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Basic principles of fluid
mechanics

Abstract
This chapter introduces some basic principles of fluid mechanics. Equations are de-
rived to describe hydrostatic forces on inclined plates. The concept of Archimedes’
principle is explained and an analytical solution for assessing the stability of float-
ing of objects is developed. The continuity, momentum and Bernoulli equations
are derived using a control-volume within a streamtube, located within a moving
incompressible and inviscid fluid. The Bernoulli equation is used to derive the Tor-
ricelli equation and equations describing flow over sharp crested weirs. Practical
applications are presented through a problem sheet with worked solutions.

Notation
a Acceleration [LT−2].

a1 Depth of low density fluid in a u-tube manometer [L].

a2 Elevation difference between fluid interfaces in a u-tube manometer [L].

A Area [L2].

Â Mean cross-sectional area [L2].

B Breadth [L].

E Total head [L].

F Force [MLT−2].

Fb Buoyant force [MLT−2].

Fg Gravitational force [MLT−2].

g Gravitational acceleration [LT−2].

h Hydraulic head [L].

hv Velocity head [L].

H Depth [L].
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HF Depth of a hydrostatic force [L].

Iyy Second moment of area about a centroid in the y-direction [L4].

L Length [L].

LBG Distance between the centre of buoyancy and the centre of gravity [L].

LBM Distance between the centre of buoyancy and the metacentre [L].

M Mass [M].

p Fluid pressure [ML−1T−2].

p0 Atmospheric pressure [ML−1T−2].

pa Absolute pressure [ML−1T−2].

Q Flow rate [L3T−1].

s Distance along a streamtube [L].

t Time [T].

U Moment [ML2T−2].

Ub Moment due to a buoyancy force [ML2T−2].

U ′
b Moment due to a buoyancy force following a rotation [ML2T−2].

VI Immersed volume [L3].

v Fluid velocity [LT−1].

y Distance from a liquid surface in the plane of a submerged and inclined plate [L].

yF Distance from a liquid surface to the location where a hydrostatic force applies, in the plane of
a submerged and inclined plate [L].

yc Distance to a centroid from a datum [L].

y′c Distance to a centroid from a datum following a rotation [L].

z Elevation [L].

θ Inclination angle [-].

ρ Mass density of a fluid [ML−3].

ψ Pressure head [L].

CoB Centre of buoyancy.

CoG Centre of gravity.

1.1 Introduction
This chapter provides a brief introduction to some basic principles of fluid mechan-
ics. The first section focuses on hydrostatics. The second section focuses on moving
fluids in the absence of frictional forces. All the results derived in this chapter are
classic. Similar results with different derivations can be found in many existing text-
books concerning the mechanics of fluids. The reader is directed to [1] for alternative
and sometimes more detailed explanations.

1.2 Hydrostatics
The study of forces in static fluid is referred to as hydrostatics. In this section we
will develop the concept of hydrostatic pressure and use it to derive methods for
measuring pressure, determining hydrostatic forces on inclined plates and assessing
the stability of floating objects.
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1.2.1 Hydrostatic pressure
Consider a tank of static liquid with a free upper surface open to the atmosphere
(Fig. 1.1). Let A [L2] be the plan area of the tank, H [L] be the depth of the liquid
within the tank, p0 [ML−1T−2] be the atmospheric pressure, ρ [ML−3] be the mass
density of the liquid and g [LT−2] be gravitational acceleration. The downward
force applied to the base of the tank will be A(p0 +ρgH). The absolute pressure, pa
[ML−1T−2], applied to the base of the tank is therefore p0 +ρgH.
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Figure 1.1: Hydrostatic fluid pressure in a tank of liquid.

In hydraulics, we are more concerned with a relative pressure, which represents
the difference between absolute pressure and atmospheric pressure. Hereafter, the
term fluid pressure, p [ML−1T−2], is taken to mean the relative pressure of a fluid,
p ≡ pa − p0 [ML−1T−2].

Referring back to the tank of liquid in Fig. 1.1, p = 0, at the liquid surface and
p = ρgH at the base of the tank. Furthermore, if z [L] represents elevation above the
base of the tank

p = ρg(H − z) (1.1)

Eq. (1.1) is often referred to as a hydrostatic pressure profile. Interestingly, it will
apply irrespective of the geometry of the tank of concern. Furthermore, pressure is
isotropic, which means that its magnitude is independent of direction. This implies
that the liquid applies a uniform force distribution to the base of the tank and a linear
force distribution to the side walls of the tank (as indicated by the arrows in the tank
shown in Fig. 1.1).

1.2.2 Measuring pressure
Note that hydrostatic pressure is independent of the quantity of fluid present. In-
stead, it is dependent on the elevation of the hydraulically connected free surface
exposed to the atmosphere. For example, consider Fig. 1.2. The fluid pressure at the
base of each of the first three devices (Figs. 1.2 a, b and c) should be the same be-
cause the elevation of the exposed free surface, in each device, is the same distance
above the base of the underlying tanks.
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a) b) c) e)d)

Figure 1.2: Examples of different vessels that have the same fluid pressure at the
base. a) Inverted conical vase. b) Tank with a piezometer. c) Tank with a u-tube
manometer containing common fluid. d) Tank with a u-tube manometer containing
less dense fluid (the lighter shade). e) Tank with a u-tube manometer containing
more dense fluid (the darker shade).

The device shown in Fig. 1.2b is in fact a measuring device referred to as a
piezometer. The fluid pressure at the top of the tank can be measured by multiply-
ing the elevation difference between the top of the tank and the free surface in the
piezometer by ρg.

The device shown in Fig. 1.2c is an alternative measuring device referred to
as a u-tube manometer. The fluid pressure at the top of the tank can be measured
by multiplying the elevation difference between the top of the tank and the free
surface in the manometer by ρg. The advantage of the u-tube manometer, over the
piezometer, is that fluids with different densities to that being measured can be used
to either provide more or less sensitivity. Furthermore, it is possible to measure
absolute pressures, which are less than atmospheric pressure.

Fig. 1.2d shows a tank with the same pressure as that in Fig. 1.2c but with a
u-tube manometer containing a less dense fluid (the lighter shade). Consequently,
the free surface exposed to the atmosphere is higher in Fig. 1.2d as compared to in
Fig. 1.2c. Small changes in pressure will lead to larger changes in fluid level when
using a less dense fluid, hence it is more sensitive (as compared to when using a
common fluid).

Fig. 1.2e shows a tank with the same pressure as that in Fig. 1.2c but with a
u-tube manometer containing a more dense fluid (the darker shade). Consequently,
the free surface exposed to the atmosphere is lower in Fig. 1.2e as compared to in
Fig. 1.2c. Large pressures lead to smaller fluid levels when using a more dense fluid,
hence a smaller u-tube can be used (as compared to when using a common fluid).

Note that given all five vessels in Fig. 1.2 are hydrostatic, exactly the same fluid
levels would be observed if they were each linked to the same tank, such as shown
in Fig. 1.3.
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a) b) c) e)d)

Figure 1.3: Examples of different fluid pressure measuring devices in a common
tank of liquid. a) Inverted conical vase. b) Piezometer. c) U-tube manometer con-
taining common fluid. d) U-tube manometer containing less dense fluid (the lighter
shade). e) U-tube manometer containing more dense fluid (the darker shade).
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Figure 1.4: High density fluid u-tube manometers connected to a pipe. The circles
represent a cross-section through the pipe. a) Measurement of an absolute fluid
pressure greater than atmospheric pressure. b) Measurement of an absolute fluid
pressure greater than atmospheric.

Fig. 1.4a shows a u-tube manometer measuring the absolute pressure, pa, of
a fluid flowing in a pipe, where the absolute pressure is greater than atmospheric
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pressure, p0. The mass density of the low density fluid in the pipe is ρ1 [ML−3] and
the mass density of the high density fluid in the u-tube is ρ2 [ML−3].

Challenge 1.1 Use the concept of hydrostatic pressure to determine an expression
for the absolute pressure in the pipe shown in Fig. 1.4a.

The absolute pressure in the pipe, shown in Fig. 1.4a, can be obtained by equat-
ing two expressions for the absolute pressure at the interface between the low and
high density fluids in the u-tube.

The hydrostatic pressure contribution due to the low density fluid is ρ1a1g. There
is also the absolute pressure in the pipe, pa. The absolute pressure at the interface
between low density and high density fluids in the u-tube manometer is therefore
pa +ρ1a1g.

On the other hand, the hydrostatic pressure contribution due to the high density
fluid is ρ2a2g. There is also the atmospheric pressure, p0. It can therefore also be
said that the absolute pressure at the interface between low density and high density
fluids in the u-tube manometer is p0 +ρ2a2g.

Equating the two expressions above and solving for pa gives us

pa = p0 +ρ2a2g−ρ1a1g (1.2)

Fig. 1.4b shows a u-tube manometer measuring the absolute pressure, pa, of a
fluid flowing in a pipe were the absolute pressure is less than atmospheric pressure,
p0. Again, ρ1 [ML−3] is the mass density of the low density fluid in the pipe and ρ2
[ML−3] is the mass density of the high density fluid in the u-tube.

Challenge 1.2 Use the concept of hydrostatic pressure to determine an expression
for the absolute pressure in the pipe shown in Fig. 1.4b.

The absolute pressure in the pipe, shown in Fig. 1.4b, can be obtained by deter-
mining an expression for the absolute pressure at the high density fluid free surface
and equating this with the atmospheric pressure.

The hydrostatic pressure contribution due to the low density fluid is ρ1a1g. The
hydrostatic pressure contribution due to the high density fluid is ρ2a2g. There is also
the absolute pressure in the pipe, pa. The absolute pressure at the high density fluid
free surface is therefore pa + ρ1a1g+ ρ2a2g. Equating this with the atmospheric
pressure, p0, and solving for pa gives us

pa = p0 −ρ2a2g−ρ1a1g (1.3)

1.2.3 Hydrostatic forces on inclined plates
Here we will derive expressions for the total force applied to a submerged inclined
plate due to hydrostatic pressure. We will then use moment matching to determine
the depth at which the force applies. To begin with, we will focus on a rectangular
plate. The same theory will then be extended to account for plates of arbitrary
geometries.
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1.2.3.1 Rectangular plate

Consider an immersed rectangular plate of breadth, B [L], and length, L [L], inclined
at an angle, θ [-], to the horizontal axis (see Fig. 1.5). The depth of fluid above the
top and bottom of the plate are denoted H0 [L] and H1 [L], respectively. Let y [L] be
a distance from the liquid surface in the plane of the plate. The origin of the y-axis at
the liquid surface is denoted O. The distance, along the y-axis, from O to the top and
bottom of the plate are denoted y0 [L] and y1 [L], respectively. Note that L = y1−y0,
H0 = y0 sinθ and H1 = y1 sinθ.
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Figure 1.5: Hydrostatic pressure on an inclined rectangular plate.

Challenge 1.3 Determine an expression for the force, δF [MLT−2], applied to a
thin strip of area, δA [L2], located at a distance, y, along the y-axis due to hydrostatic
pressure. Your final expression should be in terms of ρ, g, θ, y and δA.

Consider a thin strip of area, δA [L2], located at a distance, y, along the y-axis.
The fluid depth at this location is ysinθ. Therefore the hydrostatic pressure at this
point is ρgysinθ. It follows that the force applied to the strip, δF [MLT−2], due to
hydrostatic pressure is found from

δF = ρgysinθδA (1.4)

Challenge 1.4 Determine an expression for the total force, F [MLT−2], applied to
the inclined plate due to hydrostatic pressure. Your final expression should be in
terms of ρ, g, B, L, H0 and H1.
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The total force, F [MLT−2], applied to the inclined plate is found by integrating
Eq. (1.4)

F = ρgsinθ

∫
ydA (1.5)

Noting that the plate exists for y ∈ [y0,y1] and dA
dy = B, it follows that

F = ρgBsinθ

∫ y1

y0

ydy

= ρgBsinθ

(
y2

1 − y2
0

2

)
Given that L = y1 − y0, H0 = y0 sinθ and H1 = y1 sinθ, it can be further stated that

F = ρgBL
(

H0 +H1

2

)
(1.6)

Challenge 1.5 Determine an expression for the moment about O, δU [ML2T−2],
applied to a thin strip of area, δA [L2], located at a distance, y, along the y-axis, due
to hydrostatic pressure. Your final expression should be in terms of ρ, g, θ, y and
δA.

The hydrostatic force applied to a thin strip, gives rise to a moment about O,
δU = δFy, where δF is given by Eq. (1.4). It follows that

δU = ρgy2 sinθδA (1.7)

Challenge 1.6 Determine an expression for the total moment about O, U
[ML2T−2], applied to the inclined plate due to hydrostatic pressure.

The total moment about O, U [ML2T−2], applied to the inclined plate due to
hydrostatic pressure is found by integrating Eq. (1.7)

U = ρgsinθ

∫
y2dA (1.8)

Noting again that the plate exists for y ∈ [y0,y1] and dA
dy = B, it follows that

U = ρgBsinθ

∫ y1

y0

y2dy

= ρgBsinθ

(
y3

1 − y3
0

3

)
= ρgBsinθ(y1 − y0)

(
y2

0 + y0y1 + y2
1

3

)
= ρgBLcscθ

(
H2

0 +H0H1 +H2
1

3

)
(1.9)

Challenge 1.7 Use moment matching to determine the depth, HF [L], at which the
total force, F , applies.
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Let HF [L] be the depth at which the total force, F , applies. The location at
which the total force acts on the y-axis, yF = HF cscθ. Consequently, it can also be
stated that

U = FHF cscθ (1.10)

Substituting Eqs. (1.6) and (1.9) into Eq. (1.10) and solving for HF leads to

HF =
2
3

(
H2

0 +H0H1 +H2
1

H0 +H1

)
(1.11)

Note that
lim

H0→0
HF =

2H1

3
(1.12)

1.2.3.2 Plates with arbitrary geometries

Note that Eqs. (1.5) and (1.8) also apply to inclined plates with arbitrary geometries
(see Fig. 1.6).
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Figure 1.6: Hydrostatic pressure on an inclined plate with arbitrary geometry.

Let yc [L] be the location (along the y-axis) of the centroid (analogous to the
centre of gravity or centre of mass) for the plate of concern, defined by

ycA =
∫

ydA (1.13)
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Substituting Eq. (1.13) into Eq. (1.5) leads to

F = ρgycAsinθ (1.14)

Let Iyy [L4] be the second moment of area in the y-direction, about the centroid,
for the plate of concern, defined by

Iyy =
∫

y(y− yc)dA (1.15)

Expanding the brackets in Eq. (1.15), substituting Eq. (1.13) and rearranging leads
to ∫

y2dA = Iyy + y2
cA (1.16)

which is often referred to as the parallel axis theorem [2, p. 90].
Substituting Eq. (1.16) into Eq. (1.8) leads to

U = ρg(Iyy + y2
cA)sinθ (1.17)

Substituting Eqs. (1.14) and (1.17) into Eq. (1.10) and solving for HF then gives us
[1, p. 62]

HF =

(
Iyy

ycA
+ yc

)
sinθ (1.18)

For the aforementioned inclined rectangular plate, A = BL, yc =
(

H0+H1
2

)
cscθ

and Iyy =
BL3

12 [2, p. 97], which on substitution into Eqs. (1.14) and (1.18) leads to
Eqs. (1.6) and (1.11), respectively. Expressions for A, yc and Iyy are available (e.g.
[3]) or can be determined for any alternative geometry.

1.2.4 Buoyancy
Consider a vertically prismatic solid object of length, L [L], and cross-sectional area,
A [L2]. The solid object is fully immersed within a hydrostatic fluid of mass density,
ρ [ML−3]. The depth of fluid above the base of the object is H [L].

Challenge 1.8 Determine the net upward force exerted by the hydrostatic liquid on
the solid object.

The hydrostatic fluid exerts a downward force on the object of F1 = ρg(H −L)A
and an upward force on the object of F2 = ρgHA. The net upward force, Fb [MLT−2],
exerted by the hydrostatic liquid is therefore

Fb = F2 −F1 = ρgLA (1.19)

This net-upward force, Fb, is commonly referred to as the buoyant force. Provid-
ing the weight of a solid object, Fg [MLT−2], is less than its associated buoyant force,
the object will float at the surface of a liquid. Furthermore, the depth of immersion,
H [L], can be determined by recognising that, for floating objects, Fg = Fb.
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Challenge 1.9 Determine the depth of immersion, H [L], for the previously men-
tioned vertically prismatic object, assuming it has a mass density of ρs [ML−3]
where ρs < ρ.

Suppose the previously mentioned vertically prismatic object has a mass density
of ρs [ML−3], where ρs < ρ. In this case we would expect the object to float at the
liquid surface. Let H [L] represent the depth of liquid above the base of the object
(i.e., the depth of immersion). Given that the object is floating, the top surface
of the object is not exposed to the fluid. Therefore the downward force acting on
the object due to the hydrostatic fluid, F1 = 0. The upward force acting on the
object due to the hydrostatic fluid, F2 = ρgHA. It follows that the buoyant force,
Fb = F2 −F1 = ρgHA. The weight of the object, Fg = ρsgLA. Setting Fg = Fb and
solving for H then leads to

H =
ρsL
ρ

(1.20)

1.2.4.1 Archimedes’ principle

Archimedes’ principle states more generally that the buoyant force, Fb, acting on a
fully or partially immersed object is equal to the weight of fluid displaced by the
immersed volume VI [L3], for the object of concern, i.e.,

Fb = ρgVI (1.21)

In the case of the fully immersed vertically prismatic object (recall Eq. (1.19))
VI = LA. In the case of the partially immersed vertically prismatic object (recall
Eq. (1.20)) VI = HA. Archimedes’ principle can also be shown to apply to solid
objectives of any arbitrary and irregular geometry.

δF1

δF2

F
lu

id
 p

re
ss

u
re

Distance

F
lu

id
 p

re
ss

u
re

Distance
a) b) c)

L

H

δA

Figure 1.7: a) Vertical hydrostatic forces applied to a prismatic element within an
immersed solid object (the shaded region). b) Hydrostatic pressure distribution ap-
plied downwards on the upper surface of the immersed solid object. c) Hydrostatic
pressure distribution applied upwards on the lower surface of the immersed solid
object.
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Fig. 1.7a shows a vertical section through a fully immersed irregular solid object.
The fluid pressure acting downwards on the upper surface of the object is linearly
proportional to the depth of water above the upper surface (see Fig. 1.7b). The fluid
pressure acting upwards on the lower surface of the object is linearly proportional to
the depth of water above the lower surface (see Fig. 1.7c).

Consider a vertically prismatic element, within the solid object, of plan view
area, δA [L2], and thickness, L [L]. The depth of water above the base of the element
is H [L]. The downward force due to hydrostatic pressure acting on the top of the
element is

δF1 = ρg(H −L)δA

The upward force due to hydrostatic pressure acting on the base of the element is

δF2 = ρgHδA

The buoyant force acting on the element is

δFb = δF2 −δF1 = ρgLδA

Noting that L is spatially variable due to the irregularity of the object, the total
buoyant force acting on the object is found from

Fb = ρg
∫

LdA

But of course, in this case,
∫

LdA =VI and so Eq. (1.21) applies.

1.2.4.2 Stability of floating objects

Whether or not a floating object is stable depends on the locations of both its cen-
tre of gravity (CoG) and centre of buoyancy (CoB). Consider the vertical section
through a floating object shown in Fig. 1.8a. The CoG represents the location at
which the weight of the object, Fg [MLT−2], acts. The CoB represents the location
at which the associated buoyant force, Fb [MLT−2], acts.

If the CoG is below the CoB, the object will be unconditionally stable. However,
it is commonly the case that the CoG is above the CoB. Providing the CoG is di-
rectly above the CoB, the object will remain upright in the liquid. However, a minor
rotation of the object of concern will lead to both the CoG and CoB to form a turning
moment, causing the object to rotate until the CoG and the CoB reside in the same
vertical plane again. This may lead to the object returning to its upright position.
Alternatively, the object may continue to rotate in the direction of the perturbation,
causing it capsize.

Consider Figs. 1.8a and b. When the object is upright, Fg and Fb act in the
same vertical plane and therefore do not form a turning moment (Fig. 1.8a). How-
ever, tilting the object clockwise, by a small angle, θ [-], leads to the submerged
portion of the object being predominantly on the right-hand-side. This in turn leads
to the CoB moving to the right. In contrast, providing the load within the object
is not redistributed (which is reasonable assumption, given that θ is small), the lo-
cation of the CoG, relative to the object, remains unchanged. But importantly, the
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two loads, Fg and Fb, no longer act in the same vertical plane and therefore form a
counter-clockwise turning moment. However, the effect of this turning moment is
to return the object back to the original upright position. In this case, the object can
be described as being buoyantly stable.
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Figure 1.8: Schematic diagrams showing locations of the centre of gravity (CoG),
centre of buoyancy (CoB) and metacentre for a floating object that is tilted clockwise
from an upright position. a) and b) represent an object that is buoyantly stable. c)
and d) represent and object that is buoyantly unstable.

Consider Figs. 1.8c and d. The only difference between the objects in Figs. 1.8a
and c is that the CoG for the object is higher in Fig. 1.8c. Consequently, when
the object is tilted clockwise, the new CoB is to the left of the CoG (see Fig. 1.8 d)
such that the two associated forces form a clockwise turning moment, which will not
return the boat back to the original upright position. Instead, this clockwise turning
moment will cause the boat to carry on rotating clockwise such that it will capsize.
In this case, the object can be described as being buoyantly unstable.

Whether or not an object is buoyantly stable is of particular interest to the mar-
itime community. Interestingly, it is possible to derive an expression that predicts
the buoyant stability of an objective, which can be written purely in terms of its ge-
ometrical properties. The starting point is to consider a vertical line that crosses the
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new CoB due to rotation and intersects the line connecting the original CoB and the
CoG of the object of concern. This intersection point is referred to as the metacentre
(see Figs. 1.8b and d).

If the metacentre is to the right of the CoG, then the rotated CoB is also to the
right of the CoG and the object is buoyantly stable (as in Fig. 1.8b). In this case,
the distance between original CoB and the CoG, LBG [L], is less than the distance
between the original CoB and the metacentre, LBM [L].

If the metacentre is to the left of the CoG, then the rotated CoB is also to the left
of the CoG and the object is buoyantly unstable (as in Fig. 1.8d). In this case, the
distance between original CoB and the CoG, LBG [L], is greater than the distance
between the original CoB and the metacentre, LBM [L].

To summarise:

• LBG < LBM means buoyantly stable.

• LBG > LBM means buoyantly unstable.

The challenge is therefore to derive an expression for LBM .

1.2.4.3 Distance between centre of buoyancy and metacentre
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Figure 1.9: Detailed annotation of Fig. 1.8b.

Fig. 1.9 shows a more detailed annotation of Fig. 1.8b, which will aid in the deter-
mination of an expression for the distance, LBM [L], between the original CoB and
the metacentre.

Let y [L] be a horizontal distance from an arbitrary point to the left of the floating
object. Consider a prismatic element of plan area, δA [L2], located at a distance,
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y, along the y-axis. Let H(x,y) [L] be the depth of liquid above the base of the
element. The buoyant force associated with this prismatic element is found from
δFb = ρgHδA [MLT−2]. This buoyant force gives rise to a moment about the origin
of the y-axis, of δUb = δFby [ML2T−2]. The moment, Ub [ML2T−2], due to the total
buoyant force of the object, is therefore found from

Ub = ρg
∫

yHdA (1.22)

Let yc [L] denote the location of the CoB (prior to rotation) on the y-axis. It also
therefore follows that

Ub = Fbyc (1.23)

where Fb is the total buoyant force defined by Archimedes’ principle (Eq. (1.21)).
Substituting Eqs. (1.21) and (1.22) into Eq. (1.23) and solving for yc gives us

yc =

∫
yHdA
VI

(1.24)

where VI [L3] is the total immersed volume of the object.
Consider the aforementioned prismatic element following a small clockwise ro-

tation of θ [-]. The depth of liquid above the base of the element is now H +(y−
yc) tanθ (see Fig. 1.9). Considering Eq. (1.22), the moment, U ′

b [ML2T−2], due to
the total buoyant force of the object after rotation, is found from

U ′
b = ρg

∫
y[H +(y− yc) tanθ]dA (1.25)

Let y′c [L] denote the new location of the CoB (after rotation) on the y-axis. It
also therefore follows that

U ′
b = Fby′c (1.26)

where again, Fb is the total buoyant force defined by Archimedes’ principle (Eq.
(1.21)).

Substituting Eqs. (1.21) and (1.25) into Eq. (1.26) and solving for y′c gives us

y′c =
∫

y[H +(y− yc) tanθ]dA
VI

(1.27)

Furthermore, substituting Eqs. (1.15) and (1.24) into Eq. (1.27) leads to

y′c − yc =
Iyy tanθ

VI
(1.28)

where Iyy [L4] is the second moment of area.
Moreover, it can be said that (see Fig. 1.9)

y′c − yc = LBM tanθ+O(θ) (1.29)

Equating Eqs. (1.28) and (1.29) and imposing that θ ≪ 1 therefore gives us [1, p.
75]

LBM =
Iyy

VI
(1.30)

So it can be said that a floating object should be buoyantly stable providing

LBG <
Iyy

VI
(1.31)
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1.3 Moving fluids
Fluid movement is a three-dimensional process with fluid particles moving along
complicated and varying fluid pathways. A simple method for reducing a three-
dimensional system to a one-dimensional problem is to focus on individual fluid
pathways. Each pathway can be thought of as a streamtube. The rule about stream-
tubes is that fluid particles can only travel along a streamtube and cannot travel
across a streamtube. Consequently, we only need to consider a one-dimensional dis-
tance along a streamtube. Below we will use this important concept to derive three
extensively used hydraulic equations to describe moving fluids:

1. The continuity equation.

2. The momentum equation.

3. The Bernoulli equation.

It will then be demonstrated how to use these concepts to measure fluid velocity
with a Pitot tube, predict the rate at which a tank of liquid drains through an orifice
and measure flow rate in an open channel using a sharp crested weir.

1.3.1 Control-volume in a streamtube
Consider steady-state, incompressible and inviscid flow through a streamtube (Fig.
1.10). Steady-state implies there are no changes in time. Incompressible flow im-
plies that fluid density is constant. Inviscid flow implies that the fluid has no viscos-
ity and frictional losses are negligible.

z + δz
z

Datum

Q

Q

Figure 1.10: Schematic diagram of a streamtube.

A control-volume (CV) is isolated from the streamtube for further analysis (Fig.
1.11). The length of the CV is δs [L] and s [L] is a directional distance along
the streamtube in the direction of moving fluid. The cross-sectional areas of the
streamtube inlet and outlet are denoted A [L2] and A+ δA [L2], respectively. The
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elevation above a reference datum of the inlet and outlet are denoted z [L] and z+δz
[L], respectively. The fluid pressure at the inlet and outlet are denoted p [ML−1T−2]
and p+δp [ML−1T−2], respectively. The cross-sectional mean fluid velocity at the
inlet and outlet are denoted v [LT−1] and v+ δv [LT−1], respectively. The rate of
fluid volume movement flowing through the streamtube is denoted Q [L3T−1]. The
density of the fluid is denoted ρ [ML−3].

p + δp

p

(A + δA) (v + δv)

Av

δz
θ

Figure 1.11: Schematic diagram of a control-volume within a streamtube.

1.3.2 The continuity equation
Challenge 1.10 Apply the principle of mass conservation to the CV described
above and derive an expression relating v, δv, A, δA and Q.

Mass conservation dictates that the change in mass of fluid within a CV is equal
to the mass of fluid entering a CV minus the mass of fluid leaving a CV. Under
steady-state conditions there should be no change in mass. Therefore the mass of
fluid entering a CV should be equal to the mass of fluid leaving a CV. For incom-
pressible flows there is no change in density. It follows that for steady-state incom-
pressible flow, the volume of fluid entering a CV should be equal to the volume of
fluid leaving a CV such that [1, p. 91]

Av = (A+δA)(v+δv) = Q (1.32)

which is widely referred to as the continuity equation.

1.3.3 The momentum equation
Challenge 1.11 Use Newton’s second law to find an expression for the net-force
acting on the CV in the s-direction in terms of ρ, Q and δv.
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Newton’s second law states that

F = Ma (1.33)

where F [MLT−2] is a force, M [M] is mass and a [LT−2] is acceleration.
The acceleration, a, of fluid particles along the s-axis, is found from

a ≡ dv
dt

=
∂v
∂t

+
ds
dt

∂v
∂s

where v [LT−1] is the fluid velocity in the s-direction and t [T] is time.
It can also be said that

v =
ds
dt

such that

a =
∂v
∂t

+ v
∂v
∂s

(1.34)

Furthermore, given that the flow is assumed to be steady-state, v is a constant
with time and

a = v
∂v
∂s

(1.35)

Recalling that Q = Av it can be further stated that

a =
Q
A

∂v
∂s

and, assuming that a is constant across the CV,

a =
Q
Â

δv
δs

(1.36)

where Â is the mean cross-sectional area of the CV.
The mass of fluid contained within the CV is found from

M = Âδsρ (1.37)

Substituting Eqs. (1.36) and (1.37) into Eq. (1.33) leads to [1, p. 136]

F = ρQδv (1.38)

which is widely referred to as the momentum equation.

1.3.4 The Bernoulli equation
Challenge 1.12 Apply the momentum equation to the CV and derive a relationship
between p, v and z.
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To bring pressure into the system we need to quantify the net-force acting on the
CV in the s-direction. This can be found from

F =
3

∑
i=1

Fi

where F1 is the force due to the fluid pressure, p, on the inlet of the CV, found from

F1 = Ap

F2 is the force due to the fluid pressure on the outlet of the CV, found from

F2 =−(A+δA)(p+δp)

and F3 is the force due to the self-weight of the fluid within the CV, found from
(recall Eq. (1.37))

F3 =−Âδsρgsinθ

where g [LT−2] is gravitational acceleration and θ [-] is the angle of the s-axis to the
horizontal axis.

Noting that sinθ = δz
δs , it also follows that

F3 =−Âρgδz

and therefore
F =−δAp− (A+δA)δp− Âρgδz (1.39)

Equating Eqs. (1.38) and (1.39) then leads to

ρQδv =−δAp− (A+δA)δp− Âρgδz

which can rearranged to get

p
Âρg

δA
δs

+
(A+δA)

Âρg
δp
δs

+
Q
Âg

δv
δs

+
δz
δs

= 0

If the CV is infinitesimally small (i.e., δs → 0, δA → 0 and Â → A) it can be
further stated that

p
Aρg

∂A
∂s

+
1

ρg
∂p
∂s

+
v
g

∂v
∂s

+
∂z
∂s

= 0

Furthermore, because a streamtube should be smoothly varying in cross-sectional
area, ∂A

∂s ≪ A and
1

ρg
∂p
∂s

+
v
g

∂v
∂s

+
∂z
∂s

= 0

Integrating both sides with respect to s then leads to [1, p. 94]

p
ρg

+
v2

2g
+ z = E (1.40)
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where E [L] is a term that is constant along the streamtube. Eq. (1.40) is widely
referred to as the Bernoulli equation.

The constant, E [L], in Eq. (1.40) is often referred to as the total head, which
represents the total mechanical energy per unit weight of fluid. Total head can be
split into the following separate quantities:

E = ψ+hv + z = h+hv

where ψ [L], hv [L] and h [L] are referred to as the pressure head, velocity head and
hydraulic head, respectively, found from:

ψ =
p

ρg
, hv =

v2

2g
, h = ψ+ z

The Bernoulli equation, Eq. (1.40), gives that, for steady-state, incompressible
and inviscid flow, the sum of the hydraulic head and velocity head is constant along
a streamtube.

1.3.5 Summary of key results
Challenge 1.13 Set A = A1, A+δA = A2, v = v1, v+δv = v2, p = p1, p+δp = p2,
z = z1 and z+δz = z2 in Eqs. (1.32), (1.38) and (1.40).

The continuity equation: A1v1 = A2v2

The momentum equation: F = ρQ(v2 − v1)

The Bernoulli equation: E =
p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2

1.3.6 Measuring fluid velocity using a Pitot tube
Whereas hydraulic head can be measured using a piezometer, the measurement of
total head requires a modified device known as a Pitot tube (see Fig. 1.12).

A piezometer is a vertical tube which should have an opening orientated normal
to the fluid flow direction and located at the wall of a given pipe. Consequently, fluid
particles within a piezometer should be static such that the elevation (above a given
datum) of a liquid surface within its tube represents the hydraulic head, h.

A pitot tube is very similar to a piezometer except its opening should be orien-
tated parallel to the flow direction and located directly where a velocity measurement
is required. Consequently, fluid particles within the opening of a pitot tube should
possess a similar kinetic energy to those particles outside of the Pitot tube. It follows
that the elevation (above a given datum) of a liquid surface within its tube should
represent the total head, E. A measurement of fluid velocity can be determined from

v =
√

2g(E −h)
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Pitot tubePiezometer

Pipe

hv

ψ

v

Datum

z

h

E

Figure 1.12: Schematic diagram of a piezometer and Pitot tube.

1.3.7 The Torricelli equation
Consider a streamtube within a large tank containing liquid draining through a small
orifice at some vertical distance, H [L], below the liquid surface (Fig. 1.13). If the
tank is big enough and the orifice is small enough, the liquid level in the tank will
remain virtually unchanged. Let v [LT−1] be the fluid velocity at the orifice. The
fluid velocity at the liquid surface can be assumed zero.

Datum

H

v

Orifice

Streamtube

Tank

Control-point 1

Control-point 2

Figure 1.13: Schematic diagram of a tank of liquid draining through an orifice.

Challenge 1.14 Use the Bernoulli equation to determine a relationship between the
fluid velocity at the orifice, v, and the depth of water above, H.

Consider two control-points along the streamtube. Control-point 1 is located at
the liquid surface. Control-point 2 is located at the orifice. The Bernoulli equation
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states that
p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2

In this context p1, v1 and z1 are the pressure, fluid velocity and elevation above a
datum, respectively, for Control-point 1 whereas p2, v2 and z2 are the pressure, fluid
velocity and elevation above a datum, respectively, for Control-point 2.

Both the liquid surface and the orifice are exposed to the atmosphere. Therefore
p1 = p2 = 0. Given that the fluid velocity is zero at the liquid surface and v at the
orifice, v1 = 0 and v2 = v. Taking the datum to be at the elevation of the orifice,
z1 = H and z2 = 0. Substituting the above information into the Bernoulli equation
and solving for v leads to [1, p. 114]

v =
√

2gH (1.41)

which is commonly referred to as the Torricelli equation.

1.3.8 Flow over a sharp crested weir
Sharp crested weirs (SCW) are often used to measure flow of liquid in open chan-
nels. An SCW typically comprises an obstruction with a sharp-edged opening, over
which upstream liquid is forced to flow. Typically, the opening is of rectangular,
triangular or trapezoidal section. The sharp edge is necessary to minimize energy
losses as the liquid flows over the top. The sheet of liquid that flows out of the
opening is referred to as the nappe. The underside of the nappe should be clear of
an underlying solid bounding surface such that the nappe is close to atmospheric
pressure throughout. For analysis the following assumptions are made:

1. Pressure throughout the nappe is at atmospheric pressure.

2. The upstream liquid surface is horizontal right up to the edge of the SCW.

3. Fluid pressure upstream of the SCW is hydrostatic.

4. Kinetic energy of the liquid upstream of the SCW is negligibly small com-
pared to pressure energy and gravitational potential energy.

Challenge 1.15 Develop an expression for the flow rate, Q [L3T−1], through a rect-
angular SCW, of breadth B [L], in terms of g, B and the elevation of the liquid surface
above the base of the SCW opening, denoted h [L] (Fig. 1.14).
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v
2v

1

z
1

z
2

ψ
1

h
δz

2z
2

B

Figure 1.14: Streamtubes across a sharp crested weir.

Consider a rectangular SCW of breadth B. Liquid flows over the weir with a
liquid depth of h (see Fig. 1.14). Let z be the elevation of a point above the base of
the SCW opening. Now consider a control-point (CP) within a streamtube upstream
of the SCW. Let p1, v1 and z1 be the pressure, fluid velocity and elevation at the CP,
respectively. Similarly, let p2, v2 and z2 be the pressure, fluid velocity and elevation
in the same streamtube but immediately above the SCW, respectively (Fig. 1.14).
From Eq. (1.40) we have that

p1

ρg
+

v2
1

2g
+ z1 =

p2

ρg
+

v2
2

2g
+ z2

Because of Assumption 1, p2 = 0. Because of Assumptions 2 and 3, p1
ρg + z1 = h.

Because of Assumption 4, v1 = 0. It follows that

v2 =
√

2g(h− z2) (1.42)

from which it can be seen that the velocity varies with elevation within the SCW.

The total flow rate through the SCW is found from [1, p. 128]

Q =
∫

v2dA

= B
∫ h

0
v2dz2

= B
√

2g
∫ h

0
(h− z2)

1/2dz2

= B
√

2g
[
−2

3
(h− z2)

3/2
]h

0

=
2B
3

√
2gh3 (1.43)

1.4 Problem sheet
Problem 1.1 (see Worked Solution 1.1)
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A multi-fluid manometer is used to measure the pressure difference between two
points in a water pipe network (see Fig. 1.15). Use hydrostatics to determine an
expression for the pressure difference, pA − pB, in terms of the three fluid densities
(ρw, ρm and ρo) and the five measured fluid depths (a1, a2, a3, a4 and a5).

a1

a2

Density = ρw

a3

pA pB

a4

a5

Density = ρm

Density = ρo

Oil

Mercury

Water Water

Figure 1.15: Two points in a water pipe network connected to a multi-fluid manome-
ter.

Problem 1.2 (see Worked Solution 1.2)

A prismatic trough of isosceles triangular cross-section is filled with water with a
density of 1000 kg m−3. The isosceles triangle is of width, 0.5 m, and height, 0.5
m. The length of the trough is 3 m.

(a) Determine the magnitude and depth of the hydrostatic force on each of the in-
clined rectangular side walls.

(b) Determine the magnitude and depth of the hydrostatic force on each of the verti-
cal triangular end walls.

Problem 1.3 (see Worked Solution 1.3)

A cylindrical buoy of 1 m diameter and 1.25 m height has a mass of 70 kg.

(a) Determine the depth of immersion when the buoy is floating in water with a
density of 1000 kg m−3.
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(b) Check whether the buoy is buoyantly stable. Hint: The second moment of area
of a circular section is πD4

64 where D [L] is the diameter [2, p. 97].

(c) It is planned to place a flashing light on the top of the buoy. The mass of the
light is 12 kg. Check whether the buoy will remain buoyantly stable.

(d) Determine the maximum mass of flashing light that can be held in place whilst
ensuring the buoy remains buoyantly stable.

Problem 1.4 (see Worked Solution 1.4)

A water pipe, of varying cross-sectional area, tapers from 0.3 m2 at point A to 0.2
m2 at point B. Point B is 5 m above point A. The velocity and pressure of the water
at point A is 2.2 m s−1 and 120 kPa, respectively. Use the Bernoulli equation to
determine the fluid pressure at point B.

Problem 1.5 (see Worked Solution 1.5)

A long bridge crosses a river and is supported by 1.4 m wide piers, each equally
spaced by 7 m from centre to centre. The water depth upstream of the bridge is
1.8 m. The water depth between the piers is 1.55 m. Assuming the river bed is
horizontal, use the Bernoulli equation to determine the volumetric flow rate under
one arch.

Problem 1.6 (see Worked Solution 1.6)

A tapered pipe-bend of circular section has a 300 mm diameter inlet and 150 mm
diameter outlet. The pipe-axis at the inlet is horizontal. The centre of outlet section
is 1.4 m above the centre of the inlet section. The total volume of fluid contained
within the bend is 0.085 m3. Furthermore, the pipe-axis at the outlet is inclined at
an angle of 60◦ to the horizontal axis. Determine the magnitude and direction of the
net-force exerted on the pipe-bend by water flowing through it at 0.23 m3 s−1 when
the inlet gauge pressure is 140 kPa.

Problem 1.7 (see Worked Solution 1.7)

Consider a sharp crested weir (SCW) of symmetric trapezoidal section. The depth
of the opening is 280 mm. The base of the opening is 100 mm wide and the top of
the opening is 400 mm wide. Develop a relationship between the SCW discharge
rate and the water depth upstream of the SCW and determine the discharge when
the upstream liquid surface is 236 mm above the base of the SCW opening.

1.5 Worked solutions
Worked Solution 1.1 (see Problem 1.1)
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The best way to approach this is to first develop expressions for pA and pB in terms
of an intermediate pressure pC, which represents the pressure at the mercury-oil
interface in the left-hand-side set of manometer tubes (see Fig. 1.15). Note that
this pressure also applies at an elevation of a3 above the mercury-oil interface in the
right-hand-side set of manometer tubes.

Considering the pressure at the mercury-water interface in the left-hand-set of
manometer tubes we can say

pA +ρwga1 = pC +ρmga2

where ρw is the mass density of water and ρm is the mass density of mercury.
Solving for pA gives us

pA = pC +ρmga2 −ρwga1 (1.44)

Considering the pressure at the mercury-oil interface in the right-hand-set of manome-
ter tubes we can say

pC +ρoga3 = pB +ρwga5 +ρmga4

where ρo is the mass density of the oil.
Solving for pB gives us

pB = pC +ρoga3 −ρmga4 −ρwga5 (1.45)

Subtracting Eq. (1.45) from Eq. (1.44) then leads to

pA − pB = ρmg(a2 +a4)−ρwg(a1 −a5)−ρoga3 (1.46)

Worked Solution 1.2 (see Problem 1.2)

(a) The side-walls of the trough are analogous to inclined rectangular plates. The
hydrostatic force, F , on an inclined rectangular plate is found from Eq. (1.6). In
this case, ρ = 1000 kg −3, g = 9.81 m s−2, B = 3 m, H0 = 0 m, H1 = 0.5 m and

L =
√

W 2

4 +H2
1 where W = 0.5 m. It follows that the hydrostatic force acting on

each side wall, F = 4110 N.
The depth of the hydrostatic force, HF , in this case, is found from Eq. (1.12). It

follows that HF = 0.333 m.

(b) The hydrostatic force, F , acting on the end walls can be found from Eq. (1.14)
where yc is found from Eq. (1.13). The area of a triangular end-wall is found from

A =
WH1

2
(1.47)

The area, δA, of a horizontal and elemental strip of thickness, δy, at a depth, y, is
found from

δA =W
(

1− y
H1

)
δy (1.48)
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Substituting Eqs. (1.47) and (1.48) into Eq. (1.13) leads to

yc =
2

WH1

∫ H1

0
W
(

y− y2

H1

)
dy

=
2

H1

[
y2

2
− y3

3H1

]H1

0

=
H1

3
(1.49)

Substituting Eqs. (1.47) and (1.49) into Eq. (1.14) leads to

F =
ρgWH2

1 sinθ

6
(1.50)

Because the end wall is vertical, sinθ = 1. Letting ρ = 1000 kg −3, g = 9.81 m s−2,
B = 3 m, H1 = 0.5 m and W = 0.5, it follows that the hydrostatic force on each end
wall, F = 204 N.

The depth of the hydrostatic force, HF , is found from Eq. (1.18) where Iyy is
found from Eq. (1.15). Substituting Eqs. (1.48) and (1.49) into Eq. (1.15) leads to
[2, p. 94]

Iyy =
∫ H1

0
W
(

y− H1

3

)(
y− y2

H1

)
dy

=
∫ H1

0
W
(

4y2

3
− y3

H1
− H1y

3

)
dy

=W
[

4y3

9
− y4

4H1
− H1y2

6

]H1

0
dy

=
WH3

1
36

(1.51)

Substituting Eqs. (1.47), (1.49) and (1.51) into Eq. (1.18) leads to

HF =
H1

2
sinθ (1.52)

Given that H1 = 0.5 m and sinθ = 1 it follows that follows that the hydrostatic force
on each end wall is located at a depth, HF = 0.25 m.

Worked Solution 1.3 (see Problem 1.3)

(a) For a floating object, the buoyant force is equal to the weight of the object of
concern. Given Eq. (1.21), it can therefore be said that

M1g = ρgVI (1.53)

where M1 [M] is the mass of the buoy, g [LT−2] is gravitational acceleration, ρ

[ML−3] is the fluid density and VI [L3] is the immersed volume of the buoy. It
follows that

VI =
M1

ρ
(1.54)
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Given that the buoy is cylindrical

VI =
πD2H

4
(1.55)

where H [L] is the depth of immersion.
Equating Eqs. (1.54) and (1.55) and solving for H leads to

H =
4M1

πD2ρ
(1.56)

Letting M1 = 70 kg, D = 1 m and ρ = 1000 kg m−3 it therefore follows that
H = 0.0891 m.

(b) To determine whether the buoy is buoyantly stable we need to check that (re-
call Eq. (1.31))

LBM −LBG > 0

where LBG [L] is the distance form the centre of buoyancy (CoB) to the centre of
gravity (CoG) and LBM [L] is the distance from the CoB to the metacentre.

For a circular section, the second moment of area, Iyy [L4], is found from

Iyy =
πD4

64
(1.57)

Substituting Eqs. (1.54) and Eq. (1.57) into Eq. (1.30) leads to

LBM =
πD4ρ

64M1
(1.58)

Let LOB and LOG be the elevations of the CoB and CoG above the base of the buoy,
respectively. It can therefore be said that LBG = LOG −LOB. Given the simple geo-
metrical nature of the cylindrical buoy it can be understood that (recall Eq. (1.56))

LOB =
H
2
=

2M1

πD2ρ
(1.59)

LOG =
L
2

(1.60)

where L [L] is the height of the buoy. Consequently

LBM −LBG =
πD4ρ

64M1
− L

2
+

2M1

πD2ρ

Letting L = 1.25 m, LBM −LBG = 0.121 m, which is > 0 so the buoy is buoyantly
stable.

(c) In this case (compare with Eq. (1.61)),

VI =
M1 +M2

ρ
(1.61)



1 Basic principles of fluid mechanics 471 Basic principles of fluid mechanics 471 Basic principles of fluid mechanics 47

where M2 [M] is the mass of light attached to the top of the buoy.
Substituting Eqs. (1.61) and Eq. (1.57) into Eq. (1.30) leads to

LBM =
πD4ρ

64(M1 +M2)
(1.62)

Given Eq. (1.59), it further follows that, in this case,

LOB =
2(M1 +M2)

πD2ρ
(1.63)

The elevation of the CoG for the combined buoy and light system is obtained from

(M1 +M2)LOG =
M1L

2
+M2L

which recognises that the CoG of buoy is half-way up the buoy and the CoG of the
light is at the top of the buoy. It therefore follows that

LOG =

(
M1 +2M2

M1 +M2

)
L
2

(1.64)

So in the presence of the light attached to the top of the buoy

LBM −LBG = πD4ρ

64(M1+M2)
−
(

M1+2M2
M1+M2

)
L
2 +

2(M1+M2)
πD2ρ

(1.65)

Letting M2 = 12 kg, LBM −LBG =−0.0656 m, which is < 0 so the buoy is not buoy-
antly stable when the light is attached to it.

(d) The maximum mass of light that can be attached to the buoy can be determined
by solving Eq. (1.65) for M2 and setting LBM −LBG = 0.

Multiplying both sides of Eq. (1.65) by (M1 +M2) leads to

(M1 +M2)(LBM −LBG) =
πD4ρ

64 − (M1 +2M2)
L
2 +

2(M1+M2)
2

πD2ρ

Collecting terms of M2 gives us

aM2
2 +bM2 + c = 0

where
a =

2
πD2ρ

b = LBG −LBM −L+
4M1

πD2ρ

c =
πD4ρ

64
+

(
LBG −LBM − L

2

)
M1 +

2M2
1

πD2ρ

Solving for M2 then leads to

M2 =
−b±

√
b2 −4ac

2a
(1.66)

Setting LBM −LBG = 0 then leads to M2 = 1820 kg or 7.31 kg. The latter is obviously
the relevant answer. So the maximum sized light for the buoy to remain buoyantly
stable is 7.31 kg.
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Worked Solution 1.4 (see Problem 1.4)

Using the Bernoulli equation we can say that

p2 = p1 +ρ

[
v2

1 − v2
2

2
+g(z1 − z2)

]
From the information provided we have that A1 = 0.3 m2, A2 = 0.2 m2, z1 = 0 m,
z2 = 5 m, v1 = 2.2 m s−1 and p1 = 120,000 Pa. It is also assumed that the density
of water, ρ = 1000 kg m−3.

From the continuity equation we have that

v2 =
A1

A2
v1

therefore

p2 = p1 +ρ

[
v2

1

2A2
2
(A2

2 −A2
1)+g(z1 − z2)

]
So the pressure at point B is 67.9 kPa.

Worked Solution 1.5 (see Problem 1.5)

Consider a streamtube on the water surface. The pressure within the streamtube,
both upstream of the bridge and under the arch, will be atmospheric. It follows from
the Bernoulli equation that

v2
2 − v2

1 = 2g(z1 − z2)

where in this case z1 = 1.8 m and z2 = 1.55 m.
From the continuity equation we have that

v1 =
Q

B1z1
and v2 =

Q
B2z2

where B1 = 7 m and B2 = 7−1.4 = 5.6 m.
Substituting the above equations into our rearranged form of the Bernoulli equa-

tion leads to

Q =

√
2g(z1 − z2)

[
1

(B2z2)2 − 1
(B1z1)2

]−1

Substituting the above values then leads to a flow rate of 26.5 m3s−1.

Worked Solution 1.6 (see Problem 1.6)

Given the information provided, it can be said that θ = 60◦, D1 = 0.3 m, D2 = 0.15
m, p1 = 140,000 Pa, Q = 0.23 m3s−1, z1 = 0 m, z2 = 1.4 m and V = 0.085 m3 (see
Fig. 1.16). It is also assumed that the density of water, ρ = 1000 kg m−3.
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Figure 1.16: Schematic diagram of tapered pipe-bend.

Applying the momentum equation in x and z directions leads to

Fx +A1 p1 −A2 p2 cosθ = ρQ(v2 cosθ− v1)

and
Fz −A2 p2 sinθ−ρgV = ρQv2 sinθ

where Fx and Fz are the net-forces exerted by the pipe-bend on the fluid in the x and
z directions, respectively, with

A1 =
πD2

1
4

and A2 =
πD2

2
4

From the continuity equation we have that

v1 =
4Q
πD2

1
and v2 =

4Q
πD2

2

From the Bernoulli equation we then have that

p2 = p1 +
8ρQ2

π2

(
1

D4
1
− 1

D4
2

)
+ρg(z1 − z2) = 46,860 Pa

It follows from the momentum equations that

Fx =
4ρQ2

π

(
cosθ

D2
2
− 1

D2
1

)
− π

4

(
D2

1 p1 −D2
2 p2 cosθ

)
=−8,734 N

and
Fz =

(
4ρQ2

πD2
2
+

πD2
2 p2
4

)
sinθ+ρgV = 4144 N

The resultant force and angle are then found from

F =
√

F2
x +F2

z = 9,667 N
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and
β = arctan(Fz/Fx) =−25.38◦

So the net-force acting on the pipe-bend is 9.67 kN acting downwards, away from
the inlet, at an angle of 25.4◦ to the horizontal axis.

Worked Solution 1.7 (see Problem 1.7)

The discharge rate, Q, can be found from

Q =
∫

vdA =
∫ h

0
v

dA
dz

dz

where, from Eq. (1.42),
v =

√
2g(h− z)

with h [L] being the depth of water above the base of SCW opening, z [L] being
elevation above the base of the SCW opening and A [L2] being the cross-sectional
area of the opening below z.

Considering the trapezoidal geometry of the opening, let B1 = 0.1 m, B2 = 0.4
m and H = 0.28 m such that (see Fig. 1.17)

A(z) = B1z+
(

B2 −B1

H

)
z2

2

and
dA
dz

= B1 +

(
B2 −B1

H

)
z

H

B1

B2

z

Figure 1.17: Schematic diagram of sharp crested weir of symmetric trapezoidal sec-
tion.

It follows that

Q =
√

2g
∫ h

0
B1(h− z)1/2 +

(
B2 −B1

H

)
z(h− z)1/2dz
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To aid integration, let ξ = h− z such that

Q =
√

2g
∫ h

0
B1ξ

1/2 +

(
B2 −B1

H

)
(h−ξ)ξ1/2dξ

=
√

2g
∫ h

0

[
B1 +(B2 −B1)

h
H

]
ξ

1/2 −
(

B2 −B1

H

)
ξ

3/2dξ

=
√

2g
[

2
3

(
B1 +(B2 −B1)

h
H

)
ξ

3/2 − 2
5

(
B2 −B1

H

)
ξ

5/2
]h

0

=
√

2g

[
2B1h3/2

3
+

4
15

(
B2 −B1

H

)
h5/2

]

=
2
3

√
2gh3

[
B1 +

2
5
(B2 −B1)

h
H

]
For h = 0.236 m, it follows that Q = 0.0681 m3s−1.
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