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Abstract
Symmetric space sine-Gordon theories are two-dimensional massive integrable
field theories, generalising the sine-Gordon and complex sine-Gordon theories.
To study their integrability properties on the real line, it is necessary to intro-
duce a subtracted monodromy matrix. Moreover, since the theories are not
ultralocal, a regularisation is required to compute the Poisson algebra for the
subtracted monodromy. In this article, we regularise and compute this Poisson
algebra for certain configurations, and show that it can both satisfy the Jacobi
identity and imply the existence of an infinite number of conserved quantities
in involution.
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1. Introduction

Symmetric space sine-Gordon (SSSG) theories are two-dimensional integrable field theories
that generalise the sine-Gordon and complex sine-Gordon theories. At the Lagrangian level
they are defined as G/H gauged Wess-Zumino-Witten (WZW) models plus a potential term.
The sine-Gordon and complex sine-Gordon theories correspond toG= SO(2),H= ∅ andG=
SO(3), H= SO(2) respectively. In this article, we are interested in the classical integrability
of these theories when the spatial coordinate x takes values on the real line. A peculiarity of
these theories is that for certain solitonic configurations [1–3] the Lax matrix does not vanish
as x→±∞. In the sine-Gordon case, the asymptotic value of the Lax matrix is not zero and is
proportional to the mass parameter (see for instance [4, 5]). As we will recall, the situation for
SSSG theories is the same up to a gauge transformation. Indeed, the asymptotic value of the
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Lax matrix of SSSG theories is the sum of two terms [3]. The first term is proportional to the
mass and has the same structure as the asymptotic limit of the sine-Gordon Lax matrix. The
second term is pure gauge and takes values in the Lie algebra h associated with the Lie group
H.

As a consequence of this, the transition matrix, i.e. the ordered exponential of the Lax
matrix between two points x− and x+, is not well-defined as x±→±∞. In other words, the
monodromymatrix does not exist when x belongs to an infinite interval. In such cases, we need
to define a subtracted monodromy matrix (see, for instance, [4–7]). For the sine-Gordon the-
ory, this subtracted monodromy matrix is not conserved but its time evolution takes the form
associated with the existence of a Lax pair. Hence the eigenvalues of the subtracted mono-
dromy matrix are conserved. Furthermore, the form of the Poisson brackets of the subtracted
monodromy matrix implies that these eigenvalues are in involution.

Our goal is to determine the Poisson brackets of the subtracted monodromymatrix of SSSG
theories. The results presented here extend those obtained in [3, 8], in which a subtracted
monodromy matrix was defined. As will be explained in section 2, the subtracted monodromy
matrix that we work with differs from that constructed in [3]. The freedom that exists in the
definition of the subtracted monodromy matrix affects both its time evolution and its Poisson
bracket. However, as expected and as will be shown, this does not change the quantities that
are both conserved and in involution.

In order to compute the Poisson bracket, we will need to deal with the non-ultralocality of
the SSSG theories. This means [9, 10] that there is a term proportional to the derivative of the
Dirac distribution in the Poisson bracket of the Lax matrix. It follows that the Poisson bracket
of a transition matrix between points x1 and x2 with a transition matrix between points y1 and
y2 is ill-defined whenever one of the points xi coincides with one of the points yi. There exists a
general prescription to regularise in order to define Poisson brackets of transition matrices with
coinciding endpoints. However, the Jacobi identity for the resulting bracket is not satisfied [9,
10].

Within the non-ultralocal integrable field theories, SSSG theories belong to a special class.
In particular, it has been shown in [11, 12] that the non-ultralocality is mild. Being mildly
non-ultralocal means the Poisson bracket of the Lax matrix takes a form [11, 12] that allows
the Poisson bracket of transition matrices with coinciding endpoints to be regularised while
satisfying the Jacobi identity. More precisely, the regularisation assumes that there exists a
lattice description of the theory based on Freidel-Maillet quadratic algebras [13, 14]. This reg-
ularisation makes use of a matrix α, which is a split skew-symmetric solution of the modified
classical Yang–Baxter (mCYBE) on the complexification of the Lie algebra g associated with
the Lie group G.

Let us note that SSSG theories behave differently to integrable sigma models. The former
are massive theories already at the classical level and their non-ultralocality is mild. The latter
are massless at the classical level and, while their monodromy matrix on the infinite interval
does exist, there is no known regularisation of the ill-defined Poisson brackets that satisfies
Jacobi identity.

The sine-Gordon and complex sine-Gordon theories are special cases of SSSG theories.
It is therefore instructive to review some relevant facts about these theories. The commonly
used Lax matrix of the sine-Gordon theory is ultralocal. However, for the sine-Gordon case,
the SSSG Lax matrix is non-ultralocal. These two Lax matrices are related by a formal gauge
transformation [15].

3



J. Phys. A: Math. Theor. 57 (2024) 065401 F Delduc et al

The first truly non-ultralocal SSSG theory studied in the literature is therefore the complex
sine-Gordon theory. Viewed as a SSSG theory, this theory is a SO(3)/SO(2) gauged WZW
model plus a potential term. To recover the familiar action for a complex scalar field [16–
19] we fix the SO(2) gauge invariance and integrate out the non-dynamical gauge fields. The
results obtained in [10] for this gauge-fixed action provide further motivation for the analysis
in this article. In particular, although the ‘standard’ regularisation is used in [10], the Poisson
bracket of the subtracted monodromy matrix constructed in [10] satisfies the Jacobi identity.
A natural question is then whether this situation is a generic property of SSSG theories, or if
it is special to the complex sine-Gordon theory.

The plan of this article is the following. We start in section 2 by introducing the Lax matrix
and defining a subtracted monodromy matrix for any SSSG theory. Our discussion will mainly
follow [3], albeit with a minor modification. In section 3, we briefly discuss the missing data
required in order to fully compute the Poisson bracket of the monodromy and the relation to
the correct definition [3] of the action. To proceed, we restrict to particular configurations and
recap the computation of the Poisson bracket of the Lax matrix.

In section 4, we use a ‘lattice’ regularisation to compute the Poisson bracket of transition
matrices on the lattice, and take the continuum limit. Using this result, we take the infinite-
interval limit in the section 5, arriving at the Poisson bracket of the subtracted monodromy
matrix. We analyse the form of this Poisson bracket in section 6, checking the Jacobi iden-
tity, and showing that it implies the existence of an infinite number of conserved quantities in
involution when the theory is considered on an infinite interval. We conclude with comments
and an outlook in section 7.

2. The subtracted monodromy

We start by constructing the subtracted monodromy matrix. Our construction closely fol-
lows that in [3] with minor differences. We consider SSSG theories that are obtained as the
Pohlmeyer reduction [16, 20–22] (see also [23, 24] for a review) of the symmetric space σ-
model for a compact Riemannian symmetric space F/G. The resulting model is aG/H gauged
WZW theory plus a potential term.

2.1. Algebraic background

We denote by f, g, h the Lie algebras corresponding to the Lie groups F, G, H respectively. As
usual, since F/G is assumed to be a symmetric space, we have the orthogonal, with respect to
the Killing form, direct sum decomposition

f = f(0) + f(1) (2.1)

where f(0) = g. The spaces f(0) and f(1) are eigenspaces of the involutive automorphism σ with
eigenvalues 1 and −1 respectively. We denote the corresponding projector onto g as Pg.

The potential term is defined in terms of Ω, a constant element of f(1). The adjoint action
of Ω induces a second orthogonal decomposition of f:

f = f⊥ + f∥, f⊥ = Ker adΩ, f∥ = Ima adΩ, (2.2)
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with [
f⊥, f⊥

]
⊂ f⊥,

[
f⊥, f∥

]
⊂ f∥, (2.3)

that is f⊥ is a subalgebra of f.
The symmetric space structure implies that the two decompositions (2.1) and (2.2) are com-

patible and we have that

f = g⊥ + g∥ + f(1)⊥ + f(1)∥, (2.4)

with

[, ]⊂ g⊥ g∥ f(1)⊥ f(1)∥

g⊥ g⊥ g∥ f(1)⊥ f(1)∥

g∥ g∥ g f(1)∥ f(1)

f(1)⊥ f(1)⊥ f(1)∥ g⊥ g∥

f(1)∥ f(1)∥ f(1) g∥ g

(2.5)

The subgroup H of G is defined as

H=
{
h ∈ G |hΩh−1 =Ω

}
. (2.6)

Therefore h is the Lie subalgebra of g formed by the elements that commute with Ω. This
implies that h= g⊥.

To make certain computations more tractable, we make the additional assumption that f(1)⊥

is one-dimensional, i.e. the symmetric space is rank 1, and we denote this abelian algebra with
generator Ω as a= f(1)⊥. In sections 2–4, we will make no additional assumptions about the
form of the symmetric space F/G. From section 5 onwards, we also assume that Ω can be
normalised such that [Ω, [Ω,A]] =−A for all A ∈ f∥, while we recall that [Ω,A] = 0 for all
A ∈ f⊥. It follows that, in this case, the eigenvalues of the adjoint action adΩ of Ω are 0 and
±i. Therefore, as a vector space, the complexified algebra admits the following decomposition

fC = hC + aC +ω+ +ω−, (2.7)

where hC and aC are the complexifications of h and a respectively, and ω± = Ker
(adΩ∓ i). Note that f∥C = ω+ +ω−, while f⊥C = hC + aC = KeradΩ. We denote the cor-
responding projectors onto h and a as Ph and Pa respectively. The commutation relations
between elements of these eigenspaces with the above assumptions are summarised in the
following table

[, ]⊂ h ω± a
h h ω± {0}
ω± ω± {0} ω±

ω∓ ω∓ hC + aC ω∓

a {0} ω± {0}

(2.8)

The spheres, with F= SO(N+ 1),G= SO(N),H= SO(N− 1), are examples of symmetric
spaces that satisfy the properties outlined above, with explicit expressions given in appendix A.
The analysis presented here is expected to also generalise to other symmetric spaces with a
careful treatment of the algebraic structure.

5



J. Phys. A: Math. Theor. 57 (2024) 065401 F Delduc et al

2.2. Action, equations of motion and Lax connection

The action of SSSG theories is given by3 [22, 23]

SSSSG =−
k
4π

[
1
2

ˆ
Σ

dtdx tr
(
g−1∂+gg

−1∂−g
)
+

1
6

ˆ
B
dtdxdξ ϵijktr

(
g−1∂i g

[
g−1∂jg,g

−1∂kg
])

−
ˆ
Σ

dtdx tr
(
A−g

−1∂+g−A+∂−gg
−1 +A−g

−1A+g−A−A+

)
+m2

ˆ
Σ

dtdx tr
(
g−1ΩgΩ

)]
, (2.9)

wherem is a constant with dimension of mass, the group-valued field g ∈ G and the gauge field
A± ∈ h. The light-cone derivatives are given by ∂± = ∂t± ∂x and our conventions for Stokes’
theorem are ˆ

B
dtdxdξ ϵijk∂iBjk =

ˆ
Σ

dtdxϵµνBµν , (2.10)

with ϵtx =+1 (ϵ+− =−ϵ−+ =− 1
2 ). The equations of motion for g are

∂−
(
g−1∂+g+ g−1A+g

)
− ∂+A− +

[
A−,g

−1∂+g+ g−1A+g
]
+m2

[
g−1Ωg,Ω

]
= 0, (2.11)

or equivalently

∂+
(
−∂−gg−1 + gA−g

−1
)
− ∂−A+ +

[
A+,−∂−gg−1 + gA−g

−1
]
−m2

[
Ω,gΩg−1

]
= 0,

(2.12)

while the equations of motion for A± are

A+ = Ph
(
g−1∂+g+ g−1A+g

)
, A− = Ph

(
−∂−gg−1 + gA−g

−1
)
. (2.13)

This action is invariant under the gauge transformations

g→ h−1gh, A±→ h−1A±h+ h−1∂±h, h(x, t) ∈ H. (2.14)

We are interested in the case where the worldsheet Σ is the plane. For soliton solutions, the
fields have a non-trivial behaviour for x→±∞ (see [1–3, 25] for details). This implies that
the definition (2.9) of the action has to be amended by certain ‘boundary’ terms, which has an
impact on the canonical analysis. This will be briefly discussed in section 3. The equations of
motion in the bulk are not affected by this modification.

A Lax connection for these SSSG theories is

L+ (λ) = g−1∂+g+ g−1A+g−λmΩ, (2.15a)

L− (λ) = A−−λ−1mg−1Ωg, (2.15b)

3 For k to be integer-quantized for simply-connected compact Lie groups we have that

tr(AB) =
1

2h∨
Tr(adA adB) A,B ∈ g,

where h∨ is the dual Coxeter number of g.
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where λ is the spectral parameter. It is flat on-shell,

∂+L−− ∂−L+ + [L+,L−] = 0.

Writing L± =M±L, the space and time components of the Lax connection are

L(λ) =
1
2

(
g−1∂+g+ g−1A+g−A−−λmΩ+λ−1mg−1Ωg

)
, (2.16a)

M(λ) =
1
2

(
g−1∂+g+ g−1A+g+A−−λmΩ−λ−1mg−1Ωg

)
. (2.16b)

Under the gauge transformation (2.14), the Lax connection transforms as

L±→ h−1L±h+ h−1∂±h. (2.17)

As in [3] we consider fields whose asymptotic behaviour as x→±∞mimic configurations
of minimal energy. This means that as x→±∞, we require g(x, t)→ H± up to gauge trans-
formations, whereH± are constant elements of the Lie groupH, and Aµ(x, t) to be pure gauge.
More precisely, we write

g(x, t) ≃
x→±∞

U± (x, t)H± (U± (x, t)
)−1

, (2.18a)

Aµ (x, t) ≃
x→±∞

− ∂µU± (x, t)
(
U± (x, t)

)−1
, (2.18b)

with U±(x, t) ∈ H. Here U±(x, t) are defined in neighbourhoods of ±∞.
Using the fact that Ω commutes with elements of H, the asymptotic behaviour of the Lax

connection is

L(λ,x, t) ≃
x→±∞

−∂xU± (x, t)
(
U± (x, t)

)−1− 1
2
m
(
λ−λ−1

)
Ω≡ L±∞ (λ,x, t) , (2.19a)

M(λ,x, t) ≃
x→±∞

−∂tU± (x, t)
(
U± (x, t)

)−1− 1
2
m
(
λ+λ−1

)
Ω≡M±∞ (λ,x, t) . (2.19b)

2.3. Subtracted monodromy

We now consider the differential equation

∂xΨ(λ,x, t) =−L(λ,x, t)Ψ(λ,x, t) . (2.20)

The field Ψ(λ,x, t) is the familiar extended solution for integrable field theories. For x1 ⩽ x2,
we have

Ψ(λ,x2, t) =
←−
U (x1,x2,−L(λ) ; t)Ψ(λ,x1, t) , (2.21)

where
←−
U (x1,x2,−L(λ); t) is the ordered exponential of −L. The transition matrix is then

defined as

Tℓ (λ, t)≡Ψ(λ,+ℓ, t)(Ψ(λ,−ℓ, t))−1
=
←−
U (−ℓ,+ℓ,−L(λ) ; t) . (2.22)

Since the Lax matrix (2.16a) does not vanish as x→±∞, the limit ℓ→∞ of Tℓ(λ, t) is not
defined. It is therefore impossible to define the monodromy on R. In such situations, we can
remove the divergent part and define the subtracted monodromy (see, for instance, [4–7]).
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To do this, we introduce the functions Ψ̂±(λ,x, t) and Φ̂±(λ,x, t), which are defined in
neighbourhoods of ±∞. These functions are related as

Ψ̂± (λ,x, t)≡ U± (x, t)Φ̂± (λ,x, t) , (2.23)

so that the differential equations

∂xΨ̂
± (λ,x, t) =−L±∞ (λ,x, t)Ψ̂± (λ,x, t) (2.24)

are equivalent to

∂xΦ̂
± (λ,x, t) = k(λ)ΩΦ̂± (λ,x, t) , k(λ) =

1
2
m
(
λ−λ−1

)
. (2.25)

To prove this, we have used the fact thatU± commute withΩ. The solutions of the differential
equations (2.25) are

Φ̂± (λ,x, t) = Φ̂0 (λ,x)γ± (λ, t) , Φ̂0 (λ,x)≡ exp(k(λ)xΩ) . (2.26)

The ‘constants’ of integration γ±(λ, t) are independent of x. However, in principle, they can
depend on t. It follows that

Ψ̂± (λ,x, t) = U± (x, t)Φ̂0 (λ,x)γ± (λ, t) . (2.27)

These equalities should be understood in neighbourhoods of±∞ as the functionsU± are only
defined on such neighbourhoods.

We then take ℓ to be large and introduce

Tℓ (λ, t)≡ γ+ (λ, t)
(
Ψ̂+ (λ,+ℓ, t)

)−1
Tℓ (λ, t)Ψ̂

− (λ,−ℓ, t)
(
γ− (λ, t)

)−1
. (2.28)

Note that we have defined Tℓ(λ, t) so that it does not depend on the ‘constants’ of integration
γ±(λ, t). Indeed, taking into account (2.22), (2.23) and (2.26), we have

Tℓ (λ, t) =
(
U+ (+ℓ, t)Φ̂0 (λ,+ℓ)

)−1
Tℓ (λ, t)U

− (−ℓ, t)Φ̂0 (λ,−ℓ) . (2.29a)

The subtracted monodromy on R is then defined as

T (λ, t)≡ lim
ℓ→∞

Tℓ (λ, t) . (2.29b)

Let us note that the subtracted monodromy is gauge invariant. Under the gauge transform-
ation (2.14) we have

U± (x, t)→
(
h± (x, t)

)−1
U± (x, t) , H±→ H±, (2.30)

where h±(x, t) denote the asymptotic values of h(x, t) as x→±∞. Using (2.27), we obtain the
gauge transformation

Ψ̂± (λ,x, t)→
(
h± (x, t)

)−1
Ψ̂± (λ,x, t) . (2.31)

On the other hand

←−
U (x1,x2,−L(λ) ; t)→ (h(x2, t))

−1←−U (x1,x2,−L(λ) ; t)h(x1, t) . (2.32)

8
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This means that Tℓ(λ, t)→ (h(+ℓ, t))−1Tℓ(λ, t)h(−ℓ, t), hence Tℓ(λ, t)→Tℓ(λ, t) and

T (λ, t)→T (λ, t) . (2.33)

showing that the subtracted monodromy is gauge invariant.

2.4. Time evolution and Lax pair

Recalling how Tℓ defined in (2.22) evolves with time

∂tTℓ (λ, t) = Tℓ (λ, t)M(λ,−ℓ, t)−M(λ,+ℓ, t)Tℓ (λ, t) , (2.34)

we find that the time evolution of Tℓ defined in (2.29a) is

∂tTℓ (λ, t) = Tℓ (λ, t)Ad−1
U−(−ℓ,t)Φ̂0(λ,−ℓ)

(
M(λ,−ℓ, t)+ ∂tU

− (−ℓ, t)
(
U− (−ℓ, t)

)−1
)

−Ad−1
U+(+ℓ,t)Φ̂0(λ,+ℓ)

(
M(λ,+ℓ, t)+ ∂tU

+ (+ℓ, t)
(
U+ (+ℓ, t)

)−1
)
Tℓ (λ, t) .

(2.35)

Substituting the asymptotic behaviour of the Lax connection (2.19a) and using that U± and
Φ̂0 commute with Ω, we have that

∂tTℓ (λ, t) ≃
ℓ→∞

−k̃(λ)Tℓ (λ, t)Ω+ k̃(λ)ΩTℓ (λ, t) , k̃(λ) =
1
2
m
(
λ+λ−1

)
, (2.36)

hence

∂tT (λ, t) =
[
k̃(λ)Ω,T (λ, t)

]
. (2.37)

This means that there exists a Lax pair (T (λ, t), k̃(λ)Ω) and thus an infinite number of con-
served quantities which can be extracted from tr T (λ).

There is some freedom in the definition of the subtracted monodromy. This freedom is
associated with the ‘constants of integration’ γ±(λ, t) appearing in (2.26) (see also (2.28)).
We shall give two useful choices that exploit this freedom.

For the first, we define

Tγ (λ, t) =
(
γ+ (λ)

)−1T (λ, t)γ− (λ) , (2.38)

with γ±(λ) independent of t and commuting with Ω. The time evolution is left unchanged

∂tTγ (λ, t) =
[
k̃(λ)Ω,Tγ (λ, t)

]
. (2.39)

Therefore, while trTγ(λ, t) ̸= trT (λ, t), we also have that trTγ(λ) gives us an infinite number
of conserved quantities. In sections 3–5, we will work with the subtracted monodromy T (λ, t)
and compute its Poisson bracket. In section 6, we will then show that there exists a suitable
choice of γ±(λ) such that the conserved quantities tr Tγ(λ, t) are in involution.

For the second, we define

TΩ (λ, t) = e−t̃k(λ)ΩT (λ, t)et̃k(λ)Ω. (2.40)

9
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In contrast to the previous case, a consequence of (2.37) is that the quantity TΩ(λ, t) is con-
served. It is also immediate that tr T (λ, t) = tr TΩ(λ, t). The conserved subtractedmonodromy
matrix TΩ(λ, t) can be identified with the one defined in [3].

Up to this point we have been working in the Lagrangian formalism, where the time evolu-
tion is governed by the variational equations of the action. In sections 3 and 4 we will switch
to the Hamiltonian formalism and proceed to compute the equal-time Poisson bracket of the
subtracted monodromy matrix T (λ) with itself. In section 6.2, we will also see that TΩ(λ, t)
has the same equal-time Poisson bracket as T (λ), hence can be used to define the same set of
conserved quantities in involution. However, it should be noted that, as usual, the time evolu-
tion of TΩ(λ, t) in the Hamiltonian formalism will not simply be given by the Poisson bracket
with the Hamiltonian due to the explicit dependence on t.

3. Poisson bracket of the Lax matrix

Our goal is to compute the Poisson brackets of the subtracted monodromy matrix. An import-
ant property is that its definition depends on the quantities U±, which describe the asymptotic
behaviours of the fields through equation (2.18). The presence of these non-trivial ‘boundary
conditions’ imply that the bulk action (2.9) needs to be amended [3] (see also [2, 8]). In par-
ticular, this is necessary in order to define the Wess–Zumino term [26]. On the other hand,
one can deduce from the study of boundary WZW models that the modification of the action
implies that the ‘bulk’ symplectic structure also needs to be modified (see for instance [27–
30]). This implies that the Poisson brackets of U± with, for instance, the Lax matrix cannot
be determined from the canonical analysis of the action (2.9).

In this article, as a first step towards the full result, we shall carry out the computation for
U± = 1l. This means that asymptotically

g(x, t) ≃
x→±∞

H± and Aµ (x, t) ≃
x→±∞

0. (3.1)

The advantage of this simplification is that no modification of the action (2.9) is needed. It
follows that the subtracted monodromy is given by the limit of

Tℓ (λ, t) =
(
Φ̂0 (λ,+ℓ)

)−1
Tℓ (λ, t)Φ̂

0 (λ,−ℓ) (3.2)

when ℓ→∞.

3.1. Canonical analysis

The canonical analysis associated with the action (2.9) has already been carried out in [11,
12]. For completeness, we review the main steps.

Let {Tâ} be a basis of the Lie algebra g, which we complement in order to form a basis
{T a} of f. We make use of tensorial notation and define the quadratic Casimir of f

C12 = κabT
a⊗T b, κab =−tr

(
T aT b

)
, κabκbc = δac . (3.3)

Recalling that matrices O12 ∈ f⊗ f can be understood as the kernels of operators O : f→ f, we
have

OA=−tr2
(
O12 (1⊗A)

)
, O12 = O1C12, (3.4)

10
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so that the operator corresponding to the quadratic Casimir of f is the identity operator. The
quadratic Casimir of the subalgebra g of f is C(00)

12 = κâb̂T
â⊗Tb̂, and the corresponding oper-

ator is the projector Pg introduced in section 2.1. We also define C(11)
12 = C12−C(00)

12 , which

belongs to f(1)⊗ f(1), 4 where f(1) is introduced in equation (2.1), and whose corresponding
operator is the projector onto f(1). The quadratic Casimir of the Lie algebra h is the kernel of
Ph, that is Ch

12 = Ph
1C12, and we also define the kernel of the projector onto the abelian algebra

Pa to be Ca
12 = Pa

1C12. We will use the property[
C12,A1 +A2

]
= 0, (3.5)

for any A ∈ f, and similar identities for C(00)
12 or Ch

12 with A ∈ g or A ∈ h, extensively.
Note that, except for the special cases introduced in the previous paragraph, we use the

same symbol for an operator O and its kernel O12.

3.1.1. Phase space description. Let ϕi with i ∈ {1, · · · ,dimG} be local coordinates on the
Lie group G, ∂i = ∂

∂ϕi
and πi(x) the momentum conjugate to the field ϕi(x) such that{

πi (x) ,ϕj (y)
}
= δijδxy (3.6)

where δxy = δ(x− y) is the Dirac distribution. As usual, we introduce the g-valued field

X= Lai π
iTa, Ta = κabT

b, (3.7)

where

g−1∂i g= LiaT
a, LiaL

a
j = δij , LiaL

b
i = δba . (3.8)

Following [31], to work with the Wess-Zumino term, we introduce the g-valued quantityW(x)
through

1
6

ˆ
dtdxdξ ϵijktr

(
g−1∂i g

[
g−1∂jg,g

−1∂kg
])

=

ˆ
dtdx tr

(
W,g−1∂tg

)
. (3.9)

The fields g, X and W have the following Poisson brackets (see, for instance, [31]):{
X1 (x) ,g2 (y)

}
= g2 (x)C

(00)
12 δxy, (3.10a){

X1 (x) ,X2 (y)
}
=−

[
C(00)
12 ,X2 (x)

]
δxy, (3.10b){

X1 (x) ,
(
g−1∂xg

)
2 (x)

}
=−

[
C(00)
12 ,

(
g−1∂xg

)
2 (x)

]
δxy−C(00)

12 ∂xδxy, (3.10c){
X1 (x) ,W2 (y)

}
+
{
W1 (x) ,X2 (y)

}
=−

[
C(00)
12 ,W2 (x)−

(
g−1∂xg

)
2 (x)

]
δxy. (3.10d)

4 Since tr is proportional to the Killing form, see footnote 1, it follows from the structure of the symmetric space (2.1)
that tr(f(0)f(1)) = 0, hence C12 ∈ f(0) ⊗ f(0) + f(1) ⊗ f(1).

11
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Introducing the rescaled level

K≡ k
4π
, (3.11)

the currents

JL = X+KW+Kg−1∂xg, (3.12a)

JR = 2K∂xgg
−1− gJLg−1, (3.12b)

form a pair of commuting Kac–Moody currents with opposite level

{
JL1 (x) ,JL2 (y)

}
=−

[
C(00)
12 ,JL2 (x)

]
δ (x− y)− 2KC(00)

12 ∂xδ (x− y) , (3.13a){
JR1 (x) ,JR2 (y)

}
=−

[
C(00)
12 ,JR2 (x)

]
δ (x− y)+ 2KC(00)

12 ∂xδ (x− y) , (3.13b){
JL1 (x) ,JR2 (y)

}
= 0. (3.13c)

3.1.2. Hamiltonian. The relation between X and g−1∂tg is

X= K
(
g−1∂tg−W−A− + g−1A+g

)
. (3.14)

This identity encodes the relation between πi(x) and ϕ̇j(x). Therefore, the Lagrangian expres-
sions for the currents JL and JR are

JL = K
(
g−1∂+g−A− + g−1A+g

)
, (3.15a)

JR = K
(
−∂−gg−1 + gA−g

−1−A+

)
. (3.15b)

Letting P± denote the h-valued fields ‘conjugate’ to A∓ such that{
P±1 (x) ,A∓2 (y)

}
= Ch

12δxy, (3.16)

there are two primary constraints χ1 ≡ P+ ≈ 0 and χ2 ≡ P− ≈ 0. Imposing the stability of
these constraints under time evolution leads to two secondary constraints χ3 ≈ 0 and χ4 ≈ 0
respectively with

χ3 ≡ PhJL−K(A+−A−) and χ4 ≡ PhJR+K(A+−A−) . (3.17)

One then introduces four Lagrange multipliers ν i with i = 1,2,3,4 and adds the sum∑4
i=1 νiχi to the Hamiltonian density obtained by performing the Legendre transform of the

Lagrangian. The last step consists of studying the stability of all constraints χi under the time
evolution generated by this Hamiltonian. The two constraints χ1 and χ2 are stable provided
that ν3 = ν4. The two constraints χ3 and χ4 are stable provided that

ν1− ν2 =−∂x (2ν3 +A+ +A−)+ [ν3,A+−A−]− [A+,A−] .

12
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The Hamiltonian density is then found to be

H=−tr
(

1
4K

(
J 2
L +J 2

R

)
+JLA− +JRA+ +

K
2
(A+−A−)

2−Km2g−1ΩgΩ

+ ν1χ1 + ν2χ2 + ν3 (χ3 +χ4)

)
.

(3.18)

The Hamiltonian expression of the Lax matrix (2.16a) is then

L(λ) =
1
2K
JL−

1
2
λmΩ+

1
2
λ−1mg−1Ωg. (3.19)

3.2. The r/s structure

We now have everything needed to compute the Poisson brackets of L. The result can be put
in the r/s form of [9, 10], i.e.{

L1 (λ,x) ,L2 (µ,y)
}
=
[
r12 (λ,µ) ,L1 (λ,x)+ L2 (µ,y)

]
δxy

+
[
s12,L1 (λ,x)−L2 (µ,y)

]
δxy− 2s12δ

′
xy,

(3.20)

with5

r12 (λ,µ) =
1
4K

(
µ2 +λ2

µ2−λ2
C(00)
12 +

2λµ
µ2−λ2

C(11)
12

)
, s12 =

1
4K

C(00)
12 . (3.21)

Indeed, the explicit computation of the Poisson bracket gives{
L1 (λ,x) ,L2 (µ,y)

}
=− 1

4K2

[
C(00)
12 ,JL2

]
δxy−

1
2K

C(00)
12 δ ′xy

− 1
4K

m
(
µ−1

[
C(00)
12 ,

(
g−1Ωg

)
2

]
+λ−1

[
C(11)
12 ,

(
g−1Ωg

)
2

])
δxy,

(3.22)

from which, using (3.21), we immediately see that the terms proportional to δ ′xy in (3.20)
and (3.22) agree. To check the terms proportional to δxy, we compute[

r12 (λ,µ)+ s12,L1
]
+
[
r12 (λ,µ)− s12,L2

]
, (3.23)

and confirm that it reproduces the relevant terms on the r.h.s. (3.22). Projecting the prop-
erty (3.5) onto f(i)⊗ f( j) for i, j = 0,1, we find the useful relations[

C(00)
12 ,A1 +A2

]
=
[
C(11)
12 ,A1 +A2

]
= 0 , A ∈ f(0) ,[

C(00)
12 ,A1

]
+
[
C(11)
12 ,A2

]
=
[
C(11)
12 ,A1

]
+
[
C(00)
12 ,A2

]
= 0 , A ∈ f(1) .

(3.24)

5 Note that for the sine-Gordonmodel we haveF= SO(3),G= SO(2),H= ∅. In particular,C(00)
12 does not vanish and

the Poisson bracket for the Lax matrix is not ultralocal. This Lax matrix is related to the familiar one, with ultralocal
Poisson bracket, by a formal gauge transformation [15].

13
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Since JL ∈ f(0), we have that([
r12 (λ,µ)+ s12,JL1 (x)

]
+
[
r12 (λ,µ)− s12,JL2 (y)

])
δxy

=

[
s12,

1
2K

(
JL1 (x)−JL2 (y)

)]
δxy =−

1
K

[
s12,JL2 (x)

]
δxy =−

1
4K2

[
C(00)
12 ,JL2 (x)

]
δxy.

On the other hand, using that Ω ∈ f(1) and g−1Ωg ∈ f(1), we have that([
r12 (λ,µ)+ s12,−

1
2
λmΩ1

]
+

[
r12 (λ,µ)− s12,−

1
2
µmΩ2

])
δxy

=
−m

4K(µ2−λ2)

([
µ2C(00)

12 +λµC(11)
12 ,λΩ1

]
+
[
λ2C(00)

12 +λµC(11)
12 ,µΩ2

])
δxy

=
−mµλ

4K(µ2−λ2)

([
−µC(11)

12 −λC
(00)
12 ,Ω2

]
+
[
λC(00)

12 +µC(11)
12 ,Ω2

])
δxy = 0,

and([
r12 (λ,µ)+ s12,

1
2
λ−1m

(
g−1Ωg

)
1

]
+

[
r12 (λ,µ)− s12,

1
2
µ−1m

(
g−1Ωg

)
2

])
δxy

=
m

4K(µ2−λ2)

([
µ2C(00)

12 +λµC(11)
12 ,λ−1

(
g−1Ωg

)
1

]
+

[
λ2C(00)

12 +λµC(11)
12 ,µ−1

(
g−1Ωg

)
2

])
δxy

=
m

4K(µ2−λ2)

([
−µ2

λ
C(11)
12 −µC(00)

12 ,
(
g−1Ωg

)
2

]
+

[
λ2

µ
C(00)
12 +λC(11)

12 ,
(
g−1Ωg

)
2

])
δxy

=− m
4K

[
µ−1C(00)

12 +λ−1C(11)
12 ,

(
g−1Ωg

)
2

]
δxy.

Substituting (3.21) and (3.19) into (3.20) and using the results above, we find (3.22) as claimed.
As explained in [11], the matrix r+ s is a solution of the Classical Yang-Baxter equation

(CYBE). More precisely, it is a twisted R-matrix of the loop algebra of f, where the twist
function corresponds to the generalised Faddeev-Reshetikhin procedure. In appendix B we
demonstrate that r satisfies the equation[

r12 (λ1,λ2) ,r13 (λ1,λ3)
]
+
[
r12 (λ1,λ2) ,r23 (λ2,λ3)

]
+
[
r13 (λ1,λ3) ,r23 (λ2,λ3)

]
=

1
16K2

[
C(00)
12 ,C(00)

13

]
. (3.25)

4. Lattice regularisation

For a non-ultralocal Poisson bracket of r/s form, the Poisson bracket between two transition
matrices {←−

U (x1,x2,−L(λ))1 ,
←−
U (y1,y2,−L(µ))2

}
is ill-defined when either of the two points (x1,x2) coincides with either of the two points
(y1,y2) [9, 10]. One way to proceed is to use the prescription put forward in [9, 10], in which
the ill-defined Poisson bracket {Tℓ1(λ),Tℓ2(µ)} is set to

−
[
r12 (λ,µ) ,Tℓ1 (λ) ,Tℓ2 (µ)

]
. (4.1)
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However, since r itself is neither a solution of the CYBEnor a solution of themodifiedClassical
Yang-Baxter equation (mCYBE), the Jacobi identity is not satisfied.

As shown in [11], for the symmetric space sine-Gordonmodels the non-ultralocality is mild.
This means that there exists a more suitable prescription for defining the values of Poisson
brackets of transitionmatrices that are ill-defined, whichwe review below.We start by recalling
some results of [11] (see also [32, 33]).

4.1. Quadratic lattice algebra

The Poisson bracket of L(x,λ) can be understood as stemming from an abcd lattice quadratic
algebra. Let α ∈ EndgC be any skew-symmetric solution of the mCYBE on g

∀A,B ∈ gC, [αA,αB]−α([αA,B] + [A,αB]) =−ξ2 [A,B] , (4.2)

where for now we keep ξ as a free parameter. We extend α from gC to fC by letting it act
trivially on f(1)C, i.e. α : f(1)C→ 0. Since the operator α is a solution of the mCYBE on the
finite Lie algebra g, the associated kernel α12 does not depend on the spectral parameter.

We define

a12 =−(r+α)12 , b12 = (s+α)12 , c12 = (s−α)12 , d12 =−(r−α)12 . (4.3)

The matrices a, b, c and d are not independent since

a+ b= d+ c. (4.4)

Moreover, they satisfy the relations

[
a12,a13

]
+
[
a12,a23

]
+
[
a13,a23

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
. (4.5a)

[
d12,d13

]
+
[
d12,d23

]
+
[
d13,d23

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
, (4.5b)

[
a12,c13

]
+
[
a12,c23

]
+
[
c13,c23

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
, (4.5c)

[
d12,b13

]
+
[
d12,b23

]
+
[
b13,b23

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
. (4.5d)

In these equations, and others below, we suppress the dependence on the spectral parameters
whenever there is no ambiguity. The proof of these equations is given in appendix B.

We now consider a one-dimensional lattice of points xn with lattice spacing∆= xn+1− xn.
At each lattice site we introduce a quantity Ln(λ, t) and define the quadratic lattice algebra
[13, 14]{

Ln1 (λ) ,Lm2 (µ)
}
= a12 (λ,µ)Ln1 (λ)Lm2 (µ)δmn−Ln1 (λ)Lm2 (µ)d12 (λ,µ)δmn

+Ln1 (λ)b12Lm2 (µ)δm+1,n−Lm2 (µ)c12Ln1 (λ)δm,n+1, (4.6)

where in the case at hand the matrices b12 and c12 are independent of the spectral parameter.
On the lattice, the notion of non-ultralocality is more transparent than in the continuum. The
terms proportional to a12 and d12 in the Poisson bracket are ultralocal since they vanish except
when Ln1(λ) and Lm2 (µ) are at the same site, i.e. n=m, while the terms proportional to b12 and
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c12 are non-ultralocal since they vanish except when Ln1(λ) and Lm2 (µ) are at adjacent sites,
i.e. n= m± 1. If we take ξ2 = 1/(16K2), then the properties (4.5) ensure [13, 14] that the
bracket (4.6) satisfies the Jacobi identity.

4.2. Continuum limit

The standard continuum limit is given by setting

Ln (λ, t) = 1−∆L(λ,xn, t)+O
(
∆2
)
, (4.7)

and taking the lattice spacing ∆→ 0. Let x= xn and x ′ = xm. In the continuum limit

δmn ∼
∆→0

∆δ (x− x ′) , δm+1,n− δmn ∼
∆→0
−∆2∂xδ (x− x ′) .

Taking the continuum limit on the l.h.s. of (4.6) we find

∆2
{
L1 (λ,x) ,L2 (µ,x

′)
}
+O

(
∆3
)
. (4.8)

We now list the terms obtained on the r.h.s. up to O(∆2). The first set of terms comes from the
leading contribution in the expansion of Ln1 and Lm2 , i.e. setting both equal to 1l in (4.6). Their
sum is (

a12− d12 + b12− c12
)
δmn+ b12 (δm+1,n− δmn)+ c12 (δmn− δm,n+1)

= b12 (δm+1,n− δmn)+ c12 (δmn− δm,n+1)

∼−∆2
(
b12 + c12

)
∂xδ (x− x ′) .

(4.9)

Note that the (standard) continuum limit would not be defined without the relation (4.4).
The second set of terms are those linear in L originating from the ultralocal part of (4.6)

−∆δmn
(
a12
(
L1 (λ,xn)+ L2 (µ,xm)

)
−
(
L1 (λ,xn)+ L2 (µ,xm)

)
d12
)

∼−∆2δ (x− x ′)
(
a12
(
L1 (λ,x)+ L2 (µ,x)

)
−
(
L1 (λ,x)+ L2 (µ,x)

)
d12
)
.

(4.10)

The third set is formed by the terms linear in L coming from the non-ultralocal part of (4.6).
To analyse these, let us focus on the term

−∆L1 (λ,xn)b12δm+1,n =−∆L1 (λ,xn)b12δmn−∆L1 (λ,xn)(δm+1,n− δmn)
∼−∆2L1 (λ,x)b12δ (x− x ′)+O

(
∆3
)
.

(4.11)

Treating the other three terms similarly, the third set of terms contributing at O(∆2) are

−∆2δ (x− x ′)
(
L1 (λ,x)b12 + b12L2 (µ,x)−L2 (µ,x)c12− c12L1 (λ,x)

)
. (4.12)

There are no further contributions at O(∆2). Putting the three sets of terms together, we
find that the continuum limit of the Poisson bracket (4.6) is
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{
L1 (λ,x) ,L2 (µ,x

′)
}
=−

((
a12− c12

)
L1 (λ,x)+

(
a12 + b12

)
L2 (µ,x

′)

−L1 (λ,x)
(
d12− b12

)
−L2 (µ,x ′)

(
d12 + c12

))
δ (x− x ′)

−
(
b12 + c12

)
∂xδ (x− x ′)

=−
([
a12− c12,L1 (λ,x)

]
+
[
a12 + b12,L2 (µ,x

′)
])
δ (x− x ′)

−
(
b12 + c12

)
∂xδ (x− x ′) ,

where we have again used the relation (4.4). In our case, with the matrices a, b, c and d defined
in terms of r, s and α (4.3), this becomes{
L1 (λ,x) ,L2 (µ,x

′)
}
=
[
r12 (λ,µ) ,L1 (λ,x)+ L2 (µ,x

′)
]
δ (x− x ′)

+
[
s12,L1 (λ,x)−L2 (µ,x ′)

]
δ (x− x ′)− 2s12∂xδ (x− x ′) . (4.13)

Therefore, in the continuum limit, α does not contribute. Equivalently, this implies that

∆−2
(
−α12Ln1Lm2 δmn−Ln1Lm2 α12δmn+Ln1α12Lm2 δm+1,n+Lm2 α12Ln1δm,n+1

)
(4.14)

vanishes in the (standard) continuum limit. It is in this sense that the r/s Poisson bracket (3.20)
of L(λ,x) stems from the quadratic lattice algebra (4.6) satisfied by Ln(λ).

4.3. Poisson bracket of transition matrices on the lattice

The transition matrix Tn,q(λ) from xq to xn+1 with n⩾ q is defined as the product of lattice
Lax matrices on successive sites

Tn,q = LnLn−1 . . .Lq+1Lq, (4.15)

where we have suppressed the dependence on the spectral parameter. In appendix C we show
that the Poisson bracket {Tn,q1 (λ),Tm,p2 (µ)} is given by

{
Tn,q1 ,Tm,p2

}
=

n−q∑
r=1

T n,q+r1

((
a12 + b12

)
Tm,p2 δm+1,q+r−Tm,p2

(
d12 + c12

)
δp,q+r

)
Tq+r−1,q
1

+

m−p∑
s=1

Tm,p+s2

((
a12− c12

)
Tn,q1 δp+s,n+1−Tn,q1

(
d12− b12

)
δp+s,q

)
Tp+s−1
2

+ a12T
n,q
1 Tm,p2 δm,n−Tn,q1 Tm,p2 d12δp,q+Tn,q1 b12T

m,p
2 δm+1,q−Tm,p2 c12T

n,q
1 δp,n+1,

(4.16)

where we have again suppressed the dependence on the spectral parameters. If we set q= n
and p=m, we have Tn,n1 = Ln1 and Tm,m2 = Lm2 . There are then no terms in the sums in (4.16)
and we are just left with the final line, recovering (4.6) as expected.

Recalling the definitions (4.3), we note that the first two lines of (4.16) are independent of
α. Furthermore, the four terms on the final line have different structures. They cannot combine
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Figure 1. Those cases for which the Poisson bracket of two transfermatrices {Tn,q1 ,Tm,p2 }
depends on α. Recall that for Tn,q we have n⩾ q. The lattice sites are represented by×,
the dots denote that the transfer matrix ends at this site, while the arrows denote that the
transfer matrix can carry on arbitrarily in the corresponding direction.

in order to cancel the dependence on α. Thus, the Poisson bracket {Tn,q1 ,Tm,p2 } is independent
of α except when at least one of these four terms does not vanish, for instance when m= n. In
figure 1 we have indicated those cases for which the Poisson bracket does depend on α.

Our interest is in the case n=m and q= p. In this case, it is straightforward to see that the
sums in (4.16) do not contribute since the Kronecker deltas always vanish. Moreover, since
n⩾ q only the terms proportional to a12 and d12 on the final line survive, and we are left with{

Tn,q1 (λ) ,Tn,q2 (µ)
}
= a12 (λ,µ)T

n,q
1 (λ) ,Tn,q2 (µ)−Tn,q1 (λ) ,Tn,q2 (µ)d12 (λ,µ) . (4.17)

4.4. Poisson bracket of transition matrices in the continuum

Since the r/s structure stems from a lattice abcd quadratic algebra, we may regularise the ill-
defined Poisson bracket of Tℓ(λ) with Tℓ(µ) by taking the continuum limit of (4.17), which is
simply{
Tℓ1 (λ) ,Tℓ2 (µ)

}
= a12 (λ,µ)Tℓ1 (λ)Tℓ2 (µ)−Tℓ1 (λ)Tℓ2 (µ)d12 (λ,µ) ,
=−

[
r12 (λ,µ) ,Tℓ1 (λ)Tℓ2 (µ)

]
−α12Tℓ1 (λ)Tℓ2 (µ)−Tℓ1 (λ)Tℓ2 (µ)α12.

(4.18)
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We refer to this as the ‘lattice’ regularisation. When ξ2 = 1/(16K2), the Jacobi identity for the
bracket (4.18) is ensured since a and d satisfy the CYBE (see equations (4.5a) and (4.5b)).
The case ξ= 0, i.e. α= 0, corresponds to the ‘standard’ regularisation, for which the Jacobi
identity is not satisfied.

5. Poisson bracket of the subtracted monodromy

The Poisson bracket of the subtracted monodromy, defined in equation (3.2), follows from the
Poisson bracket (4.18) and is given by{
T1 (λ) ,T2 (µ)

}
= lim

ℓ→+∞

(
aℓ12 (λ,µ)Tℓ1 (λ)Tℓ2 (µ)−Tℓ1 (λ)Tℓ2 (µ)dℓ12 (λ,µ)

)
, (5.1)

where

aℓ12 (λ,µ) =
(
Φ̂0

1 (λ,ℓ)
)−1(

Φ̂0
2 (µ,ℓ)

)−1
a12 (λ,µ)Φ̂

0
1 (λ,ℓ)Φ̂

0
2 (µ,ℓ) , (5.2a)

dℓ12 (λ,µ) =
(
Φ̂0

1 (λ,−ℓ)
)−1(

Φ̂0
2 (µ,−ℓ)

)−1
d12 (λ,µ)Φ̂

0
1 (λ,−ℓ)Φ̂0

2 (µ,−ℓ) , (5.2b)

and we recall that the matrices a and d are defined in equation (4.3).
To determine the ℓ→+∞ limit in the Poisson bracket (5.1), we recall that Φ̂0(λ,x) =

exp
(
k(λ)xΩ

)
. Therefore, making the assumption on the algebraic structure outlined at the end

of section 2.1, we decompose r and our choice for α in terms of the eigenspaces ω±, h and a
of the adjoint action of Ω. To do so, we introduce a suitable basis6 {ω±

a } of ω±, in which

C12 = Ch
12 +Ca

12 +ω+
a 1ω

−
a 2 +ω−

a 1ω
+
a 2, (5.3a)

C(00)
12 = Ch

12 +
1
2

(
ω+
a 1 +ω−

a 1

)(
ω+
a 2 +ω−

a 2

)
, (5.3b)

C(11)
12 = Ca

12−
1
2

(
ω+
a 1−ω

−
a 1

)(
ω+
a 2−ω

−
a 2

)
. (5.3c)

It will also be useful to introduce the kernel ρ12 of adΩ

ρ12 =
[
Ω1,C12

]
= i
(
ω+
a 1ω

−
a 2−ω

−
a 1ω

+
a 2

)
, (5.4)

where we note that ρ12 is skew-symmetric, ρ12 =−ρ21.
Now using that Φ̂0(λ,x) = exp(k(λ)xΩ), we have the following relations(

Φ̂0
1 (λ,x)

)−1(
Φ̂0

2 (µ,x)
)−1

Ch
12 Φ̂

0
1 (λ,x)Φ̂

0
2 (µ,x) = Ch

12, (5.5a)(
Φ̂0

1 (λ,x)
)−1(

Φ̂0
2 (µ,x)

)−1
Ca
12 Φ̂

0
1 (λ,x)Φ̂

0
2 (µ,x) = Ca

12, (5.5b)(
Φ̂0

1 (λ,x)
)−1(

Φ̂0
2 (µ,x)

)−1
ω+
a 1ω

−
b 2 Φ̂

0
1 (λ,x)Φ̂

0
2 (µ,x) = e−i(k(λ)−k(µ))xω+

a 1ω
−
b 2, (5.5c)(

Φ̂0
1 (λ,x)

)−1(
Φ̂0

2 (µ,x)
)−1

ω−
a 1ω

+
b 2 Φ̂

0
1 (λ,x)Φ̂

0
2 (µ,x) = ei(k(λ)−k(µ))xω−

a 1ω
+
b 2, (5.5d)

6 For the spheres, with F= SO(N+ 1), the index a runs from 1 to N− 1.
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(
Φ̂0

1 (λ,x)
)−1(

Φ̂0
2 (µ,x)

)−1
ω+
a 1ω

+
b 2 Φ̂

0
1 (λ,x)Φ̂

0
2 (µ,x) = e−i(k(λ)+k(µ))xω+

a 1ω
+
b 2, (5.5e)(

Φ̂0
1 (λ,x)

)−1(
Φ̂0

2 (µ,x)
)−1

ω−
a 1ω

−
b 2 Φ̂

0
1 (λ,x)Φ̂

0
2 (µ,x) = ei(k(λ)+k(µ))xω−

a 1ω
−
b 2. (5.5f )

5.1. Contribution of r

Using the expressions (5.3b) and (5.3c), the matrix r (3.21) can be written as

r12 (λ,µ) =
1
4K

(
µ2 +λ2

µ2−λ2
Ch
12 +

2λµ
µ2−λ2

Ca
12

− 1
2
λ−µ
λ+µ

(
ω+
a 1ω

+
a 2 +ω−

a 1ω
−
a 2

)
− 1

2
λ+µ

λ−µ

(
ω+
a 1ω

−
a 2 +ω−

a 1ω
+
a 2

))
. (5.6)

In order to compute the limit in equation (5.1), we restrict to λ> 0 and µ> 0, with the exten-
sion to any λ ∈ R and µ ∈ R explained in section 5.3. We will also assume that the analytical
properties of Tℓ are such that the limit can be taken in the sense of the Cauchy principal value,
or more precisely, that we may apply the results7 [4, 5]

lim
ℓ→+∞

P
1

λ−µ
exp(±iℓ(k(λ)− k(µ))) =±iπδ (λ−µ) , (5.7a)

lim
ℓ→+∞

P
1

λ+µ
exp(±iℓ(k(λ)+ k(µ))) =±iπδ (λ+µ) = 0, (5.7b)

where the final equality follows since we take both λ and µ to be positive.
Therefore, we are interested in the limits

r̃±12 (λ,µ) =− lim
ℓ→+∞

(
Φ̂0

1 (λ,±ℓ)
)−1(

Φ̂0
2 (µ,±ℓ)

)−1
r12 (λ,µ)Φ̂

0
1 (λ,±ℓ)Φ̂0

2 (µ,±ℓ) . (5.8)

Using the results (5.5) and (5.7), we find

r̃±12 (λ,µ) =−
1
4K

(
φ+ (λ,µ)Ch

12 +φ− (λ,µ)Ca
12±λπρ12δ (λ−µ)

)
, (5.9)

where we have defined

φ± (λ,µ) =−1
2

(
P
λ+µ

λ−µ
± λ−µ
λ+µ

)
. (5.10)

Here, to make sense of the λ−µ→ 0 limit, we have taken the Cauchy principal value also
in the terms proportional to Ch

12 and Ca
12. The justification follows an argument given in [7].

As we shall see below, the contribution stemming from α12 is not singular when λ−µ→ 0.
Therefore, in the limit where λ−µ→ 0, the apparently divergent term in the Poisson bracket
is

7 These results rely on the observation that k(λ) = m
2
(λ−λ−1) implies that Imk(λ) = m

2
(1+ |λ|−2) Imλ, hence

Imk(λ) has the same sign as Imλ. In particular it has a fixed sign in the lower and upper complex half-planes.
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lim
λ−µ→0

(
r̃+12 (λ,µ)T (λ)1T (µ)2−T (λ)1T (µ)2 r̃

−
12 (λ,µ)

)
∼− λ

4K

(
−P

1
λ−µ

Ch
12− P

1
λ−µ

Ca
12 +πρ12δ (λ−µ)

)
T (λ)1T (λ)2

+
λ

4K
T (λ)1T (λ)2

(
−P

1
λ−µ

Ch
12− P

1
λ−µ

Ca
12−πρ12δ (λ−µ)

)
=− λ

4K

(
−P

1
λ−µ

C12 + P
1

λ−µ

(
ω+
a 1ω

−
a 2 +ω−

a 1ω
+
a 2

)
+ iπδ (λ−µ)

(
ω+
a 1ω

−
a 2−ω

−
a 1ω

+
a 2

))
T (λ)1T (λ)2

+
λ

4K
T (λ)1T (λ)2

(
−P

1
λ−µ

C12 + P
1

λ−µ

(
ω+
a 1ω

−
a 2 +ω−

a 1ω
+
a 2

)
− iπδ(λ−µ)(ω+

a 1ω
−
a 2−ω

−
a 1ω

+
a 2)
)

=
λ

4K
P

1
λ−µ

[
C12,T (λ)1T (λ)2

]
− λ

4K
lim

ϵ→0+

( 1
λ−µ− iϵ

ω+
a 1ω

−
a 2

+
1

λ−µ+ iϵ
ω−
a 1ω

+
a 2

)
T (λ)1T (λ)2 +

λ

4K
T (λ)1T (λ)2 lim

ϵ→0+

( 1
λ−µ+ iϵ

ω+
a 1ω

−
a 2

+
1

λ−µ− iϵ
ω−
a 1ω

+
a 2

)
,

(5.11)

where we have used the property

lim
ϵ→0+

1
x∓ iϵ

= P
1
x
± iπδ (x) . (5.12)

Since [
C12,T (λ)1T (λ)2

]
= 0, (5.13)

we see that taking the Cauchy principal value in the terms proportional either to Ch
12 or to Ca

12

corresponds to a prescription for the non-singular Poisson bracket {T (λ)1,T (λ)2}.

5.2. Choice and contribution of α

We choose the matrix α to have the form

α12 = αh
12 +ψ12 (5.14)

where αh
12 ∈ h⊗ h is a skew-symmetric split r-matrix on h, and Ph

1ψ12 = Ph
2ψ12 = 0. Up to

complexifying the algebra, we have checked that it is always possible to make such a choice
for the spheres in appendix A.

In the limit ℓ→∞, the terms in (5.1) proportional to αh simply give

−αh
12T1 (λ)T2 (µ)−T1 (λ)T2 (µ)α

h
12. (5.15)

Indeed, the matrix ψ can be written as a linear combination of tensor products of ω±
a . By

definition there is no dependence on the spectral parameters λ and µ. The relations (5.5) then
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indicate that we should take the limits of termswhose frequency of oscillation grows as ℓ→∞.
Defining these limits in an analogousway to (5.7), we see that they are of the type (λ±µ)δ(λ±
µ), hence vanish. Therefore, only the αh contribution survives in the limit ℓ→∞.

5.3. Full result and extension to any real spectral parameters

We have shown that for λ> 0 and µ> 0 the Poisson bracket of the subtracted monodromy
matrix is {

T1 (λ) ,T2 (µ)
}
= ã12 (λ,µ)T1 (λ)T2 (µ)−T1 (λ)T2 (µ) d̃12 (λ,µ) (5.16)

with

ã12 (λ,µ) = r̃+12 (λ,µ)−α
h
12,

d̃12 (λ,µ) = r̃−12 (λ,µ)+αh
12,

(5.17)

and we recall that

r̃±12 (λ,µ) =−
1
4K

(
φ+ (λ,µ)Ch

12 +φ− (λ,µ)Ca
12±λπρ12δ (λ−µ)

)
. (5.18)

The matrices ã12(λ,µ) and d̃12(λ,µ) are skew-symmetric

ã12 (λ,µ) =−ã21 (µ,λ) , d̃12 (λ,µ) =−d̃21 (µ,λ) . (5.19)

Note that these matrices are independent of the asymptotic values H± of g(x, t) defined in
equation (3.1).

In order to extend to any value of λ ∈ R and µ ∈ R, we introduce the involutive automorph-
ism σ of the Lie algebra f as

σ (g) = g, σ
(
f(1)
)
=−f(1), (5.20)

and its lift σ̂ to the Lie group. We then have the property

L(−λ) = σ (L(λ)) . (5.21)

This implies that Tℓ(−λ, t) = σ̂(Tℓ(λ, t)). Moreover, since k(λ) is odd

Φ̂0 (−λ,x) = exp(−k(λ)Ωx) = σ̂
(
Φ̂0 (λ,x)

)
, (5.22)

hence Tℓ(−λ, t) = σ̂(Tℓ(λ, t)) and

T (−λ, t) = σ̂ (T (λ, t)) . (5.23)

This property enables us to extend the Poisson bracket {T (λ),T (µ)} derived for λ> 0,
µ> 0 (5.16) and (5.17) to both the regimes λ< 0, µ> 0 and λ< 0, µ< 0.
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5.4. The sine-Gordon case

To conclude this section, let us comment on the sine-Gordon case, F= SO(3), G= SO(2),
H= ∅. The Poisson bracket of the subtracted monodromy matrix is given by (5.16) with

ã12 (λ,µ) =−
1
4K

(
φ− (λ,µ)Ca

12 +λπρ12δ (λ−µ)
)
,

d̃12 (λ,µ) =−
1
4K

(
φ− (λ,µ)Ca

12−λπρ12δ (λ−µ)
)
.

(5.24)

This agrees with the result in [4, 5]. However, it is not obvious that this should be the case
since there the Lax matrix with ultralocal Poisson bracket was used, while here we have used
the non-ultralocal Lax matrix. Nevertheless, agreement may be expected since the two Lax
matrices are related by a formal gauge transformation [15].

Let us first recall that the relation between the non-ultralocal L±(λ) and ultralocal L̃±(λ)
Lax connections is

L̃± (λ,x) =H (x)L± (λ,x)H−1 (x)− ∂±H (x)H−1 (x) , (5.25)

whereH(x, t) = g1/2(x, t) ∈ G. Since G is abelian, we can make sense of the square root. The
Hamiltonian expressions of the non-ultralocal L(λ) and ultralocal L̃(λ) Lax matrices are

L(λ) =
1
2K

X+
1
2
g−1∂xg−

1
2
λmΩ+

1
2
λ−1mg−1Ωg, (5.26a)

L̃(λ) =
1
2K

X− 1
2
λmHΩH−1 +

1
2
λ−1mH−1ΩH. (5.26b)

Note that equation (3.14) becomes X= Kg−1∂tg in the sine-Gordon case. Contrary to L(λ),
L̃(λ) does not depend on the spatial derivative of g. This explains why it is ultralocal since the
derivative of the Dirac distribution does not appear in its Poisson bracket.

Denoting the generator of G= SO(2) by T1, the asymptotic conditions on g are
g(x, t) ≃

x→±∞
exp(2πQ±T1) = I3 with Q± ∈ Z, where the difference Q+−Q− is a phys-

ical topological charge since π1(S1) = Z. This means that H(x, t) ≃
x→±∞

≃exp(πQ±T1),

hence limx→±∞HΩH−1 = limx→±∞H−1ΩH= exp(iπQ±)Ω. Therefore, a second differ-
ence between the two Lax matrices is that the asymptotic values of L(λ) do not depend on
Q±, however, those of L̃(λ) do. This follows since the definition of H as a square root intro-
duces an ambiguity.

It follows from the gauge transformation (5.25) that the transitionmatrices Tℓ(λ) and T̃ℓ(λ),
corresponding to L(λ,x) and L̃(λ,x) respectively, are related as

T̃ℓ (λ) =H (ℓ)Tℓ (λ)H−1 (−ℓ) . (5.27)

Since thematricesU±(x, t) are not present for sine-Gordon, it is clear from the definition (2.29)
that we can define identical subtracted monodromy matrices starting from the ultralocal or
non-ultralocal Lax matrix by suitably modifying the form of Φ̂0(λ,±ℓ). Indeed, comparing
our subtracted monodromy in the sine-Gordon case with that in [4, 5], we indeed find that they
are related in this way.

Actually, in the sine-Gordon case the equivalence between the ultralocal and non-ultralocal
pictures starts even at the level of the Poisson bracket of the transitionmatrices Tℓ and T̃ℓ. In the
non-ultralocal case we have the regularised result (4.18), however, since g is one dimensional
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and α12 ∈ g⊗ g is skew-symmetric, we must have α12 = 0. This is consistent with α being a
solution of the mCYBE on an abelian Lie algebra. Therefore, we have{

Tℓ1 (λ) ,Tℓ2 (µ)
}
=−

[
r12 (λ,µ) ,Tℓ1 (λ)Tℓ2 (µ)

]
, (5.28)

where

r12 (λ,µ) =
1
4K

(
µ2 +λ2

µ2−λ2
C(00)
12 +

2λµ
µ2−λ2

C(11)
12

)
. (5.29)

Again, this result agrees with that found from the ultralocal Lax matrix [4, 5].
To see why this happens, let us rewrite equations (5.25) and (5.27) as

L(λ,x) =H−1 (x) L̃(λ,x)H (x)+H−1 (x)∂xH (x) ,

Tℓ (λ) =H−1 (ℓ) T̃ℓ (λ)H (−ℓ) .
(5.30)

A first computation shows that{
L̃1 (λ,x) ,H2 (y)

}
=
{
L1 (λ,x) ,H2 (y)

}
=H2 (x)s12δ (x− y) = s12H2 (x)δ (x− y) , (5.31)

where we recall s12 = 1/(4K)C(00)
12 , hence s12 and H commute since g is abelian. From this,

we can compute{←−
U 1

(
x1,x2,−L̃(λ)

)
,H2 (y)

}
=−
←−
U 1

(
y,x2,−L̃(λ)

)
s12H2 (y)

←−
U 1

(
x1,y,−L̃(λ)

)
χ(y; [x1,x2]) ,

(5.32)

where χ(y; [x1,x2]) = 1 if y ∈ [x1,x2] and zero otherwise. Taking y to be coincident with x1 and
x2, this implies{←−

U 1

(
x1,x2,−L̃(λ)

)
,H2 (x1)

}
=−←−U 1

(
x1,x2,−L̃(λ)

)
s12H2 (x1) ,{←−

U 1

(
x1,x2,−L̃(λ)

)
,H2 (x2)

}
=−H2 (x2)s12

←−
U 1

(
x1,x2,−L̃(λ)

)
,

(5.33)

and {←−
U 1

(
x1,x2,−L̃(λ)

)
,H−1

2 (x1)
}
=
←−
U 1

(
x1,x2,−L̃(λ)

)
s12H−1

2 (x1) ,{←−
U 1

(
x1,x2,−L̃(λ)

)
,H−1

2 (x2)
}
=H−1

2 (x2)s12
←−
U 1

(
x1,x2,−L̃(λ)

)
,

(5.34)

again using that s12 andH commute. It follows that the Poisson bracket of two non-ultralocal
transition matrices with coincident endpoints is given by{←−
U 1 (x1,x2,−L(λ)) ,

←−
U 2 (x1,x2,−L(µ))

}
=
{
H−1

1 (x2)
←−
U 1

(
x1,x2,−L̃(λ)

)
H1 (x1) ,H−1

2 (x2)
←−
U 2

(
x1,x2,−L̃(µ)

)
H2 (x1)

}
=H−1

1 (x2)H−1
2 (x2)

{←−
U 1

(
x1,x2,−L̃(λ)

)
,
←−
U 2

(
x1,x2,−L̃(µ)

)}
H1 (x1)H2 (x1) ,

(5.35)
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where we use equations (5.33) and (5.34), and that s12 is symmetric. Finally, taking x1 =−ℓ
and x2 = ℓ, we find

{
Tℓ1 (λ) ,Tℓ2 (µ)

}
=H−1

1 (ℓ)H−1
2 (ℓ)

{
T̃ℓ1 (λ) , T̃ℓ2 (µ)

}
H1 (−ℓ)H2 (−ℓ)

=−H−1
1 (ℓ)H−1

2 (ℓ)
[
r12 (λ,µ) , T̃ℓ1 (λ) T̃ℓ2 (µ)

]
H1 (−ℓ)H2 (−ℓ)

=−
[
r12 (λ,µ) ,Tℓ1 (λ)Tℓ2 (µ)

]
,

(5.36)

where we have used that

H−1
1 (x)H−1

2 (x)r12 (λ,µ)H1 (x)H2 (x) = r12 (λ,µ) , (5.37)

since r12 (5.29) is a linear combination of Casimirs of g and f. Thus we find that the Poisson
brackets of the ultralocal and non-ultralocal transition matrices T̃ℓ and Tℓ coincide in the sine-
Gordon case as claimed.

Let us note that these results also follow from those in section 6 of [34], where the effect of
a gauge transformation on an r/s Poisson bracket has been worked out. Performing the formal
gauge transformation that goes from the ultralocal Lax matrix to the non-ultralocal Lax matrix,
equations (5.31) and (5.37) then imply that the matrix r and s= 0 are transformed into r itself
and s12 = (1/4K)C(00)

12 .

6. Analysis of the Poisson bracket of the subtracted monodromy

Before taking the limit ℓ→∞, we have the bracket (4.18) for transition matrices. This bracket
satisfies the Jacobi identity when ξ2 = 1/(16K2). In this section, we first prove that the Jacobi
identity remains valid after taking the limit of an infinite interval. We then show that it remains
possible to construct an infinite number of conserved quantities in involution taking ξ to be
non-zero.

6.1. Jacobi identity

As usual for a quadratic algebra of the form (5.16) with ã and d̃ skew-symmetric, we have{{
T1 (λ1) ,T2 (λ2)

}
,T3 (λ3)

}
+ c.p.= Y123 (ã)T1 (λ1)T2 (λ2)T3 (λ3)

−T1 (λ1)T2 (λ2)T3 (λ3)Y123
(
d̃
)
,

where c.p. stands for cyclic permutations and where Y123(r) represents the l.h.s. of the CYBE

Y123 (r) =
[
r12,r13

]
+
[
r12,r23

]
+
[
r13,r23

]
, r12 (λ1,λ2) =−r21 (λ2,λ1) . (6.1)

The dependence in spectral parameters is left implicit. The matrices ã and d̃ are obtained by
summing terms proportional to Ch, ρ, αh and Ca. Noting that Y123(Ca) = 0 since a is abelian,
we shall proceed by determining Y123(ρ), Y123(Ch) and Y123(αh). We will then argue that the

cross-terms vanish, allowing us to demonstrate that both ã and d̃ satisfy the same mCYBE,
implying that the Jacobi identity is satisfied.
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6.1.1. Equation satisfied by ρ= adΩ. Let us prove that

Y123 (ρ) =
[
C12,C13

]
−
[
Ch
12,C

h
13

]
. (6.2)

or equivalently in terms of operators

[ρA,ρB]− ρ([ρA,B] + [A,ρB])− [A,B] +
[
Ah,Bh

]
= 0, A,B ∈ f, (6.3)

where for any A ∈ f, Ah denotes its projection onto h. To do so, we consider B and B restricted
to all possible subspaces in the decomposition (2.7). Summarising, we find

A ∈ B ∈ [ρA,ρB] = −ρ[ρA,B] = −ρ[A,ρB] = −[A,B] = [Ah,Bh] =

hC hC 0 0 0 −[A,B] +[A,B]
hC aC 0 0 0 0 0
hC ω± 0 0 +[A,B] −[A,B] 0
aC aC 0 0 0 0 0
aC ω± 0 0 +[A,B] −[A,B] 0
ω± ω± 0 0 0 0 0
ω+ ω− +[A,B] 0 0 −[A,B] 0

where we have used table (2.8). It is then immediate that the sum for each line vanishes and
the identity (6.3) is satisfied.

6.1.2. Equation satisfied by φ+(λ,µ)Ch
12. Let us introduce

χh
12 (λ,µ) = φ+ (λ,µ)Ch

12, (6.4)

where φ+, defined in (5.10), may be written as

φ+ (λ,µ) =−P
µ

λ−µ
− λ

λ+µ
=−P

λ

λ−µ
+

µ

λ+µ
. (6.5)

Using this freedom and the property (3.5) for the Casimir Ch
12, we obtain

Y123
(
χh
)
= z(λ1,λ2,λ3)

[
Ch
12,C

h
13

]
, (6.6)

where

z(λ1,λ2,λ3) =

(
−P

λ2

λ1−λ2
− λ1

λ1 +λ2

)(
−P

λ1

λ1−λ3
+

λ3

λ1 +λ3

)
−
(
−P

λ1

λ1−λ2
+

λ2

λ1 +λ2

)(
−P

λ2

λ2−λ3
+

λ3

λ2 +λ3

)
+

(
−P

λ1

λ1−λ3
+

λ3

λ1 +λ3

)(
−P

λ2

λ2−λ3
+

λ3

λ2 +λ3

)
. (6.7)

The quantity z(λ1,λ2,λ3) contains terms with zero, one or two principal values. Each of the
three pairs of terms with a single principal value is actually non singular. Their sum gives
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λ3
λ1 +λ2 +λ3

(λ1 +λ3)(λ2 +λ3)
+

λ1λ2

(λ1 +λ2)(λ2 +λ3)
+

λ1λ2

(λ1 +λ2)(λ1 +λ3)
, (6.8)

and the sum of this term with those that have no principal value gives 1.
The sum of the terms containing two principal values is equal to

ω (λ1,λ2,λ3) = P
λ2

λ1−λ2
P

λ1

λ1−λ3
− P

λ1

λ1−λ2
P

λ2

λ2−λ3
+ P

λ1

λ1−λ3
P

λ2

λ2−λ3
. (6.9)

At this point, we use one of the known methods showing that P 1
µ−λC12 is a skew-symmetric

solution of themCYBE on the loop algebraLf. One suchmethod proves that this holds in terms
of operators. Indeed, up to subtleties (see, for instance, [35]), P 1

µ−λC12 is the kernel of the
difference of the projectors onto the regular and pole parts ofLf. Such an operator corresponds
to the Adler-Kostant-Symes construction [36–38], hence is a solution of the mCYBE on the
loop algebra of f. A second method, which we will use here, involves working in terms of
the kernels and making use of the Poincaré-Bertrand formula (see, for instance, [39]). This
formula is related to the Hilbert transform.

The Hilbert transform Hf of a function f is defined by

Hf(x) =
1
π
P
ˆ +∞

−∞
dt
f(t)
t− x

. (6.10)

It satisfies the property (see, for instance, the last corollary of [40])

HfHg−H(fHg+ gHf) = fg. (6.11)

Note the similarity between this equation and the mCYBE. For a function f, we define f̂(λ) =
λf(λ). In terms of f̂ and ĝ, the property (6.11) is written

Ĥf(λ3)Hĝ(λ3)−H
(̂
fHĝ+ ĝĤf

)
(λ3) = λ2

3f(λ3)g(λ3) . (6.12)

Now consider the integral

ˆ
dλ1dλ2 ω (λ1,λ2,λ3) f(λ1)g(λ2) , (6.13)

where ω is defined in (6.9). It is the sum of the following three terms

P
ˆ

dλ1

λ1−λ3
λ1f(λ1) P

ˆ
dλ2

λ1−λ2
λ2g(λ2) =−π2H

(̂
fHĝ
)
(λ3) ,

−P
ˆ

dλ2

λ2−λ3
λ2g(λ2) P

ˆ
dλ1

λ1−λ2
λ1f(λ1) =−π2H

(
ĝĤf
)
(λ3) ,

P
ˆ

dλ1

λ1−λ3
λ1f(λ1) P

ˆ
dλ2

λ2−λ3
λ2g(λ2) = π2Ĥf(λ3)Hĝ(λ3) ,

(6.14)

hence, by the property (6.12) is equal to π2λ2
3f(λ3)g(λ3). Therefore, ω(λ1,λ2,λ3) =

π2λ2
3δ(λ1−λ2)δ(λ1−λ3), z(λ1,λ2,λ3) = 1+π2λ2

3δ(λ1−λ2)δ(λ1−λ3) and we find that

Y123
(
χh
)
=
(
1+π2λ2

1δ (λ1−λ2)δ (λ1−λ3)
)[
Ch
12,C

h
13

]
. (6.15)

27



J. Phys. A: Math. Theor. 57 (2024) 065401 F Delduc et al

6.1.3. Equation satisfied by αh
12. By definition, αh satisfies the equation

Y123
(
αh
)
=−ξ2

[
Ch
12,C

h
13

]
, (6.16)

where, for now, we leave the value of ξ free.

6.1.4. Cross-terms. There are six classes of cross-terms. It is immediate that the cross-terms
between χh and Ca and between αh and Ca vanish since [h,a] = 0.

For the cross-terms between β =− 1
4Kφ

+Ch− 1
4Kφ

−Ca∓αh and ρ, we group terms pro-
portional to the same Dirac distribution. For instance, those proportional to δ(λ1−λ3) are

−πλ1δ (λ1−λ3)

4K

([
β12 (λ1,λ2) ,ρ13

]
+
[
ρ13,β23 (λ2,λ3)

])
=
πλ1δ (λ1−λ3)

4K

([
ρ13,β12 (λ1,λ2)+β32 (λ1,λ2)

])
,

(6.17)

where we have used the Dirac distribution to set λ3 = λ1. Now we can use[
ρ13,β12 (λ1,λ2)+β32 (λ1,λ2)

]
=
[[
Ω1,C13

]
,β12 (λ1,λ2)+β32 (λ1,λ2)

]
=
[
Ω1,
[
C13,β12 (λ1,λ2)+β32 (λ1,λ2)

]]
= 0,

(6.18)

where we have used that [Ω1,β12] = 0 since β ∈ h⊗ h+ a⊗ a. It follows that the terms pro-
portional to δ(λ1−λ3) vanish, and, by cyclicity, so do all cross-terms of this type.

Finally, for the cross-terms between χh and αh, we group the terms as

∓ 1
4K

([
χh
12,α

h
13 +αh

23

])
∓ 1

4K

([
χh
13,α

h
21 +αh

23

])
∓ 1

4K

([
χh
23,α

h
21 +αh

31

])
. (6.19)

Since χh ∝ Ch and αh is independent of the spectral parameters, it follows that these terms
vanish due to the property (3.5) for the Casimir Ch

12.

6.1.5. Equation satisfied by ã and d̃. Putting the above results together, we find that

Y123 (ã) =
1

16K2

(
1+π2λ2

1δ (λ1−λ2)δ (λ1−λ3)
)[
Ch
12,C

h
13

]
+

1
16K2

π2λ2
1δ (λ1−λ2)δ (λ1−λ3)

([
C12,C13

]
−
[
Ch
12,C

h
13

])
− ξ2

[
Ch
12,C

h
13

]
=

(
1

16K2
− ξ2

)[
Ch
12,C

h
13

]
+

1
16K2

π2λ2
1δ (λ1−λ2)δ (λ1−λ3)

[
C12,C13

]
.

(6.20)

Setting ξ2 = 1/(16K2), the matrix ã satisfies the mCYBE on the loop algebra Lf[
ã12 (λ1,λ2) , ã13 (λ1,λ3)

]
+
[
ã12 (λ1,λ2) , ã23 (λ2,λ3)

]
+
[
ã13 (λ1,λ3) , ã23 (λ2,λ3)

]
=

1
16K2

π2λ2
1δ (λ1−λ2)δ (λ1−λ3)

[
C12,C13

]
. (6.21)

The matrix d̃ satisfies the same equation. This ensures that the Poisson bracket (5.16) of the
subtracted monodromy satisfies the Jacobi identity.
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6.2. Conserved quantities in involution

To construct conserved quantities in involution, we start by rewriting the Poisson bracket (5.16)
as {

T1 (λ) ,T2 (µ)
}
=
[
d̃12 (λ,µ) ,T1 (λ)T2 (µ)

]
+
(
ã12 (λ,µ)− d̃12 (λ,µ)

)
T1 (λ)T2 (µ) .

(6.22)

The difference between the matrices ã and d̃ is equal to

−λπ
2K
ρ12δ (λ−µ)− 2αh

12. (6.23)

Since the matrix ρ12 is skew-symmetric and is multiplied by the Dirac distribution, it does not
contribute to the Poisson bracket of tr T (λ) with tr T (µ). As a result, we have

{trT (λ) , trT (µ)}=−2tr1tr2
(
αh
12T1 (λ)T2 (µ)

)
. (6.24)

It follows that the conserved quantities tr T (λ) are not in involution. However, recalling the
discussion in section 2.4, the quantity tr Tγ(λ), with Tγ(λ) defined in equation (2.38),

Tγ (λ, t) =
(
γ+ (λ)

)−1T (λ, t)γ− (λ)

is also conserved. By the cyclicity of the trace, we have

tr Tγ (λ) = tr(γ (λ)T (λ)) , γ (λ) = γ− (λ)
(
γ+ (λ)

)−1
, (6.25)

and we also recall that γ±, and hence γ, should commute with Ω. Following [13, 14], since{
Tγ1 (λ) ,Tγ2 (µ)

}
=
(
γ+1 (λ)

)−1(
γ+2 (µ)

)−1
ã12 (λ,µ)γ

+
1 (λ)γ+2 (µ)Tγ1 (λ)Tγ2 (µ)

−Tγ1 (λ)Tγ2 (µ)
(
γ−1 (λ)

)−1(
γ−2 (µ)

)−1
d̃12 (λ,µ)γ

−
1 (λ)γ−2 (µ) ,

(6.26)

we look for γ±(λ) such that the Poisson bracket above becomes a commutator,{
Tγ1 (λ) ,Tγ2 (µ)

}
=

[(
γ+1 (λ)

)−1(
γ+2 (µ)

)−1
ã12 (λ,µ)γ

+
1 (λ)γ+2 (µ) ,Tγ1 (λ)Tγ2 (µ)

]
.

(6.27)

In addition to commuting with Ω, this means that γ(λ) should satisfy

γ1 (λ)γ2 (µ) ã12
(
γ1 (λ)

)−1 (
γ2 (µ)

)−1
= d̃12. (6.28)

For simplicity, we may assume that γ(λ) is independent of the spectral parameter, in which
case (6.28) becomes(

γ1
)−1 (

γ2
)−1

Ch
12γ1γ2 = Ch

12, (6.29a)(
γ1
)−1 (

γ2
)−1

Ca
12γ1γ2 = Ca

12, (6.29b)(
γ1
)−1 (

γ2
)−1

αh
12γ1γ2 =−α

h
12, (6.29c)
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(
γ1
)−1 (

γ2
)−1

ρ12γ1γ2 =−ρ12. (6.29d)

Since γ commutes with Ω and ρ12 is the kernel of the adjoint action of Ω, the con-
dition (6.29d) cannot be satisfied. However, as for tr T , the matrix ρ12 does not contrib-
ute to the Poisson bracket of tr Tγ with tr Tγ , hence we can drop this equation. For the
spheres, F= SO(N+ 1), G= SO(N), H= SO(N− 1), in appendix A we construct a quant-
ity γ, which is independent of the spectral parameter, commutes with Ω and is also solution
of equations (6.29a)–(6.29c). We conclude that the associated quantities trTγ(λ) are both con-
served and in involution.

We have shown that going from T (λ) to Tγ(λ) has the effect of changing the trace and the
Poisson bracket such that the Poisson bracket of Tγ(λ) is a commutator, hence trTγ(λ) are in
involution. In section 2.4, we also introduced in equation (2.40) a third subtracted monodromy

TΩ (λ, t) = e−t̃k(λ)ΩT (λ)et̃k(λ)Ω.

Recall that TΩ(λ, t) has the property of being conserved and has the same trace as T (λ).
Moreover, it also has the same Poisson bracket (5.16) as T (λ). This is a consequence of
ã12(λ,µ) and d̃12(λ,µ) being invariant under the adjoint action of exp(∓(k̃(λ)Ω1 + k̃(µ)Ω2)t).
It is clear that Ch

12, C
a
12 and αh

12 are invariant under this action. For the terms proportional to
ρ12δ(λ−µ), the invariance follows since ρ12 is the kernel of the adjoint action of Ω.

Of course, starting from the conserved subtracted monodromy TΩ(λ, t) and its Poisson
bracket, we can define TΩ,γ(λ, t) = (γ+(λ))−1TΩ(λ, t)γ−(λ). It is clear that TΩ,γ(λ, t) leads
to the same conserved quantities in involution as Tγ(λ) since tr TΩ,γ(λ, t) = tr Tγ(λ).

Finally, let us note the important open questions of the completeness and independence of
the conserved charges in involution. While we have constructed an infinite set of conserved
quantities in involution, it is unclear if this can be extended, e.g. by taking a more general
choice of γ depending on the spectral parameter. It would also be interesting to study more
explicitly the form of the conserved charges that we find. In particular, it has been shown that
the Hamiltonian can be extracted from the subtracted monodromy TΩ(λ, t) in [8]. However, it
is not clear if it is in the set of conserved quantities in involution that we find.

7. Conclusion

In this article, we have completed the first stages in the computation of the Poisson bracket of
the subtracted monodromy matrix of SSSG theories defined on an infinite interval. In order to
do so, due to the non-ultralocality, we regularised the ill-defined Poisson bracket of the trans-
ition matrices, introducing a parameter ξ. ξ= 0, i.e. αh = 0, corresponds to the ‘standard’
regularisation [9, 10], while ξ2 = 1/(16K2) is the unique value for which the Poisson bracket
satisfies the Jacobi identity, as shown in section 6.1. Let us note that for the sine-Gordon and
complex sine-Gordon models, for which H is empty and abelian respectively, αh = 0 identic-
ally and the Jacobi identity is satisfied for any ξ. However, this is no longer true for non-abelian
H. In section 6.2, we demonstrated that for non-zero ξ it remains possible to construct an infin-
ite number of conserved quantities in involution by introducing the matrix γ in the definition
of the subtracted monodromy.

In order to complete the analysis, two further stages need to be taken into account. The most
important is related to the non-trivial asymptotic behavior of the fields. This has implications
for the correct definition of the WZ term in the action [3]. In turn, amending the action (2.9)
modifies the canonical analysis. The modified symplectic form is known for the WZW and
gauged WZW models with boundaries [27, 28] together with their corresponding boundary
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conditions [26, 29]. However, to our knowledge, the corresponding Poisson brackets have not
yet been written down. Furthermore, the setup we are considering is subtly different, since we
are interested in the asymptotic behavior of configurations rather than boundary conditions
for a finite interval. It is therefore a key step to determine the Poisson brackets of the fields
U±(x, t) defined for x→±∞. These fields appear in the asymptotic behavior (2.18) of g and
Aµ and in the definition (2.29) of the restricted monodromy matrix.

The final step is to address the reality conditions and the matrix α. For λ real, the Lax
matrix satisfies L†(λ) =−L(λ). This implies a consistency condition at the level of the Poisson
bracket (3.22) of the Lax matrix. This is ensured by the properties (r12(λ,µ))† = r12(λ,µ) and
similarly for s12(λ,µ) for λ and µ real. However, the matrix α12 does not satisfy (α12)

† =
α12. This is related to the fact that there is no split skew-symmetric solution of mCYBE on a
compact Lie algebra. This hinders a proper use of the ‘lattice’ regularisation consistent with
the property T †(λ) = T −1(λ) for λ real. The extent to which this is a problem remains to be
understood.

A curious feature of the results obtained is the similarity with the tree-level S-matrix for
SSSG theories. If we take λ ̸= µ and use the ‘standard’ regularisation αh = 0, then ã12 = d̃12
in (5.17). Setting λ/µ= eθ, we find that they are proportional to cothθCh

12− cschθCa
12.

Computing the tree-level S-matrix for perturbative excitations as in [41] one finds S12 ∝
cothθCh

12− cschθ1l12, where θ is the difference of rapidities and generators are evaluated in the
vector representation of h= so(N− 1). The CYBE is not satisfied and is non-vanishing by a
term proportional to the structure constants of the Lie algebra h. Note that, for the sine-Gordon
and complex sine-Gordon theories, this means that the CYBE is satisfied. This is analogous to
what happens for the ‘standard’ regularisation of the Poisson bracket of the subtracted mono-
dromy, for which the Jacobi identity is also not satisfied by terms proportional to the structure
constants of h, see equation (6.20). A proposed resolution of the apparent contradiction with
integrability in the S-matrix construction, is to consider the scattering of soliton excitations
[8], which is naturally formulated in the RSOS picture [42]. This is an additional indication
that dealing with the asymptotic behaviour at infinity may shed further light on the classical
integrability of these models.

Finally, let us note that SSSG theories were originally defined at the level of their field
equations. They were obtained by applying the Pohlmeyer reduction [16, 20, 21] to symmetric
space sigma models. Subsequently, their Lagrangian was constructed in [22] (see also [23, 24]
for a review). This reduction has been further extended in [43, 44] to sigma models describing
classical strings on AdSN× SN in conformal gauge. The resulting theories are called Semi-
Symmetric Space sine-Gordon theories and their S-matrices have been investigated in [45–
48]. It is also known that the non-ultralocality of these integrable field theories is mild [12, 49]
and it would be interesting to generalise the results obtained in the present article.
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Appendix A. Explicit construction of α and γ for the spheres

In this appendix we give an explicit construction of α and γ for F= SO(N+ 1), G=
SO(N),H= SO(N− 1). We use the (N+ 1)× (N+ 1)matrix representation of the Lie algebra
f= so(N+ 1) realised as

GATG =−A, A† =−A, (A.1)

where G = antidiag(1,1, . . . ,1). Starting with A ∈ gl(N+ 1;C) the first constraint restricts A
to lie in so(N+ 1;C), while the second restricts to the real form u(N+ 1). The intersection of
these two Lie algebras is the required real form so(N+ 1).

Denoting thematrix with a 1 in row i and column j and 0 elsewhere by Ei,j, for this realisation
we can take the Cartan generators of the Cartan-Weyl basis to lie along the diagonal

hi = Ei,i−EN+2−i,N+2−i, i = 1, . . . ,

⌊
N+ 1

2

⌋
, (A.2)

the positive roots to be upper triangular

ei,j = Ei,j−EN+2−j,N+2−i, i = 1, . . . ,

⌊
N
2

⌋
, j = i+ 1, . . .N+ 1− i , (A.3)

and the negative roots to be lower triangular

fi,j = eTi,j. (A.4)

As usual the generators of the real form, i.e. satisfying A† =−A, are ihi, ei,j− fi,j and i(ei,j+
fi,j).

To define the subalgebras g= so(N) and h= so(N− 1) we introduce the following projec-
tion operators

PiA= Ad−1
R ((IN+1−Ei,i)(AdRA)(IN+1−Ei,i)) ,

R=



diag

(
I N−1

2
,

(
1√
2

1√
2

− 1√
2

1√
2

)
,I N−1

2

)
, N odd,

diag

I N−2
2
,


1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2

 ,I N−2
2

 , N even,

(A.5)

where In is the n× n identity matrix. The projectors onto g= so(N), h= so(N− 1) and a=
so(2) are defined as

Pg = P⌊ N+2
2 ⌋, Ph = P⌊ N+4

2 ⌋P⌊ N+2
2 ⌋, Pa = 2IN+1−P⌊ N+4

2 ⌋−P⌊ N+2
2 ⌋. (A.6)

The generator Ω of the abelian algebra a, normalised such that the eigenvalues of adΩ on f⊥C

are ±i, is given by

Ω=

ih N+1
2
, N odd

i√
2

(
e N

2 ,
N+2
2

+ f N
2 ,

N+2
2

)
, N even

(A.7)
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A key property of this choice is that the projections of the Cartan-Weyl basis of f= so
(N+ 1) (A.2)–(A.4) give Cartan-Weyl bases of g= so(N) and h= so(N− 1).

The split Drinfel’d-Jimbo R-matrix on fC = so(N+ 1;C) is given by

RA=
1
2

∑
i,j

(Tr(Afi,j)ei,j−Tr(Aei,j) fi,j) . (A.8)

As is well-known, this operator does not preserve the real form f= so(N+ 1). Nevertheless,
for the choice of Cartan-Weyl basis of f and subalgebras g and h above, this R-matrix has the
property that R : gC→ gC and R : hC→ hC. Therefore, we can define

α= ξRPg, (A.9)

which satisfies the split mCYBE on gC and f(1)C ∈ Ker α as required. Moreover, writing

α= αh +ψ, αh = αPh, ψ = α
(
Pg−Ph

)
, (A.10)

we have that

αh : h→ h, Phψ = 0, ψPh = 0, (A.11)

in agreement with the assumptions outlined in section 5.2.
We now turn to the construction of γ that commutes withΩ and satisfies equations (6.29a)–

(6.29c). In terms of the corresponding operators these equations take the form

Ad−1
γ PhAdγ = Ph, Ad−1

γ PaAdγ = Pa, Ad−1
γ αhAdγ =−αh, (A.12)

One choice of γ that achieves this is

γ = G −E⌊ N+1
2 ⌋,⌊ N+4

2 ⌋−E⌊ N+4
2 ⌋,⌊ N+1

2 ⌋ + E⌊ N+1
2 ⌋,⌊ N+1

2 ⌋ + E⌊ N+4
2 ⌋,⌊ N+4

2 ⌋. (A.13)

Note that this choice is engineered such that Ad−1
γ acts as the identity on a, as the Cartan

involution on h

Ad−1
γ Phhi =−Phhi , Ad−1

γ Phei,j =−Phfi,j, Ad−1
γ Phfi,j =−Phei,j, (A.14)

and it maps Ad−1
γ ω±→ ω±. Since

GγTGγ = IN+1, γ†γ = IN+1, detγ = (−1)N . (A.15)

it follows that γ ∈ O(N+ 1) for even N and γ ∈ SO(N+ 1) for odd N.

Appendix B. Equations satisfied by r, a, b, c and d

In this appendix we prove the quadratic equations satisfied by the matrices r, a, b, c and d.
These equations are used in section 4.
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B.1. Equation satisfied by r

The matrix r is defined in equation (3.21). To simplify the presentation, let us define

f 012 =
1
4K

λ2
2 +λ2

1

λ2
2−λ2

1

and f 112 =
1
4K

2λ1λ2

λ2
2−λ2

1

,

where the subscripts indicate the dependence on the spectral parameters. Using this notation,
the matrix r is given by

r12 (λ1,λ2) = f 012C
(00)
12 + f 112C

(11)
12 ,

and

[
r12 (λ1,λ2) ,r13 (λ1,λ3)

]
= f 012f

0
13

[
C(00)
12 ,C(00)

13

]
+ f 112f

1
13

[
C(11)
12 ,C(11)

13

]
+ f 012f

1
13

[
C(00)
12 ,C(11)

13

]
+ f 112f

0
13

[
C(11)
12 ,C(00)

13

]
.

(B.1)

To derive (3.25), we sum this commutator with its cyclic permutations (using the fact that
r12(λ1,λ2) =−r21(λ2,λ1)). The sum of first term on the r.h.s. of (B.1) with its cyclic per-
mutations is the only contribution belonging to g⊗ g⊗ g, and is equal to

(
f 012f

0
13− f 012f 023 + f 013f

0
23

)[
C(00)
12 ,C(00)

13

]
=

1
16K2

[
C(00)
12 ,C(00)

13

]
.

where we use the property (3.24) satisfied by the quadratic Casimir of g.
The remaining terms belong to a tensor product of one copy of g with two copies of f(1).

Collecting the terms for which the unique copy of g is in the first tensorial space, the other
two sets of terms can be straightforwardly computed by permutation. This means that we keep
the second term and the relevant cyclic permutations of the third and fourth terms on the r.h.s.
of (B.1)

f 112f
1
13

[
C(11)
12 ,C(11)

13

]
+ f 031f

1
32

[
C(00)
31 ,C(11)

32

]
+ f 123f

0
21

[
C(11)
23 ,C(00)

21

]
=
(
f 112f

1
13 + f 031f

1
32 + f 123f

0
21

)[
C(11)
12 ,C(11)

13

]
= 0,

(B.2)

where we have again used standard properties of the quadratic Casimir of f (3.24).
Therefore, we conclude that

[
r12 (λ1,λ2) ,r13 (λ1,λ3)

]
+
[
r12 (λ1,λ2) ,r23 (λ2,λ3)

]
+
[
r13 (λ1,λ3) ,r23 (λ2,λ3)

]
=

1
16K2

[
C(00)
12 ,C(00)

13

]
.

(B.3)

The matrix r is not a solution of the CYBE. However, when g is abelian, the r.h.s. vanishes
and r becomes a solution of the CYBE. This is the reason why, among the SSSG theories, the
sine-Gordon theory is special.
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B.2. Equations satisfied by a and d

We recall that a is defined as a12(λ1,λ2) =−r12(λ1,λ2)−α12 where α ∈ g⊗ g is skew-
symmetric, independent of the spectral parameter and solves[

α12,α13
]
+
[
α12,α23

]
+
[
α13,α23

]
=−ξ2

[
C(00)
12 ,C(00)

13

]
. (B.4)

In the expansion of[
a12 (λ1,λ2) ,a13 (λ1,λ3)

]
+
[
a12 (λ1,λ2) ,a23 (λ2,λ3)

]
+
[
a13 (λ1,λ3) ,a23 (λ2,λ3)

]
, (B.5)

the contributions coming from the terms quadratic in r or quadratic in α follow immediately
from equations (B.3) and (B.4). To analyse the mixed terms, let us consider the contribution
from the first term in (B.5)[

f 012C
(00)
12 + f 112C

(11)
12 ,α13

]
+
[
α12, f

0
13C

(00)
13 + f 113C

(11)
13

]
=
[
f 012C

(00)
12 + f 112C

(11)
12 ,α13

]
−
[
f 013C

(00)
13 + f 113C

(11)
13 ,α23

]
,

(B.6)

where we have used that α ∈ g⊗ g is skew-symmetric, together with the identities (3.24).
Summing (B.6) with the cyclic permutations, we find that the six terms cancel amongst each
other. It follows that a is solution of[
a12 (λ1,λ2) ,a13 (λ1,λ3)

]
+
[
a12 (λ1,λ2) ,a23 (λ2,λ3)

]
+
[
a13 (λ1,λ3) ,a23 (λ2,λ3)

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
.

Similarly, the matrix d=−r+α is solution of the same equation. Furthermore, when ξ2 =
1/(16K2), a and d become solutions of the CYBE.

B.3. Equations satisfied by a with c and d with b

We recall that c= s−αwith s12 = 1
4KC

(00)
12 . The matrix c is therefore independent of the spec-

tral parameter and valued in g⊗ g. Expanding out a and c, we have[
a12 (λ1,λ2) ,c13

]
+
[
a12 (λ1,λ2) ,c23

]
+
[
c13,c23

]
=−

[
r12 (λ1,λ2) ,c13 + c23

]
+
[
s13,α12 +α32

]
+
[
s23,α12 +α13

]
+
[
α12,α13

]
+
[
α12,α23

]
+
[
α13,α23

]
+
[
s13,s23

]
,

(B.7)

where we have used the antisymmetry of α. Since both c and α belong to g⊗ g, and r12(λ1,λ2)

and s12 are linear combinations of C(00)
12 and C(11)

12 , it immediately follows from the identit-
ies (3.24) that the first line of the r.h.s. of (B.7) vanishes. Substituting in for s in the second
line and using (B.4), we conclude that[

a12,c13
]
+
[
a12,c23

]
+
[
c13,c23

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
.

The identity [
d12,b13

]
+
[
d12,b23

]
+
[
b13,b23

]
=

(
1

16K2
− ξ2

)[
C(00)
12 ,C(00)

13

]
,

similarly follows by sending α to −α.
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Appendix C. Derivation of the Poisson bracket of transition matrices on the
lattice

In this appendix we derive the Poisson bracket of transition matrices on the lattice in
equation (4.16). In the following we will suppress all dependence on the spectral paramet-
ers. For n⩾ q we have

Tn,q = LnLn−1 . . .Lq+1Lq . (C.1)

For convenience, we also define Tn,q = 1l for n< q.
Using the Leibniz rule, we have

{
Tn,q1 ,Tm,p2

}
=

n−q∑
r=0

m−p∑
s=0

Tn,q+r+1
1 Tm,p+s+1

2

{
Lq+r1 ,Lp+s2

}
Tq+r−1,q
1 Tp+s−1,p

2 . (C.2)

Substituting in the Poisson bracket for L in equation (4.6) then gives

{
Tn,q1 ,Tm,p2

}
=

n−q∑
r=0

m−p∑
s=0

(
Tn,q+r+1
1 Tm,p+s+1

2 a12T
q+r,q
1 Tp+s,p2 δq+r+1,p+s+1

−T n,q+r1 Tm,p+s2 d12T
q+r−1,q
1 Tp+s−1,p

2 δq+r,p+s

+T n,q+r1 Tm,p+s+1
2 b12T

q+r−1,q
1 Tp+s,p2 δq+r,p+s+1

−Tn,q+r+1
1 Tm,p+s2 c12T

q+r,q
1 Tp+s−1,p

2 δq+r+1,p+s

)
,

(C.3)

where we have used δq+r,p+s = δq+r+1,p+s+1 in the term proportional to a12. We now shift the
summed indices so that the Kronecker deltas in all four terms are the same

{
Tn,q1 ,Tm,p2

}
=

n−q+1∑
r=1

m−p+1∑
s=1

T n,q+r1 Tm,p+s2 a12T
q+r−1,q
1 Tp+s−1,p

2 δq+r,p+s

−
n−q∑
r=0

m−p∑
s=0

T n,q+r1 Tm,p+s2 d12T
q+r−1,q
1 Tp+s−1,p

2 δq+r,p+s

+

n−q∑
r=0

m−p+1∑
s=1

T n,q+r1 Tm,p+s2 b12T
q+r−1,q
1 Tp+s−1,p

2 δq+r,p+s

−
n−q+1∑
r=1

m−p∑
s=0

T n,q+r1 Tm,p+s2 c12T
q+r−1,q
1 Tp+s−1,p

2 δq+r,p+s.

(C.4)
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Next, we split up the sums in the following way

{
Tn,q1 ,Tm,p2

}
=

n−q∑
r=1

m−p∑
s=1

T n,q+r1 Tm,p+s2

(
a12− d12 + b12− c12

)
Tq+r−1,q
1 Tp+s−1,p

2 δq+r,p+s

+

n−q∑
r=1

T n,q+r1

((
a12 + b12

)
Tm,p2 δm+1,q+r−Tm,p2

(
d12 + c12

)
δp,q+r

)
Tq+r−1,q
1

+

m−p∑
s=1

Tm,p+s2

((
a12− c12

)
Tn,q1 δp+s,n+1−Tn,q1

(
d12− b12

)
δp+s,q

)
Tp+s−1,p
2

+ a12T
n,q
1 Tm,p2 δm,n−Tn,q1 Tm,p2 d12δp,q+Tn,q1 b12T

m,p
2 δm+1,q−Tm,p2 c12T

n,q
1 δp,n+1.

(C.5)

Finally, we use the relation (4.4) to notice that the first line of the r.h.s. vanishes. We are then
left with (4.16) as claimed.
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