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The problem of thermal convection in a layer of
viscous incompressible fluid is analysed. The heat
flux law is taken to be one of Cattaneo type. The
time derivative of the heat flux is allowed to be a
material derivative, or a general objective derivative.
It is shown that only one objective derivative leads
to results consistent with what one expects in real
life. This objective derivative leads to a Cattaneo-
Christov theory, and the results for linear instability
theory are in agreement with those for a material
derivative. It is further shown that none of the theories
allow a standard nonlinear, energy stability analysis.
A further heat flux due to PM. Mariano is added
and then an analysis is performed for stationary
convection, oscillatory convection, and fully nonlinear
theory. For the material derivative case, the analysis
proceeds and global nonlinear stability is achieved.
For Cattaneo—Christov theory, it appears necessary to
add a regularization term in the equation for the heat
flux, and even then the analysis only works in two
space dimensions, and is conditional upon the size of
the initial data. For the three-dimensional situation, it
is shown how a nonlinear stability analysis may be
achieved with a Navier-Stokes—Voigt fluid rather than
a Navier-Stokes one.

1. Introduction

The problem of thermal convection where a fluid layer
is heated from below and under appropriate conditions
the fluid rises and forms into a pattern of convection
cells is well known. The phenomenon was observed by
Thompson [1] and by Bénard [2], see e.g. the historical
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article by Wesfreid [3]. A complete mathematical analysis for the linearized instability theory is
lucidly described in the brilliant book by Chandrasekhar [4].

The classical thermal convection problem, or the Bénard problem as it is often known, is based
on the heat flux being described by Fourier’s Law, namely, the heat flux is a linear function of
the temperature gradient. In a highly cited article, Cattaneo [5] introduced a generalization of
Fourier’s Law which could avoid the problem whereby a temperature disturbance travels with
an infinite speed. Cattaneo’s heat flux law involves a relaxation time for the heat flux and is now
well appreciated in the field.

Straughan & Franchi [6] introduced the Cattaneo law into the instability problem for thermal
convection. Various works followed this and Christov [7] replaced the material derivative in the
Cattaneo relation by a Lie derivative on the basis that this derivative is objective. The resulting
theory for thermal motion in a fluid employing the Cattaneo heat flux law is known as Cattaneo—
Christov theory, see e.g. Ciarletta & Straughan [8], Straughan [9], Papanicolaou [10], Tibullo &
Zampoli [11] and Straughan [12]. This generalized theory of thermal convection has become very
popular in the research literature and continues to attract much attention, see e.g. Bissell [13,14],
Eltayeb [15,16], Eltayeb et al. [17], Hughes et al. [18,19], Capone & Gianfrani [20], Shivakumara
et al. [21], Hema et al. [22], Mamatha et al. [23], Davalos Orozco & Diaz [24], Riaz Khan & Mao
[25] and Straughan [26].

Much of the attention in the Cattaneo—Christov theory of thermal convection is driven by
application to fundamental areas of real life. For example, this theory is employed in convection
stars, see e.g. Falcon [27], Falcon & Labrador [28], Herrera & Falcon [29-31], Herrera & Santos
[32,33], Herrera & Martinez [34-36], Herrera & Pavon [37] and Herrera [38]. It has been used in
studying collapse in stellar interiors, Govender & Govinder [39], Govender & Thirukkanesh [40]
and Govender et al. [41]. A particularly interesting application is to volcanic action in planets,
Bargmann et al. [42]. A further recent application is to thermal convection in micro channels,
see e.g. Khadrawi [43]. Yet further application is in the important field of potential for possible
hydrogen energy production, see Riza Khan & Mao [25].

There are differing attitudes towards analysing non-isothermal fluid motion with a Cattaneo
heat flux law. One avenue treats the Cattaneo equation as a balance law and uses the material time
derivative for the relaxation term. The other school of thought argues that in the limit of relaxation
one recovers Fourier’s Law and as this is a constitutive equation then Cattaneo’s equation should
likewise represent a constitutive equation. In this case, the material time derivative should be
replaced by an objective time derivative. The goal of this work is to give a complete analysis
of linear instability theory and investigate fully nonlinear energy stability theory for thermal
convection when Cattaneo’s law is used. We employ both a material derivative for the heat flux
and a general form of objective derivative for the same quantity. In this way, we obtain a complete
mathematical analysis which is then compared with what is expected to be physically realistic
behaviour.

2. (Cattaneo models and thermal convection

The equations for fluid motion are comprised of the balance of linear momentum, balance of
mass, balance of energy and an equation governing the evolutionary behaviour of the heat flux.
Let vi(x, t), p(x, t), T(x, t) and Q;(x, t) denote the velocity field at position x and time ¢, the pressure,
the temperature and the heat flux vector, respectively. The balance of linear momentum with a
Boussinesq approximation may be written as, cf. Chandrasekhar [4], Barletta [44], Breugem &
Rees [45],

v dvi_ 1 dp

Wi 2% Av + agkiT 2.1
ot ]axj 00 8xi+v v +agkil, (2.1)

where pg is a constant reference density, v is the kinematic viscosity, « is the coefficient of
expansion of the fluid, g is gravity, k = (0,0, 1) and A is the three-dimensional Laplacian.
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Throughout, we employ standard indicial notation in conjunction with the Einstein
summation convention. Hence, for example

v v _du v o
ox; = dx;  ox  dy 09z’

where v = (4, v, w) and x = (x, y, z). For another example,

3
aT
vl ;= E Vig—
i=1 !

u aT N aT tw aT
=U—+v— —.
0x ay 0z
Since the fluid is incompressible
av;
—=0. 2.2
ox; (2.2)
The equation for the balance of energy may be written as

aT aT 9Q;
a0t 9%
at  ox; ax;

(2.3)

The equation for the heat flux may, in principle, assume various forms. In the first case, one may
follow, for example, Christov & Jordan [46], Jou et al. [47], Sellitto et al. [48], and write

9Q; 0Q; T
TS = e 24
T( ar U | T gy @4)

where (2.4) represents a form of Cattaneo’s equation in a moving fluid, 7 is a relaxation coefficient
and « may be taken to be the thermal diffusivity. Equation (2.4) regards the heat flux as a
fundamental variable and this equation may be thought of as a conservation law for Q;.

There is an alternative school of thought which argues that as v — 0 the equation for Q;
becomes a constitutive equation, namely Fourier’'s Law, Q = —« VT. Then, the derivative in the
balance law for Q should not be the material derivative as in (2.4), but should employ an objective
time derivative for Q, as discussed in Morro [49,50], see also Capriz & Mariano [51]. A general
form of objective derivative is given by Morro [49,50] and then one may replace equation (2.4) by

00Q; 0Q; oT
T ( aQtl + va% — W,']'Qj + )/DﬁQj) +Qi=—« 37961‘/ (2.5)
where y we take as a constant, and Wi]-,Dij are the skew and symmetric parts of the velocity
gradient v; ;, defined by
WU:;(gUl—av]) and D,']'=1(avi+avj>.
Xj o 0% 2 0x;  Ox;

We refer to the model given by (2.1), (2.2), (2.3) and (2.4) as describing material derivative
theory. The model given by (2.1), (2.2), (2.3) and (2.5), we describe as Cattaneo-Morro theory.

Special cases of equation (2.5) have been analysed in the literature, for example, when y =0
the objective derivative is a Jaumann derivative and the resulting theory is known as Cattaneo—
Fox theory, cf. Straughan & Franchi [6], Straughan [9, pp. 228-232]. When y =1 the objective
derivative is a Cotter—Rivlin one, see Morro [49,50]. A particular case which has attracted
a lot of attention is when y =—1 for which the derivative is associated with the names of
Truesdell [52], Christov [7], and the resulting theory is known as Cattaneo—Christov theory, cf.
Ciarletta & Straughan [8], Straughan [53], Tibullo & Zampoli [11], Straughan [12] and Straughan
[9, pp. 233-237].
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We suppose the fluid occupies the horizontal layer {(x, ) € R?} x {0 < z < d} with the boundary
conditions
vi=0,2=0d;, T=Ty,z=0;, T=Ty, z=d; (2.6)

where Tp, Ty are constants with Tp > Ty;.
For each of the models introduced above, i.e. the material derivative and the Cattaneo-Morro
for any y, the steady solution subject to the boundary conditions (2.6) is

5;=0, T=-Bz+T1, Q=(0,0,«p), (2.7)
where g is the temperature gradient
T, —Tu
i >

The steady pressure p(z) is found from the momentum equation.

B= 0.

In the next section, we investigate the instability of this stationary solution.

3. Linear instability theory

Perturbations u;,6, 7, g; are introduced to v;, T, p, Q; and these are non-dimensionalized with the

scales )
xp=dx;, t=Tt, w;=Uu;, 0=T"0%

. — O g% — P* f_ ﬂ _w
qi=Q%q;, m=Px", T—U‘/mg, Sg—d2 @3.1)

a2 T
7="2 p:povu, u="2, o=, p=2
v d d K
and the Rayeigh number is defined as
Ra=R?= M
kv

The non-dimensional fully nonlinear perturbation equations are now for the material derivative
system
Wiy +ujilij=—m; + Au; + Rk;0,
u;; =0,
" (3.1)
Pr(6 + uif,) = Rw — q; ,
5¢(qir + uiqij) = -0 — qi,
whereas, for the Cattaneo-Morro system, one has
Uiy +ujuij=—m;+ Au; + Rk;0,
uii=0,

Pr(0 +u;0 ;) = Rw — q;,

1—-y 14y
5¢ (ﬂii,t +ujqij — [T] u;iqj + [72 ] ”i,ifh) =

SgR SgR
—0;—q+ E(l - y)ul,?) - E(l + V)w,z‘

(3.2)

These equations hold on R? x {z € (0,1)} x {t > 0}, with the boundary conditions
u; =0, 6=0, z=0,1, (3.3)

together with the fact that u;, 6, 7, g; satisfy plane tiling periodic boundary conditions in x, y. The
forms of the convection cell resulting from the periodicity are triangles, rectangles and hexagons,
and full details may be found in Chandrasekhar [4, pp. 43-53]. These equations are linearized and
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then one puts u; = e”fu;(x), 8 = e°'0(x), g; = e”q;(x), = = €' 7 (x). This yields the linearized system
of equations Cattaneo—Morro theory as

ou;=—m;+ Au; + Rk;0,

u;i=0,
Pro6 =Rw — g;;, 34

SgR SgR
5800 =—0; — i + 2o (1 = Vhtiz — 2oL+,
where the analogous material derivative equations do not contain the SgR/2Pr terms.
Equations (3.4) are handled by a normal mode analysis, cf. Chandrasekhar [4, pp. 22-43],
Barletta [54,55]. We take curlcurl of (3.4); and retain the third term, and we take the derivative

of (3.4)4. This results in the system of equations

— o Aw=—A%w — RA*0,

Pro6 =Rw—h, (35)
SgR
Sgoh=—A0 —h — E(l + y)Aw,

where h=g;; and A* =32/9x* 4+ 3?/dy>. One now puts w=W(z)¢p(x,y), 0 = O(2)$(x,y), and
h=H(z)¢(x,y), where ¢ satisfies A*¢p = —a%¢, a being a wavenumber, Chandrasekhar [4]. As in
Hughes [18], we analyse the situation for two stress-free surfaces, and then W, ®,H may be
written as a sin series, e.g. W=7 72, Wy, sin nrz, for which system (3.5) yields a determinant
which results in a cubic equation for o. The real and imaginary parts of this equation are found
and these lead to the following equations:

R A ! (3.6)
St g2 1 — (1 + y)SgPrA/2] '
and
2
, A Pr A (Pr+1) 57)

os = 7 Sall+ (L4 7)/2Pr] | @ SgI + (1 + )/2Pr]”
where R%,, and RZ. are the Rayleigh numbers for stationary and oscillatory convection,
respectively, and A = 72 4 a%. The critical Rayleigh numbers are found by minimizing (3.6) and
(3.7) in a2.

One notes that (3.6) allows the possibility of convective fluid motion (instability) when heating
from above if the denominator is negative. Thus, for physically correct behaviour, we require y <
—1. However, for y in this range (3.7) may then allow R to be negative. Thus, one may argue in
favour of neglecting the Cattaneo—Fox and Cotter—Rivlin theories since y =0 and 1, respectively.
The Cattaneo—Christov theory has y = —1 and this agrees exactly (in the linear case) with the
material derivative theory. For this case

3 2
Rgtat = 27 and R(z)sc = ZS%; 27 (ng_z b u%'

cf. Straughan [53], Straughan [9, pp. 233-237]. Hence for two stress-free surfaces Rastat = 2774 /4,
2 = 7%/2 and a2y, Raogse may be found in equations (8.39) and (8.40) of Straughan [9], and
oscillatory convection may only occur for Sg large enough. Oscillatory convection is important
in that when this occurs the ensuing convective motion oscillates periodically in time which is a
phenomenon which affects the physics substantially.

The critical Rayleigh number as found here is essential in that if the Rayleigh number exceeds
this critical value then instability via a convective motion will arise.
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4. Nonlinear energy stability

It is worth observing that existence results for a suitable weak solution to the equations when
Cattaneo’s Law holds are provided by Boukrouche et al. [56]. As the system of equations begins
with the Navier-Stokes equations, the overall global existence situation is unknown, just as it is
for a solution to the Navier-Stokes equations.

If we follow the classical procedure to construct a nonlinear stability analysis for either
equations (3.1) or (3.2) then we define a convection cell V to be the periodic cell in the (x,y) plane
(which we take as a hexagon) extended to a three-dimensional cell over z € (0, 1). The procedure
begins with multiplying (3.1); or (3.2); by u; and integrating over V. Next, multiply (3.1)3 or
(3.2)3 by 6 and integrate over V. After integration by parts and use of the boundary conditions
we obtain for either system the ‘energy” identities

35 /ulP=—11Vull® + R, w) (1)
and

d pr

3 2 I0IP =RO, ) = @3, 0)- (42)

We next multiply (3.1)4 by g; and (3.2)4 by g; and integrate each over V. In this way, one obtains

dsg

T llqll* = —11q!*> — 6,9, (4.3)

for the material derivative system, or

d Sg 5 1-y 1+y 2
32 1l =(T /Vuf,jqz'bljdx— — fvuj,iﬂliq]'dx—l\qll —©;,9:)

SgR N SgR o
+ 2pr (1 —y)(uiz,q) 2pr T+ y)w; q:), (4.4)

for the Cattaneo—Morro system.

To obtain a general energy equation for each system, one now adds (4.1) to (4.2) and then adds
(4.3) or (4.4) depending on whether material derivative or Cattaneo-Morro is considered.

Define the energy function E by

1 Pr Sg
E() = ~ul® + “T1ien? + 22 a2 4.
(&)= Slull” + 101" + —*llqll”, (4.5)
and the dissipation function D by
D(t)=1Vul[* + llqlP?, (4.6)
and define the production terms I and I by
1=2(w,0) 4.7)
and
58
b =2(w0,0) + S [(1=7)1t3,4) = (1 + )@, )] *8)

The energy equation for material derivative theory is then

dE R

where

1 I 4.9)
R _mPEIiXD, .

and where H is the space of admissible solutions.
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Consider the maximum problem for Rg, namely

1 2(0,
— =max % (4.10)
R H [|Vull* +lq]|

The space H consists of {u € (H 1(V))3} where u;; =0in V and u; satisfies the boundary conditions,
{6 € HY(V)} with the boundary conditions # =0 on z=0,1, and is spatially periodic in (x,y),
and {q € L?(V)} together with periodicity in (x,y). The definition of Rr immediately introduces
a fundamental problem, in that since 6 is not in the denominator the maximum does not exist.
A similar outcome arises for Cattaneo-Morro theory but now another parameter Rg arises,
namely Rgp; where
1 I

— =max —.
Rem H D

In addition, for Cattaneo—Morro theory, the energy equation is

% =Rl -D - Y _/Vdijqiqj dx, (4.11)
where djj = (u;; + 1,;)/2 and the cubic term in d;;q;q; introduces a further complication.

The point is that for all theories, either that with the material derivative or any of Cattaneo—
Morro type (which includes Cattaneo-Christov, Cattaneo-Fox or Cotter—Rivlin theory) the
maximum of the production divided by the dissipation does not exist. Therefore, an entirely
different strategy is required.

5. Balance of energy equation with a Mariano flux

To overcome the problem of §4 and derive a meaningful nonlinear energy stability analysis, we
employ an idea of Mariano [57] and modify the balance of energy equation (2.3). The idea is to
split the heat flux into two parts. Thus, one replaces equation (2.3) by

oT oT 0Q; OF;

or  oT _ ) 5.1
ot T Vion T ax  om (5-1)
where the total heat flux is now Q + F. The F; term is given by a Fourier’s Law so
~0T
Fi=—¢—, (5.2)
ax;

where ¢ > 0 is a constant. The flux Q; is given by equation (2.4) for a material derivative theory
and by (2.5) for the Cattaneo—Morro theory.
Thus, the governing equations for a material derivative theory now become

av; dv; 1 ap

it AT Pt AN ) (IRTTRYY Y kT,
3t+v]3xj 0 3xi+v vi - egli
ov;

i _o

axi

‘ (5.3)
oT T _ 9Qi PAT,

ot TUoe T

0Q; 0Q; oT
r( m -I—v]axj +Qi=—« =
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whereas those for Cattaneo-Morro theory take the form

dv; av; 1 0

b} vjﬁ:—— —p—l—vAvi—f—agkiT,
at Bx]- po 0X;

v

axi o

5.4)
aT T  3Q; (
R AT,
of TV T ax T8

0Qi | 9Q; aT
T ( o + vaxj - W;iiQj+vDjQj | + Qi= —Ka—Xi.

The basic state in the case of (5.3) or (5.4) remains the same as (2.7). We now proceed to analyse
the stability and instability of this conduction solution.

6. Unconditional nonlinear energy stability for material derivative theory
with a Mariano flux

The non-dimensional perturbation equations in the case of the material derivative theory are
Uip + Ujlljj=—1; + Au; + Rk;0,

uj; =0,
(6.1)
Pr(0; + u,-G,i) =Rw — qii + CAD,

S8qir + ujqij) = —0; — qi,

where ¢ is a non-dimensional form of Z.

One may proceed to develop a linear instability analysis as in §3 employing a normal mode
technique, cf. Barletta [54,55]. The details are similar to those of §3 and one may show that the
Rayleigh number for stationary convection is given by

2 43
Riar =0 +1)—, (6.2)

whereas the oscillatory convection boundary follows from

, A |:§+Pr2+c2+2§Pr} A? |:Pr2+(1+§)Pr:| A
a2

Rise=¢— . .
osc = ¢ ) + Sg(c + Pr) 52 +P) 2 (6.3)

In either case, one has to minimize Rgtat or R%SC in a2 to find the critical Rayleigh and
wavenumbers. Upon performing this minimization, one sees that for stationary convection with

two stress-free surfaces
2774 72
Rgtat = 4 (¢+1) and agtat = 7 (6.4)
The minimum of the oscillatory convection boundary is found by minimizing (6.3) in a? by
numerical means. Numerical results are given after the following energy stability analysis.

To develop a nonlinear energy stability analysis, we multiply (6.1); by u; and integrate over
V. Then multiply (6.1)3 by 6 and integrate over V. Finally, we multiply (6.1)4 by g; and integrate
over V. The resulting equations are added and after integration by parts and use of the boundary
conditions one may arrive at an energy equation

dE

== =RI-D,
dt

where
1 Pr 58
E=_ 2 0112 2
2||u|| +*2 [161] +*2 lqll
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the production term [ is

[=2(w,0),
and the dissipation D is
D=|[Vul[® + [Vl +[Iq]I*.
Define now Rg by
I
R = mﬁx D’ (6.5)

where H is the space of admissible solutions. Then

dE R
= <-p(1-—),
dr — < RE>
and so if R < Rg we find with b =1 — R/Rg > 0, and use of Poincaré’s inequality

dE
£ beiE
ar =

for a constant ¢; > 0. Hence, E decays rapidly and one obtains global stability.
Due to the absence of g; in the numerator, the Euler-Lagrange equations corresponding to (6.5)
may be taken to be

Au; + Rpbk; = @ is

CAO + Rpw =0,
where ¢ is a Lagrange multiplier. For two free surfaces, one solves (6.6) to find
A3
Ri=t 6.7)
and so the critical nonlinear energy Rayleigh number is given by

R2— 2774
E— 4 .

(6.8)

It is important to note that
Rgtat = R% and Rcz)sc z R%'

0sc
threshold for global nonlinear stability.

Tables 1 and 2 display values for R2. after the minimization has been performed. The critical
value of a3 is also given. For comparison, the values of RZ,, and R% are also given in these
tables. In the tables Pr=20, ¢ =1 in table 1 whereas ¢ =20 in table 2. It is seen in table 1 that
when S¢=2,...,10 oscillatory convection will occur. In table 2, oscillatory convection occurs
when 5¢ =3, ...,10. The oscillatory wavenumber a%sc is decreasing in both tables as Sg increases.

Thus, increasing the coefficient 7 leads to the convection cells becoming more narrow.

The thresholds R%, and R2__ represent linear instability thresholds. The values of R represent a

7. Nonlinear energy stability for Cattaneo—Christov—Mariano theory
with a Navier—Stokes fluid

In the fully nonlinear case of Cattaneo—Christov—Mariano theory, we have not been able to
develop an energy stability analysis employing equations (3.2) together with a Mariano extra
flux term. Instead, it appears that one requires extra dissipation in the evolution equation for g;.
This is thus a very important difference between the material derivative theory and the Cattaneo—
Christov-Mariano theory. We thus appeal to work of Van & Fiilop [58, eq. (5)], see also Mariano
[57, eq. (1.71)], where one includes a Laplacian of g; in addition to the Mariano flux. Further
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Table 1. Critical values for the Rayleigh number for stationary convection, Ragt,t, for oscillatory convection, Rdysc, and for
global nonlinear stability, Ra,, for various values of Sg. The a2 .. values are the values of a* for oscillatory convection. The

equivalent value for a* for stationary convection is @ = 7% /2. Here, Pr = 20and ¢ =1.

Ri Ostat Raen RaOSC Tosc Sg
1315.02 657.511 1591.99 7.050 1

Table 2. (ritical values for the Rayleigh number for stationary convection, Rdgyat, for oscillatory convection, Raqsc, and for
global nonlinear stability, Rae,, for various values of Sg. The a2 values are the values of a* for oscillatory convection. The

equivalent value for a? for stationary convection is a = 72 /2. Here, Pr = 20 and ¢ = 20.

Rastat Raey Raosc Tosc Sq
13807.7 13150.2 14989.7 5.265

—_

relevant articles on this aspect are those of Rogolino & Cimmelli [59] and Carlomagno et al. [60].
The relevant nonlinear perturbation equations are then

Wip +ujiljj=—m; + Au;j + ROk;,

u;; =0,

PV(G,t + Mie/i) =Rw — qii + CA0, 7.1)

RS
58(qis + wjqij — uijq;) = 75 Uiz —g; — 0; +€Ag;.

The € term in (7.1) is described by Van & Fiilop [58] and by Mariano [57], and as observed
by Capriz et al. [61, after eq. (102)], is of a class of regularization terms frequently added. It
is important to observe that an energy balance law with extra regularizing terms like (7.1)4 is
believed to be relevant also when one is dealing with everyday temperatures, as is explained in
the excellent article of Van ef al. [62].
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It transpires that the difficulty with an energy stability analysis for (7.1) arises from the term
—Sgu;jqj. The subsequent manipulation of this depends on the choice of energy functional and
the Sobolev inequality. In fact, with a Navier—Stokes theory like (7.1), we only proceed in two
space dimensions. To address the three-dimensional problem appears to need extra regularity via
a Navier-Stokes—Voigt theory, and this is developed in the next section.

Hence, we now proceed on the understanding that the period cell is a two-dimensional one.
We multiply (7.1); by u; and integrate over V. We also multiply (7.1)3 by 6, equation (7.1)4 by g;
and integrate each over V. In this way, we obtain the identities

d1l, = o_ 2
35 ul2=—11Vull® + RO, ), (7.2)
d Pr
57”9”2 =—¢IIVOI* + RO, w) — (9i,6), (7.3)
dS RS

and 5ol =sg /V djnidy dx + — i3, ) — €1 Vall = (q5,0,) — llall” (7.4)

Now form the sum of these three equations to obtain

dE RS
SZRI+Sg | digigjdx+ S (u3,9) — IVall® — €llVall® = 1qI2 = ¢IIVOI2,  (7.5)
dt v Pr

where djj = (u;; + u;,;)/2 and [ = 2(0, w) and

1. o Pro o 58 5
E—- ez + 2 q12.
2||11|| + 5 [e- + > llqll

We outline the remainder of the analysis since the stability obtained is conditional upon the size
of the initial data.
Employ the arithmetic-geometric mean inequality in the form

1 £
(i3,9:) < = ||Vul|* +

S 2
=% 2||¢1|| ,

for & > 0 at our disposal. Select £ = SgR/Pr. Then, require Sg, Pr and R to be such that

2P > S¢°R>. (7.6)
From (7.5), one may now deduce
dE 5
5 SRI=D1+5¢ dijq;:9; dx — €|IVqll*, (7.7)
v
where
1
Dy = ||Vull® +£|IVoll>
Define
max ! (7.8)
Rer ] Dif '

where | is the space of solutions for u; and 6, i.e. ue (HY(V))3, 6 e HY(V), u;; =0, and u; and 6
satisfy the appropriate boundary condtions.
One may solve the Euler-Lagrange equations for (7.8) and one derives

, ¢ A
E1= 75 2

Thus minimizing in a? yields R%l =277%¢/8.
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Now put D =D +€[|Vq]| |2. Then from (7.7), one may show

dE R

—<-D(1-— ii7;q; dx. 7.

i < ( REl) +Sg/‘/d1]5h% dx (7.9)
Consider R <Rg; and put b=1—R/Rg; > 0. Then from (7.9), we use the Cauchy-Schwarz
inequality to find

dE
—=-bD+ llql13 (| Vull,

where || - |4 denotes the norm on L*(V). Using a sharp form of the Sobolev inequality in two
dimensions, namely

llqllf < c3liqli* 11Vall?, (7.10)
cf. Payne [63, pp. 132, 133], one then finds
E
a < —bD + allqll [IVqll || Vul|
<—bD +kE'/?D, (7.11)

where k=2c1/,/€Sg.
If now EV/2(0) < b/k then one may employ a continuity argument to show that E(f) — 0 in an

exponential manner, cf. Straughan [64, pp. 14-16]. Thus, nonlinear stability is established in two
dimensions provided EY2(0) < b/k and (7.6) holds.

Since the stability so found is conditional, we do not include details of numerical values for
the critical Rayleigh numbers of linear and nonlinear stability.

8. Nonlinear energy stability for Cattaneo—Christov—Mariano theory with a
Navier—Stokes—Voigt fluid

We have not seen how to obtain a nonlinear energy stability analysis for equations (7.1) in
three dimensions. Instead, it would appear necessary to add a Kelvin—Voigt regularization term
to the momentum equation. Thus, instead of (7.1), we employ an analogous system but with a
Navier—Stokes—Voigt fluid, cf. Damazio et al. [65] and Straughan [66]. The equations are then

Wip + Ujlljj — AAUj = —T0; + Au; + ROk;,
u;; =0,

PrOy + 1) = Rw — g;; + ¢ A6, 8.1)

RSg
58 + i — uijj) = = > iz — i — 6, + €A,
where A > 0 is a constant.

We do not describe in detail the analysis of nonlinear stability for these equations. The
procedure is exactly as in §7, but now one obtains as an energy functional

1.0 A o Pro o 5S¢ o
= — —_— v — — .
E(t) 2||11|| + 2|| ull]” + 3 11011~ + > lqll

In three space dimensions, the Sobolev inequality (7.10) does not hold and must be replaced by
an inequality of form

llallz <llalllIvallP, (8.2)
cf. Payne [63, pp. 133-135]. The nonlinear analysis then finds when estimating fv dijqiqj dx,
/V digqiq dx < [ql13 ||Vl
<allqll11valP2 |1Vl
< CzklEl/zD,

for some computable constant kj > 0.
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The nonlinear Rayleigh number threshold is as in §7 and the stability analysis is again
conditional. The stationary convection linear values are as in §7. However, the oscillatory
convection values will not be the same as in §7. The presence of the Kelvin-Voigt term will
influence these values.

9. Conclusion

We have investigated the thermal convection Bénard problem when a Cattaneo heat flux law is
employed instead of Fourier’s Law.

For the Cattaneo law, we considered several possibilities. One of these employs a material
derivative for the rate of change of the heat flux Q. Additionally, we allowed the material
derivative to be replaced by a general objective derivative for Q. This objective derivative involves
a constant y. We showed that unless y = —1, then the objective derivative will in general lead to
unphysical behaviour. When y = —1 this is known as Cattaneo—Christov theory. We showed that
in the linearized case Cattaneo—Christov and the material derivative theories lead to the same
critical Rayleigh numbers.

For the nonlinear stability theory, the situation is very different. It would appear that none
of the Cattaneo theories are amenable to an energy stability analysis. Instead, we appealed to
an extra flux theory of Mariano [57]. If we employ the extra flux, then the resulting material
derivative theory yields unconditional nonlinear stability and the critical Rayleigh numbers are
physically acceptable for both linear instability and nonlinear stability. In the case of Cattaneo—
Christov theory, we were unable to make progress as in the material derivative case unless we
include an additional regularity term in the heat flux equation, cf. [57,58]. Even then, the energy
stability analysis appears to work only in two space dimensions, and is conditional upon the size
of the inital data. In the three-dimensional case, we were unable to use Navier-Stokes theory and
had to replace this with a Navier-Stokes—Voigt theory.

In conclusion, it appears that one has to be very careful when analysing thermal convection
with a Cattaneo heat flux law. When a Mariano [57] extra flux theory is employed a well-defined
mathematical analysis is possible.

Data accessibility. This article has no additional data.
Declaration of Al use. We have not used Al-assisted technologies in creating this article.
Authors’ contributions. M.G.: conceptualization, data curation, formal analysis, methodology, writing—original
draft, writing—review and editing; B.S.: conceptualization, data curation, formal analysis, methodology,
software, supervision, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. The work of B.S. was performed with the aid of the Leverhulme grant no. EM-2019-022/9.
Acknowledgements. The authors are indebted to the two anonymous referees whose trenchant remarks have led
to improvements in the paper. This paper has been performed under the auspices of the GNFM of INDAM.

References

1. Thompson J. 1882 On a changing tesselated structure in certain liquids. Proc. Phil. Soc. Glasgow
13, 464-468.

2. Bénard H. 1900 Les tourbillons cellulaires dans une nappe liquide. Revue Gén. Sci. Pure Appl.
11, 113-123.

3. Wesfreid JE. 2017 Henri Bénard: thermal convection and vortex shedding. Comptes Rendus
Meécanique 345, 446-466. (d0i:10.1016/j.crme.2017.06.006)

4. Chandrasekhar S. 1981 Hydrodynamic and hydromagnetic stability. New York, NY: Dover.

. Cattaneo C. 1948 Sulla conduzione del calore. Atti Sem. Mat. Fis. Modena 3, 83-101.

6. Straughan B, Franchi F. 1984 Bénard convection and the Cattaneo law of heat conduction.
Proc. R. Soc. Edinb. A 96, 175-178. (doi:10.1017/S0308210500020564)

(6]

LLL0ST07:08 ¥ 205 % 2014 edsi/feuinof BioBuiysiignd/aposiefos


http://dx.doi.org/10.1016/j.crme.2017.06.006
http://dx.doi.org/10.1017/S0308210500020564

Downloaded from https://royal societypublishing.org/ on 08 February 2024

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Christov CI. 2009 On frame indifferent formulation of the Maxwell-Cattaneo model

of finite-speed heat conduction. Mech. Res. Commun. 36, 481-486. (doi:10.1016/j.mech
rescom.2008.11.003)

. Ciarletta M, Straughan B. 2010 Uniqueness and structural stability for the Cattaneo-Christov

equations. Mech. Res. Commun. 37, 445-447. (d0i:10.1016 /j.mechrescom.2010.06.002)

. Straughan B. 2011 Heat waves, vol. 177, Appl. Math. Sci. New York, NY: Springer.
. Papanicolaou NC, Christov CI, Jordan PM. 2011 The influence of thermal relaxation on the

oscillatory properties of two-gradient convection in a vertical slot. Euro. . Mech. B/Fluids 30,
68-75. (d0i:10.1016/j.euromechflu.2010.09.003)

Tibullo V, Zampoli V. 2011 A uniqueness result for the Cattaneo—Christov heat conduction
model applied to incompressible fluids. Mech. Res. Commun.s 38, 77-79. (d0i:10.1016/j.
mechrescom.2010.10.008)

Straughan B. 2011 Tipping points in Cattaneo—Christov thermohaline convection. Proc. R. Soc.
A 467, 7-18. (d0i:10.1098 /rspa.2010.0104)

Bissell JJ. 2015 On oscillatory convection with the Cattaneo—Christov hyperbolic heat flow
model. Proc. R. Soc. A 471, 20140845. (d0i:10.1098 /rspa.2014.0845)

Bissell JJ. 2016 Thermal convection in a magnetized conducting fluid with the Cattaneo—
Christov heat flow model. Proc. R. Soc. A 472, 20160649. (doi:10.1098 /rspa.2016.0649)

Eltayeb IA. 2015 Stability of porous Bénard-Brinkman layer in local thermal non-
equilibrium with Cattaneo effects in the solid. Int. J. Thermal Sci. 98, 208-218. (doi:10.
1016/j.ijthermalsci.2015.06.021)

Eltayeb IA. 2017 Convective instabilities of Maxwell-Cattaneo fluids. Proc. R. Soc. A 473,
20160712. (d0i:10.1098 /rspa.2016.0712)

Eltayeb IA, Hughes DW, Proctor MRE. 2020 The convective instability of a Maxwell-
Cattaneo fluid in the presence of a vertical magnetic field. Proc. R. Soc. A 476, 20200494.
(doi:10.1098 /rspa.2020.0494)

Hughes DW, Proctor MRE, Eltayeb IA. 2021 Maxwell-Cattaneo double diffusive convection:
limiting cases. J. Fluid Mech. 927, A13. (d0i:10.1017/jfm.2021.721)

Hughes DW, Proctor MRE, Eltayeb IA. 2022 Rapidly rotating Maxwell-Cattaneo convection.
Phys. Rev. Fluids 7, 093502. (doi:10.1103 /PhysRevFluids.7.093502)

Capone F, Gianfrani JA. 2022 Onset of convection in LTNE Darcy-Bénard anisotropic
layer: Cattaneo effect in the solid. Int. ]. Nonlinear Mech. 139, 103889. (d0i:10.1016/j.
ijnonlinmec.2021.103889)

Shivakumara IS, Ravisha M, Ng CO, Varun VL. 2015 A thermal non-equilibrium model with
Cattaneo effect for convection in a Brinkman porous layer. Int. |. Nonlinear Mech. 71, 39-47.
(doi:10.1016/j.ijnonlinmec.2015.01.007)

Hema M, Shivakumara IS, Ravisha M. 2020 Double diffusive LTNE porous convection with
Cattaneo effects in the solid. Heat Transfer 49, 3613-3629. (doi:10.1002 /htj.21791)

Mamatha AL, Ravisha M, Shivakumara IS. 2022 Chaotic Cattaneo—LTNE porous convection.
Waves Random Complex Media 34, 1-20. (d0i:10.1080/17455030.2022.2155320)

Dévalos Orozco LA, Diaz JAR. 2023 Natural convection of a viscoelastic Cattaneo—Christov
fluid bounded by thick walls with finite thermal conductivity. ]. Non-Equilib. Thermodyn. 48,
271-289. (d0i:10.1515/jnet-2022-0051)

Riaz Khan M, Mao S. 2023 Comprehensive analysis of magnetized second-grade nanofluid
via Fourier’s and Cattaneo—Christov models past a curved surface. Int. |. Hydrogen Energy 48,
1-20. (d0i:10.1016/j.ijhydene.2023.06.324)

Straughan B. 2013 Porous convection with local thermal non-equilibrium temperatures and
with Cattaneo effects in the solid. Proc. R. Soc. A 469, 20130187. (doi:10.1098 /rspa.2013.0187)
Falcon N. 1998 Thermal instability for convection in astrophysical plasmas. Astrophys. Space
Sci. 256, 399-402. (doi:10.1007 /978-94-011-4758-3_42)

Falcén N, Labrador J. 2001 Thermal waves and unstable convection. Odessa Astron. Publ. 14,
141-143.

Herrera L, Falcon N. 1995 Heat waves and thermohaline instability in a fluid. Phys. Lett. A
201, 33-37. (d0i:10.1016 /0375-9601(95)00226-S)

Herrera L, Falcén N. 1995 Secular stability behaviour of nuclear burning before relaxation.
Astrophys. Space Sci. 229, 105-115. (d0i:10.1007 /BF00658569)

Herrera L, Falcon N. 1995 Convection theory before relaxation. Astrophys. Space Sci. 234,
139-152. (doi:10.1007 /BF00627288)

LLL0ST07:08 ¥ 205§ 2014 edsi/jeuinolBioBuiysijgnd/iaposiefor H


http://dx.doi.org/10.1016/j.mechrescom.2008.11.003
http://dx.doi.org/10.1016/j.mechrescom.2008.11.003
http://dx.doi.org/10.1016/j.mechrescom.2010.06.002
http://dx.doi.org/10.1016/j.euromechflu.2010.09.003
http://dx.doi.org/10.1016/j.mechrescom.2010.10.008
http://dx.doi.org/10.1016/j.mechrescom.2010.10.008
http://dx.doi.org/10.1098/rspa.2010.0104
http://dx.doi.org/10.1098/rspa.2014.0845
http://dx.doi.org/10.1098/rspa.2016.0649
http://dx.doi.org/10.1016/j.ijthermalsci.2015.06.021
http://dx.doi.org/10.1016/j.ijthermalsci.2015.06.021
http://dx.doi.org/10.1098/rspa.2016.0712
http://dx.doi.org/10.1098/rspa.2020.0494
http://dx.doi.org/10.1017/jfm.2021.721
http://dx.doi.org/10.1103/PhysRevFluids.7.093502
http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103889
http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103889
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.01.007
http://dx.doi.org/10.1002/htj.21791
http://dx.doi.org/10.1080/17455030.2022.2155320
http://dx.doi.org/10.1515/jnet-2022-0051
http://dx.doi.org/10.1016/j.ijhydene.2023.06.324
http://dx.doi.org/10.1098/rspa.2013.0187
http://dx.doi.org/10.1007/978-94-011-4758-3_42
http://dx.doi.org/10.1016/0375-9601(95)00226-S
http://dx.doi.org/10.1007/BF00658569
http://dx.doi.org/10.1007/BF00627288

Downloaded from https://royal societypublishing.org/ on 08 February 2024

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.

46.
47.

48.

49.
50.
51.
52.
53.

54.
. Barletta A. 2021 Spatially developing modes: the Darcy-Bénard problem revisited. Physics 3,

56.

57.
58.

59.

Herrera L, Santos NO. 1997 Thermal evolution of compact objects and relaxation time. Mor.
Not. R. Astron. Soc. 287, 161-164. (d0i:10.1093 /mnras/287.1.161)

Herrera L, Santos NO. 2004 Dynamics of dissipative gravitational collapse. Phys. Rev. D 70,
084004. (d0i:10.1103 /PhysRevD.70.084004)

Herrera L, Martinez J. 1998 Dissipative collapse through the critical point. Astrophys. Space Sci.
30, 235-253. (doi:10.1023/ A:1001548205684)

Herrera L, Martinez J. 1998 Gravitational collapse: a case for thermal relaxation. Gen. Relativ.
Gravitation 30, 445-471. (d0i:10.1023/ A:1018862910233)

Herrera L, Martinez J. 1998 Dissipative fluids out of hydrpstatic equilibrium. Class. Quantum
Grav. 15, 407-420. (d0i:10.1088/0264-9381/15/2/014)

Herrera L, Pavén D. 2002 Hyperbolic theories of dissipation: why do we need them? Phys. A
307, 121-130. (doi:10.1016 /50378-4371(01)00614-8)

Herrera L. 2019 Causal heat conduction contravening the fading memory paradigm. Entropy
21, 950. (doi:10.3390/€21100950)

Govender M, Govinder KS. 2004 Generalized isothermal universes. Int. ]. Theor. Phys. 42,
2253-2262. (d0i:10.1023 /B:IJTP.0000049024.69049.3b)

Govender M, Thirukkanesh S. 2009 Dissipative collapse in the presence of A. Int. ]. Theor. Phys.
48, 3558-3566. (d0i:10.1007/510773-009-0163-2)

Govender M, Govinder KS, Fleming D. 2012 The role of pressure during shearing, dissipative
collapse. Int. |. Theor. Phys. 51, 3399-3409. (d0i:10.1007 /s10773-012-1221-8)

Bargmann S, Greve R, Steinmann P. 2008 Simulation of cryovolcanism on Saturn’s moon
Enceladus with the Green-Naghdi theory of thermoelasticity. Bull. Glaciol. Res. 26, 23-32.
Khadrawi AF, Othman A, Al-Nimr MA. 2005 Transient free convection fluid flow in a vertical
micro channel as described by the hyperbolic heat conduction model. Int. J. Thermophys. 26,
905-908. (d0i:10.1007 /s10765-005-5586-2)

Barletta A. 2022 The Boussinesq approximation for buoyant flows. Mech. Res. Commun. 124,
103939. (d0i:10.1016 /j.mechrescom.2022.103939)

Breugem WP, Rees DAS. 2006 A derivation of the volume-averaged Boussinesq equations
for flow in porous media with viscous dissipation. Trans. Porous Media 63, 1-12.
(doi:10.1007 /s11242-005-1289-1)

Christov CI, Jordan PM. 2005 Heat conduction paradox involving second - sound propagation
in moving media. Phys. Rev. Lett. 94, 154301. (d0i:10.1103 /PhysRevLett.94.154301)

Jou D, Casas Vazquez J, Lebon G. 2010 Extended irreversible thermodynamics, 4th edn. New
York, NY: Springer.

Sellitto A, Zampoli V, Jordan PM. 2020 Second sound beyond Maxwell-Cattaneo:
nonlocal effects in hyperbolic heat transfer at the nanoscale. Int. |. Eng. Sci. 154, 103328.
(doi:10.1016/j.ijengsci.2020.103328)

Morro A. 2018 Modelling elastic heat conductors via objective rate equations. Cont. Mech.
Thermodyn. 30, 1231-1243. (doi:10.1007 /s00161-017-0617-3)

Morro A. 2022 Objective equations of heat conduction in deformable bodies. Mech. Res.
Commun. 125, 103979. (doi:10.1016/j.mechrescom.2022.103979)

Capriz G, Mariano PM. 2014 Objective fluxes in a multi-scale continuum description of sparse
medium dynamics. Phys. A 415, 354-365. (d0i:10.1016/j.physa.2014.08.012)

Truesdell C. 1955 The simplest rate theory of pure elasticity. Commun. Pure Appl. Math. 8,
123-132. (doi:10.1002/cpa.3160080109)

Straughan B. 2010 Thermal convection with the Cattaneo—Christov model. Int. ]. Heat Mass
Transfer 53, 95-98. (doi:10.1016/j.ijjheatmasstransfer.2009.10.001)

Barletta A. 2019 Routes to absolute instability in porous media. New York, NY: Springer.

549-562. (d0i:10.3390/physics3030034)

Boukrouche M, Boussetouan I, Paoli L. 2015 Existence for non-isothermal fluid flows
with Tresca’s friction and Cattaneo’s heat law. ]. Math. Anal. Appl. 427, 499-514.
(doi:10.1016/j.jmaa.2015.02.034)

Mariano PM. 2017 Finite-speed heat propagation as a consequence of microstructural changes.
Contin. Mech. Thermodyn. 29, 1241-1248. (d0i:10.1007 /s00161-017-0577-7)

Van P, Fulop T. 2012 Universality in heat conduction theory: weakly nonlocal
thermodynamics. Annalen der Physik 524, 470-478. (d0i:10.1002/andp.201200042)

Rogolino P, Cimmelli VA. 2021 Differential consequences of balance laws in extended
irreversible thermodynamics of rigid heat conductors. Proc. R. Soc. A 475, 20180482.
(doi:10.1098 /rspa.2018.0482)

LLL0ST07:08 ¥ 205 % 2014 edsi/feuinof BioBuiysiignd/aposiefos


http://dx.doi.org/10.1093/mnras/287.1.161
http://dx.doi.org/10.1103/PhysRevD.70.084004
http://dx.doi.org/10.1023/A:1001548205684
http://dx.doi.org/10.1023/A:1018862910233
http://dx.doi.org/10.1088/0264-9381/15/2/014
http://dx.doi.org/10.1016/S0378-4371(01)00614-8
http://dx.doi.org/10.3390/e21100950
http://dx.doi.org/10.1023/B:IJTP.0000049024.69049.3b
http://dx.doi.org/10.1007/s10773-009-0163-2
http://dx.doi.org/10.1007/s10773-012-1221-8
http://dx.doi.org/10.1007/s10765-005-5586-2
http://dx.doi.org/10.1016/j.mechrescom.2022.103939
http://dx.doi.org/10.1007/s11242-005-1289-1
http://dx.doi.org/10.1103/PhysRevLett.94.154301
http://dx.doi.org/10.1016/j.ijengsci.2020.103328
http://dx.doi.org/10.1007/s00161-017-0617-3
http://dx.doi.org/10.1016/j.mechrescom.2022.103979
http://dx.doi.org/10.1016/j.physa.2014.08.012
http://dx.doi.org/10.1002/cpa.3160080109
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.001
http://dx.doi.org/10.3390/physics3030034
http://dx.doi.org/10.1016/j.jmaa.2015.02.034
http://dx.doi.org/10.1007/s00161-017-0577-7
http://dx.doi.org/10.1002/andp.201200042
http://dx.doi.org/10.1098/rspa.2018.0482

Downloaded from https://royal societypublishing.org/ on 08 February 2024

60.

61.

62.

63.

64.

65.

66.

Carlomagno I, Di Domenico M, Sellitto A. 2021 High order fluxes in heat transfer with
phonons and electrons: application to wave propagation. Proc. R. Soc. A 477, 20210392.
(doi:10.1098 /rspa.2021.0392)

Capriz G, Wilmanski K, Mariano PM. 2021 Exact and appropriate Maxwell-Cattaneo type
descriptions of heat conduction: a comparative analysis. Inf. |. Heat Mass Transf. 175, 121362.
(doi:10.1016/j.ijjheatmasstransfer.2021.121362)

Van P, Berezovski A, Fiilop T, Gréf G, Kovacs R, Lovas A, Verhas J. 2017 Guyer-Krumhansl
heat conduction at room temperature. EPL 118, 50005. (d0i:10.1209/0295-5075/118 /50005)
Payne LE. 1964 Uniqueness criteria for steady state solutions of the Navier-Stokes equations.
In Atti del Simposio Internazionale sulle Applicazioni dell’Analisi alla Fisica Matematica, Cagliari—
Sassari, 28-1X to 4-X, 1964 pp. 130-153 Roma. Edizioni Cremonese.

Straughan B. 2004 The energy method, stability, and nonlinear convection, vol. 91. Appl. Math. Sci.,
2nd edn. New York, NY: Springer.

Damazio PD, Manholi P, Silvestre AL. 2016 L7 theory of the Kelvin—Voigt equations in
bounded domains. J. Differ. Equ. 260, 8242-8260. (doi:10.1016/j.jde.2016.02.020)

Straughan B. 2021 Thermosolutal convection with a Navier-Stokes—Voigt fluid. Appl. Math.
Optim. 83, 2587-2599. (d0i:10.1007 /s00245-020-09719-7)

LLL0ST07:08 ¥ 205 % 2014 edsi/feuinof BioBuiysiignd/aposiefos


http://dx.doi.org/10.1098/rspa.2021.0392
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121362
http://dx.doi.org/10.1209/0295-5075/118/50005
http://dx.doi.org/10.1016/j.jde.2016.02.020
http://dx.doi.org/10.1007/s00245-020-09719-7

	Introduction
	Cattaneo models and thermal convection
	Linear instability theory
	Nonlinear energy stability
	Balance of energy equation with a Mariano flux
	Unconditional nonlinear energy stability for material derivative theorywith a Mariano flux
	Nonlinear energy stability for Cattaneo--Christov--Mariano theorywith a Navier--Stokes fluid
	Nonlinear energy stability for Cattaneo--Christov--Mariano theory with a Navier--Stokes--Voigt fluid
	Conclusion
	References

