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Summary
The material point method is a versatile technique which can be used to
solve various types of solid mechanics problems, especially those involving
large deformations. However, the capability of the material point method to
track a load-displacement response can deteriorate once a limit point, such as
snap-through or snap-back, in the response is encountered. One way of over-
coming this is to use path following techniques, such as an arc-length method.
This technique is well established in finite element analysis but not within any
material point method formulation. This paper provides for the first time an
arc-length controlled implicit, quasi-static material point method. The modifi-
cations to the standard arc-length scheme to allow for the stable execution of
an arc-length solver within the material point method are detailed. The capa-
bility of the material point-based arc-length method is demonstrated through
a number of problems, which include linear elastic, non-linear elastic, linear
elastic-perfectly plastic and linear elastic-plastic softening material behaviour
under large deformations. The techniques presented in this paper are essential
for arc-length techniques to be applied effectively to the material point method
and the combination of these techniques makes the method suitable for new
problems that cannot be solved with existing implicit material point approaches.
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1 INTRODUCTION

In the finite element method (FEM), for a quasi-static, implicit solution of a non-linear problem, the applied load
(or applied displacement) is incremented at the start of each load step and a Newton-Raphson scheme is often used to
determine the corresponding displacement (or load) such that the out-of-balance forces of the system are below a given
tolerance. However, this procedure only works if the incremented variable is strictly increasing throughout the simula-
tion such that the equilibrium path can be traced successfully. Figure 1A shows an increasing equilibrium path in which
a single value of force corresponds to a single value of displacement. It is possible to continue increasing either variable
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(A) (B) (C)

F I G U R E 1 Equilibrium paths of (A) increasing response, (B) snap-through response and (C) snap-back response.

and determine a solution on the equilibrium path. On the other hand, problems involving large deformations1 and some
types of non-linear material behaviour2 will often have critical points along the equilibrium path where, after the criti-
cal point, it is not possible to increment the variable further and obtain a solution. A snap-through response is when an
increase in displacement for a decrease in load is seen, as shown in Figure 1B. In the case of a snap-through response, a
single force value can be associated with multiple displacement states and it is may not be possible to determine the correct
state, meaning that it is not possible to model with a load controlled scheme. It is still possible to model a snap-through
response with a displacement controlled scheme as the equilibrium path is strictly increasing in terms of displacement,
but this can also change the physical problem being modelled depending on the nature of the imposed boundary con-
ditions. A snap-back response is when a decrease in displacement is seen after a snap-through response, as shown in
Figure 1C. As with a snap-through response, it is not possible to use a load controlled scheme due to the multiple possible
displacement states for a given force, a snap-back response also has multiple load states for a given displacement. As the
equilibrium path is not strictly increasing in terms of displacement for a snap-back response, it is not possible to model
this response using a displacement controlled scheme. In order to overcome this issue and be able to trace the equilib-
rium paths of each response, a path following technique is required, where the most common seems to be the arc-length
method.3–5

The arc-length method was independently developed by Riks3,4 and Wempner5 in the 1970s and is one of the main
techniques used in finite element analysis (FEA) to overcome the issues associated with the solving of snap-through
and snap-back equilibrium paths.6 Crisfield7 adapted the method proposed by Riks such that the arc-length method
is more suited for use in the FEM when used with the modified Newton-Raphson method. Since its conception,
many variations of the arc-length method have been proposed to solve complex equilibrium paths including (but
not limited to) Bergan et al.,8 Ramm,9 Powell and Simons,10 Lam and Morley,11 Fafard and Massicotte,12 Krenk,13

Nicholson,14 May15 and Pretti et al.16 The essence of the arc-length method comes from the constraint equation, or
arc-length equation, which is included in the non-linear equations of the problem and solved to give an incremen-
tal load factor and corresponding incremental displacements. By solving for both load and displacement throughout
the simulation, the issues which may arise in traditional load/displacement controlled schemes due to snap-through
or snap-back responses are mitigated. The arc-length method has been used to solve a variety of non-linear problems
including buckling of cylindrical shells,17–20 structural analysis,21 modelling of crack propagation22,23 and failure of brittle
materials.24,25

While the arc-length method is well established in the FEM, when modelling problems involving large deformation
mechanics the FEM can run into issues involving volumetric locking and large mesh distortion26,27 leading to inaccurate
results and may necessitate the expensive process of re-meshing. The material point method (MPM) is an alternative
to standard Lagrangian schemes and was developed by Sulsky and co-workers28,29 as a solid mechanics extension of
the FLuid Implicit Particle (FLIP) method30 which is itself an extension of the Particle-In-Cell (PIC) method.31 As a
mixture of Eulerian and Lagrangian schemes, the physical domain is discretised by Material Points (MPs) which are
immersed in a background mesh of finite elements. The MPs act as integration points and deform through the background
mesh which remains unchanged throughout the analysis, avoiding the large mesh distortion seen in the FEM. The MPM
is a tool that has been widely used to model many engineering problems including manufacturing processes,32 large
deformation problems in geomechanics,33–35 fracture mechanics36 and contact.37 This paper will focus on an implicit

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7438 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GAVIN et al. 3 of 27

quasi-static implementation of the MPM, adapting the AMPLE (A Material Point Learning Environment) framework38

in order to incorporate the arc-length solver.
To the authors’ knowledge, there is no current literature detailing the implementation of the arc-length method in

a MPM framework and this paper describes the first Material Point-Based Arc-Length Method (MP-BALM). The com-
bination of an arc-length method with the MPM expands the applicability of the MPM to load-controlled problems
involving snap-through, which are currently not possible with techniques in the published literature. Section 2 covers
the basic principles of the arc-length method as it is implemented in the FEM, followed by an explanation of the MPM
and the adaptations needed for the arc-length method to be used successfully with the MPM in Section 3. Section 4 then
presents numerical examples using the MP-BALM, including problems involving linear elastic, non-linear elastic, lin-
ear elastic-perfectly plastic and linear elastic-plastic softening material behaviour under large deformations. While the
arc-length method and the concepts presented in this paper are able to analyse problems involving both snap-through
and snap-back responses, the MPM is a continuum method for which, to the authors’ knowledge, there are no known
problems involving global snap-back responses. Therefore, only problems involving snap-through responses are analysed
in Section 4.

2 THE ARC-LENGTH METHOD

In the standard FEM, an arc-length solver (or Riks solver) solves for both load and displacement based on the converged
state of the previous load step and a specified arc length. The equilibrium path is formed of load factor-displacement
pairs, {𝜆,u}, where 𝜆 is the load factor and u are the nodal displacements. The load factor acts as a scalar multiplier of
the external force vector applied to the material domain such that

f ext = 𝜆 f ext
0 (1)

where f ext
0 is the initial applied force vector and f ext is the force vector corresponding to the current load factor. A key fea-

ture of the arc-length method is that the distance from the current converged state to the next state along the equilibrium
path is limited by a specified arc length,Δl. The most general form of the arc-length constraint is the spherical arc-length
constraint2 which is given by

ΔuTΔu + Δ𝜆2
𝜓

2f ext
0

Tf ext
0 = Δl2 (2)

whereΔu andΔ𝜆 are the converged values of the change in nodal displacements and the change in load factor respectively
for the current load step, and 𝜓 is a prescribed scaling parameter. This paper utilises the more widely used version of the
arc-length constraint, the cylindrical arc-length method, which sets the scaling parameter 𝜓 to be 0, thus only ensuring
that the Euclidean norm of the change in nodal displacements is equal to the prescribed arc length.2 The cylindrical
arc-length constraint is given by

ΔuTΔu = Δl2. (3)

Figure 2 shows the use of the cylindrical arc-length method to track through the equilibrium path for a simple two
degree of freedom system. Given a converged state, (𝜆i,ui), when visualised in terms of two displacement compo-
nents, u1 and u2, the constraint equation in (3) creates a cylindrical zone around the converged point. The equilibrium
path will intersect the cylinder at two points, A and B. These are the two points on the equilibrium path which sat-
isfy the arc-length constraint based on the change in nodal displacements from the converged state. Based on the
direction of travel along the equilibrium path taken in the previous load step, either point A or point B is chosen
to be the next converged state and the process is repeated for the next load step. The arc-length scheme is often
paired with a Newton-Raphson solution scheme such that equilibrium is achieved as well as satisfying the specified
arc-length constraint. In each iteration of a load step, the load factor increment, 𝛿𝜆, is found by solving the quadratic
equation7

𝛼1𝛿𝜆
2 + 𝛼2𝛿𝜆 + 𝛼3 = 0 (4)
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F I G U R E 2 The cylindrical arc-length method (reproduced from de Souza Neto et al.2).

with the coefficients of the quadratic given by

𝛼1 = 𝛿uT
𝛿u (5a)

𝛼2 = 2 𝛿uT{Δu(k−1) + 𝛿u∗
}

(5b)

𝛼3 =
{
Δu(k−1) + 𝛿u∗

}T{Δu(k−1) + 𝛿u∗
}
− Δl2 (5c)

where Δu(k−1) is the change in nodal displacements calculated so far in the load step. The tangential displacement, 𝛿u,
and the Newton-Raphson displacement*, 𝛿u∗, are given by

𝛿u = K−1 f ext
0 (6a)

𝛿u∗ = K−1 foobf (6b)

where K is the global stiffness matrix and foobf is the out-of-balance force vector. As the form of (4) is a quadratic equation,
two possible solutions for 𝛿𝜆 will be found; one root will progress along the equilibrium path while the other will track
back along the path. Therefore, the selection of the appropriate root is required to ensure that the the simulation progresses
in the desired direction. One option to find the most appropriate load factor increment is the “angle criteria” which aims
to minimise the angle between the change in nodal displacements so far in the load step and the newly calculated change
in nodal displacements. This is done by maximising the dot product of the two vectors in question such that the value of
𝛿𝜆 is chosen such that

𝛿𝜆
(k) = arg

[
max
𝛿�̃�

({
Δu(k−1) + 𝛿u∗ + 𝛿�̃� 𝛿u

}TΔu(k−1)
)]

. (7)

A second option for root selection is presented in Hellweg and Crisfield39 which was proposed to counter the fact
that the angle criterion encounters issues for problems involving sharp snap-back responses. This approach involves
calculating the two roots of 𝛿𝜆(k) as normal, and the total displacements, stresses and internal forces are computed for
each root and the root which gives the smallest residual is taken. As stated by Hellweg and Crisfield, this method need
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GAVIN et al. 5 of 27

only be used in the presence of sharp snap-backs, however, this paper only focuses on snap-through responses thus no
further consideration of this method is taken.

The incremental change in nodal displacements, 𝛿u, is then calculated as a combination of the Newton-Raphson
displacement and the tangential displacement (which is scaled by the load factor increment determined by (4) and (7))
such that

𝛿u(k) = 𝛿u∗ + 𝛿𝜆
(k)

𝛿u. (8)

At the start of the simulation, an initial arc length is required. It is possible to simply prescribe this value, however,
this is not easy for the user to determine a reasonable initial arc length as it is dependent on the mesh size. Instead, the
initial arc length can be calculated as the Euclidean norm of the iterative increment of the tangential displacement at the
start of the problem, where

Δl0 =
√

𝛿uT
𝛿u (9)

where the 𝛿u used is the initial tangential displacement based on the reference load where an initial iterative load factor
increment is prescribed as 1 to produce an initial arc length value. A choice can be made to set this initial arc length
value from (9) to be the maximum allowed arc length throughout a simulation, however, this choice is not a condition
to be satisfied in the arc-length method. In principle, the arc length can take any value but there may be cases where the
arc length becomes too large and causes issues in the analysis, so imposing an upper limit for this value is often the best
action. If the number of Newton-Raphson iterations needed in a load step exceeds a prescribed desired number, the arc
length for the following load step is adjusted accordingly, allowing for an increase or decrease in the distance away from
the current converged state to the next converged state. The arc length for the following load step is calculated at the end
of each load step such that

Δli = max
[

min
[(

kdes

kn

)𝛼

Δl0,Δl0

]
,
Δl0

𝛾

]
(10)

where kdes and kn are the desired and actual number of Newton-Raphson iterations needed in the load step respectively
and 𝛼 and 𝛾 are positive scalars. In the literature, 𝛼 is taken to be 17 or 0.5,11 however, Ramm9 explains that when 𝛼 = 1,
oscillations in the number of Newton-Raphson iterations needed in each load step are seen and therefore taking 𝛼 = 0.5
is a more stable approach. The value of 𝛾 controls the minimum allowed arc length through the entire simulation such
thatΔli is a value in the interval

[
Δl0
𝛾
,Δl0

]
, this ensures that if the required Newton-Raphson process continues to exceed

the desired number of iterations, the arc length will not continue to decrease so much that the tracing of the equilibrium
path begins to halt as the allowed distance becomes tiny. There is no theory on the choice of value of 𝛾 , therefore 𝛾 = 4 is
chosen here based on Pretti et al.16

In the first iteration of each load step, there is clearly no information as to the change in nodal displacements,
Δu(0) = 0. In this case, solving (4) produces the solutions for the initial load factor increment of

𝛿𝜆
(1) = ± Δl

√
𝛿uT

𝛿u
(11)

giving a magnitude of the initial increment. However, it is not possible to use (7) to determine which solution to choose
and a predictor is required. It is important to choose the correct value of the predictor solution as one will progress
the simulation along the equilibrium path and the other will track back along the path.1 Multiple options of predictor
solution criteria have been presented in the literature to choose the correct sign for 𝛿𝜆

(1) to progress along the path,
including:

1. Stiffness determinant40–sign determined by the determinant of the current stiffness matrix:

sign
(
𝛿𝜆

(1)) = sign
(|||K

(
u(0)

)|||

)
(12)
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6 of 27 GAVIN et al.

2. Incremental work10–sign determined by predictor work increment:

sign
(
𝛿𝜆

(1)) = sign
(
𝛿uTf ext

)
(13)

3. Secant path41,42–sign determined by deformation of the previous load step (Δun):

sign
(
𝛿𝜆

(1)) = sign
(
ΔuT

n𝛿u
)

(14)

Option 1 is widely used and is easily implemented as the stiffness matrix will be known, however, issues may arise
if the stiffness matrix is close to singular7 or in the presence of bifurcations where the solution will oscillate around the
bifurcation point.2 Option 2 is able to trace an equilibrium path through a bifurcation point but is not able to effectively
trace snap-back responses.2 Both options 1 and 2 use information based on the current equilibrium state and nothing
about the history of the equilibrium path. Option 3 involves the use ofΔun which takes the deformation of the mesh in the
previous load step into account when determining the deformation of the current load step. The secant path predictor is
able to overcome the issues seen with the stiffness determinant and incremental work predictor schemes. An alternative
predictor solution was proposed by Kadapa et al.20 where the nodal displacements and load factor for the first iteration
of a load step are calculated as a linear combination of the respective nodal displacements and load factor of the previous
two load steps such that change in nodal displacements and load factor increment in the predictor step are given by

𝛿u(1) = 𝛼Δun

𝛿𝜆
(1) = 𝛼Δ𝜆n

}

where 𝛼 = Δl0

Δln
> 0. (15)

This is a simpler and less expensive predictor solution which does not require any additional computation to determine
the direction of the progression along the equilibrium path in the predictor step.

Figure 3 shows the process of the arc-length solver through the iterations of a single load step. From the previously
converged point, (𝜆i,ui), the predictor iteration determines the initial load factor increment (with direction determined by
the secant predictor) which is used to calculate an initial change in nodal displacement in order to satisfy the arc-length
constraint. In subsequent iterations, the load factor increment is calculated using (4) and then the change in nodal
displacements are calculated using (8), these steps are repeated until the Newton-Raphson error is below an allowed
tolerance to give the next converged point, (𝜆i+1,ui+1).

F I G U R E 3 Arc-length solution scheme using Newton-Raphson iterations.
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GAVIN et al. 7 of 27

The arc-length method detailed in this section is presented in the form of a FEM-based method to solve problems with
the path following technique. However, there are some key differences that must be considered when implementing the
arc-length method into the MPM formulation, and these will be explained in the next section.

3 THE MATERIAL POINT-BASED ARC-LENGTH METHOD

The key steps of the standard MPM algorithm for solid mechanics are depicted in Figure 4, starting from the upper left
image and moving left to right, top to bottom, the procedure for a load step is:38

(a) the physical domain is discretised by MPs which carry data such as mass, stress, deformation, and so forth, of the
material and the positions of these points within the background mesh are determined;

(b) the MP data for stress, volume and stiffness is mapped onto the element nodes associated with that MP using the
basis functions to generate the internal force and stiffness quantities;

(c) the governing equations are assembled on the background mesh nodes;
(d) the governing equations are solved for the unknown nodal displacements;
(e) the mesh information is then mapped back to the MPs to update the deformation, stress, volume, and so forth, and

the MP displacements are calculated;
(f) the MP positions are updated and the background mesh is reset.

For more information on the formulation of the MPM, the reader is directed towards the original work of Sulsky and
co-workers28,29 as well as the many papers34,36,43,44 and textbooks45–47 that cover the MPM.

(A) (B) (C)

(D) (E) (F)

F I G U R E 4 MPM algorithm steps (adapted from Coombs et al.38).
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8 of 27 GAVIN et al.

The MPM approach used in this paper is based on the open-source AMPLE code,38 a quasi-static implicit finite
deformation MPM based on the updated Lagrangian formulation with the weak form of equilibrium given by

∫Ω
(
𝜎ij(∇x𝜂)ij − bi𝜂i

)
dv − ∫

𝜕Ω
(ti𝜂i) ds = 0 (16)

assuming a field of admissible virtual displacements, 𝜂i, whereΩ is the domain of the body with boundary 𝜕Ω. The domain
is subjected to a traction, ti, on the boundary of the domain (with surface, s) and body forces, bi, applied to the volume,
v, of the domain. These tractions and body forces result in a Cauchy stress field, 𝜎ij, through the body. Discretising (16)
with background mesh elements, E, and imposing Galerkin’s weak form produces

A
∀E

(

∫E
∇xST

vp 𝝈p dv − ∫E
ST

vp b dv
)
− ∫

𝜕Ω
ST

v t ds = 0 (17)

where A is the standard assembly operator (in this case acting over all elements in the mesh), Svp is a matrix containing
the basis functions to provide the mapping between the MPs and the background mesh, ∇xSvp is the strain-displacement
matrix containing the derivatives of the basis functions with respect to the global coordinates. In this paper, the boundary
of the MP domain is generated using a B-spline representation48 which allows Neumann boundary conditions (such as
the tractions in (17)) to be applied directly to the MP domain. The shape functions used to integrate the traction forces
over the domain boundary, Sv, are the standard Finite Element shape functions. The weak form in (17) can be discretised
by the MPs such that

A
∀p

(
∇xST

vp 𝝈p Vp − ST
vp b Vp

)
− ∫

𝜕Ω
ST

v t ds = {0} (18)

where the standard assembly operator is applied over each MP, p, and Vp is the MP volume.
There are multiple options for the choice of basis functions used to map data between the MPs and the mesh nodes.

The original approach was to use standard FEM shape functions28 in which the MPs were assumed to be concentrated
point volumes and the shape functions of the finite element mesh are used. An alternative to standard FEM shape
functions are Generalised Interpolation MPM (GIMPM) basis functions43 which are generated as the convolution of
the finite element shape functions with a point characteristic function (taken to be a hat unity function). This gener-
ates a set of C1 continuous basis functions using a domain centred on the MP position over which the volume of the
MP is evenly distributed. Another option is to use higher order B-splines49 instead of the piecewise-linear basic func-
tions, which is seen to significantly reduce spatial quadrature errors.50 The higher order B-spline basis functions are
generated based on a knot vector, with values associated with positions of the mesh nodes, and the location of the point
in question relative to the knots within the knot vector. The value of the basis function is calculated recursively based
on the order of the B-spline. Using a cubic B-spline produces C2 continuous basis functions centred at the MP loca-
tion and spanning four mesh elements in each dimension. This paper however, utilises the GIMPM basis functions
throughout.

It is widely documented that the MPM can be unstable, mostly due to cell crossing errors, a problem mitigated by the
use of GIMPM basis functions, however there are other issues linked to boundary representation. A key feature of the
MPM is that the physical domain of the problem is made up of MPs, therefore, there is no physical boundary represen-
tation. For illustrative purposes, the “boundary” of the physical domain is depicted with a thick black line in Figure 4,
however, this boundary is not explicitly represented in the method and the edge of the physical domain is implied by
the extent of the MPs and their associated domains. If desired, the boundary of the MP domain can be represented using
B-splines48 where points with zero volume are placed along the boundary of the domain which are used as sample points
for the creation of a B-spline curve in 2D, or surface in 3D. These boundary points positions are updated at the end of each
load step in the same fashion as the MPs, allowing for the tracking of the boundary throughout the analysis. This B-spline
boundary also allows Dirichlet and Neumann boundary conditions to be applied directly to the MP domain by integrat-
ing over the B-spline curve/surface. The reader should refer to Bing et al.48 for more information on B-spline boundary
representation in the MPM. However, irrespective if the boundary is explicitly represented or not, the fact that the extent
of the physical domain will not necessarily coincide with the background mesh means that there is the potential for back-
ground elements to only overlap with a small portion of the physical domain. This "small cut" problem can lead to poor
conditioning of the global system of equations and impact on the stability of the MPM. In more detail, the ill-conditioning
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GAVIN et al. 9 of 27

of the system of equations due to the presence of partially filled elements can be quantified by the system’s condition
number (the ratio of the largest and smallest eigenvalues of the global system matrix). The smallest eigenvalue of the sys-
tem is related to the smallest intersection between the physical domain and the background mesh, as this intersection
can be much smaller than the size of the elements in the background mesh, the condition number is unbounded, which
is detrimental to the solution stage of the analysis. The ghost stabilisation technique proposed by Burman51 penalises
jumps in the gradient of the solution field across elements cut by the physical domain.52 This is especially useful for the
MPM due to the fact that it is often the case that MPs around the edge of the physical domain are located in partially
filled elements. Coombs53 implemented the ghost stabilisation method within the MPM where boundary and faces are
determined over which the ghost penalty was integrated, resulting in a well-conditioned system and improved stability
in analysis.

When modelling large deformations of nearly incompressible solids, the issue of volumetric locking can occur due
to low order elements being used and the low order interpolation polynomials inadequacy to represent the volume pre-
serving displacement fields.54 One common method of avoiding this volumetric locking is the F-bar approach developed
by de Souza Neto and co-workers54,55 where the deformation gradient is decomposed into deviatoric and volumetric
components such that

F = Fd Fv, (19)

where F,Fd and Fv are the deformation gradient, its deviatoric and volumetric components respectively with the two
components being defined as

Fd = det (F)−1∕3 F and Fv = det (F)1∕3 I (20)

A deformation gradient, F0, is computed which results from the displacement at centroid of the element. The modified
deformation gradient, F is calculated as the composition of the deviatoric component of F and the volumetric component
of F0 such that

F = Fd(F0)v =
(

det(F0)
det(F)

)−1∕3

F. (21)

The modified deformation gradient is then used to compute the stiffness matrix and internal force vector. Coombs et al.26

implemented the F-bar approach in the MPM, which was chosen as it: does not introduce any additional unknowns; is
straightforward to implement; does not restrict the choice of constitutive model; does not require any tuning parameters;
and does not require additional MPs to track volumetric behaviour.

Numerical examples presented in this paper utilise the B-spline boundary representation, ghost stabilisation and the
F-bar formulation.

3.1 Reformulation of the arc-length method into the MPM

As the MPM allows the MPs to move through the background mesh, it is possible that the MPs will populate small portions
of an element around the boundary of the physical domain. This can be seen in Figure 4 where the domain represented
by the MPs has a boundary which cuts through elements of the background mesh. This causes issues with elements
that participate in the analysis having very small stiffnesses, resulting in extremely large nodal displacements relative
to the applied external load. This means that if an arc-length solver is implemented into the MPM in its FEM form, the
large nodal displacements will account for the majority of the allowed nodal displacements of the arc-length constraint,
manifesting in very small increments of the load factor and an inefficient tracing of the equilibrium path. We reformulate
the arc-length constraint such that it is based on the change in MP displacements to produce the Material Point-Based
Arc-Length Method (MP-BALM). The change in MP displacement, Δup, is calculated by mapping the change in nodal
displacements to the location of the MP such that

Δup =
n∑

v=1
Svp(xp)Δuv = NpΔu (22)
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10 of 27 GAVIN et al.

where n is the number of nodes in the background mesh, Svp(xp) is the basis function of node (or vertex) v based on the
position of the MP, xp,Δuv is the change in displacement of node v and Np is a 3 × 3n matrix containing the basis functions
for all nodes in the mesh. A diagonal matrix, N, of size 3n × 3n can be formed which contains the sum of all MP basis
functions for every node in the mesh such that

N =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

∀p
S1p(xp) 0 0 · · · 0 0 0

0
∑

∀p
S1p(xp) 0 · · · 0 0 0

0 0
∑

∀p
S1p(xp) · · · 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 · · ·
∑

∀p
Snp(xp) 0 0

0 0 0 · · · 0
∑

∀p
Snp(xp) 0

0 0 0 · · · 0 0
∑

∀p
Snp(xp)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

The values within N are scaled by the maximum diagonal value such that the matrix contains values between 0 and 1.
The values in N are representative of the influence of the change in nodal displacements on the physical body, where
nodes surrounded by fully populated elements have a value equal or close to 1 and the nodes associated with less physical
material have a value of less than 1. Due to the nature of the MPM, the displacements of the MPs have more of a physical
meaning compared to the displacements of the nodes of the mesh as it is the MPs that represent the deformation of the
physical domain in a MPM analysis. Therefore, in a similar fashion to the MP displacement calculation in (22), a vector
of scaled nodal displacements, Δus, is calculated as

Δus = NΔu, (24)

therefore, the arc-length constraint in (3) can then be modified using scaled nodal displacements giving

ΔuT
s Δus =

(
NΔu

)T(
NΔu

)

= ΔuT
(

N
T

N
)
Δu

= ΔuTÑΔu = Δl2 (25)

where Ñ = N
T

N is a diagonal matrix with values between 0 and 1. The result of the modification in (25) is that the
nodes associated with partially filled elements will not take up as much of the allowed change in nodal displacements,
improving the performance of the arc-length solver in tracing the equilibrium path with more uniform increments. This
will be demonstrated with numerical examples in Section 4. The values in N are scaled in order to ensure that chang-
ing the number of MPs used in the analysis does not have a significant effect on the progression of tracing along the
equilibrium path. For example, if no scaling is present, increasing the number of MPs will increase the values on the
diagonal of N thus increasing the left hand side of (25) and resulting in smaller displacements per load step and a
slower progression through the analysis. Changing the number of MPs should not result in significant changes in how
an analysis progresses. The N matrix scales the nodal displacements in the arc-length condition based on a node’s influ-
ence on the physical domain, however, as the values in the matrix are rescaled such that they are between 0 and 1,
N has no physical meaning in terms of the problem. The reason for the use of N is to dampen the large nodal dis-
placements of the partially filled elements around the boundary of the domain (as the corresponding values in N
will be close to zero) while maintaining the displacements of the nodes which have more influence on the physical
domain.

The addition of the Ñ matrix in (25) is then incorporated throughout the MP-BALM formulation to calculate the load
factor increment where the new coefficients of (4) become
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GAVIN et al. 11 of 27

𝛼1 = 𝛿uTÑ𝛿u (26a)

𝛼2 = 𝛿uTÑ
{
Δu(k−1) + 𝛿u∗

}
(26b)

𝛼3 =
{
Δu(k−1) + 𝛿u∗

}TÑ
{
Δu(k−1) + 𝛿u∗

}
− Δl2. (26c)

The initial arc-length calculation in (9) also includes Ñ such that

Δl0 =
√

𝛿uTÑ𝛿u (27)

as well as for the predictor solution where the initial load factor increment is calculated as

𝛿𝜆
(1) = sign

(
ΔuT

n Ñ𝛿u
) Δl
√
𝛿uTÑ𝛿u

. (28)

It is still important to include the scaling matrix in (28), as 𝛿u is calculated from the assembled stiffness matrix for
the MPs in the current state meaning that the partially filled elements at the boundary of the MP domain may still see
large nodal displacements. The large nodal displacements may also be seen withinΔun as these are simply the calculated
nodal displacements from the previous load step where the large nodal displacements may have also occurred.

3.2 Nodal displacement reconstruction

This paper utilises the secant path predictor in (28) (scaled form of (14)) for the determination of the direction of the
equilibrium path in the first iteration of a load step where the converged nodal displacement of the previous load step
is required. However, since a key feature of the MPM is that the background mesh is reset at the end of every load step,
obtaining these nodal displacements is not trivial and instead using the nodal displacement vector at the end of the
previous load step is not feasible as the body has deformed and the MPs have changed position, meaning that the domain
is not influenced by the mesh nodes in the same way as in the previous load step. A method of reconstructing the nodal
displacement field based on the MP displacements of the previous load step and the updated MP positions is therefore
needed. This is done using a least squares weighted residual technique48

∫Ω ST
vp{Svp Δun − Δua

p} dv = {0} (29)

whereΔua
p are the known MP displacements from the previous load step andΔun are the unknown nodal displacements

which are to be solved for. Rearranging for the unknown nodal displacements we obtain

Δun =
[

∫Ω ST
vp Svp dv

]−1{

∫Ω ST
vp Δua

p dv
}

(30)

It is worth noting thatΔun is evaluated globally in order to minimise the residual error across the whole domain meaning
that the integrals in Equation (30) must be assembled into a global matrix and vector respectively. This means that Δun
is calculated as

Δun =
[
A
∀p

(
ST

vp Svp Vp
)]−1{

A
∀p

(
ST

vp Δua
p Vp

)}
(31)

As the nodal displacements of the previous load step are reconstructed based on the MPs’ position in the current state,
there may still be cases where large nodal displacements are calculated for partially filled elements around the boundary
of the MP domain, therefore, the scaling matrix is needed in the predictor meaning (28) should be used over (14) in order
to mitigate issues involving large nodal displacements.

Algorithm 1 shows the standard solution procedure for the MP-BALM. It is worth pointing out that a zeroth load step
is analysed to generate the initial state of the domain and the arc-length solver is not used in this load step. Compared
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12 of 27 GAVIN et al.

Algorithm 1. MP-BALM procedure

for i = 0 ∶ imax do
Δu(0) = 0
determine MP data in current state
calculate scaling matrix, N̄ - (23)
determine free degrees of freedom
calculate external force vector, f ext

0
nodal displacement reconstruction, Δun - (31)
initialise Newton-Raphson error, fErr = 1
start iteration counter, k = 0
while fErr > tolerance do

if i > 0 then
if k > 0 then

if i = 1 and k = 1 then
calculate initial arc length - (27)

end if
calculate tangential displacement, 𝛿ū - (6a)
if k = 1 then

determine 𝛿𝜆
(1) using predictor solution - (28)

else
calculate Newton-Raphson displacement, 𝛿u∗ - (6b)
determine 𝛿𝜆

(k) by solving quadratic equation - (4) with (26)
end if
calculate incremental change in nodal displacement, 𝛿u(k) - (8)

else
zero incremental displacement in zeroth iteration, 𝛿u(0) = 0

end if
end if
increment change in nodal displacements, Δu(k) = Δu(k−1) + 𝛿u(k)
assemble stiffness matrix, K, and internal force vector, f int

calculate out-of-balance forces, foobf

calculate Newton-Raphson error
end while
update MP positions
update Δl - (10)

end for

to the AMPLE framework, the MP-BALM algorithm is reasonably similar. The nodal displacement reconstruction takes
place at the start of each load step before entering the Newton-Raphson iteration loop. The arc-length solver itself requires
multiple if statements in order to determine how to find the load factor increment and the arc length needs to be updated
at the end of each load step based on the iterative performance of said load step. This algorithm is used to solve the
numerical examples presented in the next section.

4 NUMERICAL EXAMPLES

A series of numerical examples are presented to demonstrate the capability of the proposed arc-length solver with a MPM
formulation. The first example demonstrates that the solver can be implemented into a MPM code and produce correct
results for simple problems with analytical solutions. Further examples are given to demonstrate the capabilities of an
arc-length solver within the MPM with problems which encounter snap-through responses.
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GAVIN et al. 13 of 27

4.1 Compression of an elastic column under self weight

To demonstrate that the implemented solver is functional within a MPM code, a simple benchmark test is utilised, namely
the 1D compression of an elastic column with an initial height of l0 = 50 m under self weight. Although this problem is
in essence 1D, a 2D plane strain implementation is used. The material is modelled as a Henky material with a Young’s
modulus of 10 kPa and a Poisson’s ratio of zero. The background mesh is generated using square elements with roller
boundary conditions applied over the base and sides of the mesh. The column is discretised using a distribution of 2 × 2
evenly distributed generalised interpolation material points in each populated element of the background mesh. A target
body load of 800 N m−2 (g = 10 m s−2 and a density of 𝜌0 = 80 kg m−3) is applied. As the load at any point in the analysis
is determined by the initial applied load and the load factor (as per (1)), an initial gravitational acceleration is prescribed
and the problem is run until the load at the end of a load step exceeds the target body load. Selecting a smaller initial load
means that more load steps are required to reach the target load.

To study convergence, the number of elements along the height of the column (y-direction) is varied between 22 and
213 (between 4 and 8192) while a single element is used through the width of the column (x-direction) throughout. The
initial MP to mesh element ratio is also maintained throughout. The problem is run with the arc-length solver for three
different initial body loads, 8, 4 and 2 N m−2 which results in the simulations running over 17, 33 and 67 load steps
respectively.

The analytical solution for the normal stress in the y-direction at the end of the analysis is

𝜎
a
yy = 𝜌0gn(l0 − Y ) (32)

where Y is the original position of the point in the body, l0 is the original height of the column and gn is the gravitational
acceleration due to the load factor at the end of the simulation. Figure 5 shows the numerical results for the column
under self weight using a mesh of 26 elements and an initial body force of 2 N m−2, the calculated vertical stress is plotted
against the original vertical position of each MP. The solid line in Figure 5 is the the analytical solution in (32).

The error between the calculated stress in the column and the analytical solution is calculated as

error =
np∑

p=1

||𝜎p
yy − 𝜎

a
yy(Yp)||V 0

p

(gn𝜌0l0)V0
(33)

where 𝜎p
yy is the normal stress in the y-direction at each MP position and V0 =

∑
V 0

p is the initial volume of the column. As
the arc-length method will not perfectly achieve the target body load and the simulation is simply run until the body load
first exceeds the target load, each run will have a different value for gn. Running over 17, 33 and 67 load steps gives final gn
values of 12.9, 11.7 and 10.2 m s−2 respectively. Figure 6 shows the convergence of the solution as the mesh is refined. It is
clear that the rate of convergence matches the rates of convergence when running the same problem with a linear solver.
It is also clear to see that the error value of the solver compared to the linear solver depends on total number of load steps

F I G U R E 5 Numerical solution of a column under self weight plotted against the analytical solution.
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14 of 27 GAVIN et al.

F I G U R E 6 Compression of column under self weight convergence.

required to reach the target body force, this is due to the fact that the linear solver is run over 40 evenly spaced load steps
whereas in the arc-length solver, the load increment is not evenly distributed throughout the simulation. As the number
of load steps used to run the simulation is increased, the convergence behaviour of the MP-BALM tends towards that of
the linear solver.

4.2 Hyperelastic cylinder under internal pressure

The next example is that of a 2D incompressible, hyperelastic cylinder under internal pressure. The cylinder has an inner
radius Ri = 1 m with the outer radius, Ro, set such that the ratio Ri

Ro
= 0.85. The cylinder is modelled as a hyperelastic mate-

rial using the regularised, isotropic Ogden model2,56 with the strain-energy function, W , given in terms of the principal
stretches, 𝜆i (i = 1, 2, 3)†, such that

W(𝜆1, 𝜆2, 𝜆3, J) =
N∑

r=1

𝜇r

𝛼r

[
(𝜆1)𝛼r + (𝜆2)𝛼r + (𝜆3)𝛼r − 3

]
+ 1

2
K(ln J)2 (34)

where 𝜇r and 𝛼r are pairs of material parameters, K is the material bulk modulus, J is the volume ratio. It is worth noting
that due to the fact the cylinder is incompressible, it is assumed that J ≈ 1, however, this is not strictly enforced, therefore,
incompressibility is ensured through a suitably large value for the bulk modulus. The material parameters are defined as57

𝛼1 = 1.3 𝛼2 = 5.0 𝛼3 = −2.0
𝜇
∗
1 = 1.491 𝜇

∗
2 = 0.003 𝜇

∗
3 = −0.023

where 𝜇
∗
i =

𝜇i
𝜇

and 𝜇 is the ground-state shear modulus. The ground-state shear modulus is chosen arbitrarily as 0.375
MPa, which is the equivalent shear modulus based on a Young’s modulus of 1 MPa and a Poisson’s ratio of 0.3. The bulk
modulus is set such that it is sufficiently large to enforce near incompressibility and takes the value of 99.8 MPa.

Due to symmetry, one quarter of the cylinder cross section is modelled with a plane strain assumption. A diagram of
the problem is shown in Figure 7. The background mesh is generated with an overall width and height of 3.5 m in order
to provide enough space for the domain to deform up to a final inner stretch of 3, in other words, until the deformed
inner radius is three times the initial inner radius. Each element in the background mesh is a square with size h = 0.05m.
In order to generate the initial domain of the cylinder, the entire mesh is filled with MPs where each element contains
8 × 8 evenly spaced generalised interpolation material points. It is important to ensure that there is a large number of
MPs initially populating the mesh for optimal integration over the domain. The MPs which do not lie within the bound-
aries of the cylinder are then removed, leaving the desired physical domain made up of a total of 7722 MPs. This check
is performed at the centre of the MP domain, determining whether the centre of the domain is within the boundaries
of the cylinder meaning that some portions of the GIMP domains may exist outside of the cylinder boundary. Roller
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GAVIN et al. 15 of 27

F I G U R E 7 Two-dimensional hyperelastic cylinder under internal pressure. Plot: inner stretch against normalised applied internal
pressure comparing calculated results (solid black line) and analytical solution (red crosses). Inset: diagram of cylinder problem setup
showing initial inner radius and outer radius and deformed inner radius.

boundary conditions are applied over each edge of the background mesh. The problem is run using the ghost stabilisation
technique53 in order to reduce errors and improve the stability of the simulation due to partially filled background ele-
ments. The ghost stabilisation parameter is set to 𝛾 = 106. An initial normalised pressure, P∗ = P

𝜇
, of 5 × 10−3 is applied

over the inner boundary of the cylinder using a B-spline boundary representation.48 No pressure is applied over the outer
radius of the cylinder. An analytical solution for this problem is given as57

P = ∫
𝜆b

𝜆a

Ŵ
𝜆

d𝜆

(𝜆
2
𝜆z − 1)

(35)

where Ŵ(𝜆, 𝜆z) = W(𝜆, 𝜆z, (𝜆𝜆z)−1
, 1) and Ŵ

𝜆
is the derivative of Ŵ with respect to 𝜆 and the integration is performed

between the radial stretch at the inner radius, 𝜆a, and the radial stretch at the outer radius, 𝜆b. As the problem in ques-
tion is run using the plane strain assumption, there is zero stretch in the axial direction meaning 𝜆z = 1 throughout the
analysis. Figure 7 shows the calculated inner stretch against applied internal pressure (normalised with the ground-state
shear modulus) for the analysis using the new (scaled) approach. There is a clear snap-through behaviour displayed
with the maximum in pressure seen at an inner stretch of 1.9. Comparing the calculated load-displacement curve with
the analytical solution calculated using (35), the MP-BALM matches the analytical solution very closely throughout the
simulation.

At large displacements, small fluctuations can be seen in the calculated load-displacement curve, this may be due
to the fact that the physical domain does not have a defined boundary in the MPM with the use of the B-spline
boundary being used as an approximation for the boundary. This means that the pressure will not be applied per-
fectly to the true boundary of the domain. Also, at large deformations, the incompressible cylinder is stretched by a
large distance and the thickness of the cylinder is reduced, potentially meaning that a small number background ele-
ments are active through the thickness of the cylinder thus the integration over the physical domain is sub-optimal,
especially over the boundaries. Figure 8 shows the undeformed and deformed configurations of the cylinder where it
can be seen that at least two background elements span the thickness of the cylinder in the undeformed configura-
tion whereas only a single element contains the full thickness of the cylinder in the deformed configuration for this
problem setup.

The problem is run using the traditional (unscaled) and new arc-length approaches for the same problem setup. The
traditional approach takes 299 load steps to reach the desired final inner stretch, whilst the new approach takes only 233
load steps in order to complete the analysis. As mentioned above, the results from the new approach fit the analytical
solution very well, a similar set of results are also seen with the traditional approach, however, more erratic fluctua-
tions in the curve are seen for the highly deformed state (𝜆a > 2.6). In order to compare the two approaches, a study
is performed over the first 100 load steps of the analysis for mesh sizes of 0.1, 0.05, 0.025 and 0.0125 m, each for ini-
tial MP distributions of 62 and 82 MPs per element. Figure 9 shows the inner stretch of the cylinder after 100 load steps
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16 of 27 GAVIN et al.

F I G U R E 8 Two-dimensional hyperelastic cylinder under internal pressure in the undeformed (blue) and deformed (red) configurations.

F I G U R E 9 Two-dimensional hyperelastic cylinder under internal pressure comparison inner stretch after 100 load steps for both
traditional and new arc-length approaches for varying mesh sizes and initial MP distributions.

for varying mesh size and initial distribution. The results shown in Figure 9 does not represent a plot of accuracy and
is not representative of the convergence of the analyses to the exact solution. By showing the inner stretch of the cylin-
der after 100 load steps, it is possible to see the sensitivity of the arc-length approaches (both the traditional and new
approaches) to the discretisation of the problem with the scaled (new) approach displaying much less sensitivity to mesh
refinement and changes in MP distribution compared to the unscaled (traditional) approach. It is clear to see that the
traditional approach is consistently slower in terms of progression along the equilibrium path due to the fact that the
displacement of the cylinder domain is limited by the large nodal displacements of partially filled elements accounting
for the majority of the allowed nodal displacements in each load step. Using the new arc-length approach also produces
more consistent results when varying the initial MP displacements as seen in Figure 9 where for the case of 1∕h = 101,
there is a significant difference between the calculated inner stretches with the traditional approach for the two MP dis-
tributions whereas the inner stretches for the new approach are much closer. As the mesh is refined, the difference in
inner stretches for the two MP distributions reduce, producing virtually the same results while the traditional approach
still shows a disparity in results for the two MP distributions. While both the traditional and new approaches produce the
same equilibrium curve, it is clear that scaling nodal displacements results in a more efficient analysis which requires less
load steps overall and allows for the use of coarser meshes and a reduction in the number of MPs. The benefits of scal-
ing the nodal displacement in the arc-length constraint will also be shown in Section 4.3, including a load-displacement
curve for the traditional and new arc-length approaches to demonstrate their respective progression along the
equilibrium path.
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4.3 Double notched plate under tension

The third numerical example is the plane strain, elasto-plastic analysis of a deep double-edge-notched plate under tensile
load to demonstrate the ability of the MP-BALM implementation to track a snap-through response when modelling an
elasto-plastic material. The specimen has an overall width, 2w, of 10 m and length, 2l, of 30 m. Two deep notches are
made along the horizontal midline of the plate creating a ligament with a width, 2b, of 2 m. The geometry of the plate
is shown in Figure 10A, which also shows a pressure, P, applied along the top and bottom edges of the plate. Due to the
symmetry of the problem, one quarter of the geometry is modelled as shown in Figure 10A. The computational setup of
the problem is shown in Figure 10B with roller boundary conditions applied along the side of the mesh where x = 0 m
and only part of the section along the bottom of the mesh which corresponds to the ligament of the plate, y = 0 m and
x ≤ 1 m. The physical domain is discretised using 2 × 2 evenly spaced generalised interpolation material points within
each background mesh element. The problem is analysed using an F-bar implementation26 in order to reduce the effect
of volumetric locking. The plate material is modelled using a Henky model with a von Mises plastic model using with
Young’s modulus, E, of 206.9 GPa, a Poisson’s ratio, 𝜈, of 0.29, and a uniaxial yield stress, 𝜎y, of 0.45 GPa. An initial pressure
of 50 MPa is applied by integrating the traction over a B-spline boundary generated along the top edge of the domain and
the simulation is run until a top edge displacement of 0.2 m is achieved.

The simulation is run four times with multiple stages of mesh refinement, starting at a mesh size of 2−1 m and down
to a mesh size of 2−4 m, with the mesh size reducing by a factor of 2 each time. Throughout each simulation, the reaction
force along the nodes which are situated along the ligament (i.e., where the roller boundary conditions are applied along
the bottom of the mesh) are calculated as the top edge of the plate is displaced due to the applied force. Letting R denote
the total reaction force of the restrained edge of the ligament, the net vertical stress through the ligament is given by

𝜎 = R
b

. (36)

The normalised load-displacement response for this problem is shown in Figure 11. The snap-through behaviour is
clearly shown for all mesh sizes with varying intensities, with only a slight snap-through behaviour seen for the mesh

(A) (B)

F I G U R E 10 Double notched plate: (A) Problem geometry and (B) computational mesh and MP distribution.
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18 of 27 GAVIN et al.

size of 2−1 m. Also shown in Figure 11 is the Prandtl limit load58 which is the analytical small strain limit load for this
problem which is controlled by the stress at the notch in which 𝜎lim ≈ 2.97𝜎y. It is not until the mesh is refined to a size
of 2−3 m that the load does not exceed the theoretical small strain load limit.

Due to the geometry of the problem, a singularity is formed at the end of the notch which is difficult to model accu-
rately. As the mesh is refined, this singularity is amplified and causes the issue of MPs separating from the base. These
points of separation can be seen in Figure 11 by the sudden changes in load-displacement response for mesh sizes 2−3 m
(point A) and 2−4 m (points B and C). This is especially prominent for the mesh size of 2−4 m as this singularity causes the
simulation to fail at a displacement of 0.15 m. Figure 12 shows the MP positions for the final load step of the simulation for
each mesh size, the stress distribution is also shown. It is clear from Figure 12A,B that the singularity is not prominent as
there is a smooth change in the MPs’ vertical position moving away from the ligament. In Figure 12C the separation of the
MPs away from the base can be seen as well as the increased separation between MPs around the singularity. Figure 12D
shows the MP distribution for the end displacement of 0.15 m as this is the point at which the simulation fails, it is clear
to see that large stress concentrations of the MPs at the end of the ligament as well as the disordering of the MPs around
the singularity.

In order to demonstrate the need for special adaptation of the arc-length method for the MPM, the double notched
plate problem is run with a mesh size of 2−1m and an initial pressure of 10 MPa over the top edge of the domain. This
problem is run twice, using the traditional arc-length constraint in (3) where there is no scaling of the nodal displace-
ments and with the arc-length constraint in (25) in which the nodal displacements are scaled based on the basis function
contributions of associated MPs. Figure 13 shows the normalised load-displacement curve for the simulation run over
100 load steps. It is clear that the case with the traditional arc-length constraint begins to stall at a vertical displace-
ment of approximately 0.02 m. After this point, the progression along the equilibrium path slows such that the physical
material of the plate shows only slight deformation over each load step. This is due to the fact that there are partially
filled elements and extremely large nodal displacements are calculated for nodes that are weakly influenced by the MPs.
Referring to (3), these large nodal displacements mean that the load factor increment must be very small in order to
satisfy the arc-length constraint. On the other hand, by weighting the calculated nodal displacements by the strength
of the node’s association with the MP domain, using (25), the effect of these large nodal displacements are mitigated,
allowing the simulation to progress along the equilibrium path much further than the unscaled case. In this case, no
ghost stabilisation is utilised in order to solely demonstrate the effect of the scaling matrix with the new arc-length
approach.

Figure 14 shows the normalised top edge displacement of the double notched plate after 100 load steps for vary-
ing mesh sizes and MP distributions with the same problem setup as above to compare the traditional and new
arc-length approaches. In order to improve the stability of the analyses, a ghost stabilisation parameter of 𝛾 = 2.069 × 106

is used (five orders of magnitude less than the Young’s modulus of the material). As ghost stabilisation essentially
incorporates extra stiffness around the boundary of the domain, the solution of the unknown nodal displacements is
improved and a reduction in large nodal displacements is seen, therefore, the stalling seen in Figure 13 is less fre-
quent. However, as seen in Figure 14, the new arc-length approach still results in more efficient analysis with further

F I G U R E 11 Double notched plate load-displacement curves for various mesh sizes.
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GAVIN et al. 19 of 27

(A) (B)

(C) (D)

F I G U R E 12 MP positions and stress distribution around the notch singularity at the end of the simulation for mesh sizes of (A) 2−1 m,
(B) 2−2 m, (C) 2−3 m and (D) 2−4 m.

F I G U R E 13 Normalised load-displacement response over 100 load steps for double notched plate problem using the traditional
arc-length approach and the new arc-length approach for a mesh size of 2−1 m.

progression along the equilibrium path for all mesh sizes and MP distributions compared to the traditional arc-length
approach. It is not until a mesh size of 2−4 m that the traditional and new arc-length approaches produce the same
displacement after 100 load steps. When using the new arc-length approach, the top edge displacement after 100 load
steps is consistent for all initial MP distributions meaning that it is reasonable to reduce the overall number of MPs
needed for the analysis compared to the traditional approach as well as having the option to increase the mesh size
to reduce the overall runtime if desired. As with the hyperelastic cylinder example, the results shown in Figure 13
are not representative of the convergence to the exact solution with mesh refinement but a means to demonstrate
the fact that the traditional arc-length approach is more sensitive to the problem discretisation compared to the new
approach.
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20 of 27 GAVIN et al.

F I G U R E 14 Double notched plate comparison of top edge displacement after 100 load steps for both traditional and new arc-length
approaches for varying mesh sizes and MP distribution.

F I G U R E 15 Problem geometry and basic mesh schematic.

4.4 Arch with applied point load

The next numerical example is a 2D arch with a plane strain assumption subjected to a point load to demonstrate the
ability to track the equilibrium path of snap-through behaviour using a force controlled scheme. This problem is akin
to the Crisfield arch1 also presented by Hrinda.59 Here we adapt the arch to be modelled with continuum elements.
A schematic of the problem geometry and mesh setup is given in Figure 15 in which the arch is formed with an inner
length, Li, and outer length, Lo, from the origin of 9.5 and 10 m respectively. The height of the inner arch wall, hi, and the
outer wall, ho, are set as 4.09 and 4.45 m respectively. The inner and outer radius of the curves formed by the arch are then
13.09 and 13.45 m respectively. The mesh is generated such that the nodes of the mesh align with the base of the arch
in order to apply fixed boundary conditions to the nodes coincident with the base of the arch. The mesh is also extended
below the line of the base of the arch to allow for further displacement past the initial height of the arch. The arch is
modelled as a Henky material with a Young’s modulus of 100 kPa and a Poisson’s ratio of 0.25. The mesh is fully populated
with each element containing 4 × 4 evenly spaced generalised interpolation material points. The points which are not
contained within the domain of the arch are then discarded in a similar fashion to the cylinder problem in Section 4.2. A
mesh of square elements each with size 2−3 m is used for the simulation.

An initial point load of 100 N is applied at the centre of the inner edge of the arch (indicated by the red arrow in
Figure 15), this load is applied evenly between the bottom-most MPs in the arch, one either side of the centre line. The
simulation is run until the MPs which have the load applied to them have displaced by 8.2 m, taking a total of 139
load steps to complete. Figure 16 shows the load-displacement response at the MPs at which the load is applied. Four
stages are highlighted along the equilibrium path, the unscaled MP deformations at each of these four points are shown
in Figure 17.

From Figure 16 it is clear to see that there is a snap-through response as the arch is pulled down and through the
baseline. A peak load is encountered at point (a) (at load step 19), where the centre of the arch has been pulled down and
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GAVIN et al. 21 of 27

F I G U R E 16 Load-displacement response of elastic arch with applied point load.

(A) (B)

(C) (D)

F I G U R E 17 Unscaled MP deformation for shallow arch problem at stages (A) load step 19, (B) load step 48, (C) load step 84 and (D)
load step 139 (see Figure 16 for position along equilibrium path).

bulging of the arch can be seen on the left and right sides of the arch. After this point, the snap-through response can be
observed as the material softens and deforms through point (b) (at load step 48), is pulled through the base of the arch
until the next stationary point at point (c) (at load step 84). After point (c), the material begins to stiffen again as the load
required to further deform the arch begins to increase until the centre of the arch has displaced by 8.2 m at point (d) (at
load step 139).

4.5 Slope failure

The final numerical example examines the deformation of a 45◦ elasto-plastic, plane strain slope collapse due to gravi-
tational loading. The geometry of the slope is shown in Figure 18 where roller boundary conditions are applied over the
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22 of 27 GAVIN et al.

F I G U R E 18 Slope geometry and boundary conditions (note that background mesh is for illustrative purposes only and does not
represent the actual size of the mesh used in the analysis).

left edge of the domain and the bottom of the domain is fully fixed. The material is represented using a von Mises yield
criterion with softening behaviour with a Young’s modulus of 1 MPa, a Poisson’s ratio of 0.33 and an initial von Mises
yield stress of 𝜎0

y = 20 kPa. The yield function is defined as

f =
√

3J2 − 𝜎y(𝜀p) = 0, (37)

where 𝜎y(𝜀p) = 𝜎
0
y +H𝜀

p is the current yield stress of the material, 𝜀p =
√

2
3
tr([𝜀p][𝜀p]) is the magnitude of the accu-

mulated plastic strains, 𝜎0
y is the initial yield stress, H is the plastic hardening (or softening) modulus, J2 is the second

invariant of the deviatoric stress

J2 =
1
2

tr([s][s]), where [s] = [𝜏] − 1
3

tr([𝜏]) (38)

and [𝜏] is the Kirchhoff stress. A strain softening modulus of H = −50 kPa‡ is used and a minimum von Mises yield stress
of 13.3 kPa is set (the initial yield stress reduced by a factor of 1.5). A weaker region (x ∈ [14.5, 15]) at the toe of the slope
is introduced, as shown by the red area in Figure 18, where the yield stress is reduced to 𝜎y = 18 kPa. The material has a
uniform initial density of 2400 kg m−3. It is worth noting that this problem is provided for the purpose of demonstrating
the MP-BALM and is not representative of any real-life slope due to only using the J2 yield criterion as the basis of the
material failure behaviour.

The slope domain is generated by fully populating the background mesh (with a mesh size of h = 2−2 m) with 4 × 4
evenly spaced generalised interpolation material points per element and removing MPs which are not contained within
the desired area, giving a total of 16,040 MPs. The problem is run with both load control and the MP-BALM schemes
with gravitational loading of g = 9.81 m s−2. For both cases, the deformation of four positions on the slope are tracked
through the analysis, the points A = (0, 5) m, B = (5, 5) m, C = (10, 5) m and D = (12.5, 2.5) m are shown in Figure 18.
Ghost stabilisation is utilised for both cases with a ghost stabilisation parameter set to 𝛾 = 1 (six orders of magnitude less
than the Young’s modulus of the material). The problem is analysed using an F-bar implementation in order to reduce
the effect of volumetric locking.

For the load controlled scheme, the gravitational load is applied over 160 equal load steps and the problem
is run until convergence over a load step is not achieved over 10 Newton-Raphson iterations. This occurs after
79 load steps with no convergence seen in load step 80. Figure 19 shows the displacement magnitude of posi-
tions A, B, C and D as gravity is increasingly applied up to load step 79 and are shown as red crosses in
each plot.

The problem is then run with the MP-BALM with an initial gravitational load of g0 = 9.81
160

ms−2, which is equivalent
to the initial gravitational load for the load controlled case. The analysis is run until position C has displaced by 0.5 m,
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GAVIN et al. 23 of 27

F I G U R E 19 Load-displacement responses at specified positions around edge of slope domain throughout elasto-plastic collapse.

a significant increase from the maximum displacement seen by the load controlled case, which fails at a position C dis-
placement magnitude of approximately 0.19 m. The MP-BALM analysis took a total of 477 load steps to achieve a position
C displacement magnitude of 0.5 m. The load-displacement curves of the MP-BALM analysis are shown in Figure 19 and
are depicted as solid black lines in each plot. It is worth reinforcing the point that the reported displacements in Figure 19
are the magnitudes of the displacements of the positions in question. In terms of local deformation, it is clear that posi-
tions A and B display local snap-back responses and positions C and D undergo snap-through responses. The difference
in the load-displacement response between the arc-length and load controlled cases are stark and can be explained that
at the point at which the paths begin to diverge that the material points will continue to displace with smaller increases in
gravity than imposed by the load-controlled case. Implicit MPMs satisfy equilibrium using the state of the material points
at the end of the current load step, where the stress carried by the material at their deformed positions are in equilibrium
with the externally applied load. Once this equilibrium point has been found the points are then advected (displaced)
through the mesh based on the incremental nodal displacements associated with the current step. However, once the
material point positions are updated there is no guarantee that the stresses at the material points are still in equilibrium
with the externally applied loads; this is the case for all MPMs, not just implicit MPMs or the implementation considered
in this paper. This can be clearly seen by considering Equation (18) where the body forces are transferred to the nodes
using the basis functions whereas the stress in the material is transferred using the derivatives of the basis functions and
once the material points have changed position within the element it is likely, apart from for trivial cases, that there will
be a non-zero residual at the start of the next step without increasing the imposed load. This non-zero residual will lead
to additional material displacement in order to satisfy (18) without any increase in load. Increasing the load will lead to
a different equilibrium path, as seen in Figure 19. The use of the MP-BALM ensures that the unbounded displacements
seen by the load controlled schemes are contained due to the fact that the displacements of the domain are limited within
each load step, this means that the simulation is stabilised around the critical point where the unbounded displacements
begin.

Figure 20 shows the deformed configurations of the slope collapse analysis using a load controlled scheme (left col-
umn) and the MP-BALM (right column). For each analysis the final shear stress (top) and yield stress (bottom) states
are shown. It is clear from Figure 20 that the MP-BALM results in far greater overall displacement with a larger failure
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24 of 27 GAVIN et al.

F I G U R E 20 Final deformed configurations of the slope collapse problem for the load controlled analysis (left column) and MP-BALM
analysis (right column). For each analysis, the shear stress (top row) and yield stress (bottom row) is shown.

band being seen in the material and importantly at a lower load compared to the load-controlled case, identifying a more
critical failure mode for the slope.

5 CONCLUSION

This paper presents an arc-length method for the MPM framework to expand the physical problems and loading scenar-
ios that the MPM can solve, notably those involving snap-through and snap-back responses. Simply implementing the
arc-length method into the MPM as it is given in the FEM approach is not suitable due to the fact that partially filled
elements are a common feature in a MPM simulation. These partially filled elements mean that elements around the
boundary of the domain will be poorly integrated, understiff and have the potential to experience extremely large nodal
displacements. While the effect of the large nodal displacements are reduced when mapping nodal displacements to the
MP positions, the effects are seen within the arc-length constraint as the nodal displacements account for the major-
ity of the allowed displacement based on the prescribed arc length. Therefore, the arc-length constraint is reformulated
such that it is based on MP displacements, essentially scaling the nodal displacements based on the node’s influence
on the physical domain. As the MPM involves the resetting of the background mesh at the end of each load step, nodal
displacement information is lost due to the fact that the MPs have changed positions and the nodal displacements can-
not simply be carried over from the previous load step. This means that in order to use the secant path predictor, an
estimate for the nodal displacements for the previous load step based on the current MP positions are needed. This
nodal displacement reconstruction is carried out at the start of each load step and uses a least squares weighted residual
technique.

A simple benchmark test of a 2D column under self weight is given to show that the MP-BALM is able to model stan-
dard problems that the MPM with a linear solver has been proven to solve. The expansion of a hyperelastic cylinder which
demonstrates a snap-through response is shown and a comparison was made between the traditional arc-length scheme
and the MP-BALM scheme presented in this paper. It is clear that through scaling the nodal displacement increments, a
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GAVIN et al. 25 of 27

more robust and efficient analysis is achieved. More complex problems are shown to demonstrate that the MP-BALM can
model problems with more complex deformation and model snap-through responses with problems of a double notched
plate under tension, the deflection of a shallow arch and collapse of a slope including material softening. The final case has
demonstrated the ability of the method to control the displacement response of a gravity-driven problem with unbounded
deformation, typically of geotechnical slope collapse, which is not possible with conventional load controlled quasi-static
methods.

As is the case for many arc-length papers in the current literature, the arc-length method has only been presented for
the problems with load control. The case of displacement controlled problems is much more involved with an alternative
arc-length constraint equation needed, please see Pretti et al.16 for more details on the formulation of a displacement
controlled arc-length method.
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ENDNOTES
∗Naming convention taken from the literature, see Crisfield.7 The Newton-Raphson displacement is the vector resulting from the elimina-
tion of the out-of-balance forces, while the tangential displacement is the vector tangential to the Newton-Raphson displacement on the
load-displacement curve.
†Please note that 𝜆 refers to stretch is not the same as 𝜆 which denotes the load factor for the arc-length method. The Greek letter 𝜆 is
conventionally used in both cases and a distinction has been made by the authors in the hope to avoid confusion.
‡A negative H value represents softening behaviour.
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