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Abstract
This paper analyzes the effects of a perceived transition from a rule-based computer programming paradigm to an

example-based paradigm associated with machine learning. While both paradigms coexist in practice, we critically discuss

the distinctive epistemological and ethical implications of machine learning’s “exemplary” type of authority. To capture its

logic, we compare it to computer programming rules that date to the middle of the 20th century, showing how rules and

examples have regulated human conduct in significantly different ways. In contrast to the highly constructed, explicit, and

prescriptive form of authority imposed by programming rules, machine learning models are trained using data that has

been made into examples. These examples elicit norms in an implicit, emergent manner to make prediction and classi-

fication possible. We analyze three ways that examples are produced in machine learning: labeling, feature engineering,

and scaling. We use the phrase “artificial naturalism” to characterize the tensions of this type of authority, in which exam-

ples sit ambiguously between data and norm.
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Machine learning researchers often narrate the history of
artificial intelligence in terms of a transition from program-
ming by rules to training by examples. In his book Deep
Learning with Python, Chollet (2021: 3) explains: “…for
a fairly long time, most experts believed that human-level
artificial intelligence could be achieved by having program-
mers handcraft a sufficiently large set of explicit rules for
manipulating knowledge stored in explicit databases.”
However, this approach ran into limitations when it came
to “solving more complex, fuzzy problems, such as image
classification, speech recognition, or natural language trans-
lation” (Chollet, 2021: 3). These problems needed to be
addressed in a new way: “A machine-learning system is
trained rather than explicitly programmed. It’s presented
with many examples relevant to a task, and it finds statis-
tical structure in these examples…” (Chollet, 2021: 4).

Chollet’s description gives the impression of a symmet-
rical “Copernican” reversal between the two paradigms. In
the classical programming paradigm, rules are applied to
data to produce outputs. In machine learning, the order is
reversed, with examples used to generate representations
applicable to new data—to generalize. This paper takes
the machine learning community’s trope opposing pro-
gramming rules and examples as a starting point to draw
out its deeper sociological and ethical ramifications in

terms of authority and the reasons people accept it—legit-
imacy. We argue that not only has the relative position of
rules and examples changed, but these relata themselves
have been substantially transformed. The phrase “type of
authority” is meant to evoke the sense developed by
Weber (1978: 212; 1980: 124) (Typ der Herrschaft): a spe-
cific way of producing obedience. In other words, authority
designates the “conduct of conducts” (Foucault, 2008: 186).

Although some may object that words like “rules,”
“examples,” “training,” and “data” point to neutral tech-
nical realities, our position is that these are inescapably
ethical concepts whose semantic shifts register and make
possible different ways of exercising authority. In this
sense, machine learning’s specific way of classifying our
world and regulating our conduct according to its
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predictions takes on ethical and political significance. This
type of authority contributes to what Amoore (2022: 2–3)
has termed “a machine learning political order,” which
“does not merely change the political technologies for gov-
erning state and society, but is itself a reordering of that pol-
itics, of what the political can be.” What we call
“exemplification” in machine learning produces a new, nat-
uralistic kind of normativity that can transform the way
society conceptualizes, exercises, and legitimizes authority.

Our approach to understanding these changes is com-
parative, drawing out conceptual distinctions between an
authority based on programming rules and what we call
an exemplary type of authority in machine learning. In
the first section, we analyze the role of rules within a
larger rational type of authority and then focus on the
moment in the middle of the 20th century when digital com-
puting intensified this calculative form of rationality.
Beyond mere historicization, this genealogy situates
machine learning within a constellation of concepts—
rules, rationalization, and calculation—making machine
learning’s own emerging type of authority intelligible in
the broader sweep of social and political theory. Against
the idea that machine learning intensifies an inherited mod-
ernist, bureaucratic, rational type of authority (Farrell and
Fourcade, 2023), we identify distinctive features of
machine learning’s exemplary type of authority. Unlike
the highly explicit and rigid formalisms of computational
rules, machine learning’s norms emerge implicitly when
data is aggregated and processed at great scale by models.
To be sure, in practice there is considerable mixing
between rule- and example-based paradigms, and our argu-
ment is not that there is a total historical discontinuity
between rules and examples. Beyond the machine learning
community’s self-narration, we draw out and theorize
formal features of an emerging, exemplary type of authority
as a Weberian “ideal type” (idealtypisch, Weber, 1978: 21;
1980: 4), an analytical construct, which, although not
encountered in pure form, can nonetheless serve as a con-
ceptual tool for critically grasping both continuities and
new dynamics.

The second part of the paper turns to the practices and
knowledge involved in producing this exemplary type of
authority. We analyze ways by which the aggregation and
processing of data create examples that serve as a training
resource in machine learning systems. These examples
interact with model architectures to produce the representa-
tions that make classification and prediction possible. By
now, it is widely accepted in studies of science that it is mis-
leading to think of data according to its etymological sense
as somehow given or naturally available, waiting to be pro-
cessed. Instead, we say that data is constructed (Gitelman,
2013; Latour, 1999). In the area of machine learning,
there are compelling accounts of the human labor required
to produce seemingly autonomous or unsupervised learning
systems (Bechmann and Bowker, 2019). Other studies have

shown how existing social norms and hierarchies seep into
input data through engineering choices and proxies, mixing
fact and value (Chun, 2021; O’Neil, 2016). Closer to our
own interests, Grosman and Reigeluth (2019: 5) have
shown that algorithms have their own “technical normativ-
ities,” and Jaton (2017, 2021) emphasizes circularities
between the construction of algorithms and the referential
ground truth datasets. Here, we situate these perspectives
within a comparative account of machine learning’s exem-
plary type of authority. In addition to the constructedness of
data and circularities of reference, we analyze how machine
learning data is made exemplary to elicit norms, which,
unlike in the rule-based programming paradigm, are not
explicitly programmed or prescribed. Instead, the connec-
tion of inputs to desired outputs circumscribes a space in
which norms can emerge. These norms are expressed not
as prescriptive commands but rather in the form of model
parameters that are learned during training (Grosman and
Reigeluth, 2019: 6).

We analyze three concrete moments—labeling, feature
engineering, and scaling—in which norms are elicited in
machine learning. By situating these moments in a rough
(and very recent) conceptual–historical sequence, we
show how the machine learning community has conceptua-
lized a movement from a more interventionist, “hand-
crafted” creation of examples through practices like
labeling and feature engineering to one in which exemplary
representations emerge from the structure of the data itself
through scaling. In practice, however, these tendencies
mix intractably. We are less interested in characterizing
this movement in terms of a distinction between apparently
interventionist supervised forms of learning and unsuper-
vised ones, but rather by the range of practices that make
examples to engender norms. In processing these examples,
machine learning models produce representations, which
express regularities found in the data and seem to naturally
emerge from it. These representations then become norma-
tive in a more traditional sense when they influence our
behavior. The “ought” of examples turns into the “is” of
the representations, and, in a further twist, these representa-
tions become normative (“ought”) again when the algorith-
mic outputs are used to make and legitimate predictions and
classifications that regulate our conduct.1 We designate this
process as an “artificial naturalism.”2

This apparently contradictory phrase is meant to evoke
associations with artificial intelligence and to express the
ambivalent position of machine learning’s normativity—
oscillating between constructedness and givenness. Unlike
an earlier 19th-century naturalism associated with writers
like Emile Zola (1893),3 machine learning’s artificial natur-
alism entails three aspects: first, it presupposes a world
determined by deep statistical structures, the source of
norms, that are accessible not to human perception but
only through the representations produced by models.
Second, these representations should increasingly be
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learned from the data itself rather than from human-
specified interventions. In the abstract, this valuation of
non-intervention is not new, as historians of objectivity
have shown (Daston and Galison, 2010). And in practice,
machine learning is characterized by a messy tension
between a desire to let data speak for itself (or through
models) and the engineering practices that permit it to do
so, albeit ones that look very different from the explicit spe-
cification of rules. The form of truth that emerges from
training by examples is characterized not by a perfect cor-
respondence to or reflection of training data (this would
be mere “memorization”) but rather by an inductive
ability to generalize, to discover regularities that function
as norms that make it possible to accurately classify new
data in new contexts. Third, machine learning introduces
a new sense of scale into the logic of examples by aggregat-
ing them at massive scales. Instead of an example as the sin-
gular, concrete expression of an essence or type, in machine
learning, examples form a multiplicity in which patterns
and differences form a more accurate composite representa-
tion. The horizon of machine learning is to make the map of
its models and data converge asymptotically with the terri-
tory of the phenomenon through scaling. Machine learn-
ing’s naturalism has political implications since its norms
appear not as human-made commands expressed explicitly
as rules but as emerging from reality through the mediation
of a technological assemblage of models and examples. In
order to understand the significance of these changes, we
turn first to the authority of rules to develop a point of
comparison.

A genealogy of computer programming’s
rule-based type of authority
The widespread claim of a transition from a rule-based pro-
gramming paradigm to an example-based one in machine
learning begs a number of questions. What, precisely, do
rules and examples refer to in these technical contexts?
How did this distinction arise in the first place?
Scholarship on rules has considered these questions. In a
major study, Lorraine Daston argues that we live in the
shadow of a historically specific algorithmic form of
rules, which aligns with what we call the rule-based pro-
gramming paradigm. According to Daston (2022: 7), the
recent hegemony of such rules has caused us to lose sight
of a much older and more flexible sense of rules, which
held together other forms, such as “models” and “para-
digms.” These older rules often worked hand in hand
with examples as illustrations. Politically, this historiciza-
tion works to recover these more diverse meanings in
order to create new spaces for human discretion and judg-
ment in the application of rules. Rather than attempting to
recover the possibilities latent in the past by opposing
inhuman rules to the human values of discretion and

judgment, we begin with an actually existing challenge to
the hegemony of Daston’s algorithmic sense of rules
expressed by the machine learning community. To
account for the opening of this conceptual gap between
rules and examples, we first need to understand the emer-
gence of the specific type of rules that can be opposed to
an equally particular type of examples.

Rules have long regulated human conduct. Most relevant
for our purpose is the relationship between, on the one
hand, a methodological (or even technical) sense implying
functional instructions to produce knowledge and, on the
other hand, the normative principles guiding the conduct
of people and things. This relationship was elaborated
throughout modern philosophy, where rules became identi-
fied with universal reason (Erickson et al., 2013: 37). With
René Descartes, philosophy’s primary object became the
method itself, meaning a series of steps guided by rules
that the mind must follow in order to secure its way
toward knowledge. These rules originate in the subject’s
reason or what Descartes (2006: 5) calls “good sense,”
which is the universally shared nature of the human mind.
Immanuel Kant elevated rules to the level of the transcen-
dental: Rules are both the conditions of possibility for
knowledge and a guide for moral action. They originate
and are grounded in the subject itself. In Kant’s striking for-
mulation, the universality of rules becomes the “categor-
ical” source of their legitimacy. Only when subjects obey
a categorical imperative regardless of particular circum-
stances, interests, and the pleasure or displeasure resulting
from it are they free, in other words, non-conditioned by
contingency (Kant, 2015).

This Enlightenment celebration of rules as the source of
freedom seems quite remote from the computational pro-
gramming paradigm whose rules seem to reduce us to
machines. By the beginning of the 20th century, Weber
sensed that—contra Kant—the legitimacy of rules could
not be so easily grounded in the structures of subjectivity
itself. Instead, rules gain their legitimacy from external cul-
tural “orders,” like the legal order, whose authority has to be
enforced and legitimized in the eyes of the governed. This
led Weber to place rules at the heart of a rational type of
authority, distinct from authority based on tradition or cha-
risma. Weber identified five more specific characteristics of
the rational type of authority, which fed into the computa-
tional understanding and legitimation of rules.

First, rational systems relocate the source of authority
from persons to an impersonal body of rules. Somewhat cir-
cularly, the governed owe their obedience not to a ruler but
to a set of rules that guarantee their own authority, a “rule of
law” (Weber, 1978: 217). Second, these bodies of rules
have a systematic character. Instead of gradually accumulat-
ing from empirical precedent or freely mixing rules and
examples, rational systems are established intentionally
through a process of abstraction. Particulars are removed
so that a small number of self-consistent, axiomatic rules
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can cover a wide variety of situations. As opposed to the
implicit, habitual rules associated with the traditional type
of authority—or, as we will see, the exemplary type of
authority—rational rules must also be written down,
encoded, and made publicly available (Weber, 1978:
657). This encoding must be rendered in explicit terms, as
formal and unambiguous as possible. Finally, these rules
make life calculable.4

Rules that are impersonal, systematic, explicitly
encoded, and calculative produce a distinctive form of
authority. Whereas for Kant and Descartes rules are authori-
tative due to the intrinsic, universal claims of reason itself,
the rational type of authority is legitimated extrinsically by
its calculative results: it permits the “highest degree of effi-
ciency… superior to any other form in its precision, its sta-
bility, in the stringency of its discipline, and in its
reliability” (Weber, 1978: 223). Metaphorical connections
between the authority of rules and calculating machines
crystallized at this time: such rules “operate like a technic-
ally rational machine…” (Weber, 1978: 811). This instru-
mental, machinic sense of rules deepened with the rise of
digital computing in the 20th century, giving rise to the
sense of rules that is now opposed to that of examples.

Foundational work in computer science in the middle of
the 20th century linked the technical characteristics of
digital programming with questions of rules and authority.
For instance, although Alan Turing’s classic paper
“Computing machinery and intelligence” is best known
for its tantalizing question, “can machines think?,” and its
thought experiment, “the imitation game,” a new computa-
tional understanding of rules conditions his formulation of
these problems. Turing opens with a then-common com-
parison between digital and human computers (very often
women in practice) who execute rules for large-scale calcu-
lations controlled by a predetermined division of labor
(Light, 1999). He imagines these human computers as
totally subject to the authority of rules—a moment where
technical forms of control and the authority to guide
human conduct coincide.5 “The human computer,” writes
Turing (1950: 436), “is supposed to be following fixed
rules; he has no authority to deviate from them in any
detail. We may suppose that these rules are supplied in a
book, which is altered whenever he is put on to a new
job” [emphasis ours]. In Turing’s understanding of compu-
tation, the activity of rule-making is entirely distinct from
the activity of rule-executing. The art of creating these
rules is named “programming” and once again compared
to the control of human behavior: “If one wants to make
a machine mimic the behavior of the human computer in
some complex operation one has to ask him how it is
done, and then translate the answer into the form of an
instruction table” (Turing, 1950: 437). Rather than aspiring
to the freedom of the Enlightenment subject, rule-making
becomes purely instrumental, oriented to controlling the
specific task at hand.

Rules for calculation have long consisted of dividing
operations into elementary steps (Daston, 2022: 82). As
the historians Erickson et al. (2013: 3) observe, with
digital computing, rule-making became intensely analytic:
“complex tasks and episodes were analyzed into simple
sequential steps … analysis took precedence over synthe-
sis.” By extending this sense of analysis, programming
rules expanded the scope of what can be governed by
rules: not just numerical calculations but any “behavior”
that might be encoded in a formal language that is totally
unambiguous to a computer. As opposed to Weber’s
rational rules, condensed from a systematic process of
logical abstraction, these programming rules multiply,
even fracture into different applications for each objective.
While a single program might constitute a coherent whole,
programs put together do not necessarily form any sort of
rational, systematic corpus of rules. Coherence becomes
purely formal—guaranteed by the programming language
and its syntactic rules.

These characteristics of computational rules point to a
horizon not of application or enforcement, which requires
adapting an abstract rule to a concrete situation, but rather
of total control over a movement between narrowly speci-
fied inputs and outputs. The theoretical discreteness of
digital computers, the discontinuous movement between
“states sufficiently distinct for the possibility of confusion
between them to be ignored,” assures that an input signal
leads invariably to a determinate output state, evoking the
total determinism of Pierre-Simon Laplace (Turing, 1950:
439–440). Computers are capable of an “enormously
large” number of discrete states, and this quantitative explo-
sion in the number of rules leads to a qualitative one: a new
form of universality in which “digital computers … can
mimic any discrete state machine” (Turing, 1950: 441).
Universality no longer designates the ability of a small set
of principles to cover all possible empirical situations but
rather to have a space of discrete states so large that an enor-
mous number of rules can be specified, a space large
enough to emulate any possible behavior with utter predict-
ability, leaving no space, as Daston laments, for interpret-
ation or judgment. The potential for a huge number of
rules means that any ambiguity becomes potentially fatal:
an error at any step throws off the entire calculation.
Therefore, special programming languages are required to
express computational rules in a totally explicit and unam-
biguous way. Natural languages harbor far too much
ambiguity.

This totalizing authority of computational rules might
seem to constitute a logical endpoint, a sort of apotheosis
of rules. Instead, the machine learning community began
to identify their limitations. The extremely high require-
ments for explicit, unambiguous specification became
onerous, making both symbolic forms of artificial intelli-
gence and narrower “expert systems” brittle when con-
fronted with more open-ended problems (Mitchell,
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2021).6 To address such problems, it would no longer be
possible to rely on “human operators to formally specify
all the knowledge that the computer needs,” as another
machine learning textbook puts it. Instead, “the solution
is to allow computers to learn from experience”
(Goodfellow et al., 2016: 1). Against this backdrop of com-
putational rules, we can now illuminate what these types of
statements entail; how, precisely, they differ from machine
learning’s examples; and what type of authority they make
possible.

A genealogy of machine learning’s
exemplary type of authority
The criterion of explicitness at the heart of programming
rules provides an entryway into this comparison. As rules
become more numerous and specified, less seems to
escape them. Programming rules tell us and the machine
ever more precisely how to behave. This prescriptiveness
is justified in familiar terms, echoing the instrumental legit-
imation of Weber’s rational type of authority: complex cal-
culative processes can be executed with great speed and
precision and at low costs. In contrast, recall Chollet’s
(2021: 3) characterization: “A machine-learning system is
trained rather than explicitly programmed” [emphasis
ours]. How might comparatively implicit, “silent” examples
guide our conduct through “training”—rather than explicit
programming?

The idea of examples, like that of rules, encompasses a
huge range of ethical and epistemological positions.
Examples can point to lives or ways of living that we can
emulate, not through explicitly articulated principles but
rather by imitating exceptional individuals. Kant (1997:
4:408–4:409) criticized examples on exactly these
grounds: an ethics based on exemplarity—for instance,
emulating the person of Jesus—is insufficient because it
relies on implicit moral principles that allow us to recognize
someone as exemplary in the first place. In Kant’s view,
examples function only as embodiments of rules or princi-
ples that have been left implicit but remain fundamental.
However, this weakness can also be a strength. We argue
that an important source of examples’ authority is located
precisely in their ability to implicitly and naturalistically
“show” rather than explicitly “tell” in the abstract. Rather
than demanding obedience to the rule—a construct, an
abstraction—examples implicate us as living subjects as
we attempt to follow them.

Examples are not exclusively premodern or religious;
they sprout up wherever mediation is required between
individuals and kinds. In modern science, examples have
long served to manage the tension between specimens
and species. While these ideas date to ancient Greek phil-
osophy, Daston and Galison (2010: 58) argue that during
the Enlightenment, the observational talent of identifying

the universal from particulars constituted a holistic form
of genius in which “the eyes of both body and mind con-
verged to discover a reality otherwise hidden to each
alone.” These exemplary images “aspired to generality—a
generality that transcended the species or even the genus
to reflect a never seen but nonetheless real plant archetype”
(Daston and Galison, 2010: 60). This ability to point to
unseen structures or levels of reality also is characteristic
of examples.7

The term “example” has a technical sense in machine
learning. Like the older statistical notion of “observation”
(Upton and Cook, 2014), examples in machine learning
refer to “a collection of features that have been quantita-
tively measured from some object or event that we want
the machine learning system to process” (Goodfellow
et al., 2016: 96). It is important to note that these examples
are not equivalent to the data. Instead, the term “example”
designates the complex assemblage by which data is aggre-
gated, formatted, and related to an objective so that norms
can emerge to enable predictive or classificatory activity.
Machine learning decisively changes the numerical logic
of exemplarity, transforming the example from the singular
instantiation of a type to a multiplicity. And whereas pro-
gramming rules prescribe explicitly in advance, in
machine learning’s artificial naturalism, norms emerge
recursively through exposure of models to examples at
scale.

In the three sections below, we trace a very recent histor-
ical movement that begins with data labeling as a form of
interventionist example-making and moves toward feature
engineering, where engineering knowledge is used to iden-
tify useful representations of data. These practices point
toward an idealized horizon of full self-supervised automa-
tion and zero-shot learning (the use of models on tasks for
which they were not trained), making possible the applica-
tion of these norms across domains (Brown et al., 2020). In
practice, we stress that things are considerably more com-
plicated, with human-specified norms continuing to inter-
vene in fine-tuning or reinforcement learning with human
feedback.

Labeling
In contrast to the rule-based programming logic, where
rules are prescribed explicitly and abstractly in advance,
the example-based logic of machine learning begins at the
end: with a set of desired concrete outputs. The choice
and form of desired output obviously play a critical role
as a source of norms. A common way of making data exem-
plary is to label it (Jaton, 2021: 9). We stress that even this
well-understood process involves subtleties that point not
only to a single normative moment of ascription of labels
but also to a host of other practices that permit the emer-
gence of norms through aggregation, making certain fea-
tures intelligible while discarding others.
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The influential ImageNet dataset stands as a paradig-
matic instance of example-making by labeling in deep
learning (Azar et al., 2021; Denton et al., 2021;
Gershgorn, 2017). A set of studies has shown that the pro-
duction of datasets is not only labor and resource intensive,
as it relies on the outsourcing and exploitation of precarious
labor on platforms like Amazon Mechanical Turk; dataset
production is also reproduction of a preexisting
onto-epistemology (Crawford and Paglen, 2021: 1113) or
ground truth (Jaton, 2017; 2021): here, the hierarchical clas-
sificatory schema derived from the lexical database
WordNet. In addition to the idea that referential relation-
ships between images and labels are contingently con-
structed, we wish to emphasize that other practices of
standardization and aggregation are required to elicit the
norms that can produce classificatory decisions.

An even earlier moment of normalization evokes an
ancient etymological sense. The philosopher Canguilhem
(1991: 125) observes that the original meaning of the
word “norm” derives from the Latin word for a carpenter’s
tool, a T-square, which allows for the creation of right
angles. Much work in computer vision dataset creation
involved orientation: centering and cropping images so
that invariant features and patterns can be identified by
algorithms. An important predecessor of ImageNet, the
CalTech 101 dataset, cites orientation as a motivating
problem: “…can we find a natural alignment for images
of octopuses, of cappuccino machines, of bonsai trees?”
(Fei-Fei et al., 2004: 178). This is not a mere engineering
problem; normalization in this sense of standardized
spatial arrangement of objects is required to make classes
and structures emerge.

The concrete attribution of class labels to images by
human workers is at the heart of exemplification in the
labeling paradigm. This is usually understood not as an
explicit prescription of norms but as a more neutral descrip-
tion built on implicit forms of consensus. Considerable
ingenuity is required to match a given image to a single
label at scales required for the production of exemplary
norms in ImageNet. On Amazon Mechanical Turk, the
worker is provided with a label (“concept”), a definition
of the concept, and a set of images from which to choose
the ones corresponding to the label.8 Label attributions
are validated by groups of workers, giving a pragmatic,
even democratic flavor to the normative process of
example-making. The more difficult a concept is to illus-
trate, the greater the number of labelers required to reach
an agreement (Deng et al., 2009: 6; Kovashka et al.,
2016: 212). The designers of ImageNet are aware that
thresholds of consensus are to some degree arbitrary and
become more elusive as categories become more and
more fine-grained in so-called edge cases; they even
created “an algorithm to dynamically determine the
number of agreements needed for different categories of
images” (Deng et al., 2009: 5). These crowdsourcing

methods extend the ascriptive moment of ground-truthing
to a wider but often hidden set of annotation workers who
draw on implicit knowledge and reach classification agree-
ments by majority decision. ImageNet nonetheless circum-
scribes the spaces in which norms can emerge by
predictively prepopulating a small set of images (some
random and others corresponding to the label) from
which the labeler chooses the best match. Human labelers
function as cogs in an algorithmic system (“humans in the
loop”), which constantly evaluates both their efficiency
and their accuracy (Kovashka et al., 2016: 213). Their dis-
cretion is reduced to a minimum, save perhaps the ability to
give time-consuming and unpaid feedback in the case no
good answer can be given to a prompt.

Machine learning datasets introduce a new logic of scale
into example-making. Traditionally, an example was a con-
crete singularity that embodies a type by expressing its most
distinctive features. Data labeling processes involve a con-
ceptually more minimal (but still labor-intensive) process of
matching single instances, which are only partially repre-
sentative of the general type, with a generic label.
Epistemologically, this relationship is not reflective but
inductive in the sense that by collecting many diverse
instances (scale), a model can be trained to produce a
more robust representation of the type, a representation
that captures its invariant features. This process is norma-
tive in the sense that desired outputs and “problematiza-
tions”—task definitions—guide the selection of what
attributes can be named and made intelligible (Jaton,
2021: 2). Whereas a rule-based procedure would preselect
these attributes and attempt to explicitly specify the rules
allowing for moving from inputs to outputs, in machine
learning, this intermediate stage is left implicit in training.

We have emphasized some of the ways in which labeling
produces examples that can be processed by a model. We
now turn to some of the effects of the exemplary type of
authority, particularly the distinctive form of subjectivity
that it produces. How do we behave when we think of the
observable world as a particular instance of some more fun-
damental data-generating distribution, which can be
accessed through the representations produced by
machine learning algorithms?9 The ancestry and ethnicity
analysis services offered by corporations like 23andMe
illustrate some of these aspects of machine learning’s
authority. Patterns discovered in the DNA of clients are
made to fit cultural assumptions about ethnic and racial
identification, which are then applied to subjects
(Cachoian-Schanz and Schwerzmann, 2023). The connec-
tion between ethnoracial labels and carefully drawn clusters
grants the output an epistemic authority based on structures
claimed to be present in the data and thus in the DNA but
inaccessible to human perception.

To categorize a consumer’s ancestry via DNA from a
saliva sample, 23andMe relies on a group of initial testing
subjects who are asked to self-identify based on what
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they know about their ancestors and their geographic
origins (23andMe, 2020a). 23andMe then draws the lines
around what it considers as forming a distinctive population
by identifying and labeling genetic patterns discovered in
the dataset. The appearance of these structures depends
on assumptions about the relation of human DNA to a geo-
graphic origin and the subsequent connections between eth-
nicities and national borders. Issues like population
migration that may compromise the purity of the data, in
other terms, the homogeneity of the DNA supposed to
exist inside a population, are explicitly excluded:

When a 23andMe research participant tells us that they have
four grandparents all born in the same country—and the
population of that country didn’t experience massive migra-
tion in the last few hundred years, as happened throughout
the Americas and in Australia, for example—that person
becomes a candidate for inclusion in the reference data …
And we remove outliers, people whose genetic ancestry
doesn’t seem to match up with their survey answers. To
ensure a clean dataset, we filter aggressively—nearly ten
percent of reference dataset candidates don’t make the cut
[emphasis ours] (23andMe, 2020a).

The explanatory documents provided by 23andMe char-
acteristically combine sociohistorical assumptions about
what constitutes countries of migration with technical con-
siderations regarding issues of overfitting: “Most country-
level populations overlap to some degree, though. In
those cases, we experimented with different groupings of
country-level populations to find combinations that we
could distinguish with high confidence” [emphasis ours]
(23andMe, 2020a). Here, the process of clustering and, crit-
ically, labeling these clusters in ways that are meaningful is
described as “experimental” and is done at the discretion of
the company. The implicit and relatively silent character of
examples justifies, according to proponents, these interpret-
ive acts. However, this exemplification process is covered
over in the staging of the output (in terms of likelihood of
belonging to one or several ethnicities). This likelihood is
instead framed as naturally emerging from the data, itself
a faithful reflection of our DNA.

In Figure 1, the shape and color of each data point sym-
bolize one of the labels listed on the right, referring to the
“experimental” grouping or clustering of data by
23andMe. Without this interpretation of output structures
—that is, without ethnic categories chosen without a

Figure 1. 23andMe graph visualizing the “principal components plot of 23andMe reference European populations” (23andMe, 2020a).
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clarification of the supposed connection between DNA, eth-
nicity, and nation-states—one would only see a tight cluster
of points spatially distributed on the graph, with the excep-
tion of a few isolated clusters. Meaning only emerges
through the “experimental” labeling of the output clusters,
which itself relies, among others, on the personal account
of participants who assure that their ancestry can be
tracked to one and one place only. While the implicit char-
acter of machine learning norms tends to produce ambiva-
lent and complex mathematical distributions or estimates,
human interpretation makes these results actionable, for
instance, permitting lines to be drawn around clusters and
attributing meaning to them. These interventions are legiti-
mated epistemologically by the belief that the processing of
genetic data reveals apparently natural patterns in the DNA
that could not have been otherwise perceived. At the same
time, the staging of the results tends to downplay or even
hide the production of implicit norms in both labeling of
inputs and interpretation of outputs.

Unlike the supervised form of learning using the
ImageNet dataset, it may seem that there is a less inten-
tional, ascriptive normalization of data in unsupervised
methods like clustering, which are said to only reflect
what “is”: the underlying structure in the data. However,
we wish to relativize these differences, to focus instead
on the continuum of practices required to produce exam-
ples, elicit norms, and exercise authority through them.
As the 23andMe example shows, the structures or patterns
discovered in the data have to be “produced–interpreted” to
form meaningful clusters in terms of the given task. By
“produced–interpreted,” we mean that the discovery of a
structure and its interpretation are inextricably entangled
with what the researcher is looking for and the standards
and expectations she sets, even when these remain implicit
(unlike, for instance, in the explicit formulation of program-
ming rules or ground-truthing). This forms an important
source for the authority of examples in machine learning.
Note, for instance, the naturalization of the learning
process associated with its unsupervised character:
“[Clustering] involves the automatic identification of
natural data groups (the clusters)” [emphasis ours]
(Marzell, 2021). While they may appear accurate in relation
to a given task or benchmark, the patterns discovered
through unsupervised algorithms do not convey their
meaning explicitly. They do not make their principles of
composition intelligible (Miller, 2019). Nor do they
command or prohibit in any prescriptive sense as rules do.

This implicit type of authority produces a form of sub-
jectivity that differs from the alienation said to accompany
the rational type of authority exercised by rules. Those sub-
jected to machine learning’s classifications are forced to
search for and construct rationales for unintelligible
results. There are a distinctive set of subjective effects
and affects tied to the authority of exemplification. The
angry, disappointed, or skeptical comments to a blog in

which 23andMe explained an update to their model drama-
tize the conflict between family narratives, rule-based, bur-
eaucratic modes of identity production, and machine
learning’s identity attribution. After the update, the clients
are critical of the new classifications, which they see as
having become less accurate. Consumers seem to expect
to receive a scientific confirmation of what they know
about themselves. When this fails to materialize, it is not
the legitimacy of the apparatus of DNA ethnic analysis
and its myriad implicit assumptions about race and ethnicity
that are attacked as inconsistent or problematic. The user
“RPK” demands: “Give me back my Irish grandparents!
They disappeared with this update. I have documentation
that they emigrated from County Kidare in 1848. Both
their parent sets were also Irish. The previous report
nailed it to within 20 miles! Now I have no Irish blood.
Something is wrong with your update. Please fix it”
(23andMe, 2020b). Here, the algorithm is granted the
power to symbolically make the user’s grandparents dis-
appear by entirely rewriting what the user knows about
themselves, which was established through bureaucratic
modes of identification. In a similar way, “Mrs. C.”
describes her self-conception as shattered by the updated
results: “I’m almost half the woman I used to be thanks to
the errors in your new and ‘improved’ algorithm. Your
new algorithm incorrectly removed all of my French and
German heritage that was accurately listed prior to the algo-
rithm update … I’ve lost all faith in the accuracy of your
data and I’m make sure [sic] to let others know of your
errors as well. Please make this right and fix these errors”
(23andMe, 2020b). While errors are attributed to the algo-
rithm and the accuracy of the data, the connection of race
and ethnicity with DNA ridden with problematic socio-
political assumptions remains entirely unchallenged.
Again, our claim is that machine learning’s logic of exem-
plarity grants this connection the legitimacy of a natural fact
emerging from the processing of data through a model.

The 23andMe example showcases the relationship
between two types of authority: the older rational type
legitimized by law and bureaucracy and the emerging
exemplary type legitimized through the assemblage of
data and models. While the bureaucratic rules associated
with the rational type of authority—here the rules of
identity attribution—come with their own violence,
opacity, and arbitrariness, they apply to every individual
in the same way (at least in principle) so that individuals
can orient themselves in relation to the rules and poten-
tially contest them. Bureaucratic and computational
rules point back to a foundational moment of prescriptive
specification or encoding, which can be contested. By
contrast, being ruled by examples means never accessing
the implicit, experimental norms elicited from examples
and constantly updated through the optimization of the
model. With machine learning’s exemplary type of
authority, norms are emergent and constantly subject to
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change due to both alterations in the models and modifi-
cations in the very behaviors modeled.

Feature engineering
The success of deep learning methods on large, labeled
datasets like ImageNet inspired the research community
to look for a more radical understanding of exemplarity in
which the structure of the data itself, rather than the ascrip-
tion of external labels (always an expensive and time-
consuming process), could produce the norms required to
classify and represent. Up to this critical period around
2010, it was widely acknowledged that the most important
factor in the success of a machine learning project was in
preprocessing of data or feature engineering. Feature engin-
eering (the latter word connoting intentionality and design)
transforms data so as to produce examples that can effect-
ively train the model (Bengio et al., 2013: 1798).
Originally, this was based on the implicit knowledge accu-
mulated by the programmers while working with models.
Tactile metaphors predominate in descriptions of these
practices—instead of intentionally “handcrafting” program-
ming rules, engineers “turn knobs” back and forth, search-
ing for optima. In an influential 2012 article, Pedro
Domingos explains how examples may be constructed
from data in this way: “Often, the raw data is not in a
form that is amenable to learning, but you can construct fea-
tures from it that are. This is typically where most of the
effort in a machine learning project goes. It is often also
one of the most interesting parts where intuition, creativity,
and ‘black art’ are as important as the technical stuff”
[emphasis ours] (Domingos, 2012: 84). Feature engineering
takes the form not of labeled outputs but of more general
assumptions or hypotheses about one’s data and models
(an implicit form of knowledge production, contrasting
with the universalist, prescriptive, and explicit logic of rule-
making). This reverses the directionality of the input–
output dynamic of algorithmic rules. Instead of specify-
ing rules to govern the movement from input to output
as tightly as possible through an exhaustive and explicit
specification of steps, engineers seek transformations of
the data in aggregate that will elicit desired outputs.
Ideally, these transformations capture essential informa-
tion about the task and make mathematical optimization
more tractable. Authority shifts from tight control over
the behavior of a calculative process to a more specula-
tive, provisional form of authority based on hypotheses
about the features that can most effectively discriminate
between inputs.

However, as Bengio et al. (2013: 1798) explain, these ad
hoc engineering practices, while effective, share some of
the same limitations as labeling: “Such feature engineering
is important,” they write, “but labor intensive and highlights
the weakness of current learning algorithms: Their inability
to extract and organize the discriminative information from

the data.” The implication, as in self-supervised learning, is
that models themselves, not human engineers, should be
able to extract learning norms from data. This leads to a
second tension within the artificial naturalism of machine
learning’s type of authority. Instead of an explicit series
of rules or task-dependent engineering, machine learning
should rely on “generic priors,” which “capture the poster-
ior distribution of the explanatory factors of the observed
input” (Bengio et al., 2013: 1798). This view rests on an
idea that the more minimal these mediations are, the more
the data can speak for itself. However, this naturalism is
complicated by the fact that extreme care is required to
select such priors capable of creating a context in which
these exemplary norms can emerge.

Scaling
Perhaps, what most distinguishes machine learning’s type
of authority from prior senses of exemplarity is its
awesome sense of scale, expressed in many different
ways: the number of model parameters, the amount of
compute required to train a model, and the size of datasets.
From the standpoint of contemporary large language
models (LLMs), which tend to be trained on unlabeled
data, labeled datasets like ImageNet constitute an inter-
mediate logic of exemplarity. Such collections of labeled
images, to be sure, are not individuals in the prototypical
sense of the singularity that most perfectly embodies the
essence of some type or class—a one-to-many relationship.
Nonetheless, a smaller set of (labeled) individuals elicits the
norms required to characterize a potentially larger set by the
identification of common, distinctive features. However,
when representations emerge less and less from ascriptive
interventions like labeling and more from immanent rela-
tionships within the data itself, this numerical imbalance
between the sample and the population (to somewhat ana-
chronistically deploy a statistical concept) becomes
murky. Instead of isolating the special case from prosaic
everyday reality (and indeed, this exceptional, perfect
status was a former source of exemplary normativity and
authority), in machine learning, examples promise to con-
verge with what they map, an important aspect of
machine learning’s naturalism.

LLMs illustrate this asymptotic naturalism. These
systems (like GPT-3) tend to be self-supervised, deep learn-
ing, decoder-only models with huge numbers of parameters
trained on very large datasets of natural language. Their
“objective [norm-giving task] is … to predict the next
token [a unit of text] given the preceding tokens in the
example” (Chowdhery et al., 2022: 3). This apparently
narrow remit seems remarkably adaptable to numerous
domains in what is termed few-shot learning; LLMs can
be adapted for other tasks simply by using them as
natural language interfaces, with comparatively little
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domain-specific training. A group of researchers based at
Stanford University describes their qualities of “emer-
gence” and “homogenization” in a way that resonates
with our understanding of examples. “Emergence,” they
explain, “means that the behavior of a system is implicitly
induced rather than explicitly constructed; it is both the
source of scientific excitement and anxiety about unantici-
pated consequences. Homogenization indicates the consoli-
dation of methodologies for building machine learning
systems across a wide range of applications” [emphasis
ours] (Bommasani et al., 2022: 3). In their implicitness
and generality, these models crystallize machine learning’s
exemplary type of authority. From a comparative perspec-
tive, it is striking that these models tend to be controlled
using natural language in the form of prompts rather than
the formal and unambiguous programming languages
used to express computational rules. Prompts elicit rather
than explicitly command. Indeed, early work shows that
the same prompt can sometimes produce different results,
suggesting a more open, probabilistic relationship
between input and output.

Scale shifts this logic of exemplary authority from a sin-
gular transcendent source of norms to one that appears to be
immanent with the data itself—yet retains a norm-giving
power. Where “ought” was traditionally marked out from
“is”—as the example reflected the essential features of the
type and differed from a mere instance (token)—data,
compute, model, and scale asymptotically merge ought
and is. The appearance of slogans like “scale is all you
need” even implies that scale is some sort of sufficient con-
dition. However, it would be misleading to conclude that
large-scale datasets are free of human interventions required
to produce smaller labeled datasets. Indeed, talk of scale in
the abstract can obscure the various normative operations
that characterize dataset construction methods and assump-
tions, although these details are becoming more difficult to
publicly scrutinize.10 One large, unlabeled dataset,
Google’s Generalist Language Model (GLaM), does
include some high-level discussion on its training set.
Invoking size appears to justify claims that it is representa-
tive of natural language in some vague broader sense: “To
train our model, we build a high-quality dataset of 1.6 tril-
lion tokens [a linguistic unit] that are representative of a
wide range of natural language use cases” (Du et al.,
2021: 2). However, the authors later provide a much more
concrete description of the way that they engineered a nor-
mative mixture of linguistic sources; one key innovation
was the use of “a text quality classifier” to engineer a
mixture of predominantly “high-quality” linguistic
sources: “Wikipedia, books and a few selected websites”
(Du et al., 2021: 2). The authors subsequently observe
that smaller, higher-quality filtered training sets of 143
billion tokens produce better results than an unfiltered set
of 7 trillion tokens, especially on language generation

tasks (Du et al., 2021: 7–8). Thus, scale, while clearly
playing an important role in the performance of the
model, is not sufficient; the selection of dataset sources
also constitutes a better-defined norm-giving space.

In machine learning’s exemplary type of authority, scale
points to a different horizon of universality than that of the
rational authority of computational rules. The latter relied
on the quasi-infinite space for the specification of explicit
rules in computer memories theorized by Turing. Machine
learning’s universality instead makes datasets as large as
possible so as to cover the widest range of possible situa-
tions and applications, as can be seen in the interest in
few- and zero-shot learning (“homogenization” in the
words of the Stanford researchers). These datasets are
treated unproblematically as notional samples of some
prior distribution that can be grasped through generative
modeling. Norms are elicited from these datasets through
generic priors that are flexible and implicit in their minim-
alism, encompassing many possible sources of variation in
order to produce exemplary representations. This points to a
change in the form of predictability at the heart of machine
learning’s type of authority. It no longer means total control
over an analytically specified calculative process but rather
the probabilistic association of desired input–output rela-
tionships on the basis of some implicit-level structure
imputed from datasets engineered according to emergent
norms. These structures or patterns in high-dimensional
spaces are beyond thresholds of human recognition,
which become more and more intelligible to models at
great scale and with high dimensionality, constituting a
horizon of convergence between normative examples and
the phenomena that they supposedly represent.

Conclusion: The new authority of
examples in machine learning
Our genealogies have focused on points of distinction
between a rule-based programming paradigm and a more
recent machine learning paradigm based on examples. In
the middle of the 20th century, figures like Turing produced
a radical account of computational rules that are (a) totally
explicit and expressed in a formal programming language
and (b) created for specific tasks through an exhaustive ana-
lysis of a behavior while (c) “universal” in that the potential
space for their elaboration is large enough to cover any task.
Finally, (d) rules work in discrete states, which makes the
movement from input to output entirely predictable. This
understanding of rules was made possible by a long and
heterogenous set of developments shaped by a series of
transformations that put rules at the center of our accounts
of knowledge (Cartesian method) and ethical life (Kantian
imperatives). Critically, Weber’s sociological account of
the rational type of authority in the modern bureaucratic
order shows how rules became organized in the explicit,
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abstract, and systematic bodies that would later characterize
computational rules.

Computer scientists often present machine learning in
terms of a discontinuity with the rule-based programming
paradigm, which, after collapsing under its own brittle
weight, is said to have been superseded by a paradigm of
training based on examples. The reality is more complex,
as both paradigms coexist. Our analysis nonetheless isolates
key features of the emerging example-based paradigm in
terms of authority. While Weber’s rational type of authority
operates by rules, machine learning’s authority produces
obedience through norms elicited from examples. The
very recent history of machine learning further illuminates
this exemplary logic, beginning with the relatively inten-
tional introduction of norms by human labelers for com-
puter vision datasets alongside “feature engineering,”
which designates the use of implicit and intuitive engineer-
ing knowledge to identify relevant aspects of the data.
Although different from the unequivocal explicitness of
algorithmic rules, these relatively direct interventions
played a major role in making data exemplary, allowing it
to elicit the representations required to associate inputs
and outputs. However, the machine learning community
perceived these interventions ambivalently, lamenting that
models were not yet capable of learning something inform-
ative from the structure of the data itself rather than simply
“memorizing” human-assigned input–label associations.
“Scale” has emerged as a more naturalistic alternative to
human intervention, blurring “ought” and “is.”

It is important to reiterate that “example” in machine
learning is not congruent with “data.” Instead, it designates
the complex assemblage by which data is aggregated, for-
matted, and processed so that norms can emerge.
Machine learning’s exemplary authority contrasts with the
constructed, transcendent authority of rules: whereas rules
are imposed from above on the diversity of things they
govern, norms emerge from tasks and examples and are
immanent to them. What can it mean to be governed
according to machine learning’s type of authority and its
implicit normativity? To conclude, we offer a few hypoth-
eses. While both algorithmic rules and machine learning
norms guide our conduct by making it more predictable,
the nature of this predictability, the connection between
input and output, has changed. It may be tempting to
think that machine learning’s exemplary type of authority
is more open to variability and change. Instead of thinking
in quantitative terms, we prefer to emphasize qualitative dif-
ferences between these regimes in terms of the sources and
legitimacy of their authority as well as possible modes of
resistance. While examples are instrumental—produced in
light of a task or objective—they elicit norms that appear
to express natural regularities or types.

The proponents of machine learning claim that machine
learning–based algorithms can predict or identify behaviors
more accurately—especially more accurately than human

counterparts—thanks to the large amount of information
they can process. This instrumental, task-oriented logic is
underpinned by naturalist assumptions that combine epistemo-
logical and ethical aspects: the predictive efficacy of machine
learning is made possible and justified by claims to identify
some “underlying explanatory factors for the observed
input”—even if these are unintelligible to the governed or
even those who built the models (Bengio et al., 2013: 1798).
Whereas rules tend to acknowledge their “constructedness,”
machine learning norms are construed as being of the same
kind as prior probability distributions, natural regularities.

The 23andMe case provides some insights on what it
means to be ruled by two conflicting types of authority:
the exemplary and the rational. Instead of producing alien-
ation and friction between rules as general principles and
empirical diversity, examples implicate us, inducing anger
and anxiety. Because the principles of prediction or classi-
fication are implicit, we can never know what parts of our
behaviors, characteristics, or identities might have caused
us to be associated with a certain output category or label.
The explicit intransigence of rules dissolves into a series
of ever-modifiable but unintelligible correlations. How
might we resist being ruled by examples when each
subject is interpellated by machine learning’s type of
authority in a slightly different way, as no individual pro-
duces exactly the same data and, thus, is classified follow-
ing the same norm? We cannot offer any definitive
prescriptions, only concepts and comparisons that need to
be tested in further empirical research and in local contexts.
However, it seems like being ruled through machine learn-
ing’s type of authority implies a specific disassembling of a
liberal, rule-based form of political subjectivity, as data
extraction latches on always partial parts of ourselves
(any kind of contingent behavior that can be extracted) to
then reassemble those parts following ever-changing cri-
teria. The foundational moment that characterizes the polit-
ical disappears into myriad microdecisions (Sprenger,
2020), obeying implicit norms. This transformation could
lead to the dissolution of the common ground necessary
for collective agency and struggle.

There have been some visionary attempts at theorizing
such subjectivities—Deleuze’s (1992) idea of the “dividual”
comes to mind—but thus far they have been underspecified
and tentative. We hope that further concrete engagement
with machine learning’s exemplary type of authority at both
technical and theoretical levels will help us further specify
the way we are affected by it and how we can resist it.
Perhaps, the “architectures” of machine learning models
will take their place alongside the agora, the square, the
theater, and the street as sites of political contestation.
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Notes

1. The terms “is” and “ought” are often associated with the phil-
osopher David Hume, who controversially denied that moral
conclusions (“ought”) could be derived from factual premises
(“is”). We reprise these terms to signal the ambiguous posi-
tions of facts and norms in machine learning (Hume, 2007:
302). See also Grosman and Reigeluth (2019: 2).

2. We note that there are many other important moments in
machine learning pipelines, which these norms are refined
that we cannot cover here, notably in testing and benchmark-
ing models.

3. We wish to thank Anastasia Klimchynskaya who introduced
the authors to Zola’s text.

4. See Daston (2022: 82–105) for a history of calculative rules
and Jones (2016) for a longer history of calculating machines
extending to the early modern period.

5. Where Daston emphasizes the “hybrid intelligence” of algo-
rithmic rules—a co-constitution of human and machine calcu-
lation from which humans were never definitely excluded—
we emphasize differences (Daston, 2022: 126).

6. The actual history of expert systems shows that many of its
practitioners themselves made this critique. J. Ross Quinlan
and Donald Michie initiated an example-led paradigm that
led toward more contemporary forms of machine learning
(Jones, 2023: 204).

7. In this sense, our perspective on examples may share com-
monalities with the “indexical” characterization of artificial
intelligence of Weatherby and Justie (2022).

8. For an idea of the interface, see Fei Fei (2010: 24–25).
9. Phan and Wark (2021: 4) question this naturalistic paradigm

by emphasizing that machine learning, while making percep-
tible things that have so far escaped human regimes of percep-
tion and in particular vision, in fact, produces “novel,
non-visual ground” for old logics like, for instance, race.

10. Rather notoriously, OpenAI’s recent GPT-4 model contains
no discussion of its training dataset, citing concerns about
competition and safety (OpenAI, 2023: 2).
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