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Abstract

In this paper, we consider multi-dimensional mean reflected backward stochastic
differential equations (BSDEs) with possibly non-convex reflection domains along
inward normal direction, which were introduced by Briand, Elie and Hu [6] in the
scalar case. We first apply a fixed-point argument to establish the uniqueness and
existence result under an additional bounded condition on the driver. Then, with
the help of a priori estimates, we develop a successive approximation procedure to
remove the additional bounded condition for the general case.
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1 Introduction

Let (Ω,F ,P) be a complete probability space under which B is a d-dimensional
standard Brownian motion. Suppose (Ft)0≤t≤T is the natural filtration generated by
B augmented by the P-null sets and P is the sigma algebra of all progressive sets of
Ω× [0, T ]. The present paper is devoted to the study of the following multi-dimensional
BSDE with mean reflection over the time interval [0, T ],{

Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdBs + ηT − ηt, ∀t ∈ [0, T ],

E[Yt] ∈ D, ∀t ∈ [0, T ],
(1.1)

in which the terminal condition ξ is an Rm-valued FT -measurable random vector, the
driver f : Ω × [0, T ] × Rm × Rm×d → Rm is a measurable map with respect to P ×
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Multi-dimensional BSDEs with mean reflection

B(Rm)×B(Rm×d) and the mean of the solution Yt is forced to stay within a possibly non-
convex domain D ⊂ Rm. Our aim is to investigate the solvability of the mean reflected
BSDE (1.1) under a natural Skorokhod type condition (see Definition 3.1), where the
solution η is a deterministic function with bounded variation.

When the constraint is not on the mean of the solution but on the paths of the
solution, i.e., Yt ∈ D, the reflected BSDE (1.1) was first introduced by El Karoui et
al. [21] in the scalar case. Since then, great progress has been made in this field,
as it has rich connections with partial differential equations (PDEs) and mathematical
finance. For instance, the authors applied the reflected BSDEs to provide a probabilistic
interpretation for an obstacle problem of parabolic PDEs in [21] and El Karoui, Pardoux
and Quenez [22] found that the price of an American option could be represented as
the unique solution to the reflected BSDE under a Skorokhod type condition. Moreover,
various types of scalar-valued constrained BSDEs have been formulated due to their
financial motivations. For examples, Buckdahn and Hu [9] used the constrained BSDEs
driven by both a Wiener process and a Poisson random measure to analyze the option
pricing with constrained portfolios in an incomplete market; Cvitanić and Karatzas [17]
considered a type of Dynkin games via the BSDEs with two reflecting barriers. For more
research on this field, we refer the reader to [18, 25, 26, 27, 28, 29, 37, 39] and the
references therein.

In the reflected BSDEs theory, the research of the multidimensional case is signif-
icantly more difficult than that of the scalar case. In [24], Gegout-Petit and Pardoux
first obtained the existence and uniqueness results for the case of normal reflection in
convex domains, which was generalized by Klimsiak, Rozkosz and Słomiński to the case
of time-dependent random convex regions in [34]. On the other hand, motivated by the
optimal switching problems, certain types of multi-dimensional reflected BSDEs with
oblique direction of reflection were also investigated, see e.g., [1, 12, 13, 14, 30, 33].
Recently, Chassagneux and Richou [16] established the solvability of general obliquely
reflected BSDEs in convex reflection domains.

The theory of multidimensional reflected stochastic differential equations (SDEs)
with non-convex reflection domains has been studied systematically (cf. [20, 36, 40]).
However, there are only few papers dealing with the multidimensional reflected BSDEs
with non-convex reflection domains due to the complicated structure. We would like to
mention that [8, 23] considered certain types of multidimensional reflected BSDEs in
non-convex domains. Recently, Chassagneux, Nadtochiy and Richou [15] first established
well-posedness results for general multidimensional reflected BSDEs with non-convex
domains satisfying a weak star-shape property.

In contrast with the aforementioned paths constraints, the BSDEs with mean con-
straints were formulated recently to analyze partial hedging of financial derivatives in
mathematical finance. In order to deal with quantile hedging problems, Bouchard, Elie
and Réveillac [2] considered a new type of BSDEs, where the terminal value satisfies
a type of mean constraint. Inspired by this, Briand, Elie and Hu [6] introduced the
scalar-valued BSDEs with mean reflection to investigate the super-hedging problem
under running risk management constraint. In this framework, the solution Y is required
to satisfy the following type of mean constraint:

E
[
`(t, Yt)

]
≥ 0, ∀t ∈ [0, T ],

where `(t, ·) is a collection of (possibly random) non-decreasing real-valued map.
Subsequently, Hibon et al. [31] considered quadratic BSDEs with mean reflection

and Hu, Moreau and Wang [32] dealt with generalized mean reflected BSDEs, whose
drivers also depend on the law of the solution Y . With the help of interacting particles
systems, [5, 7, 8] studied the approximation of mean reflected SDEs and BSDEs. We
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Multi-dimensional BSDEs with mean reflection

also refer to Djehiche, Elie and Hamadène [19] which formulated a mean-filed type
of reflected BSDEs motivated by applications in pricing life insurance contracts with
surrender options.

Recently, Briand et al. [4] introduced multi-dimensional mean reflected BSDEs with
normal reflection, in which the marginal probability distribution PYt of the solution Y is
required to stay within a subset of P2(Rm)1, i.e.,

PYt ∈
{
µ ∈ P2

(
Rm
)
, H(µ) ≥ 0

}
, ∀t ∈ [0, T ].

Here the function H : P2(Rm)→ R is concave. Based on this, the authors also studied
the associated propagation of chaos and established a probabilistic interpretation for an
obstacle problem of PDEs stated on the Wasserstein space. Note that the framework
of [4] coincides with the one of [6] when the constraint acts only on the mean of the
solution, i.e.,

`(t, x) = x and H(µ) =

∫
xµ(dx).

We refer to [4, Remark 4] for more details on their connections. Motivated by the
results of [4, 6, 36], we want to investigate the multidimensional BSDE (1.1) with mean
reflection in a possibly non-convex domain D.

In view of the arguments of [36, 40], we assume that the constraint domain D

satisfies uniform exterior sphere and uniform interior cone conditions. Note that the
well-posedness of deterministic multi-dimensional Skorokhod Problem is crucial for our
main result as in [6]. Indeed, when the driver f does not depend on the unknowns y and
z, it follows from (1.1) and the non-randomness of the solution η that

E[Yt] = E

[
ξ +

∫ T

t

fsds

]
+ ηT − ηt, E[Yt] ∈ D, ∀t ∈ [0, T ],

which can be regarded as a deterministic Skorokhod problem. In this case, we can first
define the component η and then solve a standard BSDE to find the components Y and
Z. Based on this observation, we can construct an iteration map for the general case.
The key point is to prove that the map is a contraction.

To this end, we firstly establish a priori estimates for solutions to the mean reflected
BSDE (1.1) through Itô’s formula and the associated Skorokhod condition. Compared
with the one dimensional case, we cannot obtain the explicit form of the component η as
in [6]. Fortunately, the solution η is deterministic and then we adapt the discretization
technique introduced by [40] to obtain

d|η|0s ≤ C(r0, δ, α)E
[
|f(s, Ys, Zs)|

]
ds, ds-a.e.

which gives a priori estimate for the total variation |η|0T .
Note that the uniform estimate for d|ηn|0t is crucial to construct a contraction map in

the case of non-convex reflection domains, see Remark 4.2 for details. Then, we apply
a fixed-point argument to establish the existence result under the following additional
condition on the driver,

E[|f(t, Y nt , Z
n
t )|] is uniformly bounded by some integrable function gt ∈ L1([0, T ]).

Finally, with the help of a priori estimates, we develop an approximation procedure for
the general case through an appropriate truncation argument. Consequently, we are
able to prove the existence and uniqueness of solution to the BSDE (1.1) with mean
reflection in a non-convex domain, which extends the relevant results in [4]. In addition,

1The collection of all probability measures over (Rm,B(Rm)) with finite second moment.
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Multi-dimensional BSDEs with mean re�ection

when the constraint domain is convex, we show that the solution can be constructed by
a penalization approach as in [24].

Since the constraint is only on the mean of the solution, the structure of the multi-
dimensional mean re�ected BSDE (1.1) is simpler than that of [ 4]. Therefore, we can
employ the arguments of [ 36 , 40 ] to tackle the non-convex re�ection domains case.
On the other hand, compared with the case of multidimensional re�ected BSDEs with
non-convex domains in [ 15 ], the non-randomness of the solution � plays an important
role in our arguments, which makes it easier to establish a priori estimates and construct
a contraction map.

The paper is organized as follows. In Section 2, we recall some basic results of deter-
ministic multi-dimensional Skorokhod Problem. In Section 3, we state the main result
involving the existence and uniqueness for solution of the mean re�ected BSDE (1.1) ,
and some a priori estimates. Section 4 is devoted to the proof of the main result.

Let us �nish this introduction by giving some notations which will be used frequently
in this paper.

Notation

For each Euclidian space E, we denote by h�; �i and j � j its scalar product and the
associated norm, respectively. For each p � 1, consider the following collections:

� L p(E) is the space of E-valued F T -measurable random vectors � satisfying E[j� jp] <
1 ;

� H p(E) is the space of E-valued F -progressively measurable processes (zt )0� t � T

satisfying

E
�� Z T

0
jzt j2dt

� p
2
�

< 1 ;

� H 1;p (E) is the space of E-valued F -progressively measurable processes (zt )0� t � T

satisfying

E
�� Z T

0
jzt jdt

� p�
< 1 ;

� S p(E) is the space of E-valued F -adapted continuous processes (yt )0� t � T satisfying

E
h

sup
0� t � T

jyt jp
i

< 1 ;

� C(E) is the space of E-valued continuous functions on [0; T];

� V (E) is the space of E-valued continuous functions (� t )0� t � T satisfying � 0 = 0 and
j� j0T < 1 , where j� jst is the total variation on [s; t] for each 0 � s � t � T .

In what follows, for a given set of parameters � , C(� ) will denote a positive constant
only depending on these parameters and may change from line to line.

2 Multi-dimensional Skorokhod problem

In this section, we will review some basic notions and results about multi-dimensional
Skorokhod problem, which will be used in subsequent discussions.
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Let D be a non-empty open connected subset of Rm with the boundary @D. Denote
by D the closure of D . For each x 2 @D, we de�ne K x as the set of all inward normal
unit vectors at x, i.e.,

K x :=
[

r> 0

K (x; r ) and K (x; r ) :=
�

n 2 Rm : jnj = 1 ; B (x � r n; r ) \ D = ;
	

; (2.1)

where B (x; r ) := f y 2 Rm : jy � xj < r g.

De�nition 2.1 (Skorokhod Problem) . Given a function  2 C(Rm ) satisfying  T 2 D .
Then (�; � ) 2 C(D) � V (Rm ) is said to be a solution of Skorokhod problem for (D;  ) (for
short, SP (D;  )) if for each t 2 [0; T]

(i) � t =  t + � t ;

(ii) j� j0t =
Rt

0 1f � (s)2 @Dgdj� j0s and � t =
Rt

0  sdj� j0s for some Borel measurable function 
satisfying  s 2 K � s dj� j0s -a.e.

Next, we introduce the following two assumptions on the domain D , which have been
used in Lions and Sznitman [ 36 ] and Saisho [ 40 ] to guarantee the well-posedness of
SP(D;  ).

(H1) (uniform exterior sphere condition ) There exists a constant r 0 > 0 such that

K x = K (x; r 0) 6= ; for all x 2 @D:

(H2) There exist two constants � > 0 and � 2 (0; 1] satisfying the following property: for
any x 2 @Dthere exists a unit vector lx such that

hlx ; ni � � for any n 2
[

y2 B (x;� ) \ @D

K y :

Remark 2.2. (i) It is easy to check that n 2 K (x; r ) if and only if hx � y; ni � 1
2r jx � yj2

for all y 2 D (see Remark 1.2 in [36] or Remark 1.1 in [40]).
(ii) If D is a convex set, it is easy to see that D satis�es (H1) for any r 0 > 0.

Remark 2.3. (i) The following uniform interior cone condition is very useful, which is
slightly stronger than (H2) :

(H2 0) (uniform interior cone condition ) There exist two constants � > 0 and � 2
(0; 1) satisfying the following property: for any x 2 @Dthere exists a unit vector lx

such that

C(y; lx ; � ) \ B (x; � ) � D for any y 2 B (x; � ) \ @D;

where C(y; lx ; � ) is the convex cone with vertex y, i.e.,

C(y; lx ; � ) :=
�

z 2 Rm : hz � y; lx i > � jz � yj
	

:

(ii) It was shown in Bramson, Burdzy and Kendall (see [ 3, Section 2]) that the uniform
interior cone condition is equivalent to the following Lipschitz boundary condition.

Lipschitz domain : A domain D � Rm is said to be Lipschitz if there exists � > 0
such that for all x 2 @D, there exists an orthonormal basis e1; e2; : : : ; em and a
Lipschitz function f : Rm � 1 ! R such that

B (x; � ) \ D =
�

y 2 B (x; � ) : f (y1; : : : ; ym � 1) < y m
	

;

where yi := hy; ei i ; i = 1 ; : : : ; m.
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Multi-dimensional BSDEs with mean re�ection

According to Remark 2.3, we give some interesting examples of D which satisfy (H1)
and (H2) .

Example 2.4. (1) Any bounded convex domain with piecewise smooth boundary satis�es
(H1) and (H2) . Such as balls, polyhedrons and cylinders.

(2) (Unbounded) half planes, polyhedral cones and circular cones satisfy (H1) and
(H2) , e.g., see Figure 1 (a).

(3) If the domain D satis�es (H1) and (H2) , and f B i gn
i =1 is a family of balls such that

f @Bi gn
i =1 ; @Dare non-tangential, then D n (

S n
i =1 B i ) satis�es (H1) and (H2) , e.g., see

Figure 1 (b).

(a) Cone. (b) Non-convex domain.

Figure 1: Domains satisfying (H1) and (H2)

In this paper, we need to consider the following multi-dimensional Backward Sko-
rokhod Problem.

De�nition 2.5 (Backward Skorokhod Problem) . Given a function  2 C(Rm ) with  T 2 D .
Then (�; � ) 2 C(D) � V (Rm ) is said to be a solution of Backward Skorokhod problem for
(D;  ) (for short, BSP (D;  )) if for each t 2 [0; T]

(i) � t =  t + � T � � t ;

(ii) j� j0t =
Rt

0 1f � (s)2 @Dgdj� j0s and � t =
Rt

0  sdj� j0s for some Borel measurable function 
satisfying  s 2 K � s dj� j0s -a.e.

Remark 2.6. Note that (�; � ) is a solution to BSP (D;  ) if and only if ( e�; e� ) is a solution
to SP (D; e ), where ( e t ; e� t ; e� t ) = (  T � t ; � T � t ; � T � � T � t ) for any t 2 [0; T].

Theorem 2.7. Suppose that assumptions (H1) and (H2) are satis�ed. Then there is a
unique solution to BSP (D;  ). Moreover, � (t;  ) and � (t;  ) are continuous in (t;  ).

Proof. The proof is immediate from Saisho [40, Theorem 4.1] and Remark 2.6.

The following lemmas are crucial for our main results.

Lemma 2.8. Assume that assumptions (H1) and (H2) are ful�lled. Suppose that (� n ; � n )
is the unique solution of BSP (D;  n ) for each n � 1 and there exist three functions �;  ; �
such that

sup
n � 1

j� n j0T < 1 and lim
n !1

sup
0� t � T

�
j� n

t � � t j + j n
t �  t j + j� n

t � � t j
�

= 0 :

Then (�; � ) is the unique solution of BSP (D;  ).
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Multi-dimensional BSDEs with mean re�ection

Proof. The proof is immediate from the proof of [ 36 , Theorem 1.1] or that of [ 40 ,
Theorem 4.1].

Lemma 2.9. Let assumptions (H1) and (H2) be satis�ed and (�; � ) be the unique
solution of BSP (D;  ). Assume that  has �nite total variation. Then, there exists a
constant C(r 0; �; � ) such that for any 0 � s � t � T ,

j� jst � C(r 0; �; � )j jst : (2.2)

Proof. According to Theorem 2.7 and Remark 2.6, ( e�; e� ) solves SP (D; e ) with

e� t = � T � t ; e t =  T � t ; e� t = � T � � T � t ; t 2 [0; T]:

Note that j� jst = je� jT � t
T � s and j jst = j e jT � t

T � s , it suf�ces to show that (2.2) holds for e� and e .
The proof is from [40, Theorem 4.1] by some appropriate modi�cations.

For each n � 1, we denote  n by

e n
t = e k2� n ; k2� n � t < (k + 1)2 � n ; k � 0:

In view of Remark 1.4 in [40], there exists a unique solution ( e� n ; e� n ) to SP (D; e n ), i.e.,

e� n
t = e n

t + e� n
t ; t 2 [0; T]:

It follows from the proof of [ 40 , p. 467] that e� n converges to e� uniformly on [0; T]. De�ne

Tn; 0 = inf
�

t � 0 : e n
t 2 @D

	
^ T;

tn;l = inf
�

t > T n;l � 1 : j e n
t � e n

Tn;l � 1
j � �=2

	
^ T;

Tn;l = inf
�

t � tn;l : e n
t 2 @D

	
^ T:

Recalling the proof of [ 40 , pp. 465–466] and using the fact that � s;t ( e ) � � 0;T ;j t � sj ( e ),
we can �nd an integer n0 � 1 and a constant h > 0 such that for all n � n0,

Tn;l � Tn;l � 1 � h; if Tn;l < T; (2.3)

and for each l � 1, we have for all s; t 2 [Tn;l � 1; Tn;l ]

je� n jst � C(r 0; �; � )
�
1 + exp

�
C(r 0; �; � )

�
1 + � 0;T ;j t � sj

� e n ��	�
� s;t

� e n �
; (2.4)

where for any 0 � s � t � T and � > 0

� s;t ( e ) := sup fj e t 1 � e t 2 j : s � t1; t2 � tg;

� 0;T ;� ( e ) := sup
�

j e (t1) � e (t2)j : 0 � t1; t2 � T; jt1 � t2j � �
	

:

It follows from (2.3) that for any s; t 2 [0; T], there exist integers 1 � i n � j n such
that s 2 [Tn;i n � 1; Tn;i n ] and t 2 [Tn;j n � 1; Tn;j n ]. Then for any � > 0, there is a partition
s = t0 � t1 � � � � � tn � = t such that

[tk � 1; tk ] �
�
Tn;l � 1; Tn;l �

for some i n � l � j n ; and jtk � tk � 1j � �; for all k = 1 ; 2; : : : ; n� :

Thus applying (2.4) yields that for any � > 0,

je� n jst =
n �X

k=1

je� n jt k � 1
t k

� C(r 0; �; � )
�
1 + exp

�
C(r 0; �; � )

�
1 + � 0;T ;�

� e n ��	� n �X

k=1

� t k � 1 ;t k

� e n �

� C(r 0; �; � )
�
1 + exp

�
C(r 0; �; � )

�
1 + � 0;T ;� +2 � ( n � 1) ( e )

�	�
j e n jst :

(2.5)
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Multi-dimensional BSDEs with mean re�ection

Sending � ! 0 in (2.5), we have

je� n jst � C(r 0; �; � )
�
1 + exp

�
C(r 0; �; � )

�
1 + � 0;T ;2 � ( n � 1) ( e )

�	�
j e n jst :

Note that e� n converges to e� uniformly on [0; T] and

lim
n !1

� 0;T ;2 � ( n � 1) ( e ) = 0 ; j e n jst � j e j(s� 2� n )_ 0
( t +2 � n )^ T :

Consequently, we obtain

je� jst � lim inf
n !1

je� n jst � C(r 0; �; � )j e jst ;

which ends the proof.

3 Mean re�ected BSDEs

The main purpose of this section is to study the solvability of the multidimensional
mean re�ected BSDE (1.1) . In what follows, we make use of the following conditions on
the terminal value � and the driver f .

(H3) The terminal condition � 2 L 2(Rm ) satis�es that E[� ] 2 D and the driver f (t; 0; 0)
is in the space of H 1;2(Rm ).

(H4) There exists a constant � > 0 such that for any t 2 [0; T], y1; y2 2 Rm and
z1; z2 2 Rm � d

jf (t; y1; z1) � f (t; y2; z2)j � � (jy1 � y2j + jz1 � z2j):

De�nition 3.1. A triplet (Y; Z; � ) 2 S 2(Rm ) � H 2(Rm � d) � V (Rm ) is said to be a solution
to the BSDE (1.1) with mean re�ection if it satis�es equation (1.1) and the component
� t changes only when E[Yt ] is on the boundary of D such that

(i) j� j0t =
Rt

0 1f E [Ys ]2 @Dgdj� j0s ;

(ii) there exists a measurable function  : [0; T] ! Rm such that  s 2 K E [Ys ] dj� j0s -a.e.
and

� t =
Z t

0
 sdj� j0s :

Remark 3.2. In [ 4], Briand et al. introduced the following multi-dimensional mean
re�ected BSDEs with normal re�ection:

(
Yt = � +

RT
t f (s; Ys; Zs)ds �

RT
t ZsdBs +

RT
t D � H (P Ys )(Ys)dK s; 8t 2 [0; T];

P Yt 2
�

� 2 P 2
�
Rm

�
; H (� ) � 0

	
; 8t 2 [0; T];

RT
0 H (P Yt )dK t = 0 ;

(3.1)

in which D � H denotes the Lions' derivative (see [ 11 , 35 ]). When the constraint acts only
on the mean of the solution, i.e., H (� ) =

R
x� (dx), (3.1) reduces to

(
Yt = � +

RT
t f (s; Ys; Zs)ds �

RT
t ZsdBs + ( K T � K t ); 8t 2 [0; T];

E[Yt ] � 0; 8t 2 [0; T];
RT

0 E[Yt ]dK t = 0 ;

which is the same as the equation (1.1) with the convex domain D = f x 2 Rm ; x > 0g.
We refer to [4, Remark 4] for more details on this topic.

Now we are ready to state the main result of this paper.

Theorem 3.3. Suppose that assumptions (H1) –(H4) hold. Then the BSDE (1.1) with
mean re�ection admits a unique square integrable solution (Y; Z; � ) 2 S 2(Rm ) �
H 2(Rm � d) � V (Rm ).
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Multi-dimensional BSDEs with mean re�ection

Remark 3.4. In [ 15 ], Chassagneux, Nadtochiy and Richou studied the multidimensional
re�ected BSDEs with the following possibly non-convex domain D :

D =
�

y 2 Rm : � (y) < 0
	

;

where � 2 C2(Rm ) satis�es compactness, smoothness and a weak star-shape property
(see [ 15 , Assumption 1.1]). It is easy to check that the domain D satis�es conditions (H1)
and (H2) . Due to the adaptedness issues, the a priori estimate for the total variation
dj� j0t is much more complicated in this case, which has quadratic terms in z (see [ 15 ,
Lemma 2.1]).

In what follows, we are going to prove Theorem 3.3. Firstly, we state some useful
a priori estimates for solutions to the BSDE (1.1) with mean re�ection, which is much
more delicate and involved compared with the scalar-valued case.

Lemma 3.5. Assume that assumptions (H1) –(H4) are satis�ed. Let (Y; Z; � ) be a square
integrable solution to the mean re�ected BSDE (1.1) . Then

E
�

sup
0� s� T

jYs j2 +
Z T

0
jZs j2ds

�
+

�
j� j0T

� 2
� C(r 0; �; �; �; T )E

�
j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
:

(3.2)

Proof. Note that the Lipschitz continuity of f implies

2


y; f (t; y; z)

�
� 2jyjj f (t; 0; 0)j +

�
2� + 3 � 2�

jyj2 +
1
3

jzj2; 8(y; z) 2 Rm � Rm � d: (3.3)

Setting a = (2 � + 3 � 2) + b for some constant b > 0 which is to be determined later. Using
the inequality (3.3) and applying Itô's formula to eat jYt j2 yields that

eat jYt j2 + b
Z T

t
eas jYs j2ds +

2
3

Z T

t
eas jZs j2ds

� eaT j� j2 + 2
Z T

t
eas jYs jj f (s; 0; 0)jds + 2

Z T

t
eas hYs; d� s i � 2

Z T

t
eas hYs; ZsdBs i

� eaT j� j2 + 2 sup
0� s� T

jYs j
Z T

t
eas jf (s; 0; 0)jds + 2

Z T

t
eas hYs; d� s i � 2

Z T

t
eas hYs; ZsdBs i :

(3.4)

Now set � t = E[Yt ] and  t = E[� +
RT

t f (s; Ys; Zs)ds]. It is easy to check that (�; � ) is the
unique solution to BSP (D;  ). Since  has �nite total variation and

j jst �
Z t

s
jE

�
f (r; Yr ; Z r )

�
jdr for all 0 � s � t � T;

it follows from (2.2) in Lemma 2.9 that

dj� j0t � C(r 0; �; � )jE
�
f (t; Yt ; Z t )

�
jdt: (3.5)

Note that � t =
Rt

0  sdj� j0s for some Borel measurable function  satisfying  s 2 K E [Ys ]

dj� j0s -a.e. Thus, we obtain

2E
� Z T

t
eas hYs; d� s i

�

� 2C(r 0; �; � )
Z T

t
eas E[jYs j]jE

�
f (s; Ys; Zs)

�
jds

� C(r 0; �; � )
�
2� + 3C(r 0; �; � )� 2� Z T

t
eas E

�
jYs j2

�
ds +

1
3

Z T

t
eas E

�
jZs j2

�
ds

+ 2C(r 0; �; � )E
h

sup
0� s� T

jYs j
i Z T

t
eas E

�
jf (s; 0; 0)j

�
ds:

(3.6)
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Multi-dimensional BSDEs with mean re�ection

Setting b = C(r 0; �; � )(2� + 3C(r 0; �; � )� 2) and taking expectations on both sides of (3.4) ,
we have

sup
0� s� T

eas E
�
jYs j2

�
+ E

� Z T

0
eas jZs j2ds

�

� 3E
�
eaT j� j2

�
+ 6E

�
sup

0� s� T
jYs j

Z T

t
eas jf (s; 0; 0)jds

�

+ 6C(r 0; �; � )E
h

sup
0� s� T

jYs j
i
E

� Z T

0
eas jf (s; 0; 0)jds

�
:

Then we deduce that for any " 2 (0; 1)

sup
0� s� T

E
�
jYs j2

�
+ E

� Z T

0
jZs j2ds

�

�
1
"

C(r 0; �; �; �; T )E
�
j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
+ "E

h
sup

0� s� T
jYs j2

i
:

(3.7)

According to (3.5) and (3.7), we derive that

j� j0T � C(r 0; �; �; �; T )
�

1
p

"

�
E

�
j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�� 1
2

+
p

"
�

E
h

sup
0� s� T

jYs j2
i� 1

2

�
:

(3.8)

On the other hand, it follows from the de�nition of (1.1) that for any s 2 [0; T],

jYs j � j � j + j� j0T +
Z T

0
jf (r; 0; 0)jdr + �

Z T

0
jZ r jdr + sup

0� r � T

�
�
�
�

Z T

r
Zu dBu

�
�
�
� + �

Z T

s
jYr jdr:

Applying Gronwall's inequality, we have

jYs j � e� (T � s)
�

j� j + j� j0T +
Z T

0
jf (r; 0; 0)jdr + �

Z T

0
jZ r jdr + sup

0� r � T

�
�
�
�

Z T

r
Zu dBu

�
�
�
�

�
;

which together with Burkholder-Davis-Gundy's (BDG's) inequality implies

E
h

sup
0� s� T

jYs j2
i

� C(�; T )E
�
j� j2 +

�
j� j0T

� 2
+

� Z T

0
jf (s; 0; 0)jds

� 2

+
Z T

0
jZs j2ds

�
: (3.9)

Putting (3.7), (3.8) and (3.9) together, we conclude that

E
h

sup
0� s� T

jYs j2
i

� C(r 0; �; �; �; T )
�

1
"

E
�
j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
+ "E

h
sup

0� s� T
jYs j2

i �
:

Taking " small enough so that C(r 0; �; �; �; T )" = 1
2 , we can get the desired result, which

completes the proof.

Corollary 3.6. Assume that the same conditions hold as in Lemma 3.5. Then for any
p � 2,

E
�

sup
0� s� T

jYs jp +
� Z T

0
jZs j2ds

� p
2
�

+
�
j� j0T

� p

� C(p; r0; �; �; �; T )E
�
j� jp +

� Z T

0
jf (s; 0; 0)jds

� p�
:
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Multi-dimensional BSDEs with mean re�ection

Proof. Without loss of generality, assume that the right-side hand of the above inequality
is �nite. Since � is a deterministic function, it follows from Lemma 3.5 that

�
j� j0T

� p
� C(p; r0; �; �; �; T )E

�
j� jp +

� Z T

0
jf (s; 0; 0)jds

� p�
: (3.10)

Note that (Yt + � t � � T ; Z t )0� t � T solves the following standard BSDE:

eYt = � +
Z T

t

ef (s; eYs; eZs)ds �
Z T

t

eZsdBs; 8t 2 [0; T];

whose generator is given by ef (s; y; z) = f (s; y + � T � � s; z). In view of [ 41 , Theorem
4.4.4], we deduce that

E
�

sup
0� s� T

jYs jp +
� Z T

0
jZs j2ds

� p
2
�

� 2p� 1E
�

sup
0� s� T

j eYs jp +
�
j� j0T

� p
+

� Z T

0
j eZs j2ds

� p
2
�

� C(p; �; T )E
�
j� jp +

� Z T

0
jf (s; � T � � s; 0)jds

� p

+
�
j� j0T

� p
�

� C(p; �; T )E
�
j� jp +

� Z T

0
jf (s; 0; 0)jds

� p

+
�
j� j0T

� p
�
;

which together with (3.10) indicates the desired result. The proof is complete.

Lemma 3.7. Assume that assumptions (H1) , (H3) and (H4) hold. Let (Y i ; Z i ; � i ) be
a square integrable solution to (1.1) corresponding to the data (� i ; f i ), i = 1 ; 2. Then,
there exists a constant C(�; T ) such that

E
�

sup
t 2 [0;T ]

j bYt j2 +
Z T

0
j bZs j2ds

�

� C(�; T )e
2

r 0
( j � 1 j0

T + j � 2 j0
T ) E

��
j� 1 � � 2j +

Z T

0
jf 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

� 2�
;

where b̀
t = `1

t � `2
t for ` t = Yt ; Z t ; � t .

Proof. Denote by

I = E
��

j� 1 � � 2j +
Z T

0
jf 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

� 2�
;

and
at =

�
2� + 2 � 2�

t + r � 1
0

�
j� 1j0t + j� 2j0t

�
:

Applying Itô's formula to ea t j bYt j2 on [t; T ], we have

eaT j bYT j2 � ea t j bYt j2 =
Z T

t
eas j bYs j2das � 2

Z T

t
eas


 bYs; f 1�
s; Y1

s ; Z 1
s

�
� f 1�

s; Y2
s ; Z 2

s

��
ds

+
Z T

t
eas j bZs j2ds � 2

Z T

t
eas


 bYs; f 1�
s; Y2

s ; Z 2
s

�
� f 2�

s; Y2
s ; Z 2

s

��
ds

� 2
Z T

t
eas hbYs; db� s i + 2

Z T

t
eas hbYs; bZsdBs i ;
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Multi-dimensional BSDEs with mean re�ection

which together with

2


Y 1

s � Y 2
s ; f 1�

s; Y1
s ; Z 1

s

�
� f 1�

s; Y2
s ; Z 2

s

��
�

�
2� + 2 � 2�

jY 1
s � Y 2

s j2 +
1
2

jZ 1
s � Z 2

s j2

indicates

ea t j bYt j2 +
1
2

Z T

t
eas j bZs j2ds

� eaT j� 1 � � 2j2 + 2
Z T

t
eas j bYs jj f 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

�
1
r 0

Z T

t
eas j bYs j2d

�
j� 1j0s + j� 2j0s

�
+ 2

Z T

t
eas hbYs; db� s i � 2

Z T

t
eas hbYs; bZsdBs i :

(3.11)

Note that j� i j0t =
Rt

0 1f E [Y i
s ]2 @Dgdj� j0s and � i

t =
Rt

0  i
sdj� i j0s for some Borel measurable

function  i satisfying  i
s 2 K E [Y i

s ] dj� i j0s -a.e. Then recalling assumption (H1) and assertion
(i) of Remark 2.2, we obtain

E
� Z T

t
eas hbYs; d�̂ s i

�
=

Z T

t
eas



E

�
Y 1

s

�
� E

�
Y 2

s

�
;  1

s

�
dj� 1j0s

+
Z T

t
eas



E

�
Y 2

s

�
� E

�
Y 1

s

�
;  2

s

�
dj� 2j0s

=
Z T

t
eas



E

�
Y 1

s

�
� E

�
Y 2

s

�
;  1

s

�
1f E [Y 1

s ]2 @Dgdj� 1j0s

+
Z T

t
eas



E

�
Y 2

s

�
� E

�
Y 1

s

�
;  2

s

�
1f E [Y 2

s ]2 @Dgdj� 2j0s

�
1

2r 0

Z T

t
eas E

�
j bYs j2

�
d
�
j� 1j0s + j� 2j0s

�
:

(3.12)

In view of (3.11), we derive that for any t 2 [0; T]

E
�
ea t j bYt j2 +

Z T

t
eas j bZs j2ds

�

� 4eaT E
�
j� 1 � � 2j2 +

Z T

t
j bYs jj f 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

�
:

(3.13)

On the other hand, it follows from

b� t = bY0 � E[bYt ] � E
� Z t

0

�
f 1�

s; Y1
s ; Z 1

s

�
� f 2�

s; Y2
s ; Z 2

s

��
ds

�

and (3.13) that

sup
t 2 [0;T ]

jb� t j2

� C(�; T )
�

sup
t 2 [0;T ]

E
�
j bYt j2 +

Z T

0
j bZs j2ds +

� Z T

0
jf 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

� 2��

� C(�; T )eaT

�
I + E

� Z T

0
j bYs jj f 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

��
:
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Multi-dimensional BSDEs with mean re�ection

Recalling the de�nition of (1.1) and using BDG's inequality and (3.13), we have

E
h

sup
0� s� T

j bYs j2
i

� C(�; T )eaT

�
I + E

� Z T

0
j bYs jj f 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

��

� C(�; T )eaT

�
I +

1
2

C(�; T )eaT E
�� Z T

0
jf 1�

s; Y2
s ; Z 2

s

�
� f 2�

s; Y2
s ; Z 2

s

�
jds

� 2��

+
1
2

E
h

sup
0� s� T

j bYs j2
i
:

It follows that

E
h

sup
0� s� T

j bYs j2
i

� C(�; T )e2aT I;

which is the desired result.

The following lemma is a direct consequence of Lemma 3.7.

Lemma 3.8. Suppose assumptions (H1) , (H3) and (H4) hold. Then the BSDE (1.1)
with mean re�ection has at most one square integrable solution.

Proof. The proof is immediate from Lemma 3.7 by taking (� i ; f i ) = ( �; f ); i = 1 ; 2.

Compared with the uniqueness, the existence of solution to the mean re�ected
BSDE (1.1) is much more complicated, which will be stated in the next section. In what
follows, we deal with the case of convex re�ection domains to illustrate our main idea.

Lemma 3.9. Suppose that assumptions (H1) –(H4) are ful�lled. Assume also that the
generator f is independent of the �rst unknown y. Then the BSDE (1.1) with mean
re�ection admits a unique square integrable solution.

Proof. Let ( eY ; eZ ) be the S2(Rm ) � H 2(Rm � d)-solution to the following standard BSDE:

eYt = � +
Z T

t
f (s; eZs)ds �

Z T

t

eZsdBs; 8t 2 [0; T]: (3.14)

Set  t = E[� +
RT

t f (s; eZs)ds]. It is easy to check that  2 C(Rm ) with  T = E[� ] 2 D . By

Theorem 2.7, there exists a unique solution (�; � ) to BSP (D;  ). Set Yt = eYt � � t + � T and
Z t = eZ t . It follows that (Y; Z) 2 S 2(Rm ) � H 2(Rm � d) solves the following BSDE

Yt = � +
Z T

t
f (s; Zs)ds �

Z T

t
ZsdBs + � T � � t ; t 2 [0; T]:

Note also that

E[Yt ] = E
�
� +

Z T

t
f (s; Zs)ds

�
+ � T � � t =  t + � T � � t = � t 2 D:

Therefore, (Y; Z; � ) is a square integrable solution of the BSDE (1.1) . The uniqueness
follows from Lemma 3.8 and the proof is complete.

Note that a non-empty convex set satis�es assumption (H1) with any r 0 > 0. Then it
follows from assertion (i) of Remark 2.2 that for any x 2 @Dand n 2 K x

hx � y; ni � 0; 8y 2 D: (3.15)
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Multi-dimensional BSDEs with mean re�ection

Theorem 3.10. Suppose that assumptions (H2) –(H4) are satis�ed. If the domain D is
convex, then the mean re�ected BSDE (1.1) has a unique square integrable solution.

Proof. For any given (U; V) 2 H 2(Rm ) � H 2(Rm � d), it follows from Lemma 3.9 that the
following BSDE with mean re�ection

(
Yt = � +

RT
t f (s; Us; Vs)ds �

RT
t ZsdBs + � T � � t ; 8t 2 [0; T];

E[Yt ] 2 D; 8t 2 [0; T]
(3.16)

has a unique solution (Y; Z; � ) 2 S 2(Rm ) � H 2(Rm � d) � V (Rm ). Now we de�ne a map

� : H 2
�
Rm

�
� H 2

�
Rm � d

�
! H 2

�
Rm

�
� H 2

�
Rm � d

�
,

(U; V) 7! (Y; Z).
(3.17)

Then it suf�ces to show that the map � is a contraction.
For each i 2 f 1; 2g, denote by (Y i ; Z i ; � i ) the solution to (3.16) corresponding to the

data (U i ; V i ) 2 H 2(Rm ) � H 2(Rm � d). Denote by b̀ = `1 � `2 for ` = Y; Z; �; U; V and
a = 4 � 2 + 1 . Then applying Itô's formula to ea t j bYt j2 and using a similar analysis as in
Lemma 3.7, we obtain

�j bY0j2 = a
Z T

0
eas j bYs j2ds � 2

Z T

0
eas 
 bYs; f

�
s; U1

s ; V 1
s

�
� f

�
s; U2

s ; V 2
s

��
ds

+
Z T

0
eas j bZs j2ds � 2

Z T

0
eas hbYs; db� s i + 2

Z T

0
eas bYs bZsdBs

�
Z T

0
eas �

j bYs j2 + j bZs j2
�
ds �

1
2

Z T

0
eas �

j bUs j2 + j bVs j2
�
ds

� 2
Z T

0
eas hbYs; db� s i + 2

Z T

0
eas bYs bZsdBs;

(3.18)

where we have used the fact that

2

 bYs; f

�
s; U1

s ; V 1
s

�
� f

�
s; U2

s ; V 2
s

��
� 4� 2j bYs j2 +

1
2

�
j bUs j2 + j bVs j2

�

in the last inequality. In view of (3.15), we get

E
� Z T

0
eas hbYs; db� s i

�
=

Z T

0
eas 


E
�
Y 1

s

�
� E

�
Y 2

s

�
;  1

s

�
1f E [Y 1

s ]2 @Dgdj� 1j0s

+
Z T

0
eas 


E
�
Y 2

s

�
� E

�
Y 1

s

�
;  2

s

�
1f E [Y 2

s ]2 @Dgdj� 2j0s

� 0:

(3.19)

Putting (3.18) and (3.19) together yields that

E
� Z T

0
eas �

j bYs j2 + j bZs j2
�
ds

�
�

1
2

E
� Z T

0
eas �

j bUs j2 + j bVs j2
�
ds

�
:

Therefore, the map � has a unique �xed point (Y; Z) 2 H 2(Rm ) � H 2(Rm � d). We denote
� by

� t = Y0 � Yt �
Z t

0
f (s; Ys; Zs)ds +

Z t

0
ZsdBs; t 2 [0; T]:

It follows from the de�nition of the map � that � 2 V (Rm ) satis�es (i) and (ii) in
De�nition 3.1. Finally, with the help of BDG's inequality, we have Y 2 S 2(Rm ), which
ends the proof.
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Multi-dimensional BSDEs with mean re�ection

Remark 3.11. Note that (3.15) is crucial to construct a contraction map in the proof
of Theorem 3.10. In the non-convex re�ection domains case, (3.19) should be replaced
by (3.12), and then we need to estimate dj� j0s , which results in the main dif�culty.

Remark 3.12. In the case of convex re�ection domains, the solution to the mean
re�ected BSDE (1.1) can be also constructed through a penalization approach as in [ 24 ],
see Theorem A.5 in the appendix.

4 The existence

This section is devoted to the study of the existence results of multi-dimensional
mean re�ected BSDEs with non-convex re�ection domains. In what follows, we shall
combine a �xed-point argument and a truncation technique to deal with it through a
priori estimates established in Section 3.

Firstly, we employ a �xed-point argument to show the existence of solutions under an
additional condition on the generator.

Lemma 4.1. Suppose that assumptions (H1) –(H4) are satis�ed. Assume in addition
that there exists a nonnegative process g 2 H 1;1(R) such that

jf (t; y; z)j � gt ; 8(t; y; z) 2 [0; T] � Rm � Rm � d:

Then the BSDE (1.1) with mean re�ection admits a unique square integrable solution.

Proof. Using the same notations as in the proof of Theorem 3.10. In particular, we can
also de�ne the map � as in (3.17). Setting

at =
�
4� 2 + 1

�
t + b

Z t

0
E[gs]ds

for some constant b > 0 which is to be determined later. According to the derivation
of (3.18), we have

�j bY0j2 =
Z T

0
eas j bYs j2das � 2

Z T

0
eas


 bYs; f
�
s; U1

s ; V 1
s

�
� f

�
s; U2

s ; V 2
s

��
ds

+
Z T

0
eas j bZs j2ds � 2

Z T

0
eas hbYs; db� s i + 2

Z T

0
eas bYs bZsdBs

�
Z T

0
eas

�
j bYs j2 + j bZs j2

�
ds �

1
2

Z T

0
eas

�
j bUs j2 + j bVs j2

�
ds

+ b
Z T

0
eas j bYs j2E[gs]ds � 2

Z T

0
eas hbYs; db� s i + 2

Z T

0
eas bYs bZsdBs:

(4.1)

Taking expectations on both sides of (4.1) yields that

E
� Z T

0
eas

�
j bYs j2 + j bZs j2

�
ds

�

�
1
2

E
� Z T

0
eas

�
j bUs j2 + j bVs j2

�
ds

�
+ 2E

� Z T

0
eas


 bYs; db� (s)
�
�

� b
Z T

0
eas E

�
j bYs j2

�
E[gs]ds:

(4.2)

In view of (3.12), we derive

E
� Z T

0
eas


 bYs; db� (s)
�
�

�
1

2r 0

Z T

0
eas E

�
j bYs j2

�
d
�
j� 1j0s + j� 2j0s

�
: (4.3)
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Multi-dimensional BSDEs with mean re�ection

Next we need to estimate the right-hand side of (4.3) , where Lemma 2.9 plays an
important role. Indeed, denote by � i

t = E[Y i
t ] and  i

t = E[� +
RT

t f (s; Ui
s ; V i

s )ds] for each
t 2 [0; T], i = 1 ; 2. Then we see that (� i ; � i ) is the unique solution of BSP (D;  i ). It is easy
to check that  i has �nite total variation with

j i jst � E
� Z t

s
jf

�
r; U i

r ; V i
r

�
jds

�
�

Z t

s
E[gr ]dr; 0 � s � t � T; i = 1 ; 2: (4.4)

Thus it follows from (4.4) and Lemma 2.9 that there exists a constant C(r 0; �; � ) such
that

dj� i j0s � C(r 0; �; � )E[gs]ds; ds-a.e. ; i = 1 ; 2:

Consequently, setting b = 2C (r 0 ;�;� )
r 0

and recalling (4.2), (4.3), we deduce that

E
� Z T

0
eas

�
j bYs j2 + j bZs j2

�
ds

�
�

1
2

E
� Z T

0
eas

�
j bUs j2 + j bVs j2

�
ds

�
;

which implies that the map � de�ned in (3.17) has a unique �xed point (Y; Z). Finally,
by a similar analysis as in the proof of Theorem 3.10, we can get the desired result.

Remark 4.2. In Lemma 4.1, we assume an additional bounded condition on the driver,
which implies that

dj� n j0s � C(r 0; �; � )E
�
jf

�
s; Yn

s ; Z n
s

�
j
�
ds � C(r 0; �; � )E[gs]ds; ds-a.e. (4.5)

Here, (Y n ; Z n ; � n ) is Picard iteration sequence with respect to the mean re�ected
BSDE (1.1) . Then, we are able to prove the convergence of (Y n ; Z n ) under the following
norm:

E
� Z T

0
exp

�
�
4� 2 + 1

�
t +

2C(r 0; �; � )
r 0

Z t

0
E[gs]ds

�
�
jY n

t j2 + jZ n
t j2

�
dt

� 1
2

:

In general, it is dif�cult to establish a priori estimate: E[jf (s; Yn
s ; Z n

s )j] � E[gs] for some
process g 2 H 1;1(R).

Next, we utilize an approximation approach to remove the above additional condition
when the terminal value has a �nite moment of order p > 2. For this purpose, we
introduce the following approximating sequence (f n )n � 1:

f n (t; y; z) = f
�
t; � B n (y); � B n (z)

�
; 8(t; y; z) 2 [0; T] � Rm � Rm � d; (4.6)

where � B n is the projection on Bn := f x 2 E : jxj � ng for each Euclidian space E.

Remark 4.3. Note that j� B n (x) � � B n (y)j � j x � yj for any x; y 2 E. Hence under
assumption (H4) , f n also satis�es (H4) with the same Lipschitz constant � .

Lemma 4.4. Suppose that assumptions (H1) , (H2) and (H4) are satis�ed. Assume
in addition that � 2 L p(Rm ) and f (�; 0; 0) 2 H 1;p (Rm ) for some p > 2. Then the mean
re�ected BSDE (1.1) has a unique square integrable solution.

Proof. Without loss of generality, assume that p < 4. It is easy to check that for any
(t; y; z) 2 [0; T] � Rm � Rm � d ,

jf n (t; y; z)j � j f (t; 0; 0)j + 2 �n 2 H 1;p �
Rm �

� H 1;1�
Rm �

;

where f n is given by (4.6) . Thus, it follows from Lemma 4.1 that the following BSDE
with mean re�ection

(
Y n

t = � +
RT

t f n
�
s; Yn

s ; Z n
s

�
ds �

RT
t Z n

s dBs + � n
T � � n

t ; 8t 2 [0; T];

E
�
Y n

t

�
2 D; 8t 2 [0; T]

(4.7)
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Multi-dimensional BSDEs with mean re�ection

admits a unique square integrable solution (Y n ; Z n ; � n ) for each n � 1. In view of
Corollary 3.6 and noting that f n (t; 0; 0) = f (t; 0; 0), we have

sup
n � 1

E
�

sup
0� t � T

jY n
t jp +

� Z T

0
jZ n

s j2ds
� p

2
�

+ sup
n � 1

�
j� n j0T

� p
� M (4.8)

with

M := C(p; r0; �; �; �; T )E
�
j� jp +

� Z T

0
jf (s; 0; 0)jds

� p�
:

In the rest of the proof, we will prove that the limit of (Y n ; Z n ; � n ) is the desired solution,
which will be divided into two steps.

Step 1. The convergence. For any �xed k � n, set b̀k;n
t = `k

t � `n
t for ` t = Yt ; Z t ; � t .

Note that

jf k �
t; Y n

t ; Z n
t

�
� f n �

t; Y n
t ; Z n

t

�
j � �

�
jY n

t j1fj Y n
t j>n g + jZ n

t j1fj Z n
t j>n g

�
:

Then with the help of Lemma 3.7, we derive that

E
�

sup
s2 [0;T ]

j bY k;n
s j2 +

Z T

0
j bZ k;n

s j2ds
�

� C(�; T )e
2

r 0
( j � k j0

T + j � n j0
T ) E

�� Z T

0

�
jY n

s j1fj Y n
s j>n g + jZ n

s j1fj Z n
s j>n g

�
ds

� 2�
:

(4.9)

Applying Hölder's inequality yields that

E
�� Z T

0

�
jY n

s j1fj Y n
s j>n g + jZ n

s j1fj Z n
s j>n g

�
ds

� 2�

� C(p; T)E
�� Z T

0

�
jY n

s j
4
p 1fj Y n

s j>n g + jZ n
s j

4
p 1fj Z n

s j>n g
�
ds

� p
2
�

�
C(p; T)

np� 2 E
�

sup
0� t � T

jY n
t jp +

� Z T

0
jZ n

s j2ds
� p

2
�

�
C(p; T)M

np� 2 ;

(4.10)

where we have used (4.8) in the last inequality. Since j� n j0T is uniformly bounded, it
follows from (4.9) that

lim
k;n !1

E
�

sup
0� s� T

jY n
s � Y k

s j2 +
Z T

0
jZ n

s � Z k
s j2ds

�
= 0 : (4.11)

Note that

b� k;n
t = bY k;n

0 � E
� bY k;n

t

�
� E

� Z t

0

�
f k �

s; Yk
s ; Z k

s

�
� f n �

s; Yn
s ; Z n

s

��
ds

�
:

Recalling (4.10) and (4.11), we obtain

lim
k;n !1

sup
0� t � T

jb� k;n
t j2

� C(�; T ) lim
k;n !1

E
�

sup
0� s� T

j bY k;n
s j2 +

Z T

0
j bZ k;n

s j2ds +
C(p; T)M

np� 2

�

= 0 :

(4.12)

EJP 28 (2023), paper 103.
Page 17/26

https://www.imstat.org/ejp



Multi-dimensional BSDEs with mean re�ection

Consequently, putting (4.11) and (4.12) together, we can �nd a triple of processes
(Y; Z; � ) 2 S 2(Rm ) � H 2(Rm � d) � V (Rm ) so that

lim
n !1

�
E

�
sup

0� s� T
jY n

s � Ys j2 +
Z T

0
jZ n

s � Zs j2ds
�

+ sup
0� t � T

j� n
t � � t j

�
= 0 : (4.13)

Step 2. The solution. Recalling the de�nition of f n , we have

jf n �
t; Y n

t ; Z n
t

�
� f (t; Yt ; Z t )j � �

�
jY n

t � Yt j + jZ n
t � Z t j

�
+ � (jYt j1fj Yt j>n g + jZ t j1fj Z t j>n g);

which together with (4.13) indicates that

lim
n !1

E
� Z T

0
jf n �

s; Yn
s ; Z n

s

�
� f (s; Ys; Zs)jds

�

� lim
n !1

�
C(�; T )E

�
sup

0� s� T
jY n

s � Ys j2 +
Z T

0
jZ n

s � Zs j2ds
� 1

2

+
C(�; T )

n
E

�
sup

0� s� T
jYs j2 +

Z T

0
jZs j2ds

��

= 0 :

(4.14)

Thus, letting n ! 1 in (4.7) , we conclude that (Y; Z; � ) satis�es equation (1.1) . It
remains to show that the component � satis�es (i) and (ii) in De�nition 3.1, which
is equivalent to prove that (�; � ) is the solution of BSP (D;  ) with � t := E[Yt ] and

 t := E[� +
RT

t f (s; Ys; Zs)ds].
Set

� n
t := E

�
Y n

t

�
and  n

t := E
�
� +

Z T

t
f n �

s; Yn
s ; Z n

s

�
ds

�
for all n � 1:

It is clear that (� n ; � n ) is the solution of BSP (D;  n ) for each n � 1. Recalling (4.8) , (4.13)
and (4.14), we have

sup
n � 1

j� n j0T < 1 and lim
n !1

sup
0� t � T

�
j� n

t � � t j + j n
t �  t j + j� n

t � � t j
�

= 0 ;

which together with Lemma 2.8 indicates the desired result. The proof is complete.

Finally, we are ready to complete the proof of Theorem 3.3.

The proof of Theorem 3.3. It suf�ces to prove the existence. Set

� (n ) := � 1fj � j� n g + E[� 1fj � j>n g]; f (n ) (t; y; z) := f (t; y; z) � f (t; 0; 0)1fj f ( t; 0;0) j>n g; 8n � 1:
(4.15)

It is easy to check that the data (� (n ) ; f (n ) ) satis�es the following condition:

� � (n ) is bounded and E[� (n ) ] = E[� ] 2 D .

� f (n ) (t; 0; 0) is bounded and f n satis�es (H4) .

By Lemma 4.4, there exists a unique square integrable solution (Y (n ) ; Z (n ) ; � (n ) ) to the
following BSDE with mean re�ection:

(
Y (n )

t = � (n ) +
RT

t f (n )
�
s; Y (n )

s ; Z (n )
s

�
ds �

RT
t Z (n )

s dBs + � (n )
T � � (n )

t ; 8t 2 [0; T];

E
�
Y (n )

t

�
2 D; 8t 2 [0; T]:

(4.16)

It is obvious that

jf (n ) (t; 0; 0)j � j f (t; 0; 0)j; E
�
j� (n ) j2

�
� 4E

�
j� j2

�
; n � 1;
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Multi-dimensional BSDEs with mean re�ection

which together with Lemma 3.5 implies

sup
n � 1

E
�

sup
0� t � T

jY (n )
t j2 +

Z T

0
jZ (n )

s j2ds
�

+ sup
n � 1

�
j� (n ) j0T

� 2

� C(r 0; �; �; �; T )E
�
j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
:

(4.17)

The rest of the proof is similar to that of Lemma 4.4. For readers' convenience, we give
the sketch of the proof.

Step 1. The convergence. For any �xed k � n, set b̀(k;n )
t = ` (k )

t � ` (n )
t for ` t =

Yt ; Z t ; � t . Note that

jf (k ) � t; Y (n )
t ; Z (n )

t

�
� f (n ) � t; Y (n )

t ; Z (n )
t

�
j � j f (t; 0; 0)j1fj f ( t; 0;0) j>n g:

Applying Lemma 3.7 yields that

E
�

sup
0� s� T

j bY (k;n )
s j2 +

Z T

0
j bZ (k;n )

s j2ds
�

� C(�; T )e
2

r 0
( j � ( k ) j0

T + j � ( n ) j0
T ) E

�
j� (k ) � � (n ) j2 +

� Z T

0
jf (s; 0; 0)j1fj f (s;0;0) j>n gds

� 2�
:

(4.18)

Since j� (n ) j � j � j + E[j� j], we can use dominated convergence theorem to obtain

lim
n !1

E
�
j� (n ) � � j2 +

� Z T

0
jf (s; 0; 0)j1fj f (s;0;0) j>n gds

� 2�
= 0 : (4.19)

Then it follows from (4.17)–(4.19) that

lim
k;n !1

�
E

h
sup

0� s� T
j bY (k;n )

s j2
i

+ E
� Z T

0
j bZ (k;n )

s j2ds
��

= 0 :

Consequently, in view of the derivation of (4.12), we also have

lim
k;n !1

sup
0� t � T

jb� (k;n )
t j = 0 :

Step 2. The solution. It is clear that there exists a triple of processes (Y; Z; � ) 2
S2(Rm ) � H 2(Rm � d) � V (Rm ) such that

lim
n !1

�
E

h
sup

0� s� T
jY n

s � Ys j2
i

+ E
� Z T

0
jZ n

s � Zs j2ds
�

+ sup
0� t � T

j� n
t � � t j

�
= 0 : (4.20)

By a similar analysis as in the proof of Lemma 4.4 ( Step 2 ), we obtain

lim
n !1

E
� �
�
�
�

Z T

0
jf (n ) � s; Y (n )

s ; Z (n )
s

�
� f (s; Ys; Zs)jds

�
�
�
�

�
= 0 ; (4.21)

which indicates that that (Y; Z; � ) satis�es (1.1) by letting n ! 1 in (4.16) . Moreover, �
satis�es (i) and (ii) in De�nition 3.1. The proof is complete.

A Approximation by penalization method

In this appendix, we shall use a penalization method to construct the unique solution
to the mean re�ected BSDE (1.1) when the re�ection domain is convex inspired by the
results of [ 24 ]. Indeed, the unique solution can be represented as the limit of a sequence
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Multi-dimensional BSDEs with mean re�ection

of penalized mean-�led BSDEs. Moreover, we can remove assumption (H2) in the convex
case.

Assume that the domain D is convex. Then, for any x 2 Rm , there exists a unique
point �( x) 2 D such that

jx � �( x)j = d(x; D ) := inf fj x � yj : y 2 Dg:

The following properties of the inward normal re�ection is important for our subsequent
discussions.

Lemma A.1 ([24, 38]) . (i) For any x 2 Rm , x0 2 D ,



x0 � x; x � �( x)

�
� 0: (A.1)

(ii) For any x; x 0 2 Rm ,



x0 � x; x � �( x)

�
�



x0 � �

�
x0� ; x � �( x)

�
: (A.2)

(iii) There exist a point x0 2 D and a constant � > 0 such that for any x 2 Rm ,



x � x0; x � �( x)

�
� � jx � �( x)j: (A.3)

Since @Dis not regular, let us recall the approximation of D in [ 24 ]: For any � > 0,
there exists a convex regular domain D � (with smooth boundary) such that

sup
x 2 D

d(x; D � ) < � and sup
x 2 D �

d(x; D ) < �:

It is easy to check that jd(x; D ) � d(x; D � )j � � . Denote by � � the projection from Rm

to D � .

Lemma A.2 (Lemma 2.2 and Corollary 2.3 in [ 24 ]) . There exists a constant  > 0 such
that for any � < 1 and x 2 Rm ,

j�( x) � � � (x)j � 
p

� 2 + �d(x; D � );

and
j�( x) � � � (x)j1f d(x;D � )>� g � 

p
�
p

d(x; D � )1f d(x;D � )>� g:

Now, we introduce the following penalized mean-�led BSDEs:

Y n
t = � +

Z T

t
f

�
s; Yn

s ; Z n
s

�
ds� n

Z T

t

�
E

�
Y n

s

�
� �

�
E

�
Y n

s

���
ds�

Z T

t
Z n

s dBs; 0 � t � T: (A.4)

According to the results of [ 10 ] up to a slight modi�cation, the BSDE (A.4) has a unique
solution (Y n ; Z n ) 2 S 2(Rm ) � H 2(Rm � d) under assumptions (H3) and (H4) . Then, we
de�ne

� n
t = � n

Z t

0

�
E

�
Y n

s

�
� �

�
E

�
Y n

s

���
ds; 8t 2 [0; T]: (A.5)

The penalized term � n forces the mean of the solution Y n to stay within the domain D .
We will show that (Y n ; Z n ; � n ) converges as n ! 1 and the limit is the unique solution
to the BSDE (1.1) with mean re�ection.

Lemma A.3. Suppose that assumptions (H3) and (H4) hold. Then,

E
�

sup
0� s� T

jY n
s j2 +

Z T

0
jZ n

s j2ds
�

� C(�; T )E
�
jx0j2 + j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
;

j� n j0T � C(�; T; � )E
�
jx0j2 + j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
:
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Multi-dimensional BSDEs with mean re�ection

Proof. The main idea is from [ 24 ]. For reader's convenience, we give the sketch of the
proof. By a standard calculus, applying Itô's formula to jY n

t � x0j2 yields that for any
t 2 [0; T],

E
�
jY n

t � x0j2 +
Z T

t
jZ n

s j2ds
�

= E
�
j� � x0j2

�
+ 2E

� Z T

t



Y n

s � x0; f
�
s; Yn

s ; Z n
s

��
ds

�

� 2n
Z T

t



E

�
Y n

s

�
� x0; E

�
Y n

s

�
� �

�
E

�
Y n

s

���
ds:

(A.6)

Since the third term in the right-hand side of (A.6) is non-positive according to (A.3) , we
have

E
�
jY n

t � x0j2 +
Z T

t
jZ n

s j2ds
�

� E
�
j� � x0j2

�
+ 2E

�
sup

0� t � T
jY n

t � x0j
Z T

0
jf (s; x0; 0)jds

�

+
�
2� + 2 � 2�

E
� Z T

t
jY n

t � x0j2ds
�

+
1
2

E
� Z T

t
jZ n

s j2ds
�
:

In view of Gronwall's inequality, we obtain

sup
0� t � T

E
�
jY n

t � x0j2
�

� C(�; T )
�

E
�
j� � x0j2

�
+ E

�
sup

0� t � T
jY n

t � x0j
Z T

0
jf (s; x0; 0)jds

��
; (A.7)

and then

E
� Z T

0
jZ n

s j2ds
�

� C(�; T )
�

E
�
j� � x0j2

�
+ E

�
sup

0� t � T
jY n

t � x0j
Z T

0
jf (s; x0; 0)jds

��
: (A.8)

On the other hand, recalling the de�nition of (A.4) and noting that � n is deterministic,
we get

j� n
T � � n

t j2

=

�
�
�
�E

�
� � Y n

t +
Z T

t
f

�
s; Yn

s ; Z n
s

�
ds

� �
�
�
�

2

� C(�; T )
�

jx0j2 + E
�
j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2

+ sup
0� t � T

jY n
t � x0j

Z T

0
jf (s; x0; 0)jds

��
;

(A.9)

where we have used (A.7) and (A.8) in the last inequality. Note that

sup
0� t � T

jY n
t � x0j2

� 4
�

j� � x0j2 +
� Z T

0
jf

�
s; Yn

s ; Z n
s

�
jds

� 2

+ sup
0� t � T

j� n
T � � n

t j2 + sup
0� t � T

�
�
�
�

Z T

t
Z n

s dBs

�
�
�
�

2�
:

It follows from (A.7)–(A.9) and BDG's inequality that

E
h

sup
0� t � T

jY n
t � x0j2

i

� C(�; T )E
�
jx0j2 + j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2

+ sup
0� t � T

jY n
t � x0j

Z T

0
jf (s; x0; 0)jds

�

� C(�; T )E
�
jx0j2 + j� j2 +

� Z T

0
jf (s; 0; 0)jds

� 2�
+

1
2

E
h

sup
0� t � T

jY n
t � x0j2

i
:

(A.10)

Putting (A.8) and (A.10) together, we deduce that the �rst inequality holds.
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