦ, eQḂ. It is easy to see
that such states must be annihilated by Z12. Then, noting that

Q†
mRW =Q12̇

1 −Q21̇
2 , (8)

we compute
{QmRW ,Q†

mRW }= 2
�

P12 + Z12
�

. (9)

Thus, provided the spectrum of the operator on the right hand side is gapped, by a standard
argument supersymmetric ground states can be identified with states that vanish under the
action of Z ȦḂ and that are in the cohomology of QmRW , which means that are well-defined
states in the twisted theory.

Since we have an unbroken U(1)H ×U(1)C at our disposal, states possess a Z×Z grading.
Following [11], we define a new Z × 1

2Z grading on the Hilbert space of states by declaring
that if rH , rC are the eigenvalues of a generator of U(1)H , U(1)C then

f := rC , (10)

r :=
1
2
(rC − rH) . (11)

The action of QmRW respects the first grading (it sends f 7→ f + 1), whereas it breaks the
second. For this reason, we call the first the “primary", or “cohomological" grading and we
denote it by F . The second grading will be called “secondary" and it will be denoted by R. The
graded vector space generated by a state with F , R grading f and r will in turn be denoted as
follows

t rC[− f ] . (12)

2.2 B-twist

The Rozansky-Witten twist will be dubbed “B-twist". Let

U(1)B ⊂ U(1)L × U(1)C (13)
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be the diagonal subgroup. The nilpotent combination of supercharges

QRW :=Q11̇
1 +Q12̇

2 (14)

is a scalar with respect to U(1)B. Furthermore, if we set

Qαβ := −ε(αγQ
2γ
β) , (15)

then
�

QRW ,Qαβ
	

= Pαβ + Z α̇β̇ , (16)

Thus, if we replace U(1)L by (13) and work in the cohomology of the scalar, nilpotent super-
charge QRW , we can define the theory on Σ×R.

The constituents of the Rozansky-Witten supercharge (14) are a subset of four supercharges
that are scalars under U(1)B

QA :=QA1̇
1 , eQA :=QA2̇

2 . (17)

They satisfy the algebra of a N = 4 supersymmetric quantum mechanics

{QA, eQB}= εAB
�

P12 + Z 1̇2̇
�

+ ZAB , (18)

with all other anti-commutator vanishing. The conjugate supercharges are (Q1)† = eQ2 and
(Q2)† = −Qe1. As in the A-twist, under some obvious assumptions on the gap of {QRW ,Q†

RW },
the supersymmetric ground states can be identified with states that vanish under the action of
ZAB and that are in the cohomology of QRW .

Finally, we define once again a “primary" or “cohomological"Z-grading F and a “secondary"
grading 1

2Z-grading R on the Hilbert space as follows. If rH , rC are the eigenvalues of a gen-
erator of U(1)H , U(1)C then

f := rH , (19)

r :=
1
2
(rH − rC) . (20)

The action of QRW preserves the first grading (it sends f 7→ f + 1), whereas it breaks the
second. The graded vector space generated by a state with F , R grading f and r will in turn
be denoted as follows

t rC[− f ] . (21)

2.3 Descendants and secondary product

Local operators in a cohomological TQFT such as 3d theories A- or B-twisted on Σ×R, which
will be our focus, form an algebra induced by the associative product

[[O1(x1)]] ⋆ [[O1(x2)]] := [[O1(x1)O1(x2)]] . (22)

Here we use [[O(x)]] to denote the class of an operator O inserted at a point x in the coho-
mology of an odd nilpotent operator2 Q. We will drop this piece of notation in later sections,
where it will be clear that we will be working in cohomology.

In [21] it was shown that this algebra can be endowed with a Poisson bracket, the so-
called secondary product, by means of the topological descent procedure described in [26]
that works as follows. Let

Qµ := −
i
2

�

σµ
�αβ

Qαβ , (23)

2We assume that the configuration space of two points in the manifold where the TQFT is defined is connected,
wich justifies the use of the definite article “the".
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with Qαβ the supercharge defined in (4) in the A-twist and in (15) in the B-twist, and
�

σµ
�β

α
the standard Pauli matrices

σ1 =

�

0 1
1 0

�

, σ2 =

�

0 −i
i 0

�

, σ3 =

�

1 0
0 −1

�

. (24)

For O(x) a local operator and C a k-cycle in the homology of the space-time manifold we
define

O(k) :=
1
k!

Qµ1
· · ·Qµk

(O(x)) , (25)

O (C) :=

∫

C
O(k)dxµ1 ∧ · · · ∧ dxµk . (26)

In the absence of central charges the operator O(C) is topological, because acting upon it with
the cohomological supercharge (the one whose cohomology defines the twisted theory) gives
the integration of a total derivative over a cycle. In the presence of central charges Z12, Z21,
Z 1̇2̇, Z 2̇1̇ on Σ×R, operators of the form O(CΣ × {y}) for

C ∼= CΣ × {y} ∈ H•(Σ,Z)×H0(R,Z) ⊂ H•(Σ×R,Z) , (27)

remain topological.
We can now define the secondary product. Given two local operators O1(x1) and O2(x2),

we define

(O1 ⊠O2)
(k) (x1, x2) :=

k
∑

n=0

(−1)(k−n) f1O(n)1 (x1)∧O
(k−n)
2 (x2) , (28)

where f1 is the fermion number of the operator O1. Without loss of generality, we work in an
open ball ball B3 ⊂ Σ×R and consider the cycle

C := S2
x2
× {x2} (29)

in the homology of the configuration space of two points in the ball, H•(C2(B3),Z). Here S2
x2

is a 2-sphere centred at x2. We then define the secondary product as follows

{[[O1]], [[O2]]} :=

��∫

C

(O1 ⊠O2)
(2)
��

. (30)

It is obvious that the definition of secondary product only depends on the cycle C via its homol-
ogy class in H2(C2(B3),Z). In particular, we could have chosen the Hopf link instead of (29).
More generally, any class in H2(C2(B3),Z) gives a definition of secondary product that can be
related to (30) up to an overall factor, as follows from

Hd(C2(B
3),Z) :=











Z , d = 0 ,

Z , d = 2 ,

0 , else .

(31)

This fact can also be used to prove the first of the following two important relations:

{[[O1]], [[O2]]}= (−1) f1 f2+1{[[O2]], [[O1]]} , (32)

{[[O1]], [[O2 ⋆O3]]}= {[[O1]], [[O2]]} ⋆ [[O3]] + (−1) f1[[O2]] ⋆ {[[O1]], [[O3]]} , (33)

{[[O1]], {[[O2]], [[O3]]}}= (−1) f1 f2{[[O2]], {[[O1]], [[O3]]}}+ {{[[O1]], [[O2]]}, [[O2]]} . (34)

The second relation, which can be proven by considering the configuration space of three
points, shows that the secondary product is a derivation of the algebra of local operators. The
third is obviously the Jacobi identity.
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2.4 SQM local operators and their commutator

We are ultimately interested in quantum mechanical systems defined along the real line R.
This is the supersymmetric quantum mechanics whose algebra was obtained in (7) and (18).
Local operators in these quantum mechanical systems include operators that are local in 3d as
well as their descendants alongΣ. The aim of this section is to express the graded commutators
between these operators in terms of the secondary product and the intersection pairing on Σ.
This corresponds to the computation of the factorisation homology of the bulk algebra.

To this end, we denote the R component of a point x ∈ Σ × R by y (as before) and its
components on the curve Σ by z, so that x = (y, z). The relevant cycles are then of the
form (27)

C ∼= CΣ × {y} ∈ H•(Σ,Z)×H0(R,Z) ⊂ H•(Σ×R,Z) . (35)

We claim that if two cycles C1
Σ and C2

Σ intersect transversally at a finite number of points, then
for any two local operators3 O1, O2

�

O1

�

C1
Σ

�

,O2

�

C2
Σ

��∼= 〈C1
Σ,C2

Σ〉{O1,O2} . (36)

Here 〈 , 〉 is the intersection pairing and { , } is the secondary product. [ , ] is the quantum-
mechanical graded commutator. We also claim that if the cycles do not intersect at all, then
the commutator simply vanishes.

We start by unpacking the quantum-mechanical commutator in terms of the 3d theory. To
this end, consider the cycle C12 ∈ H• (C2(Σ×R),Z) defined by a representative

�

C1
Σ × {y1}
�

×
�

C2
Σ × {y2}
�

⊂ (Σ×R)× (Σ×R) , (37)

with y1 < y2. Similarly, consider the cycle C21 defined by the representative
�

C1
Σ × {y2}
�

×
�

C2
Σ × {y1}
�

⊂ (Σ×R)× (Σ×R) . (38)

The commutator is defined as the integration of the operator

(O1 ⊠O2)
(k) (39)

over the cycle
C∼= C12 − C21 . (40)

What we would like to show is that this cycle is homologous to the one defining the secondary
product on the RHS of (36) when C1

Σ and C2
Σ intersect transversally, and that it vanishes when

they do not intersect at all.
If the two cycles C1

Σ and C2
Σ do not intersect along the curve, then we are free to deform C

without changing its homology class so that y1 = y2 = y , C12 = C21 and the cycle vanishes
as claimed. Thus, any potential obstruction to the vanishing of the cycle has to come from
intersections along the curve. Let us suppose then that the cycles intersect transversely at
points

zi ∈ C1
Σ ∩ C

2
Σ , (41)

and let Di ⊂ Σ be small disks surrounding them. In the complement of
⋃

i

(Di ×R)× (Di ×R) ⊂ (Σ×R)× (Σ×R) , (42)

3We recall that differently from the previous section, we henceforth suppress the symbol [[ ]] denoting coho-
mology classes.
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we can indeed set y2 = y1 in (37) and (38) without changing the homology class of C12
and C21. In any intersection with

(Di ×R)× (Di ×R) , (43)

since the intersection between C1
Σ and C1

Σ is transverse, we can modify (37) to

εi

�

H2
i

�

× {(zi , y)} , (44)

where H2
i is a lower hemisphere with centred at (zi , y) and the εi is a sign that depends

on orientations. Doing the same with C21, and noticing that contributions cancel out in the
complement of (42), we obtain

C∼=
∑

x i

εiS
2
(zi ,y)
× {(zi , y)} , (45)

which corresponds to the desired cycle.
Finally, we would also need to compute the commutator of two operators descended along

cycles whose interesection has dimension one or more. It follows from (31) that on dimen-
sional grounds the commutator of such operators cannot be expressed in terms of the sec-
ondary product, and we believe that in fact it should vanish. This will be true in our examples.

In the following, we will use conventions for the cycles and their intersection pairing on Σ
that are summarised in appendix A. In particular,

〈Γi , Γg+ j〉= −〈Γg+ j , Γi〉= δi, j , (46)

where the first g Γi ’s are Poincaré dual to holomorphic one-forms. We also take a zero-cycle Λ
and a 2-cycle (abusing notation) Σ so that

〈Λ,Σ〉= 1 . (47)

3 The free hypermultiplet in the B-twist

We now discuss the B-twisted free hypermultiplet. In flat space, this has fields

{φAa}a=1,2 , (48)

with A an SU(2)H index. The fields are subject to a reality condition

�

φAa
�†
= εABΩabφ

Bb , (49)

where

Ωab =

�

0 1
−1 0

�

. (50)

The fermionic fields can be denoted by

{ψȦa
α }a=1,2 , (51)

where Ȧ is as usual an SU(2)C index. The supersymmetry transformations are schematically

QAȦ
α φ

Ba = εABψȦa
α , (52)

QAȦ
α ψ

Ḃa
β = iεȦḂ∂αβφ

Aa + εαβ Z ȦḂφAa . (53)
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In the B-twist, all bosons remain scalars. It will be useful to denote

φ1a = X a , (54)

so that (X 1, X̄ 2) and (X 2,−X̄ 1) are doublets of SU(2)H . The Fermions, however, decompose
into scalars

ηa := −δα
Ȧ
ψȦa
α , (55)

and one forms

χa
µ :=

i
2

�

σµ
�α

Ȧψ
Ȧa
α . (56)

Notice that with the definition in (23)

(X a)(1) =QµX a = χa
µ . (57)

In the absence of central charges, upon the identification

dX̄ a := ηa , (58)

the action of the supercharge QRW can be interpreted as the action of the Dolbeault operator
in a fixed complex structure. The Higgs branch chiral ring is by definition the ring of bosonic
operators annihilated by QRW , that is the ring of holomorphic functions. Algebraically,

C[MH] := C[X 1, X 2] , (59)

where MH is the hyperkähler manifold

MH := T∨C . (60)

The group SU(2)H acts on MH by rotating the complex structures.
There is a U(1) flavour symmetry that rotates the fields (X 1, X 2) by an opposite phase, and

we therefore have a real mass parameter m valued in the Lie algebra of U(1). If m ̸= 0, then
Z 1̇2̇ = m · J where J is the generator of this symmetry. QRW becomes a deformation of the
Dolbeault operator

QRW (m) := e−µR,H ·mQRW eµR,H ·m , (61)

where µR,H is the real moment map for the action of the flavour symmetry,

µR,H = |X 1|2 − |X 2|2 . (62)

3.1 Grading

Before moving on to the details of the Hilbert space, let us make a brief comment on the
gradings of the fields. First, we grade the fields by the cohomological, or primary grading
introduced above. This means that we grade the fields by their charge F under the unbroken
U(1)H ⊂ SU(2)H . Since (X 1, X̄ 2), (X 2,−X̄ 1) are doublets of SU(2)H , the charges of the bosons
under U(1)H are ±1, whereas the fermions are uncharged.

The cohomological grading can be thought of as a refinement of the fermion number, up
to a caveat. In fact, the grading modulo two assigns grading 0 to fermions and grading 1
to bosons. This not what is expected from a fermion number, which usually assigns 0 to
bosons and 1 to fermions. A Z-grading that reduces to a usual fermion number modulo two
can however be obtained by taking into consideration the flavour symmetry of the theory, as
explained for example in [21].

We denote the charges of the fields under the flavour symmetry by J . The charges of all
fields are equal to J = ±1. Thus, at the cost of replacing U(1)H with the diagonal subgroup
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Table 1: Weights of hypermultiplet fields in the B-twist.

X 1 X 2 χ1
µ χ2

µ

J +1 −1 +1 −1
F 0 +2 −1 +1
R 0 +1 0 +1

U(1)′H ⊂ U(1)H × JH in the definition of the primary grading, we obtain a cohomological
grading that refines the fermion number. For notational simplicity, we keep symbols F and R
for the primary and secondary grading defined with U(1)′H in place of U(1)H . The resulting
J , F and R charges are reported in Table 1. The algebraic syplectic form Ωab transforms with
degrees F = 2, R= 1. Thus (remembering our convention for the primary grading (21)),

C[MH]∼= Sym•[tC[−2]⊕C] . (63)

3.2 Effective quantum mechanics

In [11] the free hypermultiplet B-twisted on R×Σ was studied from the point of view of an
effective supersymmetric quantum mechanics on R in the presence of real mass deformations,
and the vector space of supersymmetric ground states was constructed. The result can be
understood in terms of the Rozansky-Witten invariants of MH [27].4 In this section, we revisit
the construction and manifest the structure of the vector space as a module for the algebra of
local operators in the SQM.

3.2.1 Vector space of supersymmetric ground states

The effective supersymmetric quantum mechanics of [11] was derived by considering a partic-
ular localisation scheme. The scheme requires the path integral to localise on configurations
holomorphic on Σ. The result of the procedure is a supersymmetric quantum mechanics with
the following (0, 4) multiplets:

• A 1d hypermultiplet valued in MH , which corresponds to the coefficients in the expansion
of (X a,ηa) in terms of a basis for H0(Σ,O);

• g Fermi multiplets χa
i valued in MH[1] arising from the modes of the one-form fermions

χa
µ on Σ. More precisely, the Fermi multiplets are the g coefficients in the expansion of

χa
µ in terms of a basis of holomorphic one-forms H1(Σ,O), wi

µ

χa
µ =

g
∑

i=1

χa
i wi

µ . (64)

As explained in [11], the quantum mechanics can be viewed as a standard (0, 4) quantum
mechanics with target MH = T∨C and endowed with a hyper-holomorphic vector bundle
F = TMH

⊗Cg . Notice that if one inserts background connections for the flavour symmetry, the
number of fluctuations changes (see appendix C). From the quantum mechanical perspective,
this induces a modified vector bundle on the target [15].

As usual in quantum mechanics, the Hilbert space was defined to be the space of square-
integrable functions on the target. The space of supersymmetric ground states is then the

4The derivation of the space of states assigned to a Riemann surface in the absence of real masses can also be
approached from the point of view of the twisted formalism [28]. See also [29]).
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subspace of the Hilbert space annihilated by all four supercharges. Upon turning on real a
mass, the QRW supercharge is deformed according to (61)

QRW (m) := e−µR,H ·mQRW eµR,H ·m , (65)

with similar expressions for the other supercharges. The following square-integrable wave-
functions arising from the 1d hypermulitplet and annihilated by all supercharges were found5

�

X 1
�k1
�

X̄ 2
�k2 e−m(|X 1|2+|X 2|2)dX̄ 2 . (66)

Accounting for the Fermi multiplets, we have

Hm>0 =ÚSym•V , (67)

where
V = ξ(C⊕ t−1C[2]⊕ t−1Cg[1]⊕Cg[1]) . (68)

Here ξ is a grading parameter that keeps track of the flavour symmetry, and the hat represents
multiplication by the square-root of the determinant of V . t−1C[2] corresponds to the grading
of the operator X̄ 2.

Having established what the vector space of supersymmetric ground states is, the next step
is to determine the quantum algebra of observables that acts on it.

3.2.2 The algebra of observables

A key fact that we need and that was derived in [21] is the following:

{X 1, X 2}= 1 . (69)

The derivation is based on the following simple computation

d(X a)(2) = Ωabd ⋆ d
�

X̄ b
�

= Ωab δS
δX b

, (70)

and on the fact that in the path integral δS
δX b (x)X a(y)∼ δa

bδ(x − y). It then follows from (36)
and Stokes’ theorem that

�

X 1(x), X 2(Σ)
�

= 1 , (71)

as well as
�

X 1(Γi), X 2(Γ j+g)
�

= δi j , (72)

which endows the space of local operators with the structure of Heisenberg algebras. Notice
that in (72) the commutator is graded, that is, it is actually an anti-commutator.

3.2.3 Vector space of supersymmetric ground states as a module

Let us fix m > 0. The case m < 0 is analogous. We can represent states in the vector space as
follows:

|k1, k2, f1, · · · , f2g〉 , (73)

where k1, k2 ∈ N represent the powers of the bosonic Fock spaces whereas fi ∈ Z2 the powers
of the fermionic ones. In particular, the vector subspace spanned by the above state is

ξk1+k2+
∑2g

i=1 fi t−k2−
∑g

i=1 fiC

�

−2k2 −
2g
∑

i=1

fi

�

. (74)

5Notice that if we remove the Gaussian measure by absorbing it into the operators and use an appropriate
normalisation, in the m→∞ limit the wave-functions simply become polynomials in X 1 and derivatives of delta-
functions around X 2 [30].

11

https://scipost.org
https://scipost.org/SciPostPhys.14.4.063


SciPost Phys. 14, 063 (2023)

We can now derive the action of the generators X 1 and X 2 of the Higgs branch chiral ring X 1

and X 2 and their descendants. If we picture a state in terms of a field configuration on R+×Σ,
the action literally corresponds to bringing the operator in question to y → 0.

Now, it is obvious that

X 1 · |k1, k2, f1, · · · , f2g〉= |k1 + 1, k2, f1, · · · , f2g〉 . (75)

The action X 2 can be computed by means of the following observation. Since

QRW (m)
�

�

X 1
�k1
�

X̄ 2
�k2 e−m(|X 1|2+|X 2|2)

�

=k2

�

X 1
�k1
�

X̄ 2
�k2−1

e−m(|X 1|2+|X 2|2)dX̄ 2 (76)

− 2mX 2
�

X 1
�k1
�

X̄ 2
�k2 e−m(|X 1|2+|X 2|2)dX̄ 2 , (77)

the two terms on the RHS must be cohomologous. Thus,

X 2 · |k1, k2, f1, · · · , f2g〉=
−k2

2m
|k1, k2 − 1, f1, · · · , f2g〉 . (78)

It then follows from (71) and its conjugate that

X 1(Σ) · |k1, k2, f1, · · · , f2g〉= −2m|k1, k2 + 1, f1, · · · , f2g〉 , (79)

X 2(Σ) · |k1, k2, f1, · · · , f2g〉= −k1|k1 − 1, k2, f1, · · · , f2g〉 . (80)

The action of the fermionic operators is straightforward. Recall that we have selected a basis
of one-cycles so that γi for i ∈ {1, . . . , g} are dual to holomorphic one-forms. Thus by means
of (57) we see that X a(γi) for i ∈ {1, . . . g} correspond to the creation operators. By (72),
X a(γg+i) for i ∈ {1, . . . g} can then be identified with the fermionic annihilation operators.

Finally, it is interesting to couple the system to a background flat connection for the flavour
symmetry. This will in general change the number of Heisenberg algebras, as we briefly men-
tion in appendix C.

4 SQED[1] in the A-twist

We now discuss the A-twist of SQED[1], the theory of a gauged hypermultiplet of gauge
charge 1. Besides the hypermultiplet fields

�

φAa,ψȦa
α

�

, (81)

defined above, we have a vectormultiplet with components
�

Aµ,σȦḂ,λAȦ
α , DAB
�

, (82)

that are the gauge connection, scalars, gauginos, and auxiliary fields respectively. In addition,
there is a scalar field γ dual to the field strength FA, satisfying

dγ= ⋆3d FA , (83)

where ⋆3d is the Hodge star operator in three dimensions. The theory enjoys a U(1) topological
symmetry that rotates the dual photon, with current FA. If we denote the conserved charge
by J , then we have

Z12 = ζ · J , (84)

where ζ is a real FI parameter.
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In the A-twist, the bosonic fields of the hypermultiplet φAa become spinors that for sim-
plicity we will still denote by

X a := φ1a , (85)

suppressing the spinor index. The gauginos transform either as scalars or one-forms of the
improved Lorentz group

λȦ
µ :=

i
2

�

σµ
�α

A λ
AȦ
α , (86)

λȦ := −δαAλ
AȦ
α . (87)

4.1 The Coulomb branch and mirror symmetry

The A-twist preserves the Coulomb branch chiral ring, which is generated by two monopole
operators v+ and v− and also includes the complex scalar

ϕ := σ1̇1̇ + iσ2̇2̇ . (88)

The monopole operators can be understood semi-classically in terms of the dual photon as a
path-integral insertion of the operator

v± = e±(σ+iγ) , (89)

where
σ := σ1̇2̇ . (90)

Notice that by writing this we have implicitly chosen a complex structure on the Coulomb
branch, namely the one that is also used to define QmRW . The effect of the insertion of the
monopole operator v± is to require that the first Chern class of the gauge bundle around the
point of insertion is ±1.

The algebra of monopole operators was computed in [31] (see also [32]), and reads

v−v+ = ϕ . (91)

In particular, it allows to express ϕ in terms of v±. Thus, we have

C[MC]∼= C[v+, v−] , (92)

the ring of polynomial functions in two variables generated by v+ and v−. A mathematical, al-
gebraic definition of the Coulomb branch chiral ring was first proposed in [33], refined in [34]
and reviewed at an introductory level for example in [35]. We review some elementary aspects
of this definition in appendix D.

As in the B-twist, we are interested in the secondary product between local operators of
the Coulomb branch chiral ring. One way to compute it is simply to exploit the mirror map. In
fact, the theory is mirror dual to a free twisted hypermultiplet that relates the local operators
as follows [36]





X 1

X 2

X 1X 2



↔





v+
v−
ϕ



 . (93)

Since the secondary product is scale-independent, this implies

{ϕ, v±}= ±v± , (94)

{v+, v−}= 1 . (95)
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It is instructive to explain how this can be computed via first principles. First, notice that the
second line can be inferred from the first by means of the monopole algebra (91) together
with the derivation identity (33). The first can be computed following [21] by noticing that
the second descendant of ϕ is 1

4π(FA+ ⋆3d Dσ).6 Integrated over a sphere surrounding v±, by
definition of the monopole operators this gives ±1. As ϕ can be interpreted as the complex
moment map for the topological symmetry, this equation can in fact be read as the statement
that the monopole operators have integer charges ±1. In the next sections we will identify the
descendants mirror to (57) and we will provide an operational definition for them.

Finally, as for the mirror B-twist of the free hypermultiplet, we would like to define a
cohomological grading that agrees with the standard fermionic grading. As in section 3.1
and as already done in [11], we need to mix the R-symmetry grading with the topological
symmetry to obtain

Table 2: Weights of monopole operators in the SQED[1] A-twist.

v+ v− ϕ

J +1 −1 0
F 0 +2 +2
R 0 +1 +1

4.2 Effective quantum mechanics

Let us now turn to the Hilbert space of SQED[1]. We first review the construction [11] and then
study the action of the monopole operators and their descendants this set-up. As expected from
the mirror map, the Hilbert space will turn out to be a Fock space for the Heisenberg algebras
generated by the monopoles and their descendants.

The Hilbert space was constructed in [11] as follows. The theory can be recast in terms
of a Landau-Ginzburg quantum mechanics with Kähler target given by the Kähler quotient of
the space of smooth fields configurations on Σ by the action of the gauge group. The gauge
group has moment map

⋆2d FA+µR , (96)

and so the relevant equations are
⋆2d FA+µR = ζ . (97)

The quantum mechanics is endowed with a superpotential on the target

W =

∫

Σ

X 1∂̄AX 2 , (98)

which imposes the complex moment map equation for the gauge symmetry as well as the
kinetic equations for the fields X a on the curve Σ.7 This superpotential defines a critical locus,
which is (−1)-shifted symplectic with respect to the F grading. Passing to a finite-dimensional
algebraic model (imposing holomorphicity of the fields), the (−1)-shifted symplectic structure
allows for a geometric quantisation of the quantum mechanics. In the simple situation where
the target space of the finite-dimensional model is actually smooth, as the present one turns

6Here ⋆3d is the Hodge operator in 3d. With respect to [21] we are re-absorbing a factor of 1/2π in ϕ for the
sake of compatibility with the mirror map (93).

7Notice that due to the twist, X 1 and X 2 are valued in Ω0(Σ, E ⊗ K1/2
Σ ) and Ω0(Σ, E−1 ⊗ K1/2

Σ ) respectively.
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out to be, the quantisation recovers (up to shifts in the gradings) its de Rham cohomology [11].
Requiring ζ ̸= 0, the equations defining the target space are

⋆2d FA+ e2
�

�X 1
�

�

2
= ζ , ∂̄AX 1 = 0 , X 2 = 0 , ζ > 0 , (99)

⋆2d FA− e2
�

�X 2
�

�

2
= ζ , ∂̄AX 2 = 0 , X 1 = 0 , ζ < 0 , (100)

where we have already used the complex moment map X 1X 2 = 0 and the fact that both X 1

and X 2 must be holomorphic. Here ⋆2 is the Hodge star on the Riemann surface.
Since the cases ζ > 0 and ζ < 0 are similar, we restrict our discussion to ζ > 0. It is well-

known that solutions to the above equation can be parametrized by pairs (E, X 1) consisting of a
holomorphic line bundle E, with holomorphic structure induced by the (0, 1) component of A,
and a holomorphic section X 1 of E⊗K1/2

Σ that is not vanishing. The solution space decomposes
into disjoint unions with components labelled by the degree d of the line bundle E. If we
take the limit ζ/Vol(Σ)d →∞ for each d, then it is also well-known that pairs (E, X 1) are
parametrized by the locations of the zeros of X 1. Physically, the zeros can be interpreted as
the centres of the vortices. In this limit, an infinite number of vortices is allowed.

Thus, fixing a topological degree d, we can identify the moduli space of solutions Md with

Md = Σ(n) , n= d + g − 1 , (101)

where Σ(n) is the n-fold symmetric product of the curve Σ. The moduli space space for each d
is indeed a smooth algebraic variety, and the Hilbert space is therefore de Rham cohomology
of the disjoint union of symmetric products for n≥ 0,

H ∼=
⊕

n≥0

H•(Σ(n)) , (102)

where • corresponds to the primary R-grading. Keeping track of all the gradings, as a graded
vector space this can be repackaged into the expression

H =ÚSym•V , (103)

for
V = ξ(C⊕ t−1Cg[1]⊕Cg[1]⊕ t−1C[2]) . (104)

Here ξ is a weight that keeps track of the degree d. In the next sections we will interpret this
as a Fock space for the Heisenberg algebras generated by the monopole operators and their
descendants. In particular, the operator v+ will turn out to be a creation operator for the C
component whereas v−(Σ) is a creation operator for the t−1C[2] component.

4.2.1 Algebra of observables

As in the B-twist, we would like to compute the quantum-mechanical commutator between
the monopole operators and their descendants. The commutator can be expressed in terms of
the secondary product as in (36). We have computed the secondary product in (95)

{v+, v−}= 1 . (105)

Therefore by (36),

[v+, v−(Σ)] = 1 , (106)

with similar expressions for the first descendants
�

v+(Γi), v−(Γg+i)
�

= 1 . (107)

Note that these descendants are mirror to the descendants introduced in (57) in the B-twist.
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4.2.2 Vector space of supersymmetric ground states as a module

Let us consider the monopole operators v+(x) and v−(x) inserted at a point x ∈ Σ×R as well
as their descendants. Recall that in non-supersymmetric 3d gauge theories v±(x) are defined,
at the level of the path integral, by the following procedure:

• Remove x from space-time and perform the path integral by integrating over gauge
bundles whose first Chern class evaluated on a small sphere surrounding x is equal to
±1.

Since it is known what constraints do the monopole operators impose on the gauge fields,
one can derive how they act on solutions to the BPS equations. A similar strategy was adopted
in [37] on the set-up R2

ε ×R, where the BPS equations were solved by vortex configurations
on R2

ε with a prescribed behaviour at infinity.
In mathematical terms, monopole operators were identified with Hecke correspondences

between vortex moduli spaces, which as expected from the procedure highlighted above in-
crease and decrease the degree of the gauge bundle by one. In more physical terms, they are
operators that create and destroy vortices.

The same arguments can be applied to our set-up Σ×R. Thus, our starting point is that
the monopole operator v+(x), x = (y, z) creates a vortex at z ∈ Σ, and the monopole operator
v−(x) destroys a vortex at z ∈ Σ.

As we quickly reviewed above, the moduli space of pairs (E, X 1) with E a holomorphic line
bundle of degree d ∈ Z, and X 1 a holomorphic section of E⊗K1/2

Σ , can be parametrized by the
d + g − 1 zeros of X . Physically, these zeros can be thought of as the centres of the vortices.
Let us interpret p ∈ Σ(n) as a positive divisor on Σ,

p= z1 + z2 + · · ·+ zn , (108)

with positive coefficients. Operations of creation and annihilation of vortices at a point {z}
can be described by first defining cycles

E{z}n := {(p,q) ⊂ Σ(n− 1)×Σ(n) | q− p= z} , (109)

F {z}n := {(p,q) ⊂ Σ(n+ 1)×Σ(n) | p− q= z} . (110)

These cycles are the starting point of the needed correspondences between moduli spaces.
We can construct actions on the Hilbert space concretely by noticing that these cycles induce
classes

E{z}n ∈
⊕

k,l

H2(n−1)−l(Σ(n− 1))⊗Hk(Σ(n)) , (111)

F {z}n ∈
⊕

k,l

H2(n+1)−l(Σ(n+ 1))⊗Hk(Σ(n)) , (112)

where we utilised the Künneth formula and Poincaré duality. Thus, it is natural to identify

v+(z)· ∼=
∑

n>0

E{z}n · , (113)

v−(z)· ∼=
∑

n≥0

F {z}n · , (114)

where the action · on the RHS is given by pairing cohomology with homology.
The above operators are first analogues of the Nakajima operators [24]. Nakajima opera-

tors can be defined for any cycle CΣ of the Riemann surface, by generalising (109) to

ECΣ
n := {(p,q) ⊂ Σ(n− 1)×Σ(n) | q− p= z ∈ CΣ} , (115)

FDΣ
n := {(p,q) ⊂ Σ(n+ 1)×Σ(n) | p− q= z ∈DΣ} , (116)
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and by using as above the Künneth decomposition and Poincaré duality. The resulting opera-
tors are obvious candidates for the descendants of v+ and v− along the respective cycles. In
fact, the semi-classical description (89) together with8

(iγ+σ)(1) = λ2̇
µ , (117)

suggests that a descendant of a monopole operator essentially corresponds to a collection of
monopole operators dressed by gauginos and distributed along the prescribed cycle. Formally,

v±(γ) =

∫

γ

v±λ
2̇
µd xµ . (118)

We claim that this is consistent with (115).
To check that our physical realisation is correct, we have to make sure that the represen-

tation on the Hilbert space of monopole operators and their descendants satisfies the correct
algebraic relations. We have encountered two kinds of relations, namely the relations (91)
and the Heisenberg algebra relations (106) and (107). The Heisenberg algebra relations can
be proven along the same lines of the original proof of Nakajima in the case of Hilbert scheme
of points on surfaces [24]. The adaptation of the proof to this case is sketched in appendix B.
As for the others, consider

v+(z) · v−(z) . (119)

Our definitions above are equivalent to the following

v+(z) · v−(z) = jz∗ j
∗
z , (120)

where jz is the map that adds the point z to a divisor

jz : z1 + z2 + . . .+ zn 7→ z1 + z2 + . . .+ zn + z . (121)

Now the class of jz(Σ(n)) in H1,1(Σ(n+ 1),C) is the generator of this cohomology group. We
call this ηn.9 Thus, by the projection formula, for any class α (see e.g. [38])

jz∗ j
∗
zα= ηn ∧α , (122)

where j∗ is the push-forward in cohomology induced by j and j∗ is the pull-back. This is
consistent with the expected action of ϕ, which is essentially dictated by the cohomological
gradings [37]. In fact, the cohomological charge of ϕ is 2, and since the operator acts by
multiplication the only possible operation is wedging by a form of the same cohomological
degree. Such a form is represented by ηn.

5 Summary and future directions

In this paper, we have explicitly constructed the action of local operators on the space of
supersymmetric ground states in the effective quantum mechanics obtained obtained from
a 3d theory twisted on the geometry Σ × R. Although we have focussed on the simplest
mirror pair, where the geometric interpretation of the action is cleanest, the above results can
be generalised to the broad class of theories studied in [11]. There are several interesting
directions that would be worthwhile pursuing, for instance:

8To compute this, note that
dγ(1) = (dγ)(1) = d ⋆3d A(1)

µ
.

9See A for our conventions.

17

https://scipost.org
https://scipost.org/SciPostPhys.14.4.063


SciPost Phys. 14, 063 (2023)

• These concrete geometric constructions should constitute an aspect of the interesting
recent works [39,40] on shifted quiver algebras and BPS crystals;

• The most natural next step would be to insert background connections, line defects as
well as boundary conditions in this set-up;

• Related to the last point, it would be interesting to study the effect of the insertion of
deformed (0, 4) boundary conditions that lead to Vertex Operator Algebras, with the aim
of making contact with the mathematical work [4] and eventually with the Geometric
Langlands Program;

• Finally, it would be interesting to explore similar phenomena in higher dimensions.
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A Homology and Cohomology of Symd(Σ)

We start with Sym1(Σ) = Σ. We fix once and for all a complex structure on Σ as well as a
canonical basis a1, · · · , ag , b1, · · · , bg of H1(Σ,C). Then, we pick basis elements

α ∈H0 (Σ,C)∼= C , (A.1)

γ1, · · · ,γ2g ∈H1 (Σ,C)∼= C2g , (A.2)

η ∈H2 (Σ,C)∼= C , (A.3)

that satisfy the following conditions. For 1≤ i ≤ g, γi ∈ H1,0(Σ,C) (with respect to the chosen
complex structure) and if we denote the intersection pairing by 〈 , 〉,

〈γi ,γg+ j〉= −〈γg+ j ,γi〉= δi, j , (A.4)

for i, j ≤ g. This is possible since as it is well-known, there is a basis wi for H1,0(Σ,C) such
that

∫

ai

w j = δi j , (A.5)

and so we can simply take Poincaré duals of ai to complete the basis of H1 (Σ,C). Then, we
fix a basis of cycles for the homology groups Hi(Σ,C) that is dual to the basis above. With a
slight abuse of notation we pick basis elements

Λ ∈ H0(Σ,C)∼= C , (A.6)

Γ1, . . . , Γ2g ∈ H1(Σ,C)∼= C2g , (A.7)

Σ ∈ H2(Σ,C)∼= C , (A.8)

so that
(Σ,α) = 1 , (Γi ,γi) = 1 , (Λ,η) = 1 , (A.9)

18

https://scipost.org
https://scipost.org/SciPostPhys.14.4.063


SciPost Phys. 14, 063 (2023)

where (·, ·) is the dual pairing between homology and cohomology. Below we will make use
of two orderings of the basis

Ca
Σ ∈ {Λ, Γ1, · · · Γ2g ,Σ}, a ∈ {1, · · · , 2g + 2} , (A.10)

Da
Σ ∈ {Σ, Γg+1, · · · , Γ2g , · · · , Γ1, · · · , Γg ,Λ}, a ∈ {1, · · · , 2g + 2} . (A.11)

In order to determine our conventions for the homology and cohomology of Symd(Σ), we
make use of the identity

H•(Symd(Σ),C)∼= H•(Σd ,C)Sd , (A.12)

where Sd is the permutation group. The right-hand side consists of permutation-invariant
elements in the cohomology of the d-fold product of Σ. Thus, let us introduce

γi, j = 1⊗ · · · ⊗ 1⊗ γi ⊗ 1⊗ · · · ⊗ 1 ∈ H1(Σd ,C) , (A.13)

η j = 1⊗ · · · ⊗ 1⊗η⊗ 1⊗ · · · ⊗ 1 ∈ H2(Σd ,C) , (A.14)

where the generator appears in the j-th factor. The classes

eγi =
d
∑

j=1

γi, j , eη=
d
∑

j=1

η j , (A.15)

then descend to H•(Σd ,C)Sd , and in fact generate it.

B Nakajima relations

Let us define the cycles

Ea
n := {(p,q) ⊂ Σ(n− 1)×Σ(n) | q− p= z ∈ Ca

Σ} , (B.1)

F a
n := {(p,q) ⊂ Σ(n+ 1)×Σ(n) | p− q= z ∈Da

Σ} , (B.2)

where the Ca
Σ’s and Da

Σ’s denote the homology basis we chose above. These cycles induce
classes

Ea
n ∈
⊕

k,l

H2n−2−l(Σ(n− 1))⊗Hk(Σ(n)) , (B.3)

F a
n ∈
⊕

k,l

H2n+2−l(Σ(n+ 1))⊗Hk(Σ(n)) , (B.4)

where we used the Künneth formula and Poincaré duality. By means of the dual pairing (·, ·)
we can define a convolution product between these operators, which we will denote by ·, as
well as an action on

H =
⊕

n≥0

H•,•(Σ(n),C) . (B.5)

B.1 Heisenberg algebra relations

We would like to check that the above operators (111) (112) satisfy the Heisenberg algebra

Ea
n−1 · E

b
n − (−1)dimR(Ca

Σ)dimR(Cb
Σ)E b

n−1 · E
a
n = 0 , (B.6)

F a
n+1 ·F

b
n − (−1)dimR(Da

Σ)dimR(Da
Σ)F b

n+1 ·F
a
n = 0 , (B.7)

Ea
n+1 ·F

b
n − (−1)dimR(Ca

Σ)dimR(Db
Σ)F b

n−1 · E
a
n = δabc[∆(n)] , (B.8)
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where ∆(n) is the diagonal in Σ(n)×Σ(n) and c is a constant. We focus on (B.8), which is a
little more subtle. The other relations are similar. Consider the spaces

M := Σ(n)×Σ(n+ 1)×Σ(n) , (B.9)

M ′ := Σ(n)×Σ(n− 1)×Σ(n) . (B.10)

Consider the first term on the LHS of (B.8). We think of points in Σ(n), Σ(n−1) and Σ(n+1)
as divisors and define N to be the set of triples

(p,q, r) ⊂ M (B.11)

satisfying q− p = z, q− r = w for some z ∈ Ca
Σ, w ∈ Db

Σ. The resulting operator can then be
obtained as the class of

π13(N) , (B.12)

with an obvious notation for the projection into the first and third factor. Similarly, we define
the set of triples N ′ ⊂ M ′

(p′,q′, r′) ⊂ M ′ (B.13)

satisfying p′−q′ = w′, r′−q′ = z′ for some z′ ∈ Ca
Σ, w′ ∈Da

Σ. The second operator on the LHS
of (B.8) can then be obtained as the class of

π13(N
′) . (B.14)

If z ̸= w, z′ ̸= w′ then we can define explicit maps

µ :N → N ′ , (B.15)

µ((p,q, r)) = (p,p∩ r, r) , (B.16)

ν :N ′→ N , (B.17)

ν((p′,q′, r′)) = (p′,p′ + r′ − p′ ∩ r′, r′) . (B.18)

These maps are clearly inverse to each other, and provide an isomorphism between the two
sets of triples

U = {(p,q, r) ⊂ N | z ̸= w} , (B.19)

U ′ = {(p′,q′, r′) ⊂ N ′| z′ ̸= w′} . (B.20)

Let us then consider the complements

U c = {(p,q, r) ⊂ N | z = w} , (B.21)

U ′c = {(p′,q′, r′) ⊂ N ′| z′ = w′} . (B.22)

We are interested in the projections p13 of these sets. We have

dimR(p13(U
′c))≤ 2(n− 1) +max

�

dimR(Ca
Σ) + dimR(Db

Σ)− 2,0
�

, (B.23)

dimR(p13(N
′)) = 2(n− 1) + dimR(Ca

Σ) + dimR(Db
Σ) , (B.24)

where the second term on the RHS of the first equation is the expected dimension of the
intersection Ca

Σ ∩D
b
Σ. This dimensional estimate clearly shows that U c does not contribute to

the class of the second term on the LHS of (B.8). On the other hand,

dimR(p13(U
c))≤ 2n , (B.25)

dimR(p13(N)) = 2(n− 1) + dimR(Ca
Σ) + dimR(Db

Σ) . (B.26)
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The first inequality can be seen as follows. Provided Ca
Σ∩D

b
Σ is not empty, the divisors in the first

and third factors defining M can coincide but be otherwise free, with the extra unique point
in Σ(n+ 1) constrained to lie in Ca

Σ ∩D
b
Σ. This constraint becomes irrelevant after projecting

via p13, and the dimension of the diagonal is indeed 2n. It is also easily seen that, similarly to
the previous case, any other configuration must have smaller dimension.

Thus, we can conclude that whenever

dimR(Ca
Σ) + dimR(Db

Σ) = 2 , (B.27)

and the intersection is not empty, there is a contribution to the class of Ea
n+1 ·F

b
n coming from

the diagonal that is not compensated by anything in F b
n−1 · E

a
n . Since this can happen only

if a = b (given the ordering of the basis Ca
Σ and Db

Σ), we obtain (B.8) up to relative signs.
The signs can be fixed by taking into account how the above isomorphism (B.16) changes
orientations. The first two relations (B.6) (B.7) are similar but simpler, so we omit the details.

C Background flat connections and conformal blocks

The free hypermultiplet can be coupled to a flat connection for the background SU(2) flavour
symmetry. The discussion in 3.2.1 carries through with minor changes. All we have to do is
to replace H•,•(Σ) with

H•,•(Σ, E) , (C.1)

for some vector bundle E. This changes the number of Heisenberg algebras that arise in our
construction. For example, for generic E, we get

H0,0(Σ, E) = 0 , (C.2)

H0,1(Σ, E) = g − 1 . (C.3)

The total dimension of the Hilbert space is then 22g−2. The fact that this number agrees with
the dimension of the conformal blocks of an algebra of fermionic currents is no coincidence.
In fact, the free hypermultiplet enjoys a (0, 4) boundary condition where only the righ-moving
fermions are allowed to fluctuate at the boundary. These fermions are precisely the one-form
fermions χµ whose fluctuations span H0,1(Σ, E).

D Review of the mathematical definition of the Coulomb branch

The basic idea of the mathematical definition of the Coulomb branch is to focus on an in-
finitesimal neighbourhood of a monopole operator and to mimic, algebraically, its action in
the presence of matter fields. Thus, let D := C[[z]] be the formal disk, D∗ := C((z)) be the
formal punctured disk, with the idea that a monopole operator is inserted at the origin of D.
We would like to consider two configurations of gauge and matter fields on D that differ by
the insertion of a monopole operator at the origin.

For SQED[1], the construction works as follows. Let P be a C∗ (the complexification of
U(1)) algebraic principal bundle over D, t a trivialisation of the bundle over D∗. Furthermore,
let s be a section of P ×C∗ N , where N ∼= C is the fundamental representation, and define the
set of triples T = (P , t, s). Consider then the pull-back

T ×C((z)) T = {(P1, t1, s1)× (P2, t2, s2) ∈ T × T | t1(s1) = t2(s2)} / iso . (D.1)
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Naïvely, this pull-back parametrises configurations of gauge and matter fields on two disks that
differ at the origin. If we require in addition P2 to be trivial and t2 to extend to the origin,
then we get

R := {(P , t, s) | t(s) ∈ N[[z]]} / iso . (D.2)

This is the space of triples (P , t, s) such that the trivialisation of the section s extends to the
origin of D. It turns out that this space is quite sufficient to describe Coulomb branch operators,
and in fact, the Coulomb branch chiral ring is defined as the C∗[[z]] equivariant Borel-Moore
homology of R,

C[MC] := HC
∗[[z]]
∗ (R) , (D.3)

with a product given by a convolution product

HC
∗[[z]]
∗ (R)×HC

∗[[z]]
∗ (R)→ HC

∗[[z]]
∗ (R) , (D.4)

whose general definition we omit, but which we are going to concretely describe presently.
First, notice that

R=
⊔

n∈Z
znC[z]∩C[z] (D.5)

∼=
⊔

n∈Z
zmax(0,n)C[z] . (D.6)

As a vector space we can write the equivariant Borel-Moore homology as

HC
∗[[z]]
∗ (R)∼=
⊕

n∈Z
HC
∗

∗ (pt) (D.7)

∼=
⊕

n∈Z
C[w] . (D.8)

We now have to determine the product. Let us denote x and y are the fundamental classes
for n= 1 and n= −1. The product of these classes corresponds to the push-forward

zC[z]→ C[z] , (D.9)

which is the cup product of w with the fundamental class. Thus the product of x y is w and so

HC
∗[[z]]
∗ (R)∼= C[x , y] . (D.10)
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