
Uncertainty Flow Diagrams: Towards a Systematic Representation
of Uncertainty Propagation and Interaction in Adaptive Systems

Javier Cámara
jcamara@uma.es

ITIS Software, Universidad de Málaga
Spain

Sebastian Hahner
sebastian.hahner@kit.edu

Karlsruhe Institute of Technology
Germany

Diego Perez-Palacin
diego.perez@lnu.se
Linnaeus University

Sweden

Antonio Vallecillo
av@uma.es

ITIS Software, Universidad de Málaga
Spain

Maribel Acosta
maribel.acosta@tum.de

Technical University of Munich
Germany

Nelly Bencomo
nelly.bencomo@durham.ac.uk

Durham University
United Kingdom

Radu Calinescu
radu.calinescu@york.ac.uk

University of York
United Kingdom

Simos Gerasimou
simos.gerasimou@york.ac.uk

University of York
United Kingdom

ABSTRACT
Sources of uncertainty in adaptive systems are rarely independent,
and their interaction can affect the attainment of system goals in un-
predictable ways. Despite ample work on “taming” uncertainty, the
research community has devoted little attention to the systematic
representation, analysis, and mitigation of uncertainty propagation
and interaction (UPI) in adaptive systems. To address this oversight,
we introduce Uncertainty Flow Diagrams, a notation that captures
key UPI aspects. We demonstrate the use and benefits of our novel
notation on Znn.com, an adaptive news site infrastructure.

KEYWORDS
Uncertainty propagation, Uncertainty interaction, Modeling nota-
tions, Flow Diagrams

ACM Reference Format:
Javier Cámara, Sebastian Hahner, Diego Perez-Palacin, Antonio Vallecillo,
Maribel Acosta, Nelly Bencomo, Radu Calinescu, and Simos Gerasimou.
2024. Uncertainty Flow Diagrams: Towards a Systematic Representation
of Uncertainty Propagation and Interaction in Adaptive Systems. In 19th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’24), April 15–16, 2024, Lisbon, AA, Portugal.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3643915.3644084

1 INTRODUCTION
Sources of uncertainty in adaptive systems are rarely independent,
and their propagation and interactions can affect the attainment of
system goals in subtle and often unpredictable ways [10]. As such,
the management of uncertainty propagation and interactions (UPI)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0585-4/24/04. . . $15.00
https://doi.org/10.1145/3643915.3644084

must be considered as a first-class systems development problem,
e.g., by representing UPI explicitly in the models underpinning the
operation of control loops, and by considering them during the
analysis and planning activities of these loops.

The few existing approaches tackling uncertainty propagation
focus on homogeneous uncertainties, i.e., uncertainties that are sim-
ilar in nature, admit the same representations and are amenable
to similar reasoning mechanisms. Examples of such approaches
range from methods for the propagation of uncertainty in mea-
surement [22] and for the propagation of belief uncertainty based
on probability theory [11], to those that use possibilities (in Fuzzy
set theory [35, 46]), plausibilities or belief functions (in Dempster-
Shafer’s theory [40]) or subjective logic [23]. In software, the prop-
agation of design uncertainty has also been treated using design
space variability exploration techniques [6, 8, 16, 25, 41, 44].

In contrast, the propagation of heterogeneous uncertainties has
received less attention, particularly in the area of adaptive systems.
The reason for this is twofold. First, even managing individual (and
homogeneous) uncertainties is very challenging, so the research
community has allocated most effort to addressing this “simpler”
problem so far. Second, this otherwise commendable effort has not
produced systematic approaches for the rigorous, unified treatment
(e.g., representation, analysis, mitigation) of common uncertainties
and their interactions in the area of self-adaptation (e.g., measure-
ment uncertainty versus uncertainty induced by model abstraction).

In this paper, we argue that our research area is mature enough
for such systematic approaches to be developed [45], that they are
essential for managing UPI impacts on key properties of adaptive
systems, and that they should be included in new engineering pro-
cesses that yield more robust and resilient, adaptive systems [10].

To devise such systematic approaches, we need to address chal-
lenges that relate to the representation of UPI, as well as their
analysis and quantification. So far, we only have notations to repre-
sent different types of uncertainty in isolation [42], but not their
interaction [9, 10]. Thus, representing the different types of uncer-
tainty interactions that affect relevant system properties remains
a major challenge that entails not only categorizing the different

https://doi.org/10.1145/3643915.3644084
https://doi.org/10.1145/3643915.3644084

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Cámara et al.

lbproxy db

c0

c1

c2

s0

s1

s2

s3

Figure 1: Znn.com system architecture [15]
classes of interactions that can be found in the context of an adap-
tive system, but also devising appropriate notations and patterns to
represent them and enable their automated analysis and mitigation.
A key requirement for these notations is that they should be able to
capture how uncertainty propagates both horizontally (i.e., within
the same level of abstraction) and vertically (i.e., across different
levels of abstraction, for instance going from the managed to the
managing subsystem of an adaptive system, and vice versa). To
address this and other challenges in representing and reasoning
about UPI there is a need for notations and analysis techniques able
to handle heterogeneous sources of uncertainty, enabling engineers
to trace them back to the properties on which they have an impact.

While different notations have been employed to trace uncer-
tainty through software system models in specific contexts such
as confidentiality in Data Flow Diagrams (DFD) [18, 19] and UML
activity diagrams [14, 17], these are not enough to address the chal-
lenges posed by UPI. We posit that leveraging key elements of DFD
and architectural descriptions can enhance our understanding of
how uncertainty propagates horizontally and vertically in an adap-
tive system, and how (homogeneous or heterogeneous) uncertainty
interactions influence the satisfaction of system goals. To that end,
we define Uncertainty Flow Diagrams (UFD), a notation that cap-
tures the impact of UPI on system properties. UFD specification can
be informed by available system artifacts (e.g., models, analyses)
that use architecture-centric descriptions to reason about adapta-
tions, and are proposed as a stepping stone to enable the integration
of various analysis techniques (e.g., based on assume-guarantee
verification [26, 34]) to overcome UPI analysis challenges.

2 MOTIVATING SCENARIO
We illustrate our approach in the context of Znn.com [7], an adap-
tive news website infrastructure that features a three-tier architec-
ture comprising a set of servers that provide contents from backend
databases to clients via front-end presentation logic (Figure 1). A
load balancer distributes requests across the pool of servers, the
size of which can be adjusted according to service demand.

Znn.com follows MAPE-K [24] and its adaptive layer is imple-
mented with Rainbow [15]. Extra-functional goals include cost
minimization, performance, and security. For clarity, we will focus
only on performance (i.e., maintaining a low response time). In
Rainbow, goals are captured as utility functions whose accrued
value has to be maximized during system execution.

When Znn.com receives a spike in workload, this is reflected
in the experienced response time (𝑟) measured through a probe
embedded at the system level. Of course, the sensed value (𝑟) is not
the same as the ground truth 𝑟 because the sensor has a limited ac-
curacy and yields values within a range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] that contains 𝑟 .
Once the measured value 𝑟 is obtained, the monitoring stage in
MAPE-K incorporates it into the architectural model of the system,
which is updated at run time in the knowledge base. This process

r̂d r̂ r

Rmax µ

rd r̂dr̂r

Rmaxµ

rd

(a) (b)

Figure 2: Model-Sensing interaction: (a) preventing required
adaptation (b) causing spurious adaptation.

entails discretizing the value of the response time to accommodate
the granularity in the model. We designate the discretized value of
the measured response time by 𝑟𝑑 , which is defined as:

𝑟𝑑 ≡ arg min
𝑥∈[R]𝜇

(|𝑟 − 𝑥 |), (1)

where [R]𝜇 = {𝑥 ∈ R | 𝑥 = 𝑖𝜇, 𝑖 ∈ Z, 𝛼 ≤ 𝑥 ≤ 𝛽 } is the set of val-
ues that the discretized response time variable 𝑟𝑑 can take, 𝜇 is a
parameter that controls the granularity of the discretization (smaller
𝜇 means higher model fidelity), and [𝛼, 𝛽] is the range of the vari-
able. The discretized value of the measured response time 𝑟𝑑 is then
retrieved by the analysis stage in MAPE-K and compared against
the maximum acceptable threshold for response time, 𝑅𝑚𝑎𝑥 , which
is stored as another property in the architectural model of the sys-
tem in the knowledge base. Hence, if 𝑟𝑑 > 𝑅𝑚𝑎𝑥 , the analysis stage
triggers the planning stage, which will select an adequate adapta-
tion strategy to fix the problem (e.g., activating additional servers,
or reducing the quality of the contents served to clients).

The uncertainty induced by the measurement and discretization
processes of the response time property can interact in more than
one way with other uncertainties. In the situation illustrated in
Figure 2(a), both 𝑟 and the observed value 𝑟 are above threshold
𝑅𝑚𝑎𝑥 . Rectangles represent discretization buckets. When a real
value is observed within a bucket, it is snapped to its center value
(dashed lines). The discretization process snaps the value of 𝑟 to
𝑟𝑑 , preventing the triggering of adaptation in a situation in which
it would have been required. Note that without the error induced
by the probe, the discretization process on its own would not have
been enough to prevent the triggering of the adaptation, given that
𝑟 would have been snapped to 𝑟𝑑 , which is still above 𝑅𝑚𝑎𝑥 .

Figure 2b illustrates the case in which 𝑟 and the observed value 𝑟
are below 𝑅𝑚𝑎𝑥 . Here, a spurious adaptation is triggered because 𝑟𝑑
is above 𝑅𝑚𝑎𝑥 . Once again, it is only the combined effect of uncer-
tainties in discretization and observation that cause this situation.

Making informed design decisions in the presence of such inter-
actions is complex. Hence, we propose moving towards systematic
approaches to handle UPI to obtain more resilient adaptive systems.

3 METHODOLOGICAL CONTEXT
Our approach (Figure 3) is intended to be used at design time by
engineers building an adaptive system, who may use as input an
already available set of (software) design and implementation arti-
facts (e.g., probes and effectors, analyzers, planners, specifications
of adaptation tactics/strategies). The approach provides as output
a report on the impact of uncertainty interactions on key system
properties. This report can then be used to make informed decisions
about design and implementation changes that may be required
to mitigate the effect of UPI upon the satisfaction of the aforemen-
tioned properties. The process can be used iteratively to refine the
design and implementation of the system incrementally.

Uncertainty Flow Diagrams: Systematic Representation of Uncertainty Propagation and Interaction SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

 Input Output Process stage Artifact

Engineers

S0. Design &
implementation

S1a. UFD
specification

S2. TranslationS3. Propagation
analysis

S1b. Requirements
formalization

Design & implementation
artifacts

Uncertainty Flow
Diagram (UFD)

Formalized system
requirements

UPI impact on
system properties

UF formal
specification(s)

Figure 3: Overview of the envisaged solution showing the steps of design, specification, translation, and analysis.

The approach consists of the following steps: S0. Design and
implementation precedes the rest of the process if a set of de-
sign/implementation artifacts is unavailable a priori; S1a. UFD spec-
ification, which involves the construction of UFD by engineers,
informed by existing artifacts and stakeholder knowledge (e.g.,
members of the engineering team, domain experts). We describe
their syntax in Section 4; S1b. Formalization of system requirements,
that may include constraints (e.g., structural, behavioral, quality),
system goals, and other relevant system properties; S2. Translation
of UFD into formal specifications used as input to the tools to be
employed in propagation the following step; and S3. Propagation
analysis conducted with formal analysis tools that provide results
informing about how uncertainties interact, affecting the set of
system properties formalized in S1b.

4 UNCERTAINTY FLOW DIAGRAMS
Akey component of our proposal is a notation to represent explicitly
both (i) the uncertainty associated with each piece of information
handled by the system, and (ii) how information and its associ-
ated uncertainty flow along computations. The main advantage of
this approach is that it enables localizing and encapsulating the
interactions between uncertainties within the relevant individual
computations (Actions), providing a structured way of dealing with
them. This approach is similar to the encapsulation of behavior
proposed by the Object-Oriented paradigm. By isolating the indi-
vidual computations into Actions, and by explicitly declaring the
uncertainty that can affect their input and output parameters (rep-
resented by Pins), the behavior of each Action can be specialized
to deal with the uncertainty interactions that may happen during
the computation that the Action performs. Normally, each Action

will encapsulate a small piece of behavior that involves variables
with uncertainty, e.g., the computation of the value of a variable or
the comparison between two or more uncertain variables.

The notation allows representing the control flow between Actions.
ControlFlows are in charge of connecting Pins (possibly through
ControlNodes that implement decisions, forks, merges and joins of
the control flow), passing the information and its associated un-
certainty from an output Pin to its connected input Pin. These are
useful to check that the types of the connected Pins match, i.e., the
output Pin is a subtype of the input Pin. They do not make calcula-
tions on the uncertainty of the information they handle; they only
transmit the information and its associated uncertainty.

Figure 4 shows the UFD metamodel. Its core is a simplified
version of Data Flow Diagrams (DFDs) [12] or UML 2.5 Activi-
ties [31], extended with information about uncertainty (based on
the OMG’s PSUM specification [33]). The top-level element is the

Activity, i.e., a graph whose nodes and edges are ActivityNodes

and ControlFlows, respectively. The graph represents how the in-
formation flows through the computations performed by a pro-
gram. Actions represent behavior, are represented by squares with
rounded corners, and have Pins (small white squares) that repre-
sent the types of input/output parameters. Each Pin has a Type.
Actions may have an associated Behavior, such as the invocation
of a method to transform the action’s inputs into outputs.

To enable hierarchical modeling and vertical uncertainty propa-
gation, each Action can also be refined by one ormultiple Activities
that represent its inner workings. At the highest abstraction level,
the whole system can be represented by a single node with input
and output pins, i.e., a black box. Either a Behavior or a set of re-
fining internal Activities can be specified for an Action. It is also
possible to specify multiple internal activities that represent alter-
natives. This enables the expression of structural uncertainty as
variations, which is common to represent design uncertainty [42].

A ControlFlow is represented by a directed arrow that connects
the outgoing Pin of an Activity with the incoming Pin of another
Activity. ControlFlows may include Guards that have to be satis-
fied for the information to flow between the connected Pins (or
ControlNodes). Whenmore than one Guard is specified, they all need
to be satisfied for the ControlFlow to take place (AND-semantics).

ControlNodes are used to define more elaborated flows between
the Pins, including Merges, Decisions, Forks or Joins (with their
usual UML, SPEM or BPMN semantics). Initial and Final nodes are
also ControlNodes that represent the starting and final nodes of an
Activity. ExceptionNodes allow dealing with exceptions, defining
exceptional exits of actions, due to invalid situations that cannot
be naturally handled by the action.

UFDs also enable the explicit representation of uncertainty, with
the goal of dealing with the interactions between uncertainties
that happen when making computations. UFDs allow the speci-
fication of individual uncertainties associated with Pins or with
Actions. Each uncertainty can be of a different type (i.e., heteroge-
neous). This includes the common uncertainty types Measurement
Uncertainty, Discretization Uncertainty, Occurence Uncertainty,
Design Uncertainty, and also Belief Uncertainty [42].

Each uncertainty can have an associated Measure, which also has
a Type. For example, one way to assess a Measurement Uncertainty

is in terms of the accuracy of the measurement, which is normally
expressed by means of a real number that represents the possible
variation of the nominal value of the parameter, i.e., its estimated

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Cámara et al.

ActivityNode

ControlNode

InitialNode

ExceptionNode

Decision Fork JoinMerge

FinalNode

DataType UserDefinedType

Action

Activity

Behavior

ConnectableElement

ActivityEdge ControlFlow Guard

Pin

UncertainElement Measure

Uncertainty

MeasurementUncertainty DesignUncertainty BeliefUncertaintyDiscretizationUncertainty OccurrenceUncertainty

MeasurableElement

TypedElement Type

* internalActivity

1

*

1

*
* *

*
0..1

*
*

0..1 output
1 source

0..1 input
1 target

1 output 1..* output

1 input 1..* input

* 1

0..1
*

*

Figure 4: Uncertainty Flow Diagram (UFD) metamodel showing the relation of activities, flows, and different uncertainty types.

standard deviation. Likewise, Belief Uncertainty is normally ex-
pressed by a real number between 0 and 1 representing the likeli-
hood (expressed as a probability) that the stated fact is true. Alterna-
tively, uncertainty can be expressed by defining multiple Internal

Activities as variation of the behavior of a single Action which is
usually used to express Design Uncertainty. This enables also the
expression of additional uncertainty types that are not included in
our proposed metamodel. Any uncertainty type can be expressed if
it can be denoted either quantitatively using an associated Measure

or structurally using alternative internal Activities.
Different concrete syntaxes can be defined for this metamodel,

such as Data FlowDiagrams (DFDs) [12], UML activity diagrams [31],
SPEM [28], BMPN [30] models, or Petri Nets [21], with some small
additions to represent the associated uncertainty. For example, the
notation defined in UML for Activity Diagrams can be used to repre-
sent all the elements in the UFD metamodel except the uncertainty
information, which can be represented using a UML profile. Figures
that depict UFD in the next section employ this notation. The key
issue is that the semantics of the UFD models can be seamlessly em-
bedded into the semantics of other control-flow or process models.
Note that some of these existing proposals provide ways to repre-
sent different types of uncertainty, but none of them can represent
multiple different types and their interactions, while ours can.

5 DEMONSTRATION
In this section, we first demonstrate how to employ UFD with the
problem described in Section 5.1, and then illustrate in Section 5.2
one of the possible embeddings of the scenario description in UML.

5.1 Representing UPI in ZNN.com
To demonstrate our approach, we tackle the problem that takes
place when the uncertainty due to sensor readings is combined
with the discretization in the variables to accommodate model
granularity (cf. Section 2). A critical adaptation is activating a new
server, which is triggered when the response time 𝑟 goes above
threshold 𝑅𝑚𝑎𝑥 . This comparison can be defined by the operation
(specified in OCL): compare(r:Real,t:Real):Boolean = r > t.

Using our graphical notation, this can be seen as an action whose
inputs are two real numbers and returns a Boolean (Figure 5a). Then,
if 𝑟 = 3.55 and 𝑅𝑚𝑎𝑥 = 3.33, then compare(r,RMax) = true.

The first type of uncertainty prevents knowing the exact value
of 𝑟 , due to the precision of the sensing devices and approxima-
tion errors caused by floating point calculations. This forces us to
work with an approximated value 𝑟 . There is always a difference
𝜅 between 𝑟 and 𝑟 and, therefore, this uncertainty may produce
some wrong decisions when 𝑟 > 𝑅𝑚𝑎𝑥 but 𝑟 < 𝑅𝑚𝑎𝑥 . We then need
to incorporate this information into our computations. The Real
values will be enriched with the accuracy of the sensors, and the
Boolean values will be enriched with the degree of likelihood, i.e.,
they become probabilities (Figure 5b).

One way to deal with this type of uncertainty is by using an
extended type system that enables the use of random variables to
represent primitive data types [42]. Thus, if the accuracy of the
sensor is 𝑢, then the comparison function can be written as follows:

uCompare(rh:UReal, t:UReal):UBoolean = rh > t

The result of this comparison function is of type UBoolean (a
probability): the likelihood of the variable affected with uncertainty
to be greater than the threshold 𝑡 . For example, if 𝑟 = 3.55, 𝑅𝑚𝑎𝑥 =

3.33, 𝑟 = 3.45, the precision of the sensor is 𝑢 = 0.1, and the
threshold is a “crisp” value, with no uncertainty, then we obtain:

compare(r, RMax) = true

compare(r_hat, RMax) = true

uCompare(UReal(r,0.1), RMax) = UBoolean(true,0.986)

uCompare(UReal(r_hat,0.1), RMax) = UBoolean(true,0.885)

These are sensible results and provide more information than
their “crisp” versions. In any case, this is part of the current state
of the art because propagating one type of uncertainty is well
described in the existing literature.

A second source of uncertainty happens when the value of the
obtained response time 𝑟 is discretized, e.g., rounded to the nearest
integer. The final value, 𝑟𝑑 is then compared to the threshold. There
might be a problem when the discretized value is below the thresh-
old, but the real value is not. This only happens when the value
of the threshold is in the lower part of the discretization bucket.

Uncertainty Flow Diagrams: Systematic Representation of Uncertainty Propagation and Interaction SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

u2Compare()

r : Real
t : Real

result : Boolean

«measurement uncertainty»
+ measure: Real
«discretization uncertainty»
+ measure: Real

«measurement uncertainty»
+ measure: Real
«belief uncertainty»
+ measure: Real

«measurement uncertainty»
+ measure: Real

u2Compare()

r : Real
t : Real

result : Boolean

«measurement uncertainty»
+ measure : Real
«discretization uncertainty»
+ measure : Real

«measurement uncertainty»
+ measure : Real
«belief uncertainty»
+ measure: Real

«measurement uncertainty»
+ measure: Real

«belief uncertainty»
+ measure: Real

(a) (b)

(c) (d)

uCompare()

r : Real
t : Real

result : Boolean

«measurement uncertainty»
+ measure: Real

«measurement uncertainty»
+ measure : Real

«measurement uncertainty»
+ measure: Real

compare()

r : Real
t : Real

result : Boolean

Figure 5: Compare() operation handling different uncertainty
For example, if 𝑟 = 3.4 and 𝑅𝑚𝑎𝑥 = 3.3. In this case, 𝑟 > 𝑅𝑚𝑎𝑥

but 𝑟𝑑 < 𝑅𝑚𝑎𝑥 . This is easy to solve, by simply discretizing the
threshold before comparing it with the discretized value.

However, as mentioned in Section 2, the problem occurs when
the two uncertainties are combined, which may lead to wrong
decisions. For instance, although the ground truth value 𝑟 , its dis-
cretization 𝑟𝑑 and the sensed value 𝑟 lie above the threshold, the
sensed and discretized value 𝑟𝑑 does not.

To address this issue, we can define another operation, which is
able to deal with both types of uncertainties (Figure 5c). Note how
the discretization uncertainty is added to the affected parameter,
and the result now comes not only with measurement uncertainty,
but also with belief uncertainty [4, 42]. The reason is that the origi-
nal Boolean result not only becomes a probability expressing the
likelihood of the truth of the comparison, but it should also provide
some degree of confidence in this likelihood. And just as measure-
ment uncertainty is accompanied by the corresponding accuracy,
the discretization uncertainty needs to be accompanied by the error
made in the discretization (𝑑𝑒 = |𝑥 − 𝑥𝑑 |).

The behavior of the new comparison operation, which considers
both types of uncertainties, can be specified in OCL as follows:

u2Compare(rd:Integer,de:UReal,t:UReal):

Tuple(res:UBoolean,confidence:UBoolean) =

Tuple{res:uCompare(rd,t),confidence:(de>0.5)}

This operation provides not only the result of the comparison
(in terms of the likelihood of the value being above the threshold)
but also the confidence that we can have in such a comparison. For
example, if again 𝑟 = 3.55, 𝑅𝑚𝑎𝑥 = 3.33, 𝑟 = 3.45, 𝑢 = 0.1, then
𝑟𝑑 = 3.0 and hence we obtain:

compare(r_hat_d, RMax) = false

sense() «design uncertainty»

r : Real

sense_OnlyRead sense_ReadAndProcess

internalActivity

read()

preprocess()

«measurement uncertainty»
+ uncertainty : Real

read()

Figure 6: Structural uncertainty encoded as internal activities

uCompare(r_hat_d, RMax) = UBoolean(true,0.0)

u2Compare(r_hat_d,(UReal(r_hat,0.1)-r_hat_d).abs(),RMax) =

Tuple{res=UBoolean(true,0.0),

confidence=UBoolean(true,0.309)}

The previous comparisons (in gray) fail when the two uncertain-
ties are combined. The new operation, u2Compare() can combine
both uncertainties and also returns false. However, it yields a confi-
dence of only 0.309. The engineer can now use this information to
disregard this value because its associated confidence is too low.

Furthermore, a reliable result for the comparison can be easily
computed using the equiv operator to combine the likelihood of the
comparison and its confidence: result.res = result.confidence.
With this, we can define the operation in OCL that is able to deter-
mine whether 𝑟𝑑 is in fact greater than the threshold 𝑅𝑚𝑎𝑥 :

rightCompare(rd:Integer,de:UReal,t:Real):UBoolean =

let x:Tuple(res:UBoolean,confidence:UBoolean) =

u2Compare(rd, de, t) in x.res = x.confidence

The resulting value is now:
rightCompare(r_hat_d,(UReal(r_hat,0.1)-r_hat_d).abs(),RMax)

= UBoolean(true,0.692)

Note how this value is correct and fixes the problem that hap-
pened when the two uncertainties were combined, and their inter-
action caused the comparison to produce a wrong result. Now we
are able to deal correctly with both types of uncertainties. Finally,
the activity itself can also be affected by uncertainty. For example,
we may not be entirely sure that the algorithm used in the activity
to accomplish its calculations is fully reliable. This is expressed by
attaching some uncertainty to the activity node (Figure 5d).

In this way, engineers have a means to explicitly represent the
different types of uncertainties that affect their calculations and
how they propagate. More importantly, their interactions are now
encapsulated within specific actions and can be treated in a partic-
ular way within these specific actions depending on their nature
and particularities. The objective is to be able to more accurately
quantify the uncertainty of the system in order to make decisions
with higher confidence and less error.

Our notation also supports design uncertainty (e.g., system ele-
ments that may be realized by alternative, functionally equivalent
components at run time). Figure 6 shows an example in which the
sensor for the response time property in Znn can be realized by
two alternatives, one of which includes a preprocessing step (e.g., a
sliding window average to reduce oscillations in measurements).
These alternatives would affect the measurement uncertainty in
different ways, resulting in different uncertainty interactions.

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Cámara et al.

«Metaclass»
Pin

«Metaclass»
Action

«Stereotype»
BeliefUncertainty

«Stereotype»
Uncertainty

+ Measure: Type[1]

«Stereotype»
MeasurementUncertainty

«Stereotype»
OccurrenceUncertainty

«Stereotype»
DiscretizationUncertainty

«Stereotype»
DesignUncertainty

+ internalActivity: Activity[*]

Figure 7: UFD profile, an UML profile for UFDs

5.2 Embedding Znn.com’s UFD in UML
The representation of the motivating scenario UFD using UML
Activity Diagrams requires an extension of UML that allows rep-
resenting the uncertainty information; i.e., all the specializations
of the Uncertainty class in Figure 4. We have implemented such an
extension in the form of a UML profile, called UFD profile, which is
depicted in Figure 7. This profile creates a stereotype for each class
of uncertainty in the metamodel, provides the Measure attribute
to each stereotype, provides the Design Uncertainty with means
to refer to multiple internal activities, and allows applying the un-
certainty stereotypes to Pin and Action UML metaclasses, which
correspond to the classes that aggregate Uncertainty in Figure 4.

Figure 8 depicts the workflow for the adaptation decision in our
scenario. It uses a UML Activity Diagram with the UFD profile in
Figure 7. The diagram generalizes the previous Figures 5 and 6
since it represents how the uncertainties propagate through dif-
ferent actions. It comprises three actions: an action that reads the
values from sensors (𝑟 value in Section 2) that is subject to design
uncertainty and propagates measurement uncertainty, an action
that stores the sensed values in the system model and generates the
uncertainty due to the model granularity, and an action that com-
pares the uncertain data in the model with the adaptation threshold
value. The attribute values of «DesignUncertainty»are shown as a
comment to the stereotyped Action. The attributes of the rest of the
stereotypes are similar to the values in Figure 5 and are omitted.

6 RELATEDWORK
Within the systems safety analysis domain, error propagation anal-
ysis has been traditionally employed during the early stages of sys-
tems engineering to understand how errors can propagate across
the system by leveraging system architectural representations [1].
Despite their usefulness, these notations and analysis techniques
are not enough to address the challenges posed by UPI.

Data Flow Diagrams (DFD) originate from structural analysis of
software systems [12] and are used to analyze a variety of quality
properties [27, 37, 39, 43]. Often, a precondition for such analyses
is the extension of the DFD syntax, e.g., to express assets within the
system [43], or the behavior of nodes [38], including specialized
query and constraint languages [20, 27, 43]. Recently, DFD have
been used to analyze uncertainty, e.g., in combination with fuzzy
inference [5], or by using tracing [18] and propagation techniques
[19]. However, despite the fact that these techniques can manage
uncertainty propagation, they are often focused on a specific aspect
of the system, such as confidentiality [19], and are not equipped to
capture or analyze the interaction of uncertainties.

 Adaptation Decision

«DesignUncertainty»
Sense

«MeasurementUncertainty»

«DiscretizationUncertainty»
StoreResponseTime

InModel

CompareWithreshold

ShouldAdapt

«MeasurementUncertainty»

«MeasurementUncertainty,
DiscretizationUncertainty»
«MeasurementUncertainty,
DiscretizationUncertainty»

«BeliefUncertainty,
MeasurementUncertainty»

read

preprocess

«Measurement
Uncertainty»

«MeasurementUncertainty»

sense_OnlyRead

read

«MeasurementUncertainty»

SensedData

«MeasurementUncertainty»

«MeasurementUncertainty»

sense_ReadAndProcess

SensedData

internalActivity=[sense_OnlyRead,
sense_ReadAndProcess]

Rmax

Figure 8: Example of profiled UML Activity Diagram.
Similarly, there are numerous notations for incorporating uncer-

tainties of different types into softwaremodels [42]. Even SysML [32]
and the UML MARTE Profile [29] provide some stereotypes and
properties to represent some types of uncertainty, especially mea-
surement uncertainty. However, existing notations allow modeling
mostly homogeneous uncertainties, i.e., of the same type. We have
seen how this is not sufficient to deal with uncertainty interactions.
The new OMG initiative named PSUM (Precise Semantics for Un-
certainty Modeling) [33] provides a metamodel for representing
different types of uncertainty, but it says nothing about how to deal
with their interactions. As far as we know, ours is the first notation
aimed at capturing the propagation and interaction of different
types of uncertainty through multiple levels of abstraction.

7 CONCLUSION
We have presented Uncertainty Flow Diagrams (UFD), a notation to
capture UPI, intended as part of the foundations required to build
more resilient adaptive systems capable of analyzing and mitigating
the combined effects of multiple sources of uncertainty. We posit
that this vision will be enabled by leveraging model transformation
techniques to automatically translate between UFD and various for-
malisms that can enable the analysis of UPI andwill vary, depending
on the types of uncertainties involved. For instance, Bayesian Net-
works [3] and Markov Decision Processes [13, 36] are promising
candidates to analyze belief or conditional dependencies between
system components, whereas Stochastic Petri Nets [2] are useful to
analyse uncertainty in concurrent probabilistic real-time systems.

Next steps will move towards providing tool support, including
facilities for building automated translation mechanisms of UFD
specifications into other formalisms. Moreover, we will use such
tool support to instantiate diverse UPI analysis mechanisms in
different domains to provide a comprehensive evaluation of our
approach and assess its generality.

ACKNOWLEDGMENTS
Work partially funded by the Spanish Government (AEI) under
projects TED2021-130523B-I00 and PID2021-125527NB-I00, and

Uncertainty Flow Diagrams: Systematic Representation of Uncertainty Propagation and Interaction SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - SFB 1608 - 501798263. EPSRC (UK) Project
Twenty20Insight(Grant No. EP/T017627/1) and also by funding from
the topic Engineering Secure Systems of the Helmholtz Association
(HGF) and by KASTEL Security Research Labs.

REFERENCES
[1] W. Abdelmoez, D.M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H.H.

Ammar, B. Yu, and A. Mili. Error propagation in software architectures. In 10th
International Symposium on Software Metrics. Proceedings., page 384–393, 2004.

[2] Falko Bause and Pieter S Kritzinger. Stochastic petri nets, volume 1. Vieweg
Wiesbaden, 2002.

[3] Nelly Bencomo and Amel Belaggoun. A world full of surprises: bayesian theory
of surprise to quantify degrees of uncertainty. In Companion Proceedings of the
36th International Conference on Software Engineering, ICSE Companion 2014,
page 460–463, New York, NY, USA, 2014. Association for Computing Machinery.

[4] Manuel F. Bertoa, Loli Burgueño, Nathalie Moreno, and Antonio Vallecillo. In-
corporating measurement uncertainty into ocl/uml primitive datatypes. Software
and Systems Modeling, 19(5):1163–1189, September 2020.

[5] Nicolas Boltz, Sebastian Hahner, Maximilian Walter, Stephan Seifermann, Robert
Heinrich, Tomas Bures, and Petr Hnetynka. Handling environmental uncertainty
in design time access control analysis. In 2022 48th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2022.

[6] Radu Calinescu, Milan Češka, Simos Gerasimou, Marta Kwiatkowska, and Nicola
Paoletti. Efficient synthesis of robust models for stochastic systems. Journal of
Systems and Software, 143:140–158, 2018.

[7] Shang-Wen Cheng, David Garlan, and Bradley R. Schmerl. Evaluating the effec-
tiveness of the rainbow self-adaptive system. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2009, Vancouver, BC,
Canada, May 18-19, 2009, pages 132–141. IEEE Computer Society, 2009.

[8] Javier Cámara. Haiq: Synthesis of software design spaces with structural and
probabilistic guarantees. In Proceedings of the 8th International Conference on
Formal Methods in Software Engineering, FormaliSE ’20, page 22–33, New York,
NY, USA, 2020. Association for Computing Machinery.

[9] Javier Cámara, Radu Calinescu, Betty H. C. Cheng, David Garlan, Bradley Schmerl,
Javier Troya, and Antonio Vallecillo. Addressing the uncertainty interaction
problem in software-intensive systems: challenges and desiderata. In Proceedings
of the 25th International Conference on Model Driven Engineering Languages and
Systems, page 24–30, Montreal Quebec Canada, October 2022. ACM.

[10] Javier Cámara, Javier Troya, Antonio Vallecillo, Nelly Bencomo, Radu Calinescu,
Betty H. C. Cheng, David Garlan, and Bradley Schmerl. The uncertainty in-
teraction problem in self-adaptive systems. Software and Systems Modeling,
21(4):1277–1294, August 2022.

[11] Bruno de Finetti. Theory of Probability: A critical introductory treatment. John
Wiley & Sons, 2017.

[12] Tom DeMarco. Structure analysis and system specification, pages 255–288.
Springer, 1979.

[13] Luis Garcia-Paucar, Huma Samin, and Nelly Bencomo. Decision making for
self-adaptation based on partially observable satisfaction of non-functional re-
quirements. In ACM Transactions on Autonomous and Adaptive Systems, 2024.

[14] Luis Enrique García-Fernández andMercedes Garijo. Modeling strategic decisions
using activity diagrams to consider the contribution of dynamic planning in the
profitability of projects under uncertainty. IEEE Transactions on Engineering
Management, 57(3):463–476, August 2010.

[15] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. Com-
puter, 37(10):46–54, 2004.

[16] Simos Gerasimou, Radu Calinescu, and Giordano Tamburrelli. Synthesis of
probabilistic models for quality-of-service software engineering. Automated
Software Engineering, 25:785–831, 2018.

[17] Carlo Ghezzi, Leandro Sales Pinto, Paola Spoletini, and Giordano Tamburrelli.
Managing non-functional uncertainty via model-driven adaptivity. In 2013 35th
International Conference on Software Engineering (ICSE), page 33–42, May 2013.

[18] SebastianHahner, Tizian Bitschi, MaximilianWalter, Tomáš Bureš, Petr Hnětynka,
and Robert Heinrich. Model-based confidentiality analysis under uncertainty.
In 2023 IEEE 20th International Conference on Software Architecture Companion
(ICSA-C), page 256–263. IEEE, 2023.

[19] Sebastian Hahner, Robert Heinrich, and Ralf Reussner. Architecture-based un-
certainty impact analysis to ensure confidentiality. In 2023 IEEE/ACM 18th
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), page 126–132, May 2023.

[20] Sebastian Hahner, Stephan Seifermann, Robert Heinrich, Maximilian Walter,
Tomáš Bureš, and Petr Hnětynka. Modeling data flow constraints for design-time
confidentiality analyses. In 2021 IEEE 18th International Conference on Software
Architecture Companion (ICSA-C), page 15–21. IEEE, March 2021.

[21] ISO/IEC 15909-1:2019. Systems and software engineering – High-level Petri nets –
Part 1: Concepts, definitions and graphical notation. ISO/IEC, 2019.

[22] JCGM 100:2008. Evaluation of measurement data—Guide to the expression of
uncertainty in measurement (GUM). ISO Joint Com. for Guides in Metrology, 2008.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.

[23] Audun Jøsang. Subjective Logic – A Formalism for Reasoning Under Uncertainty.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, 2016.

[24] Jeffrey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[25] Anne Koziolek, Heiko Koziolek, and Ralf Reussner. Peropteryx: automated
application of tactics in multi-objective software architecture optimization. In
Joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS
on Quality of software architectures – QoSA and architecting critical systems –
ISARCS, QoSA-ISARCS ’11, page 33–42. ACM, 2011.

[26] Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Assume-
guarantee verification for probabilistic systems. In Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science, page
23–37, Berlin, Heidelberg, 2010. Springer.

[27] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn
Ekman, Neil Ongkingco, Damien Sereni, and Julian Tibble. Keynote address: .ql
for source code analysis. In Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2007), page 3–16, Sep 2007.

[28] Object Management Group. Software & Systems Process Engineering Metamodel
(SPEM) Specification. Version 2.0, April 2008. OMG document formal/08-04-01.

[29] Object Management Group. UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. Version 1.1, June 2011. OMGDocument formal/2011-
06-02.

[30] Object Management Group. Business Process Model and Notation (BPMN) Specifi-
cation. Version 2.0, January 2014. https://www.bpmn.org/.

[31] Object Management Group. Unified Modeling Language (UML) Specification.
Version 2.5, March 2015. OMG document formal/2015-03-01.

[32] Object Management Group. OMG Systems Modeling Language (SysML), version
2.0, June 2023. OMG Document ptc/23-06-02.

[33] Object Management Group. Precise Semantics for Uncertainty Modeling (PSUM),
Version 1.0 Beta 1, March 2023. https://www.omg.org/spec/PSUM/1.0/Beta1/PDF.

[34] Esteban Pavese, Víctor Braberman, and Sebastian Uchitel. Probabilistic environ-
ments in the quantitative analysis of (non-probabilistic) behaviour models. In
Proceedings of the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering,
ESEC/FSE ’09, page 335–344, New York, NY, USA, August 2009. ACM.

[35] Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach.
Prentice Hall, 3 edition, 2010.

[36] Huma Samin, Nelly Bencomo, and Peter Sawyer. Decision-making under
uncertainty: be aware of your priorities. Software and Systems Modeling,
21(6):2213–2242, December 2022.

[37] Simon Schneider and Riccardo Scandariato. Automatic extraction of security-
rich dataflow diagrams for microservice applications written in java. Journal of
Systems and Software, 202:111722, Aug 2023.

[38] Stephan Seifermann, Robert Heinrich, Dominik Werle, and Ralf Reussner. A
unified model to detect information flow and access control violations in software
architectures. In Proceedings of the 18th International Conference on Security and
Cryptography, page 26–37. Science and Technology Publications, 2021.

[39] Stephan Seifermann, Robert Heinrich, Dominik Werle, and Ralf Reussner. De-
tecting violations of access control and information flow policies in data flow
diagrams. Journal of Systems and Software, 184, Feb 2022.

[40] Glenn Shafer. A Mathematical Theory of Evidence. Princeton U. Press, 1976.
[41] Marco Sinnema and Sybren Deelstra. Classifying variability modeling techniques.

Information and Software Technology, 49(7):717–739, July 2007.
[42] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. Un-

certainty representation in software models: a survey. Software and Systems
Modeling, 20(4):1183–1213, August 2021.

[43] Katja Tuma, Riccardo Scandariato, and Musard Balliu. Flaws in flows: Unveiling
design flaws via information flow analysis. In 2019 IEEE International Conference
on Software Architecture (ICSA), page 191–200. IEEE, Mar 2019.

[44] Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe.
Design-space exploration in MDE: an initial pattern catalogue. In First Int.
Workshop on Combining Modelling with Search- and Example-Based Approaches
(CMSEBA), volume 1340 of CEUR Workshop Proceedings, pages 42–51, 2014.

[45] Danny Weyns, Radu Calinescu, Raffaela Mirandola, Kenji Tei, Maribel Acosta,
Amel Bennaceur, Nicolas Boltz, Tomas Bures, Javier Camara, Ada Diaconescu,
Gregor Engels, Simos Gerasimou, Ilias Gerostathopoulos, Sinem Getir Yaman,
Vincenzo Grassi, Sebastian Hahner, Emmanuel Letier, Marin Litoiu, Lina Marsso,
Angelika Musil, Juergen Musil, Genaina Nunes Rodrigues, Diego Perez-Palacin,
Federico Quin, Patrizia Scandurra, Antonio Vallecillo, and Andrea Zisman. To-
wards a research agenda for understanding and managing uncertainty in self-
adaptive systems. ACM SIGSOFT Software Engineering Notes, 48(4):20–36, 2023.

[46] Hans-Jürgen Zimmermann. Fuzzy Set Theory – and Its Applications. Springer
Science+Business Media, 2001.

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://www.bpmn.org/
https://www.omg.org/spec/PSUM/1.0/Beta1/PDF

Citation on deposit: Camara, J., Hahner, S., Perez-

Palacin, D., Vallecillo, A., Acosta, M., Bencomo, N.,

…Gerasimou, S. (in press). Uncertainty Flow Diagrams:

Towards a Systematic Representation of Uncertainty

Propagation and Interaction in Adaptive Systems. In

Proceedings 2024 IEEE/ACM 19th Symposium on Software

Engineering for Adaptive and Self-Managing Systems

For final citation and metadata, visit Durham Research Online URL:

https://durham-repository.worktribe.com/output/2251893

Copyright statement: This content can be used for non-commercial, personal

study.

https://durham-repository.worktribe.com/output/2251893

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Methodological Context
	4 Uncertainty Flow Diagrams
	5 Demonstration
	5.1 Representing UPI in ZNN.com
	5.2 Embedding Znn.com's UFD in UML

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

