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Abstract
We develop a robust mean-to-CVaR portfolio optimization model under interval 
ambiguity in returns means and covariance. The robust model satisfies second-order 
stochastic dominance consistency and is formulated as a semi-definite cone pro-
gram. We use two controlled experiments to document the sensitivity of the opti-
mal allocations to the ambiguity when asset correlation varies, and to the ambiguity 
intervals. We find that means ambiguity has a higher impact than covariance ambi-
guity. We apply the model to US equities data to corroborate works showing that 
ambiguity in mean returns induces a home bias; it can explain the puzzle in a two-
country setting but not with three countries. We further establish that covariance 
ambiguity also induces bias, but with lower impact that can not explain the puzzle. 
Our results suggest what is needed for the ambiguity channel to provide a full expla-
nation of the puzzle. The findings are robust to alternative model specifications and 
outliers.
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1 Introduction

Data ambiguity has a well-documented impact on portfolio selection.1 The problem 
has been studied in the mean-variance literature with several solutions proposed, 
including a robust optimization counterpart of the classical mean-variance model 
(Goldfarb and Iyengar 2003). Robust portfolio selection models have also been 
developed with higher order moments.2 These works develop efficient frontiers that 
are robust to the data ambiguity. Tangency portfolios are used to identify a unique 
point on the frontier that maximizes a performance ratio such as Sharpe in mean-
variance analysis (Sharpe 1994). In this paper, we advance the robust portfolio opti-
mization literature (Mulvey et al. 1995) with a robust mean-to-CVaR (MtC) model 
for stable distributions (Farinelli et al. 2008; Rachev et al. 2008) with interval ambi-
guity in means and covariance  following Ben-Tal et al. (2009).

The robust MtC model satisfies second-order stochastic dominance (SSD) con-
sistency and,  we formulate  it  as a semi-definite positive cone program (SDCP). 
Using controlled experiments, we show that ambiguity has a nuanced effect on opti-
mal asset allocation. An ambiguous asset can be attractive depending on its expected 
return and diversification benefits against the less ambiguous assets and on the 
ambiguity interval.

SSD consistency allows us to use the model for a broad class of investors with 
concave and non-decreasing utility functions. We use it to study a potential explana-
tion of the home equity bias puzzle (French and Poterba 1991) through the ambigu-
ity channel, abstracting from investor risk preferences. The puzzle arises from the 
observed discrepancies between international investors’ domestic equity holdings 
from the market portfolio. Ambiguity aversion has been suggested as a potential 
explanation of the puzzle by Dow et al. (1992) and Epstein and Wang (1994), but 
none of the testable models developed subsequently generate the observed home-
biased asset allocations (Boyle et al. 2012; Uppal and Wang 2003; Epstein and Miao 
2003; Easley and O’Hara 2009; Hara and Honda 2022). These works show that 
ambiguity induces bias, which is an important step in the right direction, but when 
put to the data, they do not explain the puzzle completely.

We test our model on US data to corroborate these earlier works and go further to 
explain the puzzle on a two-country example but not on three countries. We uncover 
two new important empirical facts. First, we show that covariance ambiguity also 
induces bias; this is a new result in the literature, but can not explain the puzzle. Sec-
ond, we show that interval ambiguity, which ignores the correlation of the returns, 
also does not provide a complete explanation. This suggests that ambiguity in the 
means of correlated returns deserves investigation. In a follow-up paper, Lotfi and 
Zenios (2023) we develop a robust optimization model using ellipsoidal mean ambi-
guity sets for correlated returns and obtain allocations matching the observed home 
bias for a sample of 40 developed and emerging markets. Hence, the current paper 

1 See, e.g., Best and Grauer (1991), Broadie (1993), Chan et  al. (1999), Chopra and Ziemba (1993), 
Hong and Liu (2009), Jagannathan and Ma (2003), Kaut et al. (2007), and Stoyanov et al. (2013).
2 Ceria and Stubbs (2006), El Ghaoui et al. (2003), Gao et al. (2017), Lotfi and Zenios (2018), Paç and 
Pınar (2014), Tütüncü and Koenig (2004), Ye et al. (2012), and Zhu and Fukushima (2009).
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sets the direction for a complete explanation but also, importantly, provides a sig-
nificant supplementary test. Specifically, our ellipsoidal ambiguity assumes known 
correlations, and here we show this assumption not to be limiting.3

We proceed in three steps. First, we derive the robust counterpart to MtC optimi-
zation, establish that it is SSD consistent, and develop its SDCP formulation.

Second, we study the impact of ambiguity on the optimal allocations through two 
controlled experiments to test for the impact of varying correlation and ambiguity 
intervals on the optimal allocations. We find that the ambiguity effect dominates the 
diversification benefits when means are ambiguous, while ambiguity in covariance 
is less important, and diversification benefits dominate the ambiguity effect as corre-
lation decreases. The ambiguity interval location (interval of higher returns or inter-
val of lower risks) and size (smaller interval) can affect the optimal allocations and 
an ambiguous asset may become attractive. That is, the effects of ambiguity depend 
on the return, risk, and ambiguity of an asset.

Third, we test the model for US equity investors where home bias is well docu-
mented. We consider portfolios comprised of the US and the rest of the world. With 
mean ambiguity, the model explains the puzzle by generating a home-biased alloca-
tion that matches the observed allocation for ambiguity intervals derived from mar-
ket data. Ambiguity in covariance also induces home bias but alone does not match 
the actual allocations and can not explain the puzzle. When using a broader set of 
assets in emerging markets, the model allocations remain home-biased but do not 
match the observed one. Using interval ambiguity without modeling the returns cor-
relation in the ambiguity sets appears limiting when the correlations and ambiguities 
of multiple foreign markets enter the portfolio selection problem.

Finally, we show that our findings hold with alternative models. Specifically, we 
test with a deviation risk measure or for different CVaR quantiles to rule out outlier 
effects.

The paper is organized as follows: The robust MtC portfolio optimization model 
is given in Sect.  2. Section  3 discusses the controlled experiments, and Sect.  4 
describes our data and the application to the US equity home bias puzzle, including 
tests with alternative models. Section 5 concludes.

2  Robust MtC portfolio selection model

2.1  Preliminaries

Portfolio return r̃p = r̃⊤x is a function of random vector r̃ ∈ ℝ
n of asset returns 

with mean r̄ and covariance Σ , and the vector of portfolio weights x ∈ � with

3 Other attempts to explain the puzzle make assumptions on ambiguity-aversion or risk-aversion or util-
ity functional forms (Bossaerts et al. 2010; Cao et al. 2005; Cooper et al. 2012; Easley and O’Hara 2009; 
Epstein and Miao 2003; Gilboa and Schmeidler 1989; Klibanoff et  al. 2005; Peijnenburg 2018; Uppal 
and Wang 2003). Our model assumes worst-case ambiguity aversion and  only requires that the utility 
function is concave and non-decreasing.
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� is the set of feasible portfolios with no short sales. We assume a risk-free asset 
with return rf .

We account for higher-order moments using CVaR as the risk criterion:

Definition 2.1 (Conditional Value-at-Risk, CVaR ) The conditional Value-at-Risk at 
confidence level � ∈ (0, 1), for a random variable r̃p is

where � is the expectation operator and � ∈ ℝ is the value-at-risk i.e., the (1 − �)

-quantile of r̃p given by the highest � such that r̃p will not exceed � with probability 
1 − �,

CVaR coincides with the coherent tail VaR of Artzner et al. (1999) for the case 
of continuous distributions. The definition for general distributions, including the 
discrete distributions we consider in this paper, is due to Rockafellar and Uryasev 
(2002).

For a given � , CVaR is a function of x. CVaR is defined as the negative of the 
expected value of excess returns below a threshold; this measures losses. Min-
imizing CVaR for different target expected returns r̄⊤x ≥ 𝜇 , we obtain efficient 
frontiers in mean-CVaR space, and this can be achieved using linear program-
ming for the case of discrete distributions (Rockafellar and Uryasev 2002). We 
use the following result in the model formulation.

Theorem 2.1 (Fundamental minimization formula, Rockafellar and Uryasev 2002) 
As a function of � ∈ ℝ , the auxiliary function

is finite and convex, with

Dropping the parameter � for simplicity, we define the mean-to-CVaR ratio4:

(1)𝕏 =

{
x ∈ ℝ

n ∣ x ≥ 0,

n∑
i=1

xi = 1

}
.

(2)CVaR𝛼

(
r̃p
)
= −�

[
r̃p ∣ r̃p ≤ 𝜁

]
,

(3)VaR𝛼

(
r̃p
)
≐ 𝜁 = max

{
𝛾 ∈ ℝ ∣ Prob

(
r̃p ≤ 𝛾

)
≤ 1 − 𝛼

}
.

F𝛼

(
r̃p, 𝛾

)
= 𝛾 +

1

1 − 𝛼
�
[
max

{
−r̃p − 𝛾 , 0

}]

CVaR𝛼

(
r̃p
)
= min

𝛾∈ℝ
F𝛼

(
r̃p, 𝛾

)
.

(4)MtC =
�
(
r̃p − rf

)

CVaR
(
r̃p − rf

) .

4 We set � = 0.95 in our tests and carry out a sensitivity analysis in Sect. 4.3.2.
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This is a reward ratio, like Sharpe, in the sense that it measures the expected excess 
return per unit of risk (Farinelli et al. 2008; Rachev et al. 2008). The tangency port-
folio that maximizes the reward ratio is obtained by solving

See Pagliardi et al. (2021, Appendix A.1) for the linear programming formulation.
Sharpe ratio is the slope of the tangency portfolio using variance as the risk 

measure, whereas MtC
∗ uses CVaR . CVaR under normality is given by 

CVaR𝛼(r̃p) = −r̄p + 𝜅1−𝛼𝜎r̃p where r̄p and 𝜎r̃p are the mean and standard deviation of 

r̃p , and �1−� =
1

1−�
�(Ψ−1(1 − �)) with � and Ψ the normal density and cumulative 

distribution functions, respectively. Therefore, when the normality assumption 
holds, the Sharpe ratio portfolio is a solution of (5). Beyond the nice properties of 
MtC optimization (SSD consistency and a tractable linear programming model), 
Pagliardi et al. (2021) also demonstrate that the mean-CVaR model optimal weights 
can be more robust than a mean-variance model, that MtC portfolios are more posi-
tively skewed than Sharpe portfolios and  that the model can hedge the systematic 
component of the highly-skewed global political risk factor (P-factor) of Gala et al. 
(2023).

2.2  Robust model formulation

Model (5) depends on the joint distributions of the assets. If this information is 
known, we have no ambiguity in the model data. In practice, however, we usually 
assume a discrete empirical distribution for returns with values obtained from a 
finite set of historical observations with equiprobable probabilities, but these are just 
but one observation of some underlying distribution and hence ambiguous. Like-
wise, if the returns are estimated from a linear factor model, the estimated regression 
coefficients are only known within some confidence interval (Goldfarb and Iyengar 
2003).

To incorporate ambiguity in the model, we apply robust optimization (Mulvey 
et al. 1995) using the max-min formulation with ambiguity sets of Ben-Tal et al. 
(2009). For example, when the return distribution is ambiguous, the probabili-
ties and moments are only known to the extent that they belong to an ambiguity 
set. We obtain the robust counterpart to the MtC model allowing for ambiguous 
means and covariance. We show that the model can be cast as an SDCP, which 
can be solved using the interior-point method (Grant and Boyd 2014).

We assume that the joint probability distribution of returns ( � ) is ambiguous 
and belongs to the class of all distributions with mean r̄ and covariance Σ in some 
interval ambiguity sets.

Definition 2.2 (Ambiguity in distribution) The random variable r̃ assumes a distribu-
tion from

(5)MtC
∗ = max

x∈�

�
(
r̃p − rf

)

CVaR
(
r̃p − rf

) .
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where r̄ and Σ are given and Σ ≻ 0 indicates Σ is a positive definite matrix.

Definition 2.2, assumes ambiguous return distributions, specified only to the 
extent that their first and second central moments are known to be equal to r̄ and 
Σ , respectively. We next define the ambiguity of the means and covariance.

Definition 2.3 (Interval ambiguity in means and covariance) Means and covariance 
of returns belong to the interval set:

where r̄− , r̄+ , Σ−,Σ+ are given vectors and matrices, and the inequalities are compo-
nent-wise, and �n denotes the cone of positive semi-definite matrices.

The robust counterpart of MtC for ambiguity sets � and UI is as follows:

The following theorem provides the SDCP formulation.

Theorem 2.2 Assuming positive worst-case CVaR on excess returns of the optimal 
portfolio of the model (6), the robust MtC portfolio optimization model can be cast 
as:

where tr denotes the trace operator. Given the optimal solutions of (7) v�∗
+

 and v�∗
−

 , we 

obtain the optimal solution of (6) as x∗ = 1

e⊤v�∗
v� ∗ where v� ∗ = v

�∗
−
− v

�∗
+

.

� =
{
𝜋 ∣ �𝜋[r̃] = r̄, Cov𝜋[r̃] = Σ ≻ 0

}
,

UI = {(r̄,Σ) ∈ ℝ
n × 𝕊

n ∣ r̄− ≤ r̄ ≤ r̄+, Σ− ≤ Σ ≤ Σ+},

(6)max
x∈�

min
(r̄,Σ)∈UI ,𝜋∈�

�
(
r̃p − rf

)

CVaR
(
r̃p − rf

) .

(7)

max
v�+,v

�
−
∈ℝn, 𝜐∈ℝ,Λ,Λ+,Λ−∈ℝ

n×n

�
r̄− − rf e

�⊤
v�
−
−
�
r̄+ − rf e

�⊤
v�
+

s.t.
�
r̄+ − rf e

�⊤
v�
+
−
�
r̄− − rf e

�⊤
v�
−
+

𝛼

1 − 𝛼
𝜐 + tr

�
Λ+Σ+

�
− tr

�
Λ−Σ−

�
≤ 1

⎡⎢⎢⎣
Λ

v�
−
−v�

+

2

(v�−−v
�
+)

2

⊤

𝜐

⎤⎥⎥⎦
⪰ 0

Λ ⪯ Λ+ − Λ−

v�
−
− v�

+
≥ 0

e⊤(v�
−
− v�

+
) > 0

v�
+
, v�

−
≥ 0, Λ+, Λ− ≥ 0,
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For the proof see Appendix 1.5 ,6
Robustification preserves SSD consistency (Lotfi and Zenios 2023), and SSD 

consistency of MtC follows from (Pagliardi et al. 2021). We can use the model to 
draw inferences without any assumptions on the utility function beyond being con-
cave and non-decreasing, and we apply it to the equity home bias puzzle.

3  Controlled experiments

We study the optimal portfolio allocations for different interval ambiguity sets using 
two controlled experiments on a portfolio of two hypothetical risky assets, A and 
B. We consider an ambiguity set specified by a maximum interval and control the 
magnitude of the ambiguity using a shrinkage factor in [0, 1], where 0 shrinks the 
ambiguity to a single point — i.e., the certain mean — and 1 is the maximum.

The use of a shrinkage factor is convenient for our empirical work with the US 
data when we obtain an estimate of the ambiguity interval from market data. Shrink-
ing the interval, we test if we can explain the puzzle with the ambiguity of the data 
(shrinkage 1) or if we must assume lower ambiguity ( < 1 ). We first use the shrink-
age factor to control the ambiguity of the hypothetical assets. When the shrinkage 
of A is 0 and of B is 1, only the latter asset is ambiguous; with both factors zero, we 
use the original MtC model.

For the controlled tests, we solve the robust MtC with varying relative ambiguity 
for combinations of shrinkage factors and display the optimal allocations to asset A. 
The x- and y-axes denote the shrinkage factors of A and B. The z-axis is the alloca-
tion to A.7 We study the impact of ambiguity in means or standard deviations on 
asset allocations. When we consider ambiguity in the means, we solve model  (7) 
where Σ− = Σ+ and equal to the unambiguous covariance. For ambiguity in standard 
deviations, we solve the model with r̄− = r̄+ and equal to the unambiguous mean 
returns.

3.1  Varying correlation

We investigate the impact of asset correlation on optimal allocations for assets with 
identical ambiguity intervals. We consider two assets with mean excess returns of 
7% in the interval [ − 13%, 27%], with a standard deviation of 20% in the interval 
[15%, 25%]. We control for correlation with increasing diversification benefits of 
5 Note that the model is formulated with a strict positivity constraint on e⊤(v�

−
− v

�
+
) , following from 

reasonable assumption of positive CVaR in the MtC optimization model (5), given it signifies losses and 
for sufficiently large � . This can be implemented using standard optimization algorithms by setting the 
constraint to be greater or equal to a small constant � , which we set at 10−6 . In practice, the assumption is 
satisfied trivially since all CVaR in Table 1 are positive, as they are for the sample of 40 developed and 
emerging markets in (Data Appendix Lotfi and Zenios 2023).
6 Analytical solutions for two assets can be obtained following Lotfi and Zenios (2023); see, e.g., the 
solutions of other CVaR-based robust models by Gotoh and Takano (2007) and Pang and Karan (2018).
7 When both shrinkage factors are zero, we solve the non-robust MtC model (5) of Pagliardi et al. (2021) 
with a matrix of return scenarios with the given unambiguous means and covariance. For this corner 
point, we generate 120 scenarios assuming a multivariate normal distribution.
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(i) 0.60, (ii) 0, and (iii) − 0.60. Note that ambiguity in standard deviations implies 
covariance ambiguity even if the correlation is fixed. All data are annualized.8 We 
solve robust MtC for varying shrinkage factors and display the allocation to asset A 
in Fig. 1. Panel A (column figures) shows results when the mean returns are ambigu-
ous, with the standard deviations fixed at 20%. Panel B shows results with ambigu-
ous standard deviations, with mean returns at 7%.

From these figures, we observe the following.
In all cases, there is a monotonic relation between the level of ambiguity of asset 

A relative to B and the optimal allocation to A. The higher the ambiguity of asset B 
compared to A (shrinkage of B greater than A), the higher the allocation to A. Cet-
eris paribus, optimal allocations are tilted towards less ambiguous assets. Moreover, 
when the shrinkage factors of the two assets are equal, the allocation is evenly split. 
By construction of the two assets (identical mean returns and standard deviations), 
the model is indifferent between the two if they have identical ambiguity intervals.

When mean returns are ambiguous (Panel A, column figures), the lower corre-
lation does not impact the optimal allocation, and the shape of the curve remains 
virtually unchanged. Even though a lower correlation should increase diversification 
benefits by shifting toward more diversified portfolios, the impact of mean ambigu-
ity dominates the diversification benefit, and the allocation to the less-ambiguous 
asset persists. However, this situation changes when standard deviations are ambigu-
ous (Panel B). As correlation decreases, the diversification effect dominates the 
ambiguity effect. Notice that for the large negative correlation of − 0.60, ambiguity 
has a minor effect, and the optimal allocation is about evenly split between the two 
assets to achieve the highest diversification benefit.

Hence, mean returns ambiguity is a significant determinant for tilting allocations 
toward less ambiguous assets. Importantly, the effect of ambiguity persists even for 
large negative asset correlations so that ambiguity dominates the diversification ben-
efits. Standard deviation ambiguity has a smaller tilt effect towards less ambiguous 
assets. If the assets are highly correlated, the ambiguity has a noticeable and mono-
tonic effect, just like ambiguity in the means. If the assets are negatively correlated, 
the tilt toward the less-ambiguous asset is muted, and the diversification benefit 
dominates.

3.2  Varying ambiguity interval

We now change the maximum ambiguity interval of asset B relative to A. In par-
ticular, we shift the returns of asset B such that (i) for mean return ambiguity, the 
interval contains higher values, or (ii) for standard deviation ambiguity, the interval 
contains lower values. The size of the ambiguity interval is the same for both assets.

We assume a correlation of 0.60, solve the robust MtC model for ambiguities 
with varying shrinkage factors, and display the allocation to asset A in Fig. 2. Panel 
A (column figures) shows results when the mean returns are ambiguous, with stand-
ard deviations fixed at 20%. The mean return of asset A is equal to 7% in the interval 

8 Whenever any of the covariance matrices are near-singular, we add a very small positive number to 
diagonal elements to avoid an ill-posed system of equations in the procedure of an interior-point method.
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noitaiveddradnatS)b(naeM)a(

(i) Correlation = 0.60

(ii) Correlation = 0

(iii) Correlation = -0.60

Fig. 1  Optimal allocations under ambiguity with varying correlation. This figure illustrates the optimal 
allocation to asset A when the correlation between assets A and B varies from (i) 0.60, to (ii) 0, and (iii) 
− 0.60, and the ambiguity interval shrinkage factors of the two assets vary between 0 and 1. Panels A and 
B show optimal allocations when means and standard deviations are ambiguous, respectively. Both assets 
in the portfolio have identical mean return and standard deviation ambiguity sets. The mean return is 
equal to 7% in the interval [ − 13%, 27%], and the standard deviation is equal to 20% in the interval [15%, 
25%]. All statistics are annualized
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[− 13%, 27%], while for the mean return of B we consider three cases: (i) 11%, in 
the interval [− 9%, 31%], (ii) 15%, in the interval [− 5%, 35%], and (iii) 19%, in the 
interval [− 1%, 39%]. Panel B shows results with ambiguous standard deviations, 
with mean returns fixed at 7%. The standard deviation of asset A is equal to 20% 
in the interval [15%, 25%], while for the standard deviation of asset B we test three 
cases: (i) 15%, in the interval [10%, 20%], (ii) 10%, in the interval [5%, 15%], and 
(iii) 5%, in the interval [0%, 10%].

From the figures, we observe the following.
When both assets are unambiguous, the optimal allocation is fully in asset B since 

this asset has either a higher mean return (Panel A) or lower risk (Panel B). How-
ever, when means are ambiguous (Panel A), as we shift the location of the ambigu-
ity interval of asset B this asset weighs in more in the optimal portfolio even when it 
is more ambiguous than A (i.e., shrinkage of B greater than A). This is because the 
maximum ambiguity interval of B includes higher mean returns than A. So, with 
mean return ambiguity, the optimal investment tilts toward the asset with a favora-
ble ambiguity interval. The same observation holds for standard deviation ambiguity 
(Panel B). As the maximum ambiguity interval of the standard deviation of B shifts 
from [10%, 20%] to [0%, 10%], the optimal allocations tilt toward B even when it is 
more ambiguous than A.9

To summarize, the relative ambiguity of the two assets, i.e., their minimum and 
maximum values and the size of the ambiguity intervals, are significant determi-
nants of the optimal allocations and can tilt the allocations toward more ambiguous 
assets. The effect of ambiguity is nuanced and the portfolios are not always tilted 
towards the less ambiguous assets.

4  An application to the equity home bias puzzle

From the second controlled experiment, it follows that it is not a foregone conclu-
sion that ambiguity per se creates a home bias. To establish ambiguity as an expla-
nation of the puzzle, one needs to conduct a full empirical study putting a model 
with ambiguity to the data of a broad set of countries, using different methods to 
estimate the ambiguity. We test whether the interval ambiguity model could be suc-
cessful in such an empirical investigation; the answer is no, not completely. We also 
test whether covariance ambiguity could be a potential explanation of the puzzle and 
the answer is, again, not completely.

4.1  Data

We consider the US market, which is well documented to exhibit equity home bias. 
We use the US equity market index as the home. As foreign, we take the rest of the 

9 An alternative test would be to reduce the size of the ambiguity set by shrinking the maximum interval 
of mean return or standard deviation of B relative to A while keeping the centers the same. We per-
formed this test, reaching the same conclusion.
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tandard deviationS)b(Mean)a(

(i) 11%, varying in [-9%, 31%] (i) 15%, varying in [10%, 20%]

(ii) 15%, varying in [-5%, 35%] (ii) 10%, varying in [5%, 15%]

(iii) 19%, varying in [-1%, 39%] (iii) 5%, varying in [0%, 10%]

Fig. 2  Optimal allocations with varying ambiguity intervals. This figure illustrates the optimal allocation 
to asset A when the maximum ambiguity interval of asset B changes and shrinkage factors of assets A 
and B vary between 0 and 1. Panels A and B show optimal allocation when means and standard devia-
tions are ambiguous, respectively. In panel A, the standard deviation of both assets equals 20%, the mean 
return of asset A equals 7%, varying in the interval [ − 13%, 27%], and the mean return of asset B is equal 
to (i) 11%, varying in the interval [ − 9%, 31%], (ii) 15%, varying in the interval [ − 5%, 35%], and (iii) 
19%, varying in the interval [ − 1%, 39%]. In panel B, the mean return of both assets is equal to 7%, the 
standard deviation of asset A equal to 20%, varying in the interval [15%, 25%], and the standard devia-
tion of asset B is equal to (i) 15%, varying in the interval [10%, 20%], (ii) 10%, varying in the interval 
[5%, 15%], and (iii) 5%, varying in the interval [0%, 10%]. The correlation between the two assets is 
fixed at 0.60. All statistics are annualized
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world (RoW) of an equally-weighted portfolio of 40 countries excluding the US.10 
The monthly data span from January 1999 to December 2019. We also construct 
two indices for a second example, using equally-weighted returns of an MSCI subset 
of emerging markets. We construct equally-weighted portfolios EME1 of Asian mar-
kets, and EME2 of European and Latin American markets.11

We use the MSCI Investable indices to avoid positive biases when ignoring 
investability frictions, such as illiquidity risk and index replicability. We calculate 
the excess return using the 1-month USA Treasury Bill rate. Risk-free rates are from 
Refinitive Eikon and equity market indices are from Datastream.

We report in Table 1 statistics of the excess return of the four indices during the 
sample period. The return distributions are negatively skewed with considerable tail 
risk. The US index has a lower mean return and standard deviation than RoW, and 
the two emerging market indices, with positive and quite high correlations.

The IMF Coordinated Portfolio Investment Surveys (CPIS), available annually 
from 2001 to 2019, provides equity holdings (in USD) across countries. We use EQi 
to represent the holdings of domestic investors in country i equity market and TEQi 
as the value of the total equity holding for country i. The actual home allocation of 
holdings of domestic equities in the total equity holdings is a i = EQi/TEQi . The US 
actual allocation averaged over the sample period is 0.84, and we use this value as the 
benchmark for the model to match under the ambiguity estimated from market data.

Assuming that the International Capital Asset Pricing Model (ICAPM) holds, the 
optimal allocations are each country’s market capitalization (MC). That is, the opti-
mal weights under ICAPM are given by w i = MCi∕

∑n

j=1
MC j where n is the number 

of countries in the world portfolio. The average weight of the US home over the 
sample period is estimated as 0.38. From the actual US home allocations and mar-
ket-cap weights, we obtain the equity home bias as EHBi =

ai−wi

1−wi

. When EHB for 
country i is one, there is a complete equity home bias, and for zero, the portfolio is 
optimally diversified according to ICAPM. The EHB index for the US is 0.74. This 
large discrepancy has been characterized as a puzzle; the data above shows that the 
puzzle has persisted since first observed by French and Poterba (1991). We ask if the 
model can explain this discrepancy.

We obtain the maximum ambiguity intervals of means and covariance from market 
data as follows: First, we use block bootstrapping (Paparoditis and Politis 2003) of the 
time series of the US and RoW returns to generate 5000 samples.12 Then, we calculate 
the mean returns and covariance matrix for each sampled time series of returns and 
obtain the maximum ambiguity interval between the minimum and maximum values. 
In Table 2, we report the minimum, maximum, and size of the ambiguity intervals of 
the means (Panel A) and covariance (Panel B) for the US and RoW.

10 Our sample consists of Australia, Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Czech 
Republic, Denmark, Egypt, Finland, France, Germany, Greece, Hong Kong, Hungary, India, Israel, Italy, 
Japan, Korea, Malaysia, Mexico, Netherlands, New Zealand, Norway, Peru, Philippines, Poland, Portu-
gal, Russia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, UK, and the US.
11 We use, respectively, China, India, Israel, Korea, Malaysia, Philippines, Poland, Russia, Thailand, 
Turkey, and Brazil, Chile, Colombia, Czech Republic, Hungary, Mexico, Peru, Poland.
12 Tests in Pagliardi et al. (2021) suggest an efficient block size of about six.
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The home ambiguity intervals of the US means (Panel A) and variances (Panel B, 
diagonal elements) are generally smaller than RoW. Moreover, the data provided for 
covariance ambiguity intervals (Panel B) implies an interval of [0.71, 0.90]  for the 
correlation. The mean ambiguity intervals for EME1 and EME2 are [ − 0.05, 0.35] and 
[ − 0.07, 0.32], respectively, and are larger (0.40 and 0.39) than the US interval (0.27).

4.2  The US equity home bias puzzle

We test whether ambiguity in means or covariance can explain the home bias for the 
US with respect to the RoW. Following Sect. 3, we consider interval ambiguity sets 
controlled by a shrinkage factor.13 We use the ambiguity interval data from Table 2 

Table 1  Descriptive statistics

This table reports descriptive statistics of the excess return for the home (US), rest of world (RoW) 
market, and two emerging market indices (EME

1
 and EME

2
 ). The RoW is constructed as an equally-

weighted portfolio of 40 countries excluding the US. The EME
1
 is constructed as an equally-weighted 

portfolio of Asian emerging market indices, and EME
2
 is constructed as an equally-weighted portfolio of 

European and Latin American emerging market indices in our sample. The statistics are mean, standard 
deviation (std), skewness (skew), and excess kurtosis (kurt). We also report Sharpe ratio (SR), condi-
tional value-at-risk (CVaR), mean-to-CVaR (MtC) for each index. The correlation (corr) between returns 
of home and RoW, EME

1
 , and EME

2
 is displayed in the last column. The CVaR and MtC are computed 

at the 5% confidence level. The monthly returns span from January 1, 1999, to December 31, 2019. The 
mean, std, and Sharpe ratios are annualized

Country Mean Std Skew Kurt SR CVaR MtC Corr

Home 0.06 0.15 − 0.64 1.02 0.40 0.10 0.050 –
RoW 0.09 0.19 − 0.64 2.69 0.47 0.12 0.063 0.82
EME

1
0.12 0.21 − 0.23 2.01 0.57 0.13 0.077 0.75

EME
2

0.12 0.22 − 0.53 2.42 0.55 0.13 0.077 0.70

Table 2  Means and covariance ambiguity intervals

This table reports the ambiguity intervals of returns mean (Panel A) and covariance (Panel B) for home 
(US) and rest of the world (RoW) indices where RoW is constructed as an equally-weighted portfolio of 
40 countries excluding the US. The maximum ambiguity intervals are estimated using block bootstrap-
ping with a block size of 6 and a simulation size of 5000. They are specified by the minimum (min), 
maximum (max), and width of the interval (size). The data used for simulation are the monthly returns 
and span from January 1, 1999, to December 31, 2019. The reported statistics are annualized

(A) Mean (B) Covariance

Min Max Size

RoW Home RoW Home RoW Home RoW Home

Min − 0.09 − 0.08 RoW 0.02 0.01 0.07 0.05 0.05 0.04
Max 0.27 0.19 Home 0.01 0.01 0.05 0.04 0.04 0.03
Size 0.36 0.27

13 With zero shrinkage for both home and RoW, we run the MtC model using actual home and RoW 
returns time series (252 observations).
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and solve the robust model for varying values of the shrinkage factors of the US 
and RoW countries. We test whether the optimal asset allocations for ambiguity in 
means or covariance match the observed US home bias.

4.2.1  Ambiguity in means

We test for ambiguity in the means and solve model (7), with Σ− = Σ+ and equal to 
the unambiguous covariance calculated using the data from Table 1.

We show the results in Fig. 3 displaying as the red-shaded area the combinations 
of shrinkage factors for which the optimal home allocation matches or exceeds the 
actual home allocations for EHB = 0.74. Asset allocations biased towards the home 
for US shrinkage factors greater or equal to foreign factors signal that the observed 
ambiguity determines the bias. (If we need to assume a lower shrinkage factor for 
the home than foreign to explain the puzzle, then our model results are not driven by 
the data but by the assumption.) Further, if the allocation matches the actual alloca-
tion (as is the case at some points of the figure), then the relative ambiguity can fully 
explain the home bias puzzle. Finally, an optimal allocation equal to the actual at the 
corner point of no shrinkage implies that the ambiguity derived from market data 
can explain the puzzle.

From the figure, we observe that the optimal allocations are tilted toward the US 
when the shrinkage factor of the home is less than the RoW (above the 45-degree 
line), i.e., where the home is relatively less ambiguous compared to RoW. These 
results support that market ambiguity drives home bias. Importantly, the model 
generates allocations to the home consistent with the observed allocation at the 
corner point. The model with the market-implied ambiguity estimates in Table  2 
may explain the puzzle for US investors in the aggregate case of two assets.

Fig. 3  Ambiguity in mean returns and equity home bias puzzle. This figure illustrates with the red-
shaded area the optimal allocation to home (US) equity that is greater than or equal to the observed US 
allocation when mean returns are ambiguous, and shrinkage factors of both home and RoW indices vary 
between 0 and 1. The model optimizes the robust MtC model over the home and the rest of world (RoW) 
indices, where the RoW index is constructed as an equally-weighted portfolio of 40 countries excluding 
home. The maximum ambiguity intervals for means are estimated using block bootstrap methodology 
and are as described in Table 2. The un-ambiguous covariance is from Table 1
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We may have an optimal home-biased allocation even if the home ambiguity is 
slightly higher than the RoW (see the small shaded area below the 45-degree line). 
This is because the US has a better ambiguity interval relative to RoW regarding 
size and location. In particular, the ambiguity interval of the US is [ − 0.08, 0.19] 
(size of 0.27), while the ambiguity interval of RoW is [ − 0.09, 0.27] (size of 0.36). 
This is consistent with the findings of the second controlled experiment, where we 
show that mean return ambiguity may shift optimal allocations toward more (or less) 
ambiguous assets due to the size or location of the ambiguity intervals. This obser-
vation highlights the nuanced ambiguity effects in explaining the puzzle.

4.2.2  Ambiguity in covariance

We repeat the above test with ambiguous standard deviations and unambiguous 
means at the values from Table 1. The ambiguity interval is obtained from Table 2 
(Panel B). The US standard deviation lies in [0.10, 0.20] (size 0.10), and the stand-
ard deviation of RoW lies in [0.14, 0.26] (size 0.12). Hence, the home is slightly 
less ambiguous than RoW. Also, comparing the ambiguity interval of standard 
deviations with that of the mean (Panel A), we observe the mean ambiguity inter-
val is about three times larger than the standard deviation interval, and the covari-
ance ambiguity is relatively low. The correlations are assumed to be unambiguous at 
the fixed values given in the table; recall that standard deviation ambiguity implies 
covariance ambiguity even if the correlation is fixed.

Solving the robust MtC model for ambiguity in the standard deviations for dif-
ferent shrinkage factors, we obtain the optimal allocation shown in Fig.  4. The 
red-shaded area is in line with the results of the controlled experiments (Figs. 1 

Fig. 4  Covariance ambiguity and the equity home bias puzzle. This figure illustrates with the red-shaded 
area the optimal allocation to home equity index when standard deviations are ambiguous for shrink-
age factors of home and RoW between 0 and 1. The model optimizes the robust MtC model over the 
home and the rest of world (RoW) indices, where the RoW index is constructed as an equally-weighted 
portfolio of 40 countries excluding home. The maximum ambiguity intervals for standard deviations are 
estimated using block bootstrapping as described in Table 2. The un-ambiguous mean returns are from 
Table 1
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and 2, Panels B) where we observed that allocations increase for less ambiguous 
assets. However, the optimal home allocations reach or exceed the actual US allo-
cations for home shrinkage factors below 0.50. These results show that the rela-
tive ambiguity of the standard deviation between the US and the RoW induces 
home biases. Albeit, the observed relative ambiguity cannot explain the puzzle 
without significantly shrinking the home ambiguity. The standard deviations 
ambiguity has a second-order effect on the bias and although it induces bias it can 
not explain the puzzle. This is a new result in the literature.

4.2.3  US investors and emerging markets

The results of Sect.  4.2.1 advance the results from the two-country model of 
Epstein and Miao (2003). When they applied their model to the US data under the 
assumption of a greater ambiguity in the foreign market, they found that ambigu-
ity moves allocations in the right direction towards  home bias. However, their 
model did not match the observed allocations, and the authors point out the need 
for a multi-country extension.

Our model naturally extends to multiple assets, so we now test the ambiguity 
effects from potential investment in the two emerging market indices. The results 
in Fig. 5 display the home allocation for combinations of shrinkage factors of the 
emerging markets. With higher expected returns and lower correlations than with 
RoW, the optimal allocations to home are zero when the home is fully ambigu-
ous for all combinations of foreign markets shrinkage factor (Panel A of Fig. 5). 
When we assume a shrinkage factor of 0.70 for the US the model can generate 
allocations that match the observed ones (Panel B of Fig. 5). Whereas the interval 
ambiguity model explains the US home bias in the case of two assets, it does not 

Home shrinkage 1)a( Home shrinkage 0.7)b(

Fig. 5  Does mean return interval ambiguity fully explain equity home bias? This figure illustrates the 
optimal allocation to home (US) equity index when mean returns of home, EME

1
 , and EME

2
 are ambig-

uous with shrinkage factors in [0, 1]. In Panel A, the shrinkage factor of the home is equal to 1, and in 
Panel B it is equal to 0.7. The model optimizes the robust MtC model over the home, EME

1
 , and EME

2
 

indices. EME
1
 and EME

2
 are constructed as equally-weighted portfolios of Asian or European and Latin 

American emerging market indices, respectively
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do so with more assets that can provide diversification benefits to the US inves-
tor. The model is not a good candidate to put to the full data for a comprehensive 
empirical study to explain the equity home bias puzzle. We consider this negative 
result an important advance. It suggests that we must consider some aspects of 
the problem missing from the interval ambiguity model, namely the ambiguity of 
correlated returns.

4.3  Alternative model specifications

We conclude by showing that our empirical findings are not driven by the risk meas-
ure we have chosen or by outliers picked by the extreme (0.95) tail risk.

4.3.1  Deviation risk measures

We consider an alternative model based on a deviation risk measure. Portfolios 
obtained using variance risk satisfy two fund separation theorem (Tobin 1958), and 
fund separation was also established for generalized deviations, including CVaR 
deviation (Rockafellar et al. 2006). However, our interest in the puzzle is in choosing 
between two risky and ambiguous assets and not the risk-free rate. Hence, we opted 
for the SSD consistent MtC model for our main test and show that our findings hold 
with a deviation measure.

We use the classical mean-variance model and, from its robust counterpart (Gold-
farb and Iyengar 2003) obtain the robust maximum Sharpe ratio and mean-variance 
efficient portfolios. The models do not follow directly from Goldfarb and Iyengar 
(2003), who consider ambiguity in the parameters of a linear factor model of market 
returns corresponding to the confidence regions of the statistical estimation proce-
dures. Instead, we work with direct interval estimates of the covariance following 
Lotfi and Zenios (2018).

Robust Sharpe ratio maximization under the ambiguity of Definition 2.3 is as 
follows:

We give the SDCP formulation of robust Sharpe, akin to Theorem  2.2 for robust 
MtC.

Theorem  4.1 The robust Sharpe portfolio optimization model (8) can be cast as 
follows:

(8)max
x∈�

min
(r̄,Σ)∈UI

�
(
r̃p − rf

)

𝜎
(
r̃p − rf

) .
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where tr denotes the trace operator. Given the optimal solutions of (9) v�∗
+

 and v�∗
−

 , we 
obtain the optimal solution of (8) as x∗ = 1

e⊤v
�∗
v
�∗ where v�∗ = v

�∗
−
− v

�∗
+

.

For the proof see Appendix 1.
We test the deviation-based model on the problem of Sect.  4.2.2 when home 

and RoW are fully ambiguous with shrinkage factors 1. At the maximum expected 
return portfolio there is no difference between a CVaR-based and a deviation-based 
model. Differences become more pronounced when we minimize the risk measure. 
Hence, we compare the two models on the efficient frontier, including the tangency 
portfolios. To test the sensitivity of our results, we run in addition to the robust MtC 
and robust Sharpe, the robust mean-variance (Appendix 1) and robust mean-CVaR 
(Lotfi and Zenios 2018, Theorem 5) with interval ambiguities.

We obtain ten equally spaced points on the efficient frontier. At the minimum-risk 
portfolio, the home allocation is 0.89 with mean-CVaR and 0.90 with mean-variance. 
As we move to higher expected returns and lower risks, the home shifts to 0.79, 0.69, 
and 0.60 with mean-CVaR, and 0.80, 0.70, and 0.60 with mean-variance. For the 
remaining points towards the maximum expected return portfolios, including the tan-
gency portfolios, the allocations are identical to two decimal points. Hence, our main 
findings relating to the home bias remain valid when using a deviation risk measure.

4.3.2  Tails

We test that outliers do not drive our results, given the 0.95 tail risk measure we use. 
CVaR is not a robust statistic, and although outliers are, usually not of practical con-
cern for large datasets, as in our case, we solve the model for different confidence levels 
� in the CVaR estimation. For the problem of subection 4.2.2 and the standard value 
� = 0.95 , the home allocation for the robust minimum CVaR point, which is the most 
sensitive to the parameter, is 0.89. For � = 0.95 it increases to 0.90, and for � = 0.80 
is reduced to 0.88. Hence, our results do not seem to be driven by outliers picked by the 
choice of �.

(9)

max
v�+,v

�
−
∈ℝn,Λ+,Λ−∈ℝ

n×n
(r̄− − rf e)

⊤v�
−
− (r̄+ − rf e)

⊤v�
+

s.t.

tr(Λ+Σ+) − tr(Λ−Σ−) ≤ 1[
Λ+ − Λ− v�

−
− v�

+

(v�
−
− v�

+
)⊤ 1

]
⪰ 0

v�
−
− v�

+
≥ 0

e⊤(v�
−
− v�

+
) > 0

v�
+
, v�

−
≥ 0, Λ+, Λ− ≥ 0,
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5  Conclusion

This paper develops the robust MtC model under ambiguity in means and covari-
ance and empirically studies its performance. The model is SSD consistent and is 
formulated as a semi-definite positive cone program that is efficiently solvable.

We show, using controlled experiments, that the effects of ambiguity can be 
nuanced. The ambiguity effect dominates the diversification benefits when means 
are ambiguous, but covariance ambiguity is less important, and diversification ben-
efits dominate for negatively correlated assets. Furthermore, the ambiguity inter-
val location (higher returns or lower risk) and size (smaller ambiguity interval) can 
affect the optimal allocations such that the more ambiguous asset may become pref-
erable in optimal allocations.

We apply the model to market data for a US investor. Market estimates of ambi-
guity can explain the US equity home bias puzzle in a two-country setup. We show 
that the model generates optimal home allocations that match the actual home alloca-
tions under ambiguity in mean returns. However, this is not the case when considering 
ambiguity only in the covariance. Covariance ambiguity also induces home bias but 
the intervals obtained from market data cannot generate the actual home allocations. 
In a three-country example with high expected returns and lower correlation of emerg-
ing markets, we find that ambiguity in the means induces bias but can not match the 
observed allocation.

Our work uncovers two important facts relating to the literature exploring ambigu-
ity as a potential explanation of the home equity bias. First, that covariance ambigu-
ity induces bias but can not completely explain the puzzle. Second, interval ambiguity 
which ignores that ambiguity in the means refers to correlated returns also does not 
fully explain the puzzle. Ambiguity in the means of correlated returns is investigated in 
Lotfi and Zenios (2023) who arrive at a complete explanation of the home equity bias 
puzzle through the ambiguity channels.

Appendix 1: Robust MtC model

We provide the proof of Theorem 2.2.

Proof We define 𝜉 = CVaR((r̃ − rf e)
⊤x) > 0 , and break the objective function (5) in 

two components to obtain

We define x� = x

�
 and � =

1

�
 , and rewrite the above as:

(10)

max
x∈ℝn, 𝜉∈ℝ

r̄⊤
x

𝜉
− rf

1

𝜉

s.t. CVaR

((
r̃ − rf e

)⊤
x

)
≤ 𝜉

e⊤x = 1

x ≥ 0, 𝜉 > 0.
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Replacing e⊤x′ for � in the objective and e⊤x′ > 0 for 𝜈 > 0 in the constraint, we get

Therefore the robust counterpart of maximum MtC is as follows:

Using the representation of CVaR in Theorem 2.1, one can write the above as:

This is equivalent to:

(11)

max
x�∈ℝn, 𝜈∈ℝ

r̄⊤x� − rf 𝜈

s.t. CVaR

((
r̃ − rf e

)⊤
x�
)
≤ 1

e⊤x� = 𝜈

x� ≥ 0, 𝜈 > 0.

(12)

max
x�∈ℝn

(
r̄ − rf e

)⊤
x�

s.t.

CVaR

((
r̃ − rf e

)⊤
x�
)
≤ 1

e⊤x� > 0

x� ≥ 0.

(13)

max
x�∈ℝn

min
(r̄,Σ)∈UI ,𝜋∈𝔻

(
r̄ − rf e

)⊤
x�

s.t.

max
(r̄,Σ)∈UI ,𝜋∈𝔻

CVaR

((
r̃ − rf e

)⊤
x�
)
≤ 1

e⊤x� > 0

x� ≥ 0.

(14)

max
x�∈ℝn,𝛾∈ℝ

min
(r̄,Σ)∈UI ,𝜋∈𝔻

(
r̄ − rf e

)⊤
x�

s.t.

max
(r̄,Σ)∈UI ,𝜋∈𝔻

F

((
r̃ − rf e

)⊤
x�, 𝛾

)
≤ 1

e⊤x� > 0

x� ≥ 0.
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by Lotfi and Zenios (2018, Proposition 1). From Appendix A4 of the same paper we 
reformulate the inner minimization in the objective function and the maximization 
that appeared in the first constraint to get the following formulation.

This completes the proof.

Appendix 2: Robust deviation risk measure models

We give the proof of the SDCP formulation of robust Sharpe ratio maximization and 
the SDCP formulation for robust mean-variance efficient frontiers.

Appendix 2.1: Sharpe ratio maximization

We provide the proof of Theorem 4.1

Proof The Sharpe ratio maximization model is as follows:

(15)

max
x�∈ℝn

min
(r̄,Σ)∈UI

�
r̄ − rf e

�⊤
x�

s.t.

max
(r̄,Σ)∈UI

−
�
r̄ − rf e

�⊤
x� +

√
𝛼√

1 − 𝛼

√
x�⊤Σx� ≤ 1

e⊤x� > 0

x� ≥ 0,

(16)

max
v�+,v

�
−
∈ℝn, 𝜐∈ℝ,Λ,Λ+,Λ−∈ℝ

n×n

�
r̄− − rf e

�⊤
v�
−
−
�
r̄+ − rf e

�⊤
v�
+

s.t.
�
r̄+ − rf e

�⊤
v�
+
−
�
r̄− − rf e

�⊤
v�
−
+

𝛼

1 − 𝛼
𝜐 + tr(Λ+Σ+) − tr(Λ−Σ−) ≤ 1

⎡⎢⎢⎣
Λ

v�
−
−v�

+

2

(v�
−
−v�

+
)

2

⊤

𝜐

⎤⎥⎥⎦
⪰ 0

Λ ⪯ Λ+ − Λ−

v�
−
− v�

+
≥ 0

e⊤(v�
−
− v�

+
) > 0

v�
+
, v�

−
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By setting 𝜉 = 𝜎(r̃p − rf ) > 0 , we can write the objective function in two 
components:

We define x� = x

�
 and � =

1

�
 , then the above can be written as follows:

Replacing e⊤x′ for � in the objective and e⊤x′ > 0 for 𝜈 > 0 in the constraint, we get

Therefore, the robust counterpart of maximum Sharpe is as follows:

(17)

max
x∈ℝn

𝔼(r̃p − rf )

𝜎
(
r̃p − rf

)

s.t.

e⊤x = 1

x ≥ 0.

(18)

max
x∈ℝn, 𝜉∈ℝ

r̄⊤
x

𝜉
− rf

1

𝜉

s.t.

𝜎

((
r̃ − rf e

)⊤
x

)
≤ 𝜉

e⊤x = 1

x ≥ 0, 𝜉 > 0.

(19)

max
x�∈ℝn, 𝜈∈ℝ

r̄⊤x� − rf 𝜈
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𝜎

((
r̃ − rf e

)⊤
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)
≤ 1
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(20)
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(
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x�
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𝜎

((
r̃ − rf e
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)
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Lotfi and Zenios (2018, Appendix A4) allows us to reformulate the inner minimiza-
tion in the objective function to obtain:

The dual formulation of the first constraint maximization problem is as follows.

which can be rewritten using Schur complement as the following:

One can replace the above with the first constraint maximization problem in (22) to 
get the required model. This completes the proof.   ◻

.

(21)
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tr(Λ+Σ+) − tr(Λ−Σ−)

s.t.

Λ+ − Λ− ⪰ (v�
−
− v�

+
)(v�

−
− v�

+
)⊤

Λ+, Λ− ≥ 0,

(24)

min
Λ−,Λ+∈ℝ

n×n
tr(Λ+Σ+) − tr(Λ−Σ−)

s.t.[
Λ+ − Λ− (v�

−
− v�

+
)

(v�
−
− v�

+
)⊤ 1

]
⪰ 0

Λ+, Λ− ≥ 0.
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Appendix 2.2: Mean‑variance efficient frontiers

Mean-variance optimization under ambiguity in the means and covariance is given 
by:

Varying �0 we can trace the mean-variance efficient frontier.

Theorem 1 The robust mean-variance portfolio optimization model (25) can be cast 
as follows:

where tr denotes the trace operator. Given the optimal solutions of (26) v�∗
+

 and v�∗
−

 , 
we obtain the optimal solution of (25) as x∗ = v

�∗
−
− v

�∗
+

.

The proof follows from the proof of Theorem 4.1 above.
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(25)

max
x∈�

min
(r̄,Σ)∈UI

�(r̃p)

s.t.

max
(r̄,Σ)∈UI

𝜎(r̃p) ≤ 𝜎0.

(26)

max
v�+,v

�
−
∈ℝn,Λ+,Λ−∈ℝ

n×n
(r̄− − rf e)

⊤v�
−
− (r̄+ − rf e)

⊤v�
+

s.t.

tr(Λ+Σ+) − tr(Λ−Σ−) ≤ 𝜎0[
Λ+ − Λ− (v�

−
− v�

+
)

(v�
−
− v�

+
)⊤ 1

]
⪰ 0

v�
−
− v�

+
≥ 0

e⊤(v�
−
− v�

+
) = 1

v�
+
, v�

−
≥ 0, Λ+, Λ− ≥ 0,
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