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Thick points of the planar GFF are totally
disconnected for all γ 6= 0*
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Abstract

We prove that the set of γ-thick points of a planar Gaussian free field (GFF) with
Dirichlet boundary conditions is a.s. totally disconnected for all γ 6= 0. Our proof
relies on the coupling between a GFF and the nested CLE4. In particular, we show
that the thick points of the GFF are the same as those of the weighted CLE4 nesting
field introduced in [24] and establish the almost sure total disconnectedness of the
complement of a nested CLEκ, κ ∈ (8/3, 4]. As a corollary we see that the set of
singular points for supercritical LQG metrics is a.s. totally disconnected.
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1 Introduction

The two-dimensional continuum Gaussian free field (GFF) first appeared in the
context of Euclidean quantum field theory to model the free massless bosons [32]. From
a mathematical perspective, the study of this object is motivated by its connections
to many other planar models. For example, its rich interplay with Schramm-Loewner
evolutions (SLE) and conformal loop ensembles (CLE) has led to a deeper understanding
of these objects, and vice versa [12, 28, 23]. Moreover, the two-dimensional GFF is
conjectured, and in some special cases proved, to be the scaling limit of a wide class of
lattice models at criticality, such as the height fluctuation of the dimer model [19], or the
Ginzburg-Landau model [21]. It also arises in the context of random planar maps via
Liouville quantum gravity [16] and plays a major role in the probabilistic construction of
certain conformal field theories, e.g., [8]. In fact, the GFF can be characterized as the
only scale invariant planar field that satisfies a natural domain Markovian property, [3],
which goes some way to explaining this ubiquity.
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Thick points of planar GFF

1.1 Thick points of the GFF and main results

In this work, we study the set of thick points of the GFF with Dirichlet boundary
conditions (Dirichlet GFF). A GFF h with Dirichlet boundary conditions in an open and
simply connected domain D ⊂ C is a centered Gaussian process indexed by smooth
functions that are compactly supported in D. Its covariance is given by, for f, g ∈ C∞c (D),

E[(h, f)(h, g)] =

∫
D×D

f(x)GD(x, y)g(y)dxdy

where GD is the Green function of the Laplacian in D with Dirichlet boundary conditions,
normalised so that ∆GD(x, ·) = −δx(·). As GD(x, x) =∞, the process (h, f)f∈C∞c (D) does
not correspond to integration against a pointwise defined function. It does, however,
almost surely correspond to an element of the Sobolev space H−ε(D), ε > 0, i.e. a
distribution, or generalised function. The conformal invariance of GD implies that h
is itself conformally invariant in the sense that if ϕ : D → D̃ is a conformal map, then
h̃ defined by (h̃, f) := (h, |ϕ′|2(f ◦ ϕ−1)), f ∈ C∞c (D̃), is a Dirichlet GFF in D̃. See, for
example, [35] for proofs of these facts and further background.

For h a Dirichlet GFF in D, the set of thick points of h is a special set of points
at which, loosely speaking, h takes atypically high or low values. As h is not defined
pointwise, this set must be defined by regularisation. Let z ∈ D and r > 0 and denote
by ρzr the uniform measure on ∂B(z, r) where B(z, r) is the ball centered at z of radius r.
We consider the random variable hr(z) := (h, ρzr) which is well-defined, e.g. by taking
limits, since the integral

∫
GD(x, y)ρzr(dx)ρzr(dy) is finite.

In fact, by [17, Proposition 2.1], if h is a GFF with Dirichlet boundary conditions
in the unit disc D := {z ∈ C : |z| < 1}, then (hr(z))r,z has a version such that with
probability one, for every α ∈ (0, 1/2), ζ ∈ (0, 1) and ε > 0 there exists a (random) constant
M = M(α, ζ, ε) <∞ such that for all z, w ∈ D and s, r ∈ (0, 1] with 1/2 < r/s < 2,

|hr(z)− hs(w)| ≤M
(

log
1

r

)ζ |(z, r)− (w, s)|α

rα+ε
. (1.1)

In the rest of the paper, we will only work with this version of the circle average process.
For fixed z ∈ D, a direct calculation shows that the process he−t(z) actually evolves

as a linear Brownian motion in t. In particular, limr→0 hr(z)/ log(1/r) = 0 almost surely.
However, this does not rule out the existence of exceptional points at which this limit is
non-zero: these points are called the thick points of h. It is natural to define, for γ ∈ R,
the set of γ-thick points of h by

Tγ(h) := {z ∈ D : lim
r→0

hr(z)

log 1/r
=

γ√
2π
} (1.2)

where the factor 1/
√

2π comes from our choice of normalisation for the Green function.
Note that since we work with a Hölder continuous version of the circle average process,
as in (1.1), there is an event of probability one on which we can determine the existence
(or not) of the limit in (1.2) for all z in D simultaneously. That is, the set Tγ(h) is well
defined with probability one.

By [17, Corollary 1.4], the set Tγ(h) set is also conformally invariant in the following
sense. If ϕ : D → D̃ is a conformal map, then almost surely for any γ ∈ [−2, 2],
ϕ(Tγ(h)) = Tγ(h̃) where h̃ (defined as the image of h under ϕ as above) is a GFF with
Dirichlet boundary conditions in D̃. Moreover, as shown in [17], if |γ| > 2, this set is
almost surely empty and if γ ∈ [−2, 2], it almost surely has Hausdorff dimension 2− γ2/2.
In particular, if γ = 0, then T0(h) almost surely has Hausdorff dimension 2: 0-thick points
are typical, as discussed above.
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Thick points of planar GFF

Here, we prove another geometric property of Tγ(h). Recall that a set U is said to be
totally disconnected if for each point x ∈ U , the connected component of x in U consists
of just that point x. By [13, Proposition 3.5], a sufficient condition for a set to be totally
disconnected is that this set has Hausdorff dimension strictly less than 1. In particular,
observe that if |γ| >

√
2, then Tγ(h) has almost sure Hausdorff dimension strictly less

than 1, which therefore implies that Tγ(h) is almost surely totally disconnected. One
may wonder whether this property extends to the full range γ ∈ [−2, 2] \ {0}. The
answer to this question is positive and this is the main result of our work. By conformal
invariance, we may restrict ourselves to the case where h is a Dirichlet GFF in D = D

where D := {z ∈ C : |z| < 1} is the complex unit disc.

Theorem 1.1. Let h be a GFF with Dirichlet boundary conditions in D. Then almost
surely, Tγ(h) is totally disconnected for all γ ∈ [−2, 2] \ {0}.

Theorem 1.1 is stated for a GFF with Dirichlet boundary conditions in D. However,
one can deduce from this result that a similar statement holds for a GFF with other
boundary conditions. For example, if f is a distribution on the boundary of D such that
its harmonic extension to the interior of D, denoted by F , exists, then almost surely, for
any γ ∈ [−2, 2] \ {0}, the set of thick points of h+ F is totally disconnected, where h is a
GFF with Dirichlet boundary conditions in D. This is simply because for any ε > 0, h+ F

is absolutely continuous with respect to h when the fields are restricted to (1− ε)D.
Further, combined with the decomposition of [18, Theorem A], Theorem 1.1 also

yields the following corollary on the geometry of the set of thick points of a certain class
of log-correlated Gaussian fields, where thick points of such fields are again defined via
circle averages.

Corollary 1.2. Let X be a centered Gaussian process with covariance kernel CX and
assume that X is an element of H−sloc (D) for some s > 0. Assume also that CX ∈ Lloc1(D×D)

and that for some ε > 0, CX − GD ∈ H2+ε
loc (D). Then almost surely, Tγ(X) is totally

disconnected for all γ ∈ [−2, 2] \ {0}.
The proof of Theorem 1.1 is based on a coupling of the Dirichlet GFF with a nested

version of CLE4. This coupling, and the construction of nested CLEκ, will be described
precisely below, but let us simply say for now that it gives rise to a different, but natural,
definition of the set of γ-thick points for the GFF, Φγ(h), defined via its so-called weighted
CLE4 nesting field, as studied in [24, 25] and that we recall in equation (1.7) below. It
will follow rather immediately from the total disconnectedness of the complement of
nested CLE4 (the result of Theorem 1.5 of this paper) that Φγ(h) is almost surely a totally
disconnected set. Theorem 1.1 is then a consequence of the following result, that is of
independent interest, and can be thought of as a universality statement for different
notions of GFF-thick points. Results of this kind have also been obtained in [7] where
it was shown that the thick points of the GFF defined via various approximations of
the field – convolution with a smooth mollifier, white noise approximations and integral
cut-offs of the covariance – agree, provided the approximations satisfy some regularity
and second moment assumptions.

Theorem 1.3. Let h be a GFF in D with Dirichlet boundary conditions. Then, with
probability one, Tγ(h) ≡ Φγ(h) for every γ ∈ [−2, 2] \ {0}.

1.2 Application to Liouville quantum gravity

The exponential of the GFF first appeared in the physics literature in the context
of Euclidean quantum field theories [15], where it is used to describe the exponential
interaction. It has also been used in the description of fluctuating strings, and in relation
to 2D toy models of quantum gravity [27]. The exponential of the GFF now plays
a major role in random conformal geometry, where it is used to give a probabilistic
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Thick points of planar GFF

construction of Liouville Conformal field theory (LCFT), solve random welding problems
and investigate the continuum limit of random planar maps, to mention only a few
applications. One of the most important objects in these contexts is the Liouville
quantum gravity (LQG) measure. It depends on a parameter γ ∈ (0, 2) and can informally
be defined as µγ(dz) = eγh(z)dz where h is a Dirichlet GFF. As h is not defined pointwise,
the rigorous construction of µγ involves a regularisation procedure. When performed
appropriately, it has been shown that this yields a limiting (atomless) measure for every
γ ∈ (0, 2); see [6] for an elementary exposition. This measure is intimately connected
to thick points of the underlying field. Indeed, if one samples a point according to the
normalised LQG measure µγ with parameter γ ∈ (0, 2), then this point is almost surely a
γ-thick point of the field used to construct µγ .

Another object of interest in the context of Liouville quantum gravity (and thus ran-
dom planar maps) is the so-called LQG metric which can be thought of as a conformal
perturbation of the Euclidean metric by the exponential of the GFF. Although the con-
struction of the LQG metric is more involved than that of µh, it has now been succesfully
carried out in a series of works, [9, 14, 10, 11].

For a parameter ξ > 0, the LQG metric in a disk D is formally defined by

Dξ
h(z, w) = inf

P :z→w

∫ 1

0

eξh(P (t))|P ′(t)|dt, (1.3)

where the infimum is over all continuous paths from z to w inside D and h is a GFF. The
definition (1.3) is purely formal as h is not defined pointwise. To properly construct the
LQG metric, one defines rescaled approximations of Dξ

h using a regularised version of h
and then shows tightness of these approximations in an appropriate topology. The final
step is to prove that any subsequential limit must satisfy a natural set of axioms that
uniquely characterises the metric.

The properties of the LQG metric crucially depend on the parameter ξ in (1.3). In
particular, by [10, 26], there exists a unique ξcrit > 0 such that if ξ > ξcrit, then the
metric with parameter ξ almost surely does not induce the Euclidean topology on D.
Instead, such a metric, called supercritical, admits a set of singular points: these points
are at infinite distance from every other point. We denote by Sξh(D) this set of singular

points of Dξ
h, that is

Sξh(D) := {z ∈ D : Dξ
h(z, w) =∞ ∀w ∈ D \ {z}}.

This set is intimately related to thick points of h. Indeed, [26, Proposition 1.11] shows
that there exists Q(ξ) ∈ (0, 2) such that

Sξh(D) = {z ∈ D : lim sup
r→0

hr(z)

log 1/r
> Q(ξ)} almost surely.

A consequence of the proof of Theorem 1.1 is the almost sure total disconnectedness of
Sξh(D).

Proposition 1.4. Let ξ > ξcrit. Then Sξh(D) is almost surely totally disconnected.

1.3 Outline of the proof and further results

Let us now discuss the proof of Theorem 1.1. As mentioned above, it relies on a
coupling of a nested CLE4, Γ, as the set of so-called level lines of a GFF h with Dirichlet
boundary conditions. Non-nested CLEκ are a family of probability distributions on
ensembles of non-nested loops (closed curves) in open and simply connected domains
of the complex plane [30, 31]. They are well-defined for κ ∈ (8/3, 8), and connected
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to the Schramm–Loewner evolution with parameter κ via the so-called branching tree
construction [30]. The geometry of the loops depends on the value of κ: when κ ∈ (8/3, 4],
these loops are almost surely simple loops that do not intersect each other or the
boundary of D; on the contrary, when κ ∈ (4, 8), they are almost surely non-simple but
non-self-crossing and they may touch (but not cross) the boundary of D and each other.
A nested CLEκ is constructed from a non-nested CLEκ by iterating the construction of
non-nested CLEκ in each loop. That is, when κ ∈ (8/3, 4], at each iteration, one constructs
a non-nested CLEκ in the interior of each loop drawn at the previous iteration, while
when κ ∈ (4, 8), one constructs a non-nested CLEκ in the interior of each connected
component of each loop drawn at the previous iteration.

Here and in the sequel, when we say that Γ is a non-nested or a simple CLEκ, Γ

refers to the closed set defined by the closure of the union of all the loops. Iteratively,
CLEκ nested up to level n is defined by Γ(n) = Γ(n−1) ∪

⋃
U Γ(U) (which is equal to

Γ(n−1) ∪
⋃
U Γ(U) and thus also closed) and where in the countable union we have

iterated independent CLEs in each connected component U of D \Γ(n−1). In other words,
Γ(n) corresponds to the set of points that are surrounded by strictly fewer than n loops
(including none at all). Finally, when we say that Γ is a nested CLEκ, we mean the union
of all the Γ(n) – this corresponds to the set of points in D that are not surrounded by
infinitely many loops. In this union we do not take the closure as that would just give the
full domain. There are many ways to put a topology on the collection of nested loops to
obtain a metrizable space (for example, extending the definition in [31, Section 2.1] to
also keep track of the nesting generation).

An important property of non-nested and nested CLEκ is their conformal invariance
in law: if ϕ : D → D̃ is a conformal map between two open and simply connected
domains of C and Γ is a non-nested, resp. nested, CLEκ in D, then ϕ(Γ) has the law of a
non-nested, resp. nested, CLEκ in D̃.

The GFF with Dirichlet boundary conditions and nested CLE4 are deeply connected,
[22]. As this result is at the core of the proof, let us now provide some more details; see
also [5, Section 4]. Set λ :=

√
π/8 and let h be a Dirichlet GFF in D. Then a non-nested

CLE4 Γ̃ in D can be coupled to h as a so-called local set [28, 23]. The key point is that in
this coupling, conditionally on Γ̃, we can decompose

h =
∑
j

hOj +H

where the hOj are independent GFFs with Dirichlet boundary conditions in each simply
connected component Oj ofD\Γ̃ and H is a random distribution inD that is almost surely
constant when restricted to each Oj , with P(H = −2λ in Oj) = P(H = 2λ in Oj) = 1/2

independently for each j. Moreover, the fields hOj and H are independent. This coupling
can then be iterated in each Oj with respect to the field hOj and this eventually gives
rise to a coupling between h and a nested CLE4 Γ in D.

Another way of defining this coupling is as follows. Let Γ be a nested CLE4 in D. For
n ≥ 1, let Loop(n)(Γ) denote the set of loops drawn at iteration n of Γ and for z ∈ D, let
`nz be the loop of Loop(n)(Γ) surrounding z. Define also, for z ∈ D,

Hn(z) =

n∑
j=1

ξ`jz (1.4)

where (ξ`jz )1≤j≤n are independent and identically distributed random variables, one for
each loop surrounding z until iteration n, with for 1 ≤ j ≤ n, P(ξ`jz = −2λ) = P(ξ`jz =

2λ) = 1/2. As n → ∞, the function z 7→ Hn(z) almost surely converges in the space
of distributions to a GFF h with Dirichlet boundary conditions in D, [22, 24, 5]. In the

EJP 28 (2023), paper 85.
Page 5/24

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP975
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Thick points of planar GFF

resulting coupling, for n ≥ 1, conditionally on all the loops and their labels up to iteration
n, the field h can be decomposed as

h =
∑
j

hOj +Hn

where the hOj are independent Dirichlet GFFs in the interior Oj of each loop of
Loop(n)(Γ), and Hn is the function defined in (1.4). The fields hOj and Hn are indepen-
dent and note that Hn takes values in {−2nλ, . . . , 2nλ} and is constant when restricted
to each Oj . Moreover, it can be shown that Γ and the labels (ξ`, ` ∈ Loop(Γ)) of the loops
of Γ are deterministic functions of the field h [5].

In view of this coupling, heuristically, points in Γ should almost surely not be thick
points of h. Therefore, understanding the connectedness properties of Tγ(h) amounts to
understanding those of the complement of the nested CLE4. Provided this heuristic can
be made precise, the other key ingredient needed to prove Theorem 1.1 is the following
result, which asserts that the complement of a nested CLE4 is totally disconnected. In
fact, since there is no extra work involved, we prove the result for arbitrary CLEκ with
κ ≤ 4. Here, we emphasise that the complement of a nested CLEκ in D is D \ ∪nΓ(n),
where for n ∈ N∗, Γ(n) is defined as in the begging of this section. In words, the
complement of Γ is the set of points that are surrounded by infinitely many loops.

Theorem 1.5. Let κ ∈ (8/3, 4] and let Γ be a nested CLEκ in D. Then the complement of
Γ is almost surely totally disconnected.

The proof of Theorem 1.5 uses the coupling between a non-nested CLEκ and a
Brownian loop soup with intensity c = c(κ) [31] and this is why the result is stated only
for κ ∈ (8/3, 4]. Section 2 will be dedicated to its proof.

With Theorem 1.5 in hand, the proof of Theorem 1.1 reduces to showing that thick
points of the Dirichlet GFF must be contained in the complement of its coupled nested
CLE4 loops. We will in fact show something slightly stronger, as already explained
informally in Theorem 1.3. Namely, that the set of thick points agrees with the set of
points where Hn, defined in (1.4), grows atypically fast. In particular this means that it
cannot include any points on the nested CLE4 loops themselves.

Let us now define this latter set more precisely. It is one example of the set of “thick
points” of a so-called weighted CLEκ nesting field, introduced and studied in [25, 24].
So let us make a small detour to explain the general construction. Let κ ∈ (8/3, 8) and
let Γ be a nested CLEκ in D. Fix a probability distribution µ on R with mean 0 and finite
second moment. Conditionally on Γ, let (ξ`)`∈Γ be i.i.d random variables with distribution
µ. The associated (truncated) weighted nesting field is defined as, for z ∈ D and r > 0,

Sr(z) :=
∑

`∈Γr(z)

ξ` (1.5)

where Γr(z) is the set of loops in Γ that surrounds the ball B(z, r). In particular, if the
point z lies on one of the loops of Γ, then Sr(z) will be constant above some finite value
of r. Comparing to above, e.g. around (1.4), we see that in the case where κ = 4 and µ is
Rademacher, the limiting field is just a multiple of the GFF. As shown in [24], this object
has a limit more generally as r → 0: for any fixed δ > 0, there exists a H−2−δ

loc (D)–valued
random variable S such that for all f ∈ C∞c (D), almost surely limr→0〈Sr, f〉 = 〈S, f〉. As
in the case of the Gaussian free field, S is not defined pointwise but does admit a special
set of points, called thick points, at which loosely speaking, S takes atypically high or
low values. More precisely, let α ∈ R. The set of α-thick points naturally associated to S
is defined to be

Φµα(Γ) := {z ∈ D : lim
r→0

Sr(z)

log 1/r
= α}. (1.6)
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The set of values of α for which Φµα(Γ) is almost surely non-empty depends on κ

and µ. When Φµα(Γ) is almost surely non-empty, its almost sure Hausdorff dimension is
given in terms of the Fenchel-Legendre transforms of µ and of the law of the difference
in log conformal radii between two successive CLEκ loops [25]. Moreover, Φµα(Γ) is
conformally invariant, in the sense that if ϕ is a conformal map from D to another simply
connected domain, then Φµα(ϕ(Γ)) = ϕ(Φµα(Γ)) almost surely. The next result, which
follows almost immediately from Theorem 1.5, says that this set is almost surely totally
disconnected when κ ∈ (8/3, 4] and α 6= 0. By conformal invariance, as before, we may
restrict ourselves to D = D.

Corollary 1.6. Let κ ∈ (8/3, 4] and let Γ be a nested CLEκ in D. Let µ be a probability
distribution on R such that µ has 0 mean and finite second moment. Then

P(Φµα(Γ) is totally disconnected ∀α ∈ R \ {0}) = 1.

To complete the proof of Theorem 1.1, observe that as mentioned in the discussion
before Theorem 1.5 describing the coupling of a Dirichlet GFF h with a nested CLE4, h
is the limiting weighted nesting field associated to the CLE, with labels given by the ξljzs
from (1.4). In other words, if for z ∈ D and r > 0 we set

Sr(z) =
∑

`∈Γr(z)

ξ
l
n(`)
z

= HJ∩z,r−1(z) (1.7)

where n(`) is such that ` ∈ Loop(n(`))(Γ) and J∩z,r is the nesting depth of the first loop in
Γ intersecting B(z, r), then z → Sr(z) defines a weighted nesting field. In what follows,
we refer to this special instance of (Sr(z))r,z as the weighted CLE4 nesting field coupled
to h. We write Φγ(h) for the associated set of γ-thick points as in (1.6). Observe that
Corollary 1.6 implies that Φγ(h) is almost surely totally disconnected for all γ ∈ R \ {0}
since the distribution of the labels in this case is given by µ({2λ}) = µ({−2λ}) = 1/2,
which is indeed centered with finite second moment.

Given Corollary 1.6, the following relation between h and S will allow us to conclude
the proof of Theorem 1.1. Here and in the sequel, we set for z ∈ D and r > 0,

h̃r(z) =
hr(z)

log 1/r
and S̃r(z) =

Sr(z)

log 1/r
, (1.8)

where as usual, we work with the jointly Hölder continuous version of the circle average
process (hr(z))r,z described in the discussion around (1.1).

Theorem 1.7. Let h be a GFF with Dirichlet boundary conditions in D, let (hr(z))r,z be
its circle average field and let (Sr(z))r,z be its coupled weighted nesting CLE4 field. Then

sup
z∈D

lim sup
r→0

|h̃r(z)− S̃r(z)| = 0 almost surely.

In particular, Theorem 1.7 implies Theorem 1.3.
Finally, from Theorem 1.7, we deduce a side result about the thickness of a special

class of local sets for the GFF, called bounded-type local sets (BTLS), which were
introduced in [5] and further studied in [4]. Recall that if A is a local set coupled to a
GFF h, then conditionally on A, h = hA +HA where hA is a GFF with Dirichlet boundary
conditions in D \A and HA is almost surely a harmonic function when restricted to D \A
[35, Section 4.2]. BTLS are then defined as follows. Let h be a Dirichlet GFF in an open
and simply connected domain D ⊂ C. A set A is said to be a BTLS coupled to h if

• there exists a constant K > 0 such that almost surely |HA| ≤ K in D \A;

• A is a thin local set, that is for all f ∈ C∞c (D), conditionally on A, (h, f) = (hA, f) +∫
D\AHA(x)f(x)dx;
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• almost surely each connected component of A that does not intersect ∂D has a
neighbourhood that does not intersect any other connected component of A.

The two-valued sets of a GFF h are particular examples of BTLS: for a, b > 0 such that
a + b ≥ 2λ, the two-valued set A−a,b is the only local set coupled to h such that the
corresponding harmonic function HA−a,b

takes values in {−a, b} when restricted to the
complement of A−a,b [4].

Corollary 1.8. Let h be a GFF in D with Dirichlet boundary conditions and let A be a
BTLS coupled to h. Then, for any γ ∈ [−2, 2] \ {0},

{z ∈ D : lim
r→0

hr(z)

log 1/r
=

γ√
2π
, z ∈ A} = ∅ almost surely.

This paper is structured as follows. In Section 2, we prove Theorem 1.5 and Corol-
lary 1.6. Then, in Section 3, we turn to the proof of Theorem 1.7, thus completing the
proof of Theorem 1.1. This section ends with the proofs of Proposition 1.4, Corollary 1.2
and Corollary 1.8.

2 The complement of nested CLE is almost surely totally discon-
nected

Let κ ∈ (8/3, 4] and let Γ be a nested CLEκ in D. For n ∈ N, we say that a loop ` ∈ Γ

has depth n if it is surrounded by exactly n− 1 loops of Γ and we denote by Loop(n)(Γ)

the set of such loops. We set Γ(1) = ∪`∈Loop(1)(Γ)` and iteratively define

Γ(n+1) = Γ(n) ∪ ∪`∈Loop(n+1)(Γ) `.

Notice that this corresponds exactly to CLE nested up to level n + 1, as explained in
Section 1.3. The following properties of nested CLEκ, κ ∈ (8/3, 4], were established
in [31]. For each n, D \ Γ(n) almost surely consists of infinitely many open and simply
connected components. These components are the interiors (int (`j))j of the loops of
Loop(n)(Γ). In particular, their boundaries are almost surely continuous simple loops in
D. These loops almost surely do not intersect each other and if `1 is a loop of depth n
and `2 a loop of depth n+ 1 surrounded by `1, then `2 almost surely does not intersect `1.

In the sequel, we will be interested in estimating the number of CLE loops that cannot
be circumscribed by a circle of radius r > 0. We say that a loop ` can be circumscribed
by a circle of radius r if there exists z ∈ C such that Int(`) is contained in B(z, r). If
D ⊂ C is a simply connected domain, U a subset of D and r > 0, we denote by Nr(U) by
the number of connected components of D \ U that cannot be circumscribed by a circle
of radius r. In particular, if Γ̃ is a non-nested CLEκ in D and x > 0, Nr(Γ̃) stands for the
number of connected components D \ Γ̃, or equivalently the number of loops in Γ̃, that
cannot be circumscribed by a circle of radius x. Notice that by local finiteness of CLE,
there are almost surely only finitely many such loops in Γ̃.

Theorem 1.5 will follow from the following lemma.

Lemma 2.1. Let κ ∈ (8/3, 4] and let Γ be a nested CLEκ in D. For any ε > 0, there almost
surely exists (a random) n ∈ N such that Nε(Γ(n)) = 0.

Assuming this lemma, it is straightforward to deduce Theorem 1.5.

Proof of Theorem 1.5 given Lemma 2.1. Let κ ∈ (8/3, 4] and let Γ be a nested CLEκ in
D. Observe that if the complement of Γ in D is not totally disconnected, then there exists
ε > 0 such that a connected component of the complement of Γ has diameter greater
than ε. By Jung’s theorem, if a set K ⊂ C has diameter d, then there exists a closed ball
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with radius r satisfying r ≤ d/
√

3 that contains K. It follows from this that if a connected
component of the complement of Γ cannot be circumscribed by a circle of radius ε/

√
3,

then its diameter d satisfies d > ε. We thus see that the event that the complement of
Γ is not totally disconnected is contained in the event that there exists ε > 0 such that
a connected component of the complement of Γ cannot be circumscribed by a circle of
radius ε/

√
3. Therefore,

P(the complement of Γ is not totally disconnected) ≤ P(∃ε > 0 : Nε/
√

3(∪m∈N∗Γ(m)) 6= 0)

= 0

where the last equality follows from Lemma 2.1 and the fact that Nε/
√

3(∪m∈N∗Γ(m)) ≤
Nε/
√

3(Γ(n)) for any fixed n. This completes the proof of Theorem 1.5 assuming Lemma 2.1.

We now turn to the proof of Corollary 1.6, which is a consequence of Theorem 1.5
and of the definition of the set of thick points of a weighted nesting CLEκ field.

Proof of Corollary 1.6. For any a > 0, let Φµ,+a := {z ∈ D : lim infr→0 S̃r(z) ≥ a}. Observe
that by definition, for any z ∈ ∪n∈N∗Γ(n), lim infr→0 S̃r(z) = 0. Hence, we have that
Φµ,+a ⊆ D \ ∪n∈N∗Γ(n). It therefore follows from Theorem 1.5 that the event A+

a =

{Φµ,+a is totally disconnected} has probability one. The same conclusion holds if we
define, for any a < 0, A−a analogously, with Φµ,−a := {z ∈ D : lim supr→0 S̃r(z) ≤ a}.
Writing the event in the statement of the theorem as ∪n∈N∗A+

1/n ∪A
−
1/n, we deduce the

result.

We now turn to the proof of Lemma 2.1. The idea is to encode the large loops of
a nested CLEκ, κ ∈ (8/3, 4], into a tree. For ε > 0, the vertices of this tree will be the
loops of Γ that cannot be circumscribed by a circle of radius ε (and two vertices will be
connected by an edge if and only if the two corresponding loops differ by exactly one
level of nesting and one surrounds the other). Showing Lemma 2.1 will then amount
to showing that this tree almost surely has finite depth. To carry out this strategy, we
will need to estimate quantities of the type E[Nr(Γ̃)], where Γ̃ is a non-nested CLEκ and
r > 0. This requires us to understand how large loops in a non-nested CLEκ are formed,
and this is where the restriction to κ ∈ (8/3, 4] plays a crucial role: we relate large loops
in a non-nested CLEκ to crossing events in a Brownian loop-soup of intensity c(κ). This
strategy would not allow us to deal with the case κ ∈ (4, 8) as the Brownian loop-soup
construction of non-nested CLEκ does not extend to these values of κ [31]. The following
two auxiliary lemmas provide the properties of E[Nd(Γ̃)], d > 0, that will be instrumental
in the proof of Lemma 2.1.

Lemma 2.2. Let κ ∈ (8/3, 4]. There exists 0.95 < R = R(κ) < 1 such that the following
holds. For each p ∈ N∗, there exists a constant Cp = Cp(κ) <∞ such that if D ⊆ D is an
open and simply connected domain that cannot be circumscribed by a circle of radius R,
and Γ̃D is a non-nested CLEκ in D, then

E[NR(Γ̃D)p] ≤ Cp.

In particular, the constant Cp does not depend on D.

Proof. The proof relies on the loop-soup construction of the non-nested CLEκ, κ ∈ (8/3, 4].
Let κ ∈ (8/3, 4]. By Theorem 1.6 in [31], there exists a unique c = c(κ) ∈ (0, 1] such that
a non-nested CLEκ Γ̃ can be constructed from a Brownian loop-soup L with intensity
c. More precisely, if D is an open and simply connected domain in C, we can couple a
non-nested CLEκ Γ̃D in D and a Brownian loop-soup LD in D with intensity c in D in such

EJP 28 (2023), paper 85.
Page 9/24

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP975
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Thick points of planar GFF

a way that the loops of Γ̃D correspond to the outermost boundaries of the outermost
clusters of loops in LD. Using this coupling, we are going to show that there exists
R = R(κ) such that for any D ⊂ D, the probability that there exist j loops with that
cannot be circumscribed by a circle of radius R in a non-nested CLEκ Γ̃D in D decays
exponentially fast, uniformly in D ⊂ D. From this, we will be able to show that the
moments of NR(Γ̃D) are uniformly bounded in the domain D ⊂ D.

Consider the coupling (Γ̃D,LD) described above with D = D. For w ∈ ∂D and
0 < r1 < r2 < 1, we let

A(w, r1, r2) = {z ∈ D : r1 < |z − w| < r2}

denote the “boundary annulus” centered at w (on the boundary of D) with inner radius
r1 and outer radius r2. For k ∈ N∗ and a loop-soup L, we also define the event

C(L; k,w, r1, r2) = {there exist k disjoint chains of loops in L that cross A(w, r1, r2)}

where a chain of loops in L is defined as a sequence (`k)k of loops in L such `k ∩ `k+1 6= ∅
for each k. By the results in [31], the loops of LD almost surely do not intersect ∂D. This
implies that for any r2 < 1 and w ∈ ∂D,

P(C(LD; 1, w,
1

n
, r2))→ 0 as n→∞. (2.1)

Indeed, the sequence C(LD; 1, w, 1
n , r2)n≥1 is a decreasing sequence of events and if the

intersection over n occurs, there must exist a cluster of loops in LD whose closure
intersects the boundary of D. By [31, Lemma 9.4], this event has zero probability.
Since limn→∞P(C(LD; 1, w, 1

n , r2)) = P(limn→∞ C(LD; 1, w, 1
n , r2)), we deduce that the

convergence (2.1) holds.
Let us now fix r2 < 1 and w ∈ ∂D. From the previous convergence, we deduce

that there exists r1 ∈ (0, r2) such that P(C(LD; 1, w, r1, r2)) < 1. Moreover, by conformal
(rotational) invariance of the Brownian loop-soup, r1 does not depend on w. Hence,
we may set pD := P(C(LD; 1, w, r1, r2)), for this particular choice of r1, r2 (and arbitrary
w ∈ ∂D).

With r1 and r2 as above, we are now going to surround ∂D from the inside of D by a
collection A(D) of boundary annuli of inner radius r1 and outer radius r2. Pick a point
w1 ∈ ∂D and add A(w1, r1, r2) to A(D). Then let w2 be the most clockwise intersection
point of ∂B(w1, r1) with ∂D. Add A(w2, r1, r2) to A(D). Continue this procedure until the
newly added boundary annulus intersects the inner radius of A(w1, r1, r2). The obtained
collection A(D) = {A(wj , r1, r2)}j contains O(r−1

1 ) boundary annuli and is such that any
boundary point of D lies inside the inner circle of some A(wj , r1, r2) in A(D).

Let h denote the distance between ∂D and the intersection points of the inner circles
of any two adjacent boundary annuli in A(D), see Figure 1. By construction, h is the
same for any pair of adjacent boundary annuli. Set R = 1

2 max{2− h, 1.9, 2r2}.
Let D ⊂ D be an open and simply connected domain such that D cannot be circum-

scribed by a circle of radius R. We define the following covering of ∂D

A(D) := {A = A(w, r1, r2) ∈ A(D) : B(w, r1) ∩D 6= ∅}. (2.2)

Notice that |A(D)| ≤ |A(D)|. We couple a non-nested CLEκ Γ̃D in D and a Brownian
loop-soup of intensity c(κ) in such a way Γ̃D corresponds to the outermost boundaries
of the outermost clusters of loops in LD. Observe that a loop in Γ̃D which cannot be
circumscribed by a circle of radius R must cross one of the boundary annuli in A(D).
Indeed, we defined R in such a way that loops that do not cross the boundary annuli in
A(D) are either circumscribed by ∂B(0, R) or by ∂B(w,R) for some w ∈ ∂D such that
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h

Figure 1: On the left, the unit disk and a subset of the cover A(D). The red circles have
radius r2 and the blue circles radius r1. On the right, we have drawn the distance h and
the dotted circle is ∂B(0, R). The loops that are represented are examples of loops that
cannot be circumscribed by the dotted circle or one of the boundary annuli of A(D) that
we have drawn.

A(w, r1, r2) ∈ A(D). Since, in the coupling, the loops of Γ̃D are the outer boundaries
of the outermost clusters of loops of LD, the existence of a loop in Γ̃D that cannot be
circumscribed by a circle of radius R implies that a chain of loops in LD crosses a
boundary annulus in A(D). Moreover, if there are j disjoint CLE4 loops in Γ̃D, then there
must j disjoint chains of loops in LD: these j disjoint CLE4 loops correspond to the outer
boundaries of j disjoint outermost clusters of LD. To upper bound the probability that
there exist such j loops in ΓD that cannot be circumscribed by a circle of radius R, we
observe that for j ≥ 1, by the pigeon hole principle,

{NR(ΓD) ≥ j} ⊂ {∃A ∈ A(D) such that C(LD; d j

|A(D)|
e, w, r1, r2) occurs}.

Therefore, for j ≥ 1, by a union bound,

P(NR(Γ̃D) ≥ j) ≤ P
( ⋃
A=A(w,r1,r2)∈A(D)

C(LD; d j

|A(D)|
e, w, r1, r2)

)

≤
∑

A=A(w,r1,r2)∈A(D)

P

(
C(LD; d j

|A(D)|
e, w, r1, r2)

)
. (2.3)

To upper bound the probabilities appearing on the right hand side of (2.3), we apply
the BK inequality for Poisson point processes [34]. This allows us to upper bound the
probability that there exist k crossings of a given boundary annulus by disjoint chains of
loops of LD as follows. Given a realisation ω of the Brownian loop soup, we say that two
increasing events A and B occur disjointly, and denote this event by A ◦B, if there exist
two disjoint subsets K = K(ω), L = L(ω) of D such that ωK ∈ A and ωL ∈ B, where ωK ,
respectively ωL, denotes the realisation ω restricted to K, respectively to L. The BK
inequality then states that P(A ◦B) ≤ P(A)P(B). For k ≥ 1, the event C(LD; k,w, r1, r2)

corresponds to the disjoint occurrence of k increasing events:

C(LD; k,w, r1, r2) = C(LD; 1, w, r1, r2) ◦ · · · ◦ C(LD; 1, w, r1, r2).

Therefore, for any w ∈ ∂D and k ∈ N∗,

P(C(LD; k,w, r1, r2)) ≤ P(C(LD; 1, w, r1, r2))k = e−cDk (2.4)
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where we have set cD := − log(P(C(LD; 1, w, r1, r2))).
It is also not hard to see that

cD ≥ cD = − log pD > 0. (2.5)

Indeed, this follows from the fact that LD and LD can be coupled so that LD ⊆ LD
almost surely (due to the restriction property of the Brownian loop measure [20]). In
this coupling, if A = A(w, r1, r2) ∈ A(D), then the existence of a chain of loops in LD
that crosses A implies the existence of a chain of loops in LD that crosses A. Therefore

P(C(LD; 1, w, r1, r2)) ≤ P(C(LD; 1, w, r1, r2)) = pD,

which is equivalent to (2.5).
Going back to (2.3), the inequality (2.4) yields

P(NR(Γ̃D ≥ j)) ≤ |A(D)| exp

(
− cD

⌈
j

|A(D)|

⌉)
. (2.6)

The statement of Lemma 2.2 follows from this. Indeed, for p ∈ N∗,

E[NR(Γ̃D)p] =
∑
k≥1

kpP(Nd(Γ̃D) = k)

≤
∑
k≥1

kpP(Nd(Γ̃D) ≥ k)

≤
∑
j≥0

(j+1)|A(D)|∑
k=j|A(D)|+1

kp|A(D)|e−cD(j+1)

where we used (2.6) in the last inequality. Upper bounding |A(D)| by |A(D)| and
remembering (2.5), we obtain that

E[NR(Γ̃D)p] ≤ |A(D)|e−cD
∑
j≥0

(j + 1)p|A(D)|p+1e−cDj

≤ |A(D)|p+2e−cD
∑
j≥0

(j + 1)pe−cDj ,

and the series on the right-hand side is finite. This concludes the proof of Lemma 2.2.

The uniform bound on the moments of NR(Γ̃D) established in Lemma 2.2 allows us
to apply Hölder inequality to derive the following result. As one may guess, this result
will be the key to show the almost sure finiteness of the tree constructed in the proof of
Lemma 2.1.

Lemma 2.3. Let κ ∈ (8/3, 4] and R = R(κ) be as given by Lemma 2.2. Then there exists
R0 = R0(κ) ∈ [R, 1) and c < 1 such that the following holds. Let D ⊆ D be an open and
simply connected domain such that D cannot be circumscribed by a circle of radius R.
Let Γ̃D be a non-nested CLEκ in D. Then

E[NR0(Γ̃D)] ≤ c < 1.

In particular, c < 1 does not depend on D.

Proof. Let D ⊂ D be an open and simply connected domain such that D cannot be
circumscribed by a circle of radius R where R is as in Lemma 2.2. By Hölder’s inequality,
for any r ∈ [R, 2), we have

E[Nr(Γ̃D)] = E[Nr(Γ̃D)I{Nr(Γ̃D)>0}] ≤ E[Nr(Γ̃D)2]1/2P(Nr(Γ̃D) > 0)1/2.
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Moreover, since the random variables (Nx(Γ̃D)), x ∈ (0, 1], are non-increasing, we can
further write, for any r ∈ [R, 2)

E[Nr(Γ̃D)] ≤ E[NR(Γ̃D)2]1/2P(Nr(Γ̃D) > 0)1/2. (2.7)

By Lemma 2.2, there exists a constant C2 <∞, independent ofD, such thatE[NR(Γ̃D)2] ≤
C2. If C2 < 1, from (2.7) and the trivial bound P(Nr(Γ̃D) > 0) ≤ 1, we obtain that any
r ∈ [R, 1), E[Nr(Γ̃D)] < 1 and the lemma follows with R0 = R. If C2 ≥ 1, (2.7) yields that
for any r ∈ [R, 1)

E[Nr(Γ̃D)] ≤
√
C2P(Nr(Γ̃D)) > 0)1/2. (2.8)

We next claim that for any r ∈ [R, 1),

P(Nr(Γ̃D)) > 0) ≤ P(Nr(Γ̃D)) > 0). (2.9)

This is easily seen by using a coupling (LD, Γ̃D,LD, Γ̃D) where (LD,LD) are coupled as
in the explanation to the inequality (2.5), and both (LD, Γ̃D) and (LD, Γ̃D) are coupled as
in the proof of Lemma 2.2. In this coupling, for r ∈ [R, 1),

• if Nr(Γ̃D) = 1, then the outermost cluster of loops in LD whose outer boundary
corresponds to this loop in Γ̃D remains the same or gets larger when constructing
LD. Moreover, during the construction of LD, outermost clusters of loops that
cannot be circumscribed by a circle of radius r may appear.

• if Nr(Γ̃D) ≥ 2, then the corresponding outermost clusters of loops in LD may merge
together during the construction of LD. In the worst case, all such clusters merge.
But the single cluster thus formed still cannot be circumscribed by a circle of radius
r.

The above reasoning then implies (2.9). Using this in (2.8), we thus obtain that for any
r ∈ [R, 1)

E[Nr(Γ̃D)] ≤
√
C2P(Nr(Γ̃D)) > 0)1/2. (2.10)

The lemma will therefore follow if we can show that there exists R0 ∈ [R, 1) such that
P(NR0(Γ̃D) > 0) < 1/C2. But this simply follows from the fact that

P(Nx(Γ̃D) > 0) ↓ 0 as x ↑ 1.

With Lemma 2.3 at hand, we can now turn to the proof of Lemma 2.1.

Proof of Lemma 2.1. Let ε > 0 and let Γ be a nested CLEκ in D. We are going to encode
the large loops in Γ, that is the loops in Γ that cannot be circumscribed by a small circle,
into a tree T (ε) that will be constructed progressively during the proof. We start by
constructing a tree T (1; ε) whose root is simply the unit circle ∂D. Recall that for n ≥ 1,
Γ(n) denotes the closed union of the first n levels of loops and let R0 = R0(κ) be as in
Lemma 2.3, i.e. such that E[NR0(Γ(1))] < 1. The vertices in the first generation in T (1; ε)

are the loops of Loop(1)(Γ) that cannot be circumscribed by a circle of radius ε. By local
finiteness of CLEκ, there are almost surely finitely many such loops. We then iteratively
construct the next generations of T (1; ε) as follows: if a loop ` corresponds to a vertex at
generation n in T (1; ε), and cannot be circumscribed by a circle of radius R0, then its
descendants at generation n+ 1 are the loops of Loop(n+1)(Γ) that lie inside ` and cannot
be circumscribed by a circle of radius ε. If a loop at generation n can be circumscribed
by a circle of radius R0, then it has no descendants at the next generation. Another way
to phrase this is that generation n (the nth level vertices) of T (1, ε), is the collection of
(nesting)-depth n loops in Γ which cannot be circumscribed by a circle of radius ε, and
whose parent loops cannot be circumscribed by a circle of radius R0. Notice that by
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construction, all the loops corresponding to vertices of T (1; ε) have diameter larger than
ε.

Consider now the restriction T0(1; ε) of T (1; ε) to loops that cannot be circumscribed
by a circle of radius R0: that is, T0(1, ε) is just T (1, ε) minus its leaves. T0(1; ε) is
equivalently the tree that one would obtain by keeping at each generation only the
loops that cannot be circumscribed by a circle of radius R0. Note that if ` is a loop at
generation n of T0(1; ε), then its number of descendants in T0(1; ε) at generation n+ 1 is
given by NR0

(Γ̃`), where Γ̃` is a non-nested CLEκ in int(`). Moreover, if `1 and `2 are two
distinct loops at generation n in T0(1; ε), then NR0

(Γ̃`1) and NR0
(Γ̃`2) are independent.

By Lemma 2.3, for any n and any loop ` at generation n of T0(1; ε), since ` ⊂ D that
cannot be circumscribed by a circle of radius R0, E[NR0

(Γ̃`)] ≤ c < 1. Therefore, T0(1; ε)

is dominated by a Galton-Watson tree in which the expected number of descendants of
each vertex is strictly less than 1. This implies that there almost surely exists k1 such
that all loops that cannot be circumscribed by a circle of radius R0 in Γ have depth
at most k1 − 1 in T0(1; ε). In other words, there almost surely exists k1 such that all
connected components of D \ Γ(k1) can be circumscribed by a circle of radius R0. By
definition, the construction of T (1; ε) is finished at generation k1, and we define the first
part of T (ε) to be the tree thus obtained.

We then continue the construction of T (ε) starting from the leaves of T (1; ε). These
leaves form a collection L1 of loops that cannot be circumscribed by a circle of radius ε.
Each of these loops belong to a unique Loop(n)(Γ), for some n ≤ k1, can almost surely be
circumscribed by a circle of radius R0. By scale and translation invariance of CLEκ, plus
Lemma 2.3, if we define

R1

R0
=
R0

1
< 1, (2.11)

then

E[NR1
(Γ̃D)] ≤ c < 1 (2.12)

whenever D is a simply connected domain that can be circumscribed by a circle of radius
R0 and Γ̃D has the law of a non-nested CLEκ in D. Indeed, for such a D, if B denotes
the closed ball of radius R0 containing D, then we can scale and translate B to map it
to the unit disc and the image of D under this mapping is a simply connected domain
contained in the unit disc.

We are now going to grow trees rooted at each of the leaves of T (1; ε): in other words,
at the loops in L1, which we enumerate as l1, . . . , lN for some N < ∞. Starting from
`j ∈ L1, we construct a tree T j(2; ε) as follows. Let nj be such that `j ∈ Loop(nj)(Γ).
If a loop ` at generation n in T j(2; ε) cannot be circumscribed by a circle of radius R1,
then its descendants at generation n+ 1 are the loops of Loop(nj+n+1)(Γ) inside ` that
cannot be circumscribed by a circle of radius ε. If on the contrary a loop at generation n
in T j(2; ε) can be circumscribed by a circle of radius R1, then it has no descendants at
generation n+ 1.

Arguing the same way as for T (1, ε) and using (2.12) together with the iterative
construction of the nested CLEκ, it follows that for each j, the tree T j(2; ε) is almost
surely finite. We then glue the trees T j(2; ε) to T (1; ε) to produce a new tree T (2; ε).
Note that T (2; ε) is a finite tree whose vertices at depth n are nth level loops in the
original nested CLEκ and that T (2; ε) contains all loops of the nested CLEκ that cannot be
circumscribed by a circle of radius R1. In other words, since T (2, ε) is finite, there exists
some k2 <∞ such that all connected components of D \ Γ(k2) can be circumscribed by a
circle of radius R1.

This procedure yields a new set L2 of leaves for T (2; ε) such that all loops in L2 can be
circumscribed by a circle of radius R1 and we can now repeat the previous construction,
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starting from the loops in L2, with R2 defined analogously to R1. Iterating this procedure,
we obtain a decreasing sequence (Rn)n of radii such that almost surely for all n ∈ N∗,

Rn
Rn−1

=
R0

1
< 1.

In particular, (Rn)n is such that almost surely

Rn = R0Rn−1 = R2
0Rn−2 = · · · = Rn+1

0 .

Therefore, there almost surely exists N such that RN ≤ ε/3. Let kN < ∞ denote the
total depth of the finite tree T (N ; ε) := T (ε), constructed after N iterations of the above
process.

Then all loops that cannot be circumscribed by a circle of radius ε in the original
nested CLE Γ have depth at most kN in T (ε). In other words, all connected components
of D \ Γ(kN ) can be circumscribed by a circle of radius ε. Since ε > 0 was arbitrary, this
concludes the proof.

3 The almost sure total disconnectedness of the thick points of
the GFF and its consequences

3.1 Proof of Theorem 1.7

As explained in the discussion around (1.1) in the introduction, we work with a
version of the circle average process (hr(z))r,z such that with probability one, for every
α ∈ (0, 1/2), ζ ∈ (0, 1) and ε > 0 there exists a (random) constant M = M(α, ζ, ε) < ∞
such that for all z, w ∈ D and s, r ∈ (0, 1] with 1/2 < r/s < 2,

|hr(z)− hs(w)| ≤M
(

log
1

r

)ζ |(z, r)− (w, s)|α

rα+ε
. (3.1)

Our goal is to show that for this version of the circle average process, and for any fixed
δ > 0,

P(sup
z∈D

lim sup
r→0

|h̃r(z)− S̃r(z)| > δ) = 0 (3.2)

where S̃ and h̃ are the re-scaled versions of S and h defined in (1.8). Recall also the
discussion before Theorem 1.5 describing the coupling between h and S (its coupled
nesting field), defined in (1.7).

So let us fix δ > 0. For 0 < r < 1, we set

rn(r) =
(
1− c

n(r)

)
n(r)−K

where n(r) is the unique n ∈ N, n ≥ 2, such that r ∈ [n−K , (n−1)−K) and where c ≥ 1/
√

2

and K > 0 are fixed but arbitrary. For n ∈ N∗ and z ∈ D, we denote by zn(z) the closest
point to z in the set Dn := n−(K+1)Z2 ∩D. We bound the left hand side of (3.2) above by
a sum of three terms:

P(sup
z∈D

lim sup
r→0

|h̃r(z)− h̃rn(zn(r)(z))| >
δ

3
) (3.3)

+ P(sup
z∈D

lim sup
r→0

|h̃rn(r)(zn(r)(z))− S̃rn(r)(zn(r)(z))| >
δ

3
) (3.4)

+ P(sup
z∈D

lim sup
r→0

|S̃rn(r)(zn(r)(z))− S̃r(z)| >
δ

3
). (3.5)
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We will handle each of these terms separately and show that they are all equal to 0 for
any K > 0 and c ≥ 1/

√
2.

For the term (3.3), this follows easily from the continuity estimates (3.1) for the circle
average process. To show that the term (3.4) is equal to 0, we will exploit the coupling
between h and S. We will condition on an appropriate depth of the nested CLE4 coupled
to h and use this conditioning to reduce the proof via Borel-Cantelli lemma to variance
estimates for the conditional circle average process. Finally, to deal with the term (3.5),
we will upper bound it by the probability that well-chosen annuli in D contain many CLE4

loops surrounding their inner boundary but not intersecting their outer boundary. Using
the Borel-Cantelli lemma and estimates on the extremal distance between a non-nested
CLE4 loop and the boundary of the domain in which the non-nested CLE4 is sampled, we
will deduce that the term (3.5) is equal to 0.

3.1.1 Proof that term (3.3) is zero

The fact that this probability is equal to 0 for any choice of c,K follows from (3.1), which
means that for all α ∈ (0, 1/2), ζ ∈ (0, 1) and ε > 0,

|hr(z)−hrn(r)(zn(r)(z))|≤M(α, ζ, ε)

(
log

1

r

)ζ |(z, r)− (zn(r)(z), rn(r))|α

rn(r)α+ε
∀z ∈ D, r ∈ (0, 1].

(3.6)
By our choice of rn(r), we have

|r − rn(r)| ≤ (n(r)− 1)−K − rn(r) ≤ Cn(r)−(K+1)

for some absolute constant C > 0. Moreover, for n ∈ N∗, |z − zn(z)| ≤ n−(K+1)/
√

2.
Substituting into (3.6), for an arbitrary choice of α ∈ (0, 1/2) and ε < α/K implies that
for all z ∈ D,

|h̃r(z)− h̃rn(r)(zn(r)(z))| → 0 as r → 0.

Thus,

P(sup
z∈D

lim sup
r→0

|h̃r(z)− h̃rn(r)(zn(r)(z))| >
δ

3
) = 0,

as required.

3.1.2 Proof that term (3.4) is zero

To show that the probability in (3.4) is equal to 0, again for any c,K, we are going to use
the Borel-Cantelli lemma. As we will explain shortly, this requires us to establish that
the sum ∑

n∈N∗
n2(K+1) max

zn∈Dn

P(|h̃rn(zn)− S̃rn(zn)| > δ

3
)

is finite. In turn, controlling the probability appearing in this sum requires us to
understand how the variance of the circle average of h behaves when the field is
conditioned on its coupled nested CLE4. So let us first examine this in more detail.

Let us fix z ∈ D and r > 0 such that r < 2dist(z, ∂D). For j ≥ 1, denote by `jz the loop
of Loop(j)(Γ) containing z and define

J∩z,r := min{j ≥ 1 : `jz ∩B(z, r) 6= ∅}.

In other words, J∩z,r is the (nesting)-depth of the largest loop in Γ that contains z and

intersects B(z, r). We denote this loop by `J
∩
z,r . For general j, we further denote by

CR(z, `jz) the conformal radius of int(`jz) seen from z.
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Conditioning on Γ(J∩z,r), we have

P(|h̃r(z)− S̃r(z)| >
δ

3
) = E

[
P

(
|h̃r(z)− S̃r(z)| >

δ

3
|Γ(J∩z,r)

)]
. (3.7)

Note that the circle ∂B(z, r) intersects infinitely many loops in Γ(J∩z,r). One may therefore
think that controlling the conditional variance of h̃r(z) will be rather technical and
that conditioning on Γ(J∩z,r−1) may be a better path to follow. However, conditioned on
Γ(J∩z,r−1), we have that h inside `J

∩
z,r−1 is a Gaussian free field conditioned to have its

first CLE4 level line loop around z intersecting B(z, r). This is a somewhat complicated
conditioning to control. On the other hand, we will see that when conditioning on Γ(J∩z,r),
the sum of the contributions to the variance of h̃r(z) coming from the fields inside each
loop intersecting B(z, r) remains smaller than a deterministic constant which does not
depend on z and r.

Here, we would like to emphasize that when we condition on Γ(J∩z,r), we mean that we
condition on the σ-algebra σ((Loop(Γ(j)))1≤j≤J∩z,r ) generated by the loops of Γ up to depth

J∩z,r. It can be shown that this σ-algebra is the same as σ(ΓJ
∩
z,r ) = σ(∪1≤j≤J∩z,rLoop(Γ(j))).

Let us denote by (Oj)j the collection of open and simply connected components of

D \ Γ(J∩z,r). By definition of the coupling between h and Γ, conditionally on Γ(J∩z,r),

hr(z) =
∑

j:Oj∩∂B(z,r)6=∅

h(j)
r (z) +

∫
H(x)ρzr(dx)

where:

• ((h(j))j , H) are independent;

• the h(j) are independent GFFs with Dirichlet boundary conditions in each Oj; and

• H is almost surely constant when restricted to each Oj , satisfying

H = Sr(z) + ξj

for each j, where the ξj are independent of Sr(z) and of each other, with, indepen-
dently for each j, P(ξj = −2λ) = P(ξj = 2λ) = 1/2.

Moreover, Γ(J∩z,r) has the property that the integral of H inside Γ(J∩z,r) with respect to
ρzr is almost surely equal to 0 (it is what is known as a “thin local set” of h, [29], see also
[35, Section 4.2.5]). Therefore, we have that∣∣ ∫ H(x)ρzr(dx)− Sr(z)

∣∣ ≤ 2λ

almost surely, and in turn, almost surely,

P

(
|h̃r(z)− S̃r(z)| >

δ

3

∣∣ Γ(J∩z,r)

)
= P

(∣∣ ∑
j:Oj∩∂B(z,r)6=∅

h(j)
r (z)−

∫
ξ`xρ

z
r(dx)

∣∣ > δ

3
log

1

r

∣∣ Γ(J∩z,r)

)

≤ P
(∣∣ ∑

j:Oj∩∂B(z,r)6=∅

h(j)
r (z)

∣∣ > −2λ+
δ

3
log

1

r

∣∣ Γ(J∩z,r)

)
. (3.8)

Now, the h(j)
r (z) are (conditionally) independent Gaussian random variables. Therefore,

bounding the conditional probability in (3.8) amounts to controlling the conditional
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variance of their sum (and using the elementary bound P(|X| ≥ m) ≤ C exp(−m
2

σ2 ) for
X ∼ N (0, σ2) and m > 0). In other words, we need to understand the random variable

E

[( ∑
j:Oj∩∂B(z,r)6=∅

h(j)
r (z)

)2 ∣∣Γ(J∩z,r)

]
.

We will prove the following lemma.

Lemma 3.1. We have

E

[( ∑
j:Oj∩∂B(z,r)6=∅

h(j)
r (z)

)2 ∣∣Γ(J∩z,r)

]
≤ log 4

almost surely.

Before proving this lemma, let us see how it implies that Term (3.4) is 0 (for any c,K).
First, combining it with our elementary Gaussian upper bound, we get that

P

(∣∣ ∑
j:Oj∩∂B(z,r)6=∅

h(j)
r (z)

∣∣ > −2λ+
δ

3
log

1

r
|Γ(J∩z,r)

)
≤ C exp

(
−

(−2λ+ δ
3 log 1

r )2

log 4

)
(3.9)

almost surely. In particular, the right-hand side is non-random. Then substituting (3.9)
into (3.8), (3.7) yields

P(|h̃r(z)− S̃r(z)| >
δ

3
) ≤ C exp

(
−

(−2λ+ δ
3 log 1

r )2

log 4

)
. (3.10)

If we set r = rn and z = zn in the above inequality, we see that the right-hand
side decays faster than any power of n as n → ∞, at a rate that can be chosen to be
independent of zn. This shows that for any c,K, the sum∑

n∈N∗
n2(K+1) max

zn∈Dn

P(|h̃rn(zn)− S̃rn(zn)| > δ

3
)

is finite, so by the Borel-Cantelli lemma, we conclude that

P(sup
z∈D

lim sup
r→0

|h̃rn(r)(zn(r)(z))− S̃rn(r)(zn(r)(z))| >
δ

3
) = 0.

It thus remains to prove Lemma 3.1.

Proof of Lemma 3.1. By independence of the fields h(j) conditionally on Γ(J∩z,r), we al-
most surely have

E

[( ∑
j:Oj∩∂B(z,r)6=∅

h(j)
r (z)

)2 ∣∣Γ(J∩z,r)

]
=

∑
j:Oj∩B(z,r)6=∅

∫
Oj

GOj
(x, y)ρzr(dx)ρzr(dy)

where for each j, GOj
denotes the Green function in Oj . Since the Oj are disjoint, setting

Õ =
⋃

j:Oj∩B(z,r) 6=∅

Oj

we have, for all x, y ∈ Õ,

GÕ(x, y) =
∑

j:Oj∩B(z,r)6=∅

GOj
(x, y)
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where GÕ denotes the Green function in Õ and GOj
(x, y) = 0 if x or y is not in Oj . Since

the functions GOj
are non-negative, we can apply Tonelli’s theorem to obtain that almost

surely ∑
j:Oj∩B(z,r)6=∅

∫
Oj

GOj
(x, y)ρzr(dx)ρzr(dy) =

∫
Õ

GÕ(x, y)ρzr(dx)ρzr(dy).

By monotonicity of the Green function, see for example [35], we then almost surely have∫
Õ

GÕ(x, y)ρzr(dx)ρzr(dy) ≤
∫
Õ∪B(z,r)

GÕ∪B(z,r)(x, y)ρzr(dx)ρzr(dy) (3.11)

where GÕ∪B(z,r) denotes the Green function inside Õ∪B(z, r). Since B(z, r) ⊂ Õ∪B(z, r),
we can explicitly compute the integral on the right hand-side of (3.11):∫
Õ∪B(z,r)

GÕ∪B(z,r)(x, y)ρzr(dx)ρzr(dy) = − log r+ log CR(z, ∂(Õ∪B(z, r))) almost surely.

(3.12)
Moreover, by the Koebe 1/4-theorem, the definition of J∩z,r and the fact that Γ(J∩z,r) is
almost surely path-connected, we almost surely have

CR(z, ∂(O(z) ∪B(z, r))) ≤ 4dist(z, ∂(O(z) ∪B(z, r)) ≤ 4r.

Combining (3.11) and (3.12) with this upper bound, we obtain,

E

[( ∑
j:Oj∩∂B(z,r)6=∅

h(j)
r (z)

)2 ∣∣Γ(J∩z,r)

]
≤ log

4r

r
= log 4

almost surely, which completes the proof of the lemma.

3.1.3 Proof that term (3.5) is zero

To establish that this probability is equal to 0 (for any fixed K > 0 and c ≥ 1/
√

2), we are
going to show that for any fixed δ̃ > 0,

P(∃z ∈ D such that lim sup
r→0

|S̃r(z)− S̃rn(r)(zn(r)(z))| > δ̃) = 0.

Recall that rn(r) = (1 − c/n(r))n(r)−K where n(r) is the unique n ∈ N∗ such that
r ∈ [n−K , (n− 1)−K)). So let us fix δ̃ > 0 and further define

Rn(r) :=
(
1 +

d

n(r)

)
n(r)−K

where d = d(c,K) > 0 is chosen large enough such that for all z ∈ B(0, 1/2) and r > 0

∂B(z, r) ⊂ B(zn(r)(z), Rn(r)) \B(zn(r)(z), rn(r)).

Note that since |z − zn(r)(z)| ≤ n(r)−(K+1)/
√

2 and r ≥ n(r)−(K+1)/
√

2 + rn(r) (because

c ≥ 1/
√

2) we do have that ∂B(z, r) lies outside of B(zn(r)(z), rn(r)). Moreover, ∂B(z, r)

lies inside B(zn(r)(z), Rn(r)) as long as r ≤ |z − zn(r)(z)|+Rn(r), which is satisfied if

(n(r)− 1)−K ≤ n(r)−(K+1)

√
2

+ (1 +
d

n(r)
)n(r)−K ,

i.e. as long as d is large enough.
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z

B(z, r)

B(zn(r), rn(r))

B(zn(r), Rn(r))

zn(r)

Figure 2: The balls B(z, r), B(zn(r), rn(r)) and B(zn(r), Rn(r)). The red loops that are
dashed contribute to |Sr(z)− Srn(r)(zn(r)(z))|. The red loops, either plain or dashed, are
those CLE4 loops that surround B(zn(r), rn(r)) but not B(zn(r), Rn(r)).

With our choice of d, if the event {|S̃r(z) − S̃rn(r)(zn(r)(z))| > δ̃} occurs for some
z ∈ B(0, 1/2) and r > 0, then there exist at least C log(n(r) − 1) loops that surround
B(zn(r)(z), rn(r)) but not B(zn(r)(z), Rn(r)), for some constant C = C(δ̃, K) > 0. Indeed,
we have:

|S̃r(z)− S̃rn(r)(zn(r)(z))|

=
∣∣ Sr(z)
log 1/r

−
Srn(r)(zn(r)(z))

log 1/rn(r)

∣∣
≤ 1

K log(n(r)− 1)
|Sr(z)− Srn(r)(zn(r)(z))|

≤ 2λ

K log(n(r)− 1)

×#{` ∈ Γsurrounding B(zn(r)(z), rn(r)) but not B(zn(r)(z), Rn(r))}.

where the last inequality follows because the number of loops surrounding B(zn(r)(z),

rn(r)) but not B(z, r), i.e. the loops that contribute to |Sr(z) − Srn(r)(zn(r)(z))|, is less
than the number of loops surrounding B(zn(r)(z), rn(r)) but not B(zn(r)(z), Rn(r)), and
because the signed Bernoulli random variable associated to each loop almost surely has
modulus ≤ 2λ. See Figure 2 for a visual representation.

For n ≥ 2 and zn ∈ Dn, let us define the event

An,zn ={there are at least C log(n− 1) loops that surround B(zn, rn) but not B(zn, Rn)}

where rn = (1− c/n)n−K , Rn = (1 + d/n)n−K and C is the constant derived above. From
the previous discussion, we obtain the following inequality:

P(∃z ∈ D such that lim sup
r→0

|S̃r(z)− S̃rn(r)(zn(r)(z))| > δ̃) ≤ P
({ ⋃

zn∈Dn

An,zn
}

i.o.

)
.

So we need to show that the right-hand side in this inequality is equal to 0. This will
follow from Borel-Cantelli lemma if we can establish that the sum∑

n≥2

n2(K+1) max
zn∈Dn

P(An,zn)
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is finite. This holds in particular if maxzn∈Dn
P(An,zn) decays faster than any power of n.

In other words, it suffices to prove the following lemma.

Lemma 3.2. There exists a sequence g(n)→ 0 as n→∞ such that

P(An,zn) ≤ g(n)bC log(n−1)c−1

for all n ≥ 2 and zn ∈ Dn.

Proof. Let us fix n ≥ 2 and zn ∈ Dn. To lighten the notations, let us set J = J∩zn,Rn
so

that `J is the first nested CLE4 loop intersecting B(zn, Rn). Using the nestedness of the
CLE4 loops, we can bound

P(An,zn) ≤ P
(
B(zn, rn) ⊂ `J+bC log(n−1)c−1

)
≤ P

(
B(zn, rn) ⊂ `J+bC log(n−1)c−1 |B(zn, rn) ⊂ `J

)
≤
bC log(n−1)c−1∏

k=1

P
(
B(zn, rn) ⊂ `J+k |B(zn, rn) ⊂ `J+k−1

)
, (3.13)

where we also used the trivial bound P(B(zn, rn) ⊂ `J) ≤ 1 in the second line.
We will show that there exists g(n) not depending on our choice of zn ∈ Dn, and with

g(n)→ 0 as n→∞, such that for every k ∈ {1, . . . , bC log(n− 1)c},

P(B(zn, rn) ⊂ `J+k|B(zn, rn) ⊂ `J+k−1) ≤ g(n). (3.14)

This clearly implies the lemma, by (3.13).
To see (3.14), observe that conditionally on `J+k−1 (for any k ≥ 1), `J+k has the law

of the (unique) CLE4 loop surrounding zn in a non-nested CLE4 in `J+k−1. Moreover,
`J+k−1 ⊂ D contains a point within distance Rn of zn by definition. Thus, by [1, Theorem
4-6], the extremal distance between `J+k−1 and ∂B(zn, rn) is deterministically bounded
above by e(n): the extremal distance between the unit circle and the line segment
[Rn/rn,+∞]. Notice that Rn/rn → 1 by construction as n → ∞, and therefore by
continuity of extremal distance (see for example [33]), we have that e(n)→ 0 as n→∞.
By [1, Theorem 4-1], it follows that on the event B(zn, rn) ⊂ `J+k, also the extremal
distance between `J+k and `J+k−1 is bounded by e(n). But this probability tends to 0 by
[2, Theorem 1.1] and conformal invariance of CLE4.

3.2 Proof of Proposition 1.4, Corollary 1.2 and Corollary 1.8

Using the results of the previous subsection, we now turn to the proof of Proposi-
tion 1.4.

Proof of Proposition 1.4. Let h be a Dirichlet GFF in D. Let Γ be a nested CLE4 coupled
to h as described in the discussion before Theorem 1.5 and let z 7→ Sr(z) be the
corresponding weighted CLE4 nesting field. Observe that

{z ∈ D : lim sup
r→0

√
2πSr(z)

log 1/r
> Q(ξ), z ∈

⋃
n∈N∗

Γ(n)} = ∅ almost surely.

Therefore, the same arguments as in the proof of Corollary 1.6 show that the set

{z ∈ D : lim sup
r→0

Sr(z)

log 1/r
> Q(ξ)}

is almost surely totally disconnected. Theorem 1.7 then allows us to conclude that Sξh(D)

is almost surely totally disconnected.
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As stated in the introduction, using the decomposition of [18, Theorem A], Theo-
rem 1.1 can be used to shown Corollary 1.2.

Proof of Corollary 1.2. Let δ > 0. Under the assumptions of Corollary 1.2, by [18,
Theorem A], we can construct a GFF h in D with Dirichlet boundary conditions and a
copy of X on the same probability space such that X = h+G in (1− δ)D, where G is a
Gaussian process which is almost surely Hölder continuous in (1− δ)D. Therefore, we
have that, almost surely,

{z ∈ (1− δ)D : lim
r→0

(X, ρzr)

− log r
6= 0} = {z ∈ (1− δ)D : lim

r→0

(h, ρzr) + (G, ρzr)

− log r
6= 0}

= {z ∈ (1− δ)D : lim
r→0

(h, ρzr)

− log r
6= 0}

where the last equality follows from the fact that G is almost surely Hölder continuous
in (1− δ)D. Similar almost sure equalities hold when one requires the limit to be equal
to γ/

√
2π for some γ ∈ [−2, 2] \ {0}. Therefore, we can conclude that almost surely, for

any γ ∈ γ ∈ [−2, 2] \ {0}, the set of γ-thick points of X in (1− δ)D is the same as the set
of γ-thick points of h in (1− δ)D. By Theorem 1.1, this implies that almost surely, for any
γ ∈ [−2, 2] \ {0}, the set of γ-thick points of X in (1− δ)D is totally disconnected. Since
δ > 0 is arbitrary, this yields Corollary 1.2.

From Theorem 1.7 and Corollary 1.6, we finally deduce Corollary 1.8.

Proof of Corollary 1.8. Since A is a BTLS, by definition, there exists K > 0 such that
|HA| when restricted to the complement of A. For such a K, choose M such that
K ≤ 2λ(M − 1). Then, by [5, Proposition 3], A ⊂ A−2Mλ,2Mλ almost surely where
A−2Mλ,2Mλ denotes the two-valued set of level −2Mλ and 2Mλ of h. As explained in [5,
Section 1.2], A−2Mλ,2Mλ can be constructed from a nested CLE4 Γ in D coupled to h.
Let us briefly recall this construction, which is the key to show the corollary. For z ∈ D,
recall that `jz denotes the loop of Loop(j)(Γ) containing z. Then, for any n ≥ 1, in the
local set coupling (h,Γ(n)), the value of the harmonic function in int(`nz ) is given by

Hn(z) =

n∑
j=1

ξ`jz

where P(ξ`jz = 2λ) = P(ξ`jz = −2λ) = 1/2 and (ξ`jz )1≤j≤n are independent random
variables. Moreover, if z, z′ ∈ D are such that `nz = `nz′ , then Hn(z) = Hn(z′). To construct
A−2Mλ,2Mλ from Γ, for each z ∈ Q2 ∩D, we define τM (z) := inf{n ≥ 1 : |Hn(z)| = 2Mλ}.
τM (z) is almost surely finite since (Hn(z))n≥1 is a simple random walk and OτM (z)(z) :=

int(`τM (z)
z ) is then almost surely an open and simply connected set. Set

AM := D \
⋃

z∈Q2∩D

OτM (z)(z).

AM is a local set coupled to h such that the corresponding harmonic function almost
surely takes values in {−2Mλ, 2Mλ} when restricted to a connected component of
D \AM . Therefore, by [5, Proposition 1], AM = A−2Mλ,2Mλ almost surely.

This construction of A−2Mλ,2Mλ shows in particular that A−2Mλ,2Mλ ⊂ ∪n≥1Γ(n)

almost surely. But by Theorem 1.7, for any γ ∈ (0, 2], almost surely{
z∈D : lim

r→0

hr(z)

log 1/r
=

γ√
2π
, z ∈

⋃
n≥1

Γ(n)
}

=
{
z ∈ D : lim

r→0

Sr(z)

log 1/r
=

γ√
2π
, z ∈

⋃
n≥1

Γ(n)
}

=∅.

This completes the proof of Corollary 1.8, since the previous discussion shows that
A ⊂ ∪n≥1Γ(n) almost surely.
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Let h be a GFF in D with Dirichlet boundary conditions. A direct calculation shows
that if z ∈ ∂D and r > 0, then E[hr(z)

2] is bounded by a constant independent of z and r.
By adapting the proof of Lemma 3.1 in [17, Lemma 3.1], we can deduce the following
slight refinement of Corollary 1.8: if A is a K-BTLS coupled to h, K > 0, then, for any
γ ∈ (0, 2], {

z ∈ A ∪ ∂D : lim
r→0

hr(z)

log 1/r
=

γ√
2π

}
= ∅ almost surely.
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