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Abstract—Passive sensing using communication signal wave-
forms is considered to be a promising technology for target mon-
itoring in Internet-of-Everything. Conventional passive sensing
schemes require accurate estimation of the time difference of ar-
rival (TDOA) and frequency difference of arrival (FDOA), which
is leading to high complexity but low accuracy. In this paper, a
robust passive sensing algorithm using multiple illumination of
opportunities is proposed to improve the detection performance
while avoiding separate estimation of TDOA and FDOA. The
proposed method first combines the linear constrained minimum
variance adaptive filter with the wide nulling algorithm to achieve
target direction finding while separating the direct wave and
suppressing multipath interference. Then, the Linear Canonical
Transformation-based Cross Ambiguity Function (LCTCAF) is
employed to estimate the distance and radial velocity of the
target. Relying on the relationship between distance to time
and velocity to Doppler, a Distance-Velocity transformation-based
Cross Ambiguity Function (DVCAF) is introduced to characterize
the distance and radial velocity of the target. Finally, a spectral
peak search scheme is exploited in DVCAF to estimate the time
delay and Doppler shift so as to identify the target parameters
directly. Its’ Cramer-Rao Low Bound is derived. Simulation
results validate that the performance of the proposed algorithm
outperforms the conventional estimators based on the cross
ambiguity function.

Index Terms—Communication signal waveforms, cross ambi-
guity function (CAF), Internet-of-Everything, parameter estima-
tion, passive target sensing.

I. INTRODUCTION

W ITH the continuous innovation of information and
communication technologies, the Internet of Things

(IoT) is affecting the many aspects of social life space [1], [2].
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Internet-of-Everything (IoE) has become an essential aspect
of wireless networks [3]. The proliferation of IoE applications
has resulted in an exponential rise in the number of intelligent
devices and intelligent systems [4]–[6]. Radar system is a
typical intelligent system, which can efficiently sense and track
valuable targets in the monitored area and thus has an attractive
application perspective in IoT, such as smart cities, smart
homes, smart manufacturing, smart transportation. Passive
target sensing, or passive bistatic radar, is an important setting
of radar [7]. In particular, performing target sensing using
communication signal waveforms is a promising paradigm,
which allows target sensing and communication to share
common hardware modules and signal processing modules,
and improve the spectrum efficiency by utilizing the same
waveform for both purposes.

The passive sensing paradigm directly exploits various
existing communication signal waveforms in the ambient
radio environment to detect the interested target, providing
numerous advantages such as strong low-altitude detection
capability, effective anti-stealth potential, robust anti-jamming
capability, and flexible installation and deployment options.
With the rapid development of radio and television broadcast-
ing, mobile communication, navigation communication and
satellite technology, the available illuminators of opportunities
continue to expand, including FM broadcasting, Digital Audio
Broadcasting (DAB), Digital Video Broadcasting-Terrestrial
(DVB-T), China Mobile Multimedia Broadcasting (CMMB),
Wi-Fi and many other types [8], [9]. The diverse range of
illuminators possess distinctive benefits in regard to coverage
range, resolution capabilities, and application environments,
which promotes the advancement of the passive radar paradig-
m in the field of target detection.

In the passive radar paradigm, the estimation of parameters
related to the position and velocity of the target from the echo
signals is essential to achieve target detection and localization.
The parameters include Direction of Arrival (DOA), Time
Difference of Arrival (TDOA), and Frequency Difference of
Arrival (FDOA). A number of effective methods have been
developed in the literature. In [10], Qu et al. proposed a
localization algorithm based on iterative constrained weighted
least squares, which have high estimation accuracy and less
computation results. In order to address the system errors in
passive positioning systems, FDOA and TDOA were used to
improve the situation according to [11], [12]. In [13], [14],
Code Division Multiple Access (CDMA) signals were applied
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for the passive positioning systems to enhance the flexibility
and effectiveness of passive positioning, as well as its anti-
jamming performance. In [15], Liu et al. proposed an external
illumination positioning algorithm based on FDOA and ap-
plied it to a single satellite positioning system. The results
proved that this algorithm has high estimation accuracy and
faster convergence speed compared to traditional algorithms.
In [16] and [17], FDOA was combined with TDOA and the
application scenarios are extended to dual-satellite systems.
In [18], Shamaei et al. utilized the received cellular Long
Term Evolution (LTE) signals to jointly extract the TOA
and DOA. This framework introduced three tracking loops to
refine the estimates. In [19], Gogineni et al. used Universal
Mobile Telecommunications System (UMTS) signals as ex-
ternal illuminators in multi-base radar systems, corrected the
estimation errors of time delay and Doppler shift, and provided
the error-corrected Cramer-Rao Lower Bound (CRLB). In
[20], a novel passive target detection scheme was presented
based on a real-life cooperative 5G network. This scheme
employed a 5G signal as external illuminator of opportunity.
In [21], Sendall et al. utilized FM frequency modulation
broadcast as an external illuminator and proposed a target
localization technique based on time delay and Doppler shift,
and the proposed method has been proven to be more accurate
than distance-only or Doppler-only techniques. In [22], Shi
et al. utilized FM commercial radio signals to compute the
joint CRLB of the target parameter estimation error. A direct
target positioning method different from traditional two-step
estimation methods is proposed in [23], which characterize the
target’s position and speed-related parameters in the signal,
and directly estimate the position and speed of the target
through iterative search. In [24]–[26], the Kalman filter was
introduced and improved in passive positioning systems, and
the target’s position were solved through recursive filtering and
adaptive filtering methods. In [27], Yu et al. applied the virtual
time reversal method to passive localization and achieved rapid
passive localization. However, many existing algorithms are
designed using only one type of illuminator, failing to make
the most of the multiple types available illuminators in the
electromagnetic spectrum. As a result, the estimation accuracy
of the existing methods is unsatisfactory, compromising the
reliability of the positioning.

To improve the target sensing performance, this paper first
proposes a Linear Canonical Transformation-based Cross Am-
biguity Function (LCTCAF) based on the traditional method,
and then combines the idea of Direct Positioning Determi-
nation (DPD) to propose a Distance-Velocity transformation-
based Cross Ambiguity Function (DVCAF) method. DVCAF
characterizes the time delay and frequency shift in terms of
distance and velocity based on the relationship between the
distance and time delay, velocity and frequency shift, and
substitutes them into the echo signal equation, in order to
realize the direct estimation of distance and velocity. Since
the estimated distances from different illuminators are sim-
ilar, they can be fused to improve the estimation accuracy.
Compared with the traditional method, the proposed method
only performs one estimation operation and has a strong noise
suppression capability. Thus, this method can theoretically
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Fig. 1. Framework of passive sensing system based on multiple illuminators.

improve the detection accuracy. The main motivations and
contributions of this paper are summarized as follows.
• We develop a target detection algorithm based on TDOA

and FDOA, which exploits multiple non-cooperative elec-
tromagnetic signals to detect targets, including FM radio,
DVB-T radio, and GSM communication base stations.

• To accommodate low Signal-to-Noise Ratio (SNR) sce-
narios, LCTCAF is introduced to estimate time delay
and Doppler shift associated with the distance and radial
velocity of the flight target accurately.

• The DVCAF method is proposed to directly estimate the
distance and velocity of the target, which avoids the time
overhead and error accumulation caused by step-by-step
estimation.

• We derive the CRLB for the proposed DVCAF and the
LCTCAF in this scenario and verify the effectiveness of
the proposed methods through simulation experiments.

The remainder of this paper is organized as follows. In
Section II, we present the system model and the signal model.
In Section III, we detailly discuss the estimation of distance
and radial velocity based on LCTCAF. In Section IV, we
analyze the estimation of distance and radial velocity based
on DVCAF. In Section V, we talk about the estimation of
the velocity of the moving target. In Section VI, we discuss
the CRLB for the estimation of localization parameters of the
moving target. Simulation experiment results are presented and
analyzed in Section VII. Moreover, the conclusion of the paper
is in Section VIII.

II. SYSTEM MODEL

A. System model

The considered system is illustrated in Fig. 1. This system
consists of three external illuminators (DVB-T radio, FM
radio, and GSM) and a receiving station. The receiving station
has two channels: monitoring channel and reference channel.
The communication waveforms from external illuminators are
illuminated on the target, and the reflected echo signals are
received by the receiving station. The monitoring channel re-
ceives the target echo waveforms, while the reference channel
receives the direct waveforms from the external illuminator.
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Since the orientation of external illuminators is known, we
only concentrate on the monitoring channel.

B. signal model

Considering the presence of multiple direct waves in the
reference channel, it is necessary to first separate the different
direct waves before obtaining pure direct wave signals. The
operating frequencies of these heterogeneous illuminators are
different. Thus, a filter can be used to separate them. In this
case, the direct signal waveform of the ith illuminator xi(t)
can be expressed as

xi(t) = bisi(t) + ni(t), (1)

where bi denotes the amplitude of the ith direct wave signal,
si(t) denotes the direct wave signal of the ith illuminator
(DVB-T radio, FM radio, GSM), and ni(t) denotes the ith
additive zero-mean Gaussian noise.

The echo signal y(t) in the monitoring channel can be
expressed as

y(t) =
M∑
i=1

aisi(t−τi)e
−j2πfdit+

M∑
i=1

disi(t)

+
M∑
i=1

N∑
j=1

mijsi(t−τij) + n(t),

(2)

where si(t − τi) is the echo signal of different illuminators,
τi is the time delay of the echo signal of the ith illuminator
relative to the direct wave signal, fdi is the Doppler shift of
the echo signal corresponding to the direct wave, ai denotes
the amplitude of the echo signal of the ith illuminator; di is
the amplitude of different direct wave signals in the reference
channel,

∑M
i=1

∑N
j=1 misi(t− τij) denotes the multipath sig-

nal component in the echo signal, H is the number of path
of the multipath channel, mij is the amplitude of the jth path
signal of the direct wave signal of the ith illuminator, τij is
the time delay of the jth path signal of the ith illuminator
relative to the direct wave.

Because the illumination signal is not for detection, the
echo signal in the monitoring channel is usually weak. Its’
power is much lower than that of direct wave interference
and multipath interference. In order to extract the echo signal
in the monitoring channel, we need to suppress the direct
wave interference and multipath interference. In the scenario
of low SNR, spatial filtering is used, among which the adaptive
method is a highly effective spatial filtering method [28]. To
deal with direct wave interference, the Linearly Constrained
Minimum Variance (LCMV) algorithm can be used to con-
strain the direction of the direct wave emitted by the external
illuminators [29]. To deal with multipath interference, it is
necessary to use a wide-nulling method to produce nulling in
the direction of multipath interference for suppression [30].
After the suppression of the two kinds of interference, we can
obtain a better echo signal as

y(t) =

M∑
i=1

aisi(t− τi)e
−j2πfdit + n(t). (3)

III. JOINT DISTANCE AND RADIAL VELOCITY ESTIMATION
BASED ON LCTCAF

A. Linear Canonical Transformation-based Cross Ambiguity
Function

Because the propagation path of the echo signal is different
from the direct wave signal, there will be a time delay relative
to the direct wave signal. At the same time, because of
the relative velocity between the target and the transmitting
station, the echo signal will also have a frequency offset, that
is, Doppler shift. In order to improve the estimation accuracy
in the low SNR environment, we first transform the signal and
then construct a linear canonical transformation-based cross
ambiguity function to process the echo signal and direct wave
signal. The linear canonical transformation of f(t) can be
expressed as [31]

F(a,b,c,d)(u) = L(a,b,c,d)(f(t))

=

{√
1

j2πbe
j( d

2bu
2− 1

but+
a
2b t

2)f(t)dt b ̸= 0,
√
dej

cd
2 u2

f(du) b = 0,

(4)

where the parameters a, b, c and d satisfy ad−bc = 1, and the
signal is transformed from the time domain to u domain, which
is not physically defined by a linear canonical transformation.

The cross ambiguity function (CAF) is a two-dimensional
function of time delay and Doppler shift, which enables the
detection of signals based on the correlation between the
signals, and the localization situations can be obtained based
on the spectral peak search at the same time. The LCTCAF
AL(a,b,c,d)(u,w) can be obtained for the linear canonical
transformed signal, but it is worth noting that in the LCTCAF,
u and w only have mathematical meaning but not physical
meaning. However, passive detection estimates the velocity
of the target position by estimating the time delay and the
Doppler shift. Therefore, u and w alone can not directly
determine the estimated values of delay and Doppler. It is
necessary to find out the corresponding relationship between
u,w, and time delay τ , and Doppler shift f .

By decomposing the free parameter matrix, we can obtain
[31] [

a b
c d

]
=

[
1 0

d−1
b 1

]
·
[
1 b
0 1

]
·
[

1 0
a−1
b 1

]
. (5)

According to the superposition of linear canonical transfor-
mation, we can obtain

L(a,b,c,d)(f(t))

= L(1,0, d−1
b ,1)(L(1,b,0,1)(L(1,0, a−1

b ,1)(f(t)))).
(6)

This is equivalent to applying of linear canonical transforma-
tion three times to f(t).

According to the product property and the convolution
property of the linear canonical transformation and the cross
ambiguity function [31], we can infer the corresponding rela-
tionship of the LCTCAF and CAF, as

AL(a,b,c,d)(τ, v) = Af (dτ − bv,−cτ + av). (7)

It can be seen that the LCTCAF of the signal can be regarded
as the translation and expansion of the CAF of the signal,
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and the value of ambiguity function spectrum is a one-to-
one correspondence. This indicates that LCTCAF can still
be used to estimate the echo parameters of moving targets.
Note that the horizontal and vertical coordinate axes of the
spectrum of LCTCAF are not the time domain parameters and
the frequency domain parameters but a mathematically defined
domain with no actual physical meaning, which is essentially
the stretching transformation and Doppler shift of CAF. By
transforming the parameters of (7), the relationship between
LCTCAF and CAF can be expressed as

AL(a,b,c,d)(u,w) = Af (du− bw,−cu+ aw). (8)

Therefore, relying on the spectral peak search of the result
processed by LCTCAF, the searched optimal values of u and
w can be transformed into the estimated value of time delay
τ and Doppler shift f , using

τ = du− bw, (9)

f = −cu+ aw. (10)

The specific steps of the spectral peak search are summa-
rized in Algorithm 1.

Algorithm 1 The spectral peak search
1: Initialize parameters and obtain the result of Cross Am-

biguity Function;
2: Store the data of the two-dimensional section of the Cross

Ambiguity Function into the array W ′, where the ith
element is denoted as wi;

3: Make a backward difference on the elements in the array
W ′ and deposit the result into the array W ′′, the jth ele-
ment of the array is denoted as w′′

j , and w′′
j = w′

i−w′
i+1.

4: Set the elements less than zero in W ′′ to zero, count
the number of elements of the array w′′ that is greater
than zero and record them as n, and then transform the n

elements as η = 1
n

∑n
j=1Wj

′′, w′′
j = w′′

j − (η)2

w′′
j

.
5: Repeat the operation of Step 3 until n = 1, and output

the following table of the elements greater than zero as
the result of the spectral peak search.

B. Distance and radial velocity estimation

In the application scenario targeted by this method, the
geometric relationship between the target, the illuminator, and
the receiving station is shown in Fig. 2, and it satisfies the
following realtionship{

Rt +Rr = L+ cτ

R2
t = R2

r + L2 − 2RrLcos θR,
(11)

where θR denotes the angle between the line of the illuminator
and the target and the line of the receiving antenna and the
target, L denotes the distance between the receiving station
and the illuminator, Rt denotes the distance between the target
and the illuminator, and Rr denotes the distance between the
target and the receiving station.

DVB-TDVB-T
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Fig. 2. The geometric relationship diagram between the target, illuminator,
and receiving station.

It can be obtained by the transformation that

Rr =
c2τ2 + 2cτ

2(L+ cτ − lcos θR)
. (12)

The radial velocity vd and the Doppler shift f satisfy

vd = λfd, (13)

where λ denotes the wavelength of the illumination signal.
According to (12) and (13), the time delay estimate v and

the Doppler shift estimate f can be converted into the distance
estimate R and the radial velocity estimate v. Because the
position and signal wavelength of different illuminators are
different, the estimated umax, wmax of different illuminators
are different from each other, and the estimated values of time
delay vi and Doppler shift fdi are also different, the subscript i
denotes the ith radiation source. However, after converting vi,
fdi into the distance and radial velocity estimates, the distance
estimation Ri of different illuminators are theoretically the
same.

The distance estimation Ri of different illuminators can be
weighted fused by a weighted fusion method that minimizes
the sum of Mean Square Error (MSE). The weight correspond-
ing to the estimated result Ri of the ith illuminator is

w∗
i =

1

PiP̃
, (14)

Pi = E[(R− R̃i)
2], (15)

P̃ =

M ′∑
k=1

1

Pk
, (16)

where E{·} denotes mathematical expectation, R denotes the
average value of the estimated distance of different illumina-
tors.

In conclusion, the main procedure of the LCTCAF algorith-
m is summarized in Algorithm 2.

IV. JOINT DISTANCE AND RADIAL VELOCITY ESTIMATION
BASED ON THE DVCAF

A. Distance-Velocity transformation-based Cross Ambiguity
Function

In Section III, we proposed a target localization algorithm
based on LCTCAF. Through (8), we can find the relationship
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Algorithm 2 The LCTCAF algorithm
1: Separate direct wave signals by bandpass filters;
2: Suppress the direct wave interference and multipath inter-

ference in the echo channel by LCMV adaptive filtering
algorithm and wide nulling algorithm. And obtain the two-
dimensional DOA information of echo signal by frequency
scanning;

3: Process different direct waves and echoes by LCTCAF,
and obtain the peak value of three-dimensional spectrum
by spectral peak search, then obtain the optimal value of
u and w;

4: Convert the optimal value of u and w to the estimated
value of time delay v and the estimated value of frequency
shift fdi according to (9) and (10);

5: Convert the estimated value of time delay v and the
estimated value of frequency shift fdi to the estimated
value of distance Ri and the estimated value of radial
velocity Vdi according to (12) and (13) ;

6: Fuse the estimated value of distance Ri of different
illuminators according to (14) ;

between LCTCAF and CAF so that we can convert LCTCAF
to CAF by scaling. The CAF of the direct wave signal and
echo signal of an illuminator is

χi(τ, f) =

∫ ∞

−∞
x∗
t (t)xi(t+ τ)ej2πftdt

=

∫ ∞

−∞
x∗
t (t)bisi(t+ τ)ej2πftdt,

(17)

where τ and f are the time delay and the Doppler shift of the
direct wave signal. To simplify it, we have

χi(τ, f)

=

∫ ∞

−∞
(
M∑
i=1

ais
∗
i (t−τi)e

j2πfdit+v(t))bisi(t+τ)e−j2πftdt

=

∫ ∞

−∞
aibis

∗
i (t+ τi)si(t+ τ)e−j2π(f−fdi)tdt,

(18)

Due to the same process for each illuminator, we can deduce
a kind of illuminator first, and (18) can be simplified as

χi(τ, f) =

∫ ∞

−∞
s∗(t+ τi)s(t+ τ)e−j2π(f−fdi)tdt. (19)

When τ=τi and f = fd, χi(τ, f) takes the maximum value,
so the CAF can be constructed to estimate the time delay and
the Doppler shift of echo signals from different illuminators
by changing the time delay and the Doppler shift of the
direct wave signals, and then combine the results of two-
dimensional DOA estimation to obtain the position and the
radial velocity of the target respectively. Finally, the location
results of different illuminators are fused with the fusion
algorithm so as to realize the localization of the target.

However, this method is a two-step method, which requires
estimating the time delay and Doppler parameters first and
then making a fusion estimation after transforming the time
delay and Doppler estimation results into the estimation of the
position and velocity of the target. Each estimation process is

accompanied by a certain accuracy loss. In order to reduce
the accuracy loss of the estimation, we propose the DVCAF
in this paper.

By transforming (12) and (13), it can be obtained that

τ =

√
L2 +R2

r − 2RrLcos θR +Rr − L

c
, (20)

f =
vd
λ
, (21)

where λ denotes the wavelength of the signal of the illumina-
tor.

By substituting both the mapping functions of time delay to
distance and the mapping function of Doppler shift to radial
velocity into the equation of CAF, it can be obtained that

χ(τ,f)=

∫ ∞

−∞
s∗(t+

√
L2+R2

r−2RrLcosθR+Rr−L

c
)

s(t+τ)ej2π(f−
vd
λ )dt,

(22)

Since L and λ are all known and θR has been estimated
by the method proposed in Section III, we no longer need to
search for τ and f . Instead, we can directly search for the
distance from the target to the receiving station Rt and the
radial velocity vd of the target.

χ(R, v) =

∫ ∞

−∞
s∗(t+

√
L2+R2

r−2RrLcos θR+Rr−L

c
)

s(t+

√
L2+R2−2RLcos θR+R−L

c
)ej2π(

v
λ− vd

λ )dt.

(23)

In (23), Rr denotes the real distance to be estimated, and
vd denotes the radial velocity of the target to be estimated.
Obviously, when R = Rr and v = vd, the objective function
χ(R, v) obtains the maximum value.

B. Feature level fusion of multiple types illuminators

In this part, we propose a new estimation method. After
the transformation in (20) and (21), the estimation results
of different illuminators are unified. That is, the distance
estimation results of different illumination signals are all the
same in theory. Thus, different direct waves and echo signals
can be directly processed by the DVCAF, and then the sum
of different DVCAF can be obtained as

χ(R, v1 · · · vi) =
M∑
i=0

χ(i)(R, vi), (24)

where χ(i)(R, vi) denotes the DVCAF of the ith illuminator
and the echo signal. It is worth mentioning that the expected
estimate of distance is the same for all illuminators. However,
the expected estimate of radial velocity is not the same, so
there may be multiple peaks in the velocity dimension, and
the correct result may not be obtained for the illuminator
CAF with velocity sub-peaks. Therefore, the idea of this
method is only to use the hybrid ambiguity function to obtain
its distance estimation, then substitute it into the respective
DVCAF function to get its velocity section, and then search
its peak value as the radial velocity estimation value.
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Fig. 3. The velocity decomposition diagram of the target in 3D space.

In conclusion, the main procedure of estimating distance
and radial velocity by DVCAF are summarized in Algorithm
3.

Algorithm 3 Estimating distance and radial velocity by DV-
CAF algorithm

1: Separate direct wave signals by bandpass filters;
2: Suppress the direct wave interference and multipath inter-

ference in the echo channel by LCMV adaptive filtering
algorithm and wide nulling algorithm. And obtain the
two-dimensional DOA information of the echo signal by
frequency scanning;

3: Use the DVCAF shown in (23) to process different direct
waves and echoes, then superimpose the obtained three-
dimensional maps;

4: Obtain the peak of the hybrid DVCAF function by spectral
peak research and obtain the estimated value of the
distance R̂;

5: Intercept the two-dimensional section of R = R̂ in the
DVCAF function of each illuminator, and search for the
peak to determine the estimated radial velocity v̂di;

V. VELOCITY ESTIMATION OF THE MOVING TARGET

After the distance between the target and the receiving
station Rr and the radial velocity of the target vdi are obtained
by spectral peak search, the position of the target in the three-
dimensional space can be solved as

Rr =
√
(x− xi)2 + (y − yi)2 + (z − zi)2

Rt =
√
(x− xs)2 + (y − ys)2 + (z − zs)2

L =
√
(xs − xi)2 + (ys − yi)2 + (zs − zi)2,

(25)

where (x, y, z), (x1, y1, z1), (xi, yi, zi) denotes the coordi-
nates of the target, the receiving station and the ith illumina-
tor in the three-dimensional space respectively. The position
parameters of the receiving station and the illuminator are
known, so that the values of Rr, Rt, L are available. Thus, the
position (x, y, z) of the target in the three-dimensional space
can be obtained.

As shown in Fig.4, since the coordinates of the target in the
three-dimensional space can be solved by (25), the azimuth

angle θφi and the pitch angle θδi of the ith illuminator relative
to the target can be calculated from the coordinated of the
target and the illuminator. θφ1 denotes the azimuth angle
of the illuminator 1 relative to the target, θδ1 denotes the
pitch angle of the illuminator 1 relative to the target. The
velocity component of the target velocity in the direction of the
connection between the target and the ith external illuminator
is the estimated radial velocity vi = vdi, the relative velocity
v1 between the illuminator 1 and the target can be decomposed
into vx1,vy1,vz1 in the Cartesian three-dimensional space
coordinate system, and the solution equation can be expressed
as 

vx1 = v1cos θδ1cos θφ1

vy1 = v1cos θδ1sin θφ1

vz1 = v1sin θδ1 ,

(26)

Similarly, we can calculate the velocity component vxi,
vyi, vzi of the relative vi between the illuminator i and the
target. When the number of external illuminators i≥3, and the
connection of different illuminators to the target is not in the
same plane, the velocity v of the target can be synthesized by
the radial velocity vi corresponding to different illuminators,
which can be expressed as

vx =
I∑

i=1

vxi, (27)

vy =

I∑
i=1

vyi, (28)

vz =
I∑

i=1

yzi, (29)

v =
√
v2x + v2y + v2z . (30)

VI. CRLB OF LOCALIZATION PARAMETERS ESTIMATION

Assuming that the echo channel signal y(t) contains only
the echo signal and noise after pre-processing. Thus, y(t) is
as [32], [33]

y(t) =
M∑
i=1

aisi(t− τi)e
−j2πfdit + n(t). (31)

For the ith echo in the echo signal, its energy can be expressed
as

Ei =
∫ ∞

−∞
a2i |si(t− τi)|2dt. (32)

The autocorrelation function of the noise can be expressed
as

E{n(t)n∗(t′)} = N0δ(t− t′), (33)

where δ{·} denotes Dirac-delta function, (·)∗denotes complex
conjugate, t′ denotes a fixed value.

In the previous sections, we have derived the relationship
between distance and delay as

τi =
Rti +R− Li

c
= g(R), (34)
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fdi =
vdi
λ

= h(vdi). (35)

Substitute (34) and (35) into (31), we can obtain that

y(t) =

M∑
i=1

aisi(t− g(R))e−j2πvdit + n(t). (36)

It can be seen that the vector to be estimated is mainly
composed of distance R and radial velocity vdi, which can
be expressed as

θ = [R, vd1, vd2, vd3, L, vdM ]. (37)

The probability density function of the echo signal y(t)
can be expressed as (38) on the top of this page. Then the
algorithm of the probability density function can be expressed
as
lnp(y; θ) = KlnK

− K

N0

∫ ∞

−∞
|y(t)−

M∑
i=1

aisi(t−g(R))e−j2πh(vdi)t|2dt.
(39)

The derivative of (39) with respect to the distance R and
the radial velocity vdi can be expressed as

∂lnp(y; θ)

∂R
= − 2

N0

× Re

∫ ∞

−∞
n∗(t)

M∑
i=1

aisi(t− g(R))g′(R)e−j2πh(vdi)tdt,

(40)

∂lnp(y; θ)

∂vdi
= − 4π

N0

× Im

∫ ∞

−∞
aitn

∗(t)si(t− g(R))e−j2πh(vdi)th′(vdi)dt,
(41)

where si(t) = dsi(t)/dt , Re{g} denotes real part and Im{g}
denotes imaginary part.

When estimating unknown parameters, the CRLB of unbi-
ased estimation should satisfy

V(θ̂i)CRLB ≥ [I−1(θ)]i,j , (42)

where [I−1(θ)]i,j denotes the element of the i th row and j th
column of the Fisher Information Matrix (FIM), the element
of the m th row and n th column of the FIM can be expressed
as

[I(θ)]i,j = Ij,i = E
{
∂lnp(y; θ)

∂θi

∂lnp(y; θ)

∂θj

}
. (43)

To simplify the derivation, we present Lemma 1 as follows.
Lemma 1: If we use Ψ to represent SNR, and define the

following variables

Ψi =
Ei
N0

, (44)

Gi =
1

Ei

∫ ∞

−∞
a2i t

2|si(t)|2dt, (45)

Li =
1

Ei

∫ ∞

−∞
a2i |si(t)|2dt, (46)

Qi =
1

Ei
Im

∫ ∞

−∞
a2i tsi(t)s

∗
i (t)dt, (47)

Hi =
1

Ei
Im

∫ ∞

−∞
si(t)s

∗
i (t)dt, (48)

Pi =
1

Ei

∫ ∞

−∞
a2i |si(t)|2dt. (49)

Then, one has
Ai = Li, (50)

Bi = (Qi + g(R)Hi), (51)

Ci = (Gi + 2PIg(R)− g(R)2Ei), (52)

Thus, one has

V(R̂)CRLB =
c2

2Ψ

1
M∑
i=1

AiCi−B2
i

Ci

, (53)

V(v̂di)CRLB =
c2

2Ψ

Ai +
M∑

m=1(m ̸=i)

AmCm−B2
m

Cm

Ci

M∑
m=1

AmCm−B2
m

Cm

. (54)

The proof of Lemma 1 is shown in Appendix A.
The CRLB of the LCTCAF is the same as the traditional

two-step estimation method, and its CRLB can be expressed
as [34]

V(τ̃i)CRLB =
1

2Ψ
· Ci

AiCi −B2
i

, (55)

V(f̃di)CRLB =
1

8π2Ψ
· Ai

AiCi −B2
i

. (56)

Note that Rt and L are all constants and have no effect on the
estimation accuracy of velocity and distance, while R and fdi
are variables to be estimated, which will affect the estimation
accuracy of distance and radial velocity. Therefore, the CRLB
of distance and velocity of LCTCAF can be derived from
the representation of the CRLB of the non-random parameter
functions as follows

V(R̃i)CRLB = c2V(τ̃i)CRLB

=
c2

2Ψ
· Ci

AiCi −B2
i

,
(57)

V(ṽdi)CRLB = λi
2V(f̃di)CRLB

=
λi

2

8π2Ψ
· Ai

AiCi −B2
i

.
(58)

It is worth explaining that the traditional method first converts
the time delay and Doppler parameters into the distance
and radial velocity parameters, then synthesizes the three-
dimensional velocity of the target with different radial ve-
locities. Therefore, the CRLB of radial velocity can be used
for velocity estimation, and by transforming (54), it can be
obtained that

V(v̂di)CRLB =
λi

2

8π2Ψ

Ai +
M∑

m=1(m ̸=i)

AmCm−B2
m

Cm

Ci

M∑
m=1

AmCm−B2
m

Cm

≤ λi
2

8π2Ψ

Ai

AiCi −B2
i

= V(ṽdi)CRLB.

(59)
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p(y; θ) = Kexp{lnK}+Kexp{− 1

N0
·
∫ ∞

−∞
|y(t)−

M∑
i=1

aisi(t−g(R))e−j2πh(vdi)t|2dt}. (38)

It can be seen from the above formula that the CRLBs of the
two estimation methods are equivalent when and only when
the number of illuminators M = 1. If M > 1, the proposed
DVCAF has a lower velocity CRLB. This is because the
different radial velocity vdi of the traditional method can not
be fused when there are fewer illuminators, but the DVCAF
method improves the accuracy of vdi while fusing R. When
there are enough illuminators, the traditional method can also
use the data fusion algorithm to fuse the radial velocity, and
the velocity CRLBs of both methods are the same.

In the traditional method, M distance values are estimated
from different illuminators, and then different distance esti-
mates are fused according to (8) to (10). Finally, the CRLB
of distance estimation can be expressed as

V(R̃)CRLB =
c2

2Ψ

1
m∑
i=1

AiCi−B2
i

Ci

= V(R̂)CRLB.

(60)

VII. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
method by simulation. We select the DVB-T signal, FM signal,
and GSM signal as the test signals. The power ratio of the
three direct wave signals is 1: 0.08: 0.0025 , and the carrier
frequencies are 750MHz, 97MHz, and 955MHz, respectively.
The echo signal is 40dB weaker than that of the direct wave
signal, and the number of coherent cumulative points of the
signal is 106. The noise is additive white Gaussian. The target
distance is 10km, and the sub-velocity in the three directions
of the illuminator is 200 m/s. The SNR is set as the SNR of
the echo signal to the noise, and 500 Monte-Carlo trials are
carried out for each SNR. The Normalized Minimum Mean
Squared Error (NMSE) is used as the evaluation criterion of
the proposed method, which is defined as

NMSE =
|ŷ − y|2

y2
, (61)

where y is the expected output, ŷ is the estimated value.
Correspondingly, in order to match the NMSE and to better
show the estimation performance in the same coordinates,
we normalize the CRLB to obtain the Normalized CRLB
(NCRLB), which is expressed as

V(ϕ̂)NCRLB =
V(ϕ̂)CRLB

ϕ2
, (62)

where V(ϕ̂)CRLB is the value of CRLB, ϕ is the theoretical
value of parameter estimation.

For SNR from -50dB to 10dB, we combine CAF, LCTCAF,
and DVCAF with different external illuminators, and construct
the scenarios as follows:
• DVB-T: DVB-T–CAF, DVB-T–LCTCAF, DVB-T–

DVCAF;
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Fig. 4. The distance estimation performance with SNR for different
illuminators.

• GSM: GSM–CAF, GSM–LCTCAF, GSM–DVCAF;
• FM: FM–CAF, FM–LCTCAF, FM–DVCAF.
To serve as a control, we also give the NCRLB of the three

illuminators, which are DVB-T–NCRLB, GSM–NCRLB and
FM–NCRLB.

Fig. 4 illustrates the target distance estimation performance
for different illuminators, demonstrating that the estimation
performance of CAF, LCTCAF, and DVCAF methods all
improve with the increase of SNR. When using different
signals as external illuminators (FM signal, DVB-T signal and
GSM signal), the estimation accuracy of the three methods
reaches 10−3 at -10dB, -5dB, and 0dB, respectively. However,
the distance estimation performance of the three methods for
the same illuminator is relatively close. This is because, in
the scenario of the same single external illuminator, the three
methods are not significantly different, especially the DVCAF
estimation method is substantially the same as CAF.

Fig. 5 illustrates the target distance estimation performance
in the scenario of multiple types of external illuminators,
demonstrating that the estimation performance of CAF, LCT-
CAF, and DVCAF methods all improve with the increase
of SNR and gradually approaching NCRLB. From Fig. 5,
it can be seen that the estimation accuracy of the three
methods reaches 10−3 at -10dB. For low SNR, the estimation
performance of DVCAF is better than that of CAF and
LCTCAF. This is because both CAF and LCTCAF estimate
the time delay first without the noise suppression. When the
SNR is low, the high-power noise has a large impact on the
time delay estimation. Even though the information fusion
method is subsequently used to fuse the distance estimation
results of different illuminators, the accuracy improvement
is limited. However, DVCAF can directly mix and fuse the
ambiguity function when estimating the distance, the distance
estimates can be accumulated, but the noise background of
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Fig. 5. The distance estimation performance with SNR.
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Fig. 6. The velocity estimation performance for different methods with SNR.

different CAFs is different from each other, and when the
fusion is performed, the noise will not accumulate but will
cancel each other out. Thus, DVCAF has a good effect of noise
suppression. In addition, compared with Fig. 4, the estimation
performance of the proposed method is better than that of the
single external illuminator in the scenario of multiple external
illuminators. The computational complexity of one search of
LCTCAF is O((P+1)(2(M+1)+(M+1)/2log2(2M+1)))+
P (MN log2MN +MN log2M)) , where M is the number of
sampling points, P is the number of external illuminators,
and N is the number of cycles in the frequency domain.
And the computational complexity of one search of DVCAF
is O(PMN log2MN + MN log2M). Due to the absence of
linear canonical transformation and the smaller amount of
data processed by the spectral peak search, the computational
complexity of DVCAF is lower than that of LCTCAF.

Fig. 6 illustrates the target velocity estimation performance
in the scenario of multiple types of external illuminators,
demonstrating that CAF, LCTCAF, and DVCAF can all esti-
mate the target velocity by using multiple types of external
illuminators. With the increase of the SNR, the estimation
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Fig. 7. The distance estimation performance with coherent cumulative points.
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Fig. 8. The velocity estimation performance with coherent cumulative points.

performance is continuously improved. However, as shown in
Fig. 6, DVCAF can achieve an estimation accuracy of 10−3 at
-15dB, but CAF and LCTCAF can only achieve this estimation
accuracy at -10dB. This is because different radial velocities
can not be fused when using CAF and LCTCAF, but the results
of DVCAF benefit from the operation of fusion, therefore,
DVCAF has higher estimation accuracy and stronger noise
suppression than the other two methods.

Under the condition of different coherent cumulative point
numbers of 105, 106 and 107 respectively, we conduct the
simulation experiments using LCTCAF and DVCAF in the
scenario of multiple types of external illuminators.

As seen in Fig. 7, the performance of the distance esti-
mation with different coherent cumulative points is gradually
improved with the increase of SNR. When the SNR is the
same, the more coherent the cumulative points, the higher the
estimation performance, this is because the echo gain will in-
crease as the number of coherent cumulative points increases,
and the noise suppression effect will also be stronger.

As seen in Fig. 8, the accuracy of the velocity estimation of
LCTCAF and DVCAF is gradually improved with the increase
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Fig. 9. The distance estimation performance for SDR with SNR.

of coherent cumulative points. When the number of the point
is 107, the NMSE of DVCAF at -20dB is already less than 103.
Thus, increasing the number of coherent cumulative points can
also improve the velocity estimation accuracy of LCTCAF and
DVCAF.

The power ratio between echo and direct wave, which is
called Signal-to-Direct wave Ratio (SDR), is an important
parameter, and the estimation performance with different SDR
can be used to evaluate the detection ability of position
and velocity estimation algorithms for stealthy targets. For
SDRs of -50dB, -40dB, and -30dB, we conduct the simulation
experiments and make comparisons through the results.

As shown in Fig. 9, when the SNR is fixed, the distance
estimation performance of DVCAF and LCTCAF improves
continuously with the decrease of SDR. When SDR is -50dB,
the estimation accuracy of the DVCAF algorithm has achieved
10−3 when the SNR is -15dB, this is because the SNR is
the power ratio between echo signal and noise, when the
SNR is fixed, the decrease of SDR means the enhancement
of the direct wave power, and the spectral peak characteristics
of DVCAF and LCTCAF will be more obvious due to the
enhancement of the direct wave power. Therefore, the results
of the spectral peak search will be less affected by the noise,
and the estimation accuracy will be higher.

As shown in Fig. 10, when the SNR is fixed,the estimation
accuracy of the target velocity is inversely proportional to the
value of SDR. When SDR is -50dB, the estimation accuracy
of DVCAF has achieved 10−3 when the SNR is -20dB,
which shows that increasing SDR can effectively improve the
velocity estimation accuracy.

VIII. CONCLUSIONS

This paper has developed a novel target detection algorithm
based on TDOA and FDOA by employing multi-irradiation
sources, which fully utilizes the advantages of CAF and
linear canonical transformation. The proposed method avoids
stepwise estimation of the target parameters, thus decreasing
time overhead and enhancing parameter estimation precision.
The results of the simulation has indicated that the proposed
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Fig. 10. The velocity estimation performance for SNR with SDR.

algorithm provides significantly higher accuracy in estimating
target distance and velocity than the conventional LCTCAF
and CAF. Furthermore, it can be observed from the results that
the proposed scheme can provide large performance gains by
improving the SNR of the echo signal to the noise, the Signal-
to-Direct wave Ratio (SDR) and the number of coherent
cumulative points under low to medium SNR conditions.
Although the proposed method effectively tackles the error
accumulation caused by step-by-step estimation, it cannot
avoid the estimation error introduced by the linear regular
ambiguity function estimator. In future work, we will aim
to develop a convenient and reliable passive sensing scheme
using multiple external Illuminators to achieve high-accuracy
detecting of small-low-mantle targets.

APPENDIX A
PROOF OF LEMMA 1

According to the variables and mapping relationships from
(44) to (52), each element of the FIM can be calculated by
these equations, and the results of the elements are shown
from (63) to (65) on the top of the next page, and Iother can
be given by

Iother =
∂2lnp(y; θ)

∂vdj∂vdi
= 0, (66)

where i, j = 1, 2, · · · , L,M , i ̸= j and g′(R) = dg(R)/dR,
h′(vdi) = dh(vdi)/dvdi which can be calculated according to
(34) and (35) as follows

g′(R) = dg(R)/dR =
1

c
, (67)

h′(vdi) = dh(vdi)/dvdi =
1

λi
. (68)

Thus, (63) , (64) and (65) can be rewritten as

I1,1 = 2Ψ
M∑
i=1

Ai

c2
, (69)

I1,1+i = I1+i,1 = 2Ψ
2πBi

cλi
, (70)
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I1,1 =
∂2lnp(y; θ)

∂R2

=
2

N0
Re

∫ ∞

−∞

M∑
i=1

ais
∗
i (t− g(R))g′(R)ej2πh(vdi)t

M∑
i=1

aisi(t− g(R))g′(R)e−j2πh(vdi)tdt

=

M∑
i=1

2

N0
g′(R)2

∫ ∞

−∞
a2
i |si(t− g(R))|2dt

=

M∑
i=1

2Ψg′(R)
2
Li,

(63)

I1,1+i = I1+i,1

=
∂2lnp(y; θ)

∂R∂vdi

=
4π

N0
Im

∫ ∞

−∞
aitsi(t− g(R))e−j2πh(vdi)th′(vdi)

M∑
i=1

ain(t)s
∗
i (t− g(R))g′(R)e−j2πh(vdi)t

=
4πa2

i

NO
Im

∫ ∞

−∞
tsi(t− g(R))s∗i (t− g(R))h′(vdi)g

′(R)dt

= 4πΨh′(vdi)g
′(R)(Qi + g(R)Hi),

(64)

I1+i,1+i =
∂2lnp(y; θ)

∂vdi2

=
8π2

N0
Im

∫ ∞

−∞

∫ ∞

−∞
aits

∗
i (t− g(R))ej2πh(vdi)th′(vdi)aitsi(t− g(R))e−j2πh(vdi)th′(vdi)dt

=
8(πh′(vdi))

2

N0

∫ ∞

−∞
a2
i t

2|si(t− g(R))|2dt

= 8(πh′(vdi))
2Ψ(Gi + 2PIg(R)− g(R)2Ei),

(65)

I1+i,1+i = 2Ψ
4π2Ci

λ2
i

. (71)

Then, the FIM can be expressed as

I(θ) = 2Ψ



M∑
i=1

Ai

c2
2πB1

cλ1

2πB2

cλ2
· · · 2πBM

cλM

2πB1

cλ1

4π2C1

λ2
1

2πB2

cλ2

4π2C2

λ2
2

...
. . .

2πBM

cλM

4π2CM

λ2
M


.

(72)
By calculating the inverse matrix of I(θ), we can obtain

V(R̂)CRLB and V(v̂di)CRLB, their mathematical presentations
are shown in (73) and (74) on the next page.
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