
J. reine angew. Math. 807 (2024), 151–185 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2023-0089 © the author(s) 2024

Torus counting and self-joinings of
Kleinian groups

By Sam Edwards at Durham, Minju Lee at Chicago and Hee Oh at New Haven

Abstract. For any integer d � 1, we obtain counting and equidistribution results for
tori with small volume for a class of d -dimensional torus packings, invariant under a self-
joining �� <

Qd
iD1 PSL2.C/ of a Kleinian group � formed by a d -tuple of convex-cocompact

representations � D .�1; : : : ; �d /. More precisely, if P is a ��-admissible d -dimensional torus
packing, then for any bounded subset E � Cd with 𝜕E contained in a proper real algebraic
subvariety, we have

lim
s!0

sıL1 .�/ � #¹T 2 P W Vol.T / > s; T \E ¤ ;º D cP � !�.E \ƒ�/:

Here ıL1.�/, 0 < ıL1.�/ � 2=
p
d , denotes the critical exponent of the self-joining �� with

respect to the L1-metric on the product
Qd
iD1H3, ƒ� � .C [ ¹1º/d is the limit set of ��,

and !� is a locally finite Borel measure on Cd \ƒ� which can be explicitly described. The
class of admissible torus packings we consider arises naturally from the Teichmüller theory of
Kleinian groups. Our work extends previous results of [H. Oh and N. Shah, The asymptotic
distribution of circles in the orbits of Kleinian groups, Invent. Math. 187 (2012), no. 1, 1–35]
on circle packings (i.e., one-dimensional torus packings) to d -torus packings.

1. Introduction

In this paper, we obtain counting and equidistribution results for a certain class of
d -dimensional torus packings invariant under self-joinings of Kleinian groups for any d � 1.
One-dimensional torus packings are precisely circle packings. To motivate the formulation of
our main results, we begin by reviewing counting results for circle packings that are invariant
under Kleinian groups ([15, 22–24, 26], etc).

Circle counting. A circle packing in the complex plane C is simply a non-empty family
of circles in C, for which we allow intersections among themselves. In the whole paper, lines
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are also considered as circles of infinite radii. Let � < PSL2.C/ D IsomC.H3/ be a Zariski-
dense convex-cocompact discrete subgroup. We call a circle packing P �-admissible if

� P consists of finitely many �-orbits of circles,

� P is locally finite, in the sense that no infinite sequence of circles in P converges to a
circle.

We denote by 0 < ı� � 2 the critical exponent of � , i.e., the abscissa of convergence for the
Poincaré series

P.s/ WD
X
g2�

e�s dH3 .gp;p/;

where p 2 H3 is any point and dH3 is the hyperbolic metric so that .H3; dH3/ has constant
curvature �1. The extended complex plane yC D C [ ¹1º can be regarded as the geometric
boundary of H3. The limit set of � is the set of all accumulation points of the orbit �.z/ of
z 2 yC; we denote it by ƒ� � yC.

Theorem 1.1 ([23]). For any �-admissible circle packing P , there exists a constant
cP > 0 such that for any bounded measurable subset E � C whose boundary is contained in
a proper real algebraic subvariety of C,

lim
s!0

sı�#¹C 2 P W radius.C / � s; C \E ¤ ;º D cP!�.E \ƒ�/I

here !� is the ı� -dimensional Hausdorff measure on C \ƒ� with respect to the Euclidean
metric on C.

This theorem holds for a more general class of circle packings invariant by geometrically
finite Kleinian groups, which includes the famous Apollonian circle packings for which the
relevant counting result was first obtained in [15] (see [23] for more details and examples).

Torus counting. The main goal of this paper is to prove a higher dimensional analogue
of Theorem 1.1. Let d � 1. By a torus in Cd we mean a Cartesian product of d -number of
circles C1; : : : ; Cd � C. However, it will be convenient to consider it as a d -tuple of circles

(1.2) T D .C1; : : : ; Cd /

rather than a subset C1 � � � � � Cd � Cd . A d -dimensional torus packing in Cd is simply a
non-empty family of d -tori in Cd .

The volume of T is given by

Vol.T / D
dY
iD1

2� radiusCi :

Figure 1 shows some image of a 2-torus packing. Although the torus T D C1 � C2 in
Figure 1 appears to be in R3, it should be understood as a subset of R4, representing the
Cartesian product of the boundary circles of two disks.

We are interested in understanding the asymptotic counting and distribution of tori with
small volumes in a torus packing that is invariant under a self-joining of a convex-cocompact
Kleinian group.
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Figure 1. A torus packing.

Let � < PSL2.C/ be a convex-cocompact discrete subgroup and let

� D .�1 D id; �2; : : : ; �d /

be a d -tuple of faithful convex-cocompact representations of � into PSL2.C/. Let

G D

dY
iD1

PSL2.C/:

The self-joining of � via � is defined as the following discrete subgroup of G:

�� D ¹.�1.g/; : : : ; �d .g// W g 2 �º:

Throughout the paper we will always assume that �� is Zariski-dense in G. Each �i induces
a unique equivariant homeomorphism fi W ƒ� ! ƒ�i .�/, which is called the �i -boundary
map [35]. In this paper, we define the limit set of �� by

ƒ� D ¹.f1.�/; : : : ; fd .�// 2 yC
d
W � 2 ƒ�º:

We call a torus T D .C1; : : : ; Cd / ��-admissible if for each 1 � i � d ,

� �i .�/Ci is a locally finite circle packing,

� fi .C1 \ƒ�/ D Ci \ƒ�i .�/.

The second condition is equivalent to

T \ƒ� D ¹.�1; : : : ; �d / 2 ƒ� W �1 2 C1 \ƒ�º;

that is, the circular slice C1 \ƒ� completely determines the toric slice T \ƒ�.

Definition 1.3. A torus packing P is called ��-admissible if

� P consists of finitely many ��-orbits of ��-admissible tori,

� P is locally finite in the sense that no infinite sequence of tori in P converges to a torus.

Remark 1.4. We remark that when #.C1 \ƒ�/ � 3, the locally finiteness hypotheses
in the above definition can be reduced to the local-finiteness of the circle packing �C1 (see
Proposition 3.11).
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We denote by ıL1.�/ the abscissa of convergence of the series

s 7! PL1.s/ WD
X
g2�

e�s
Pd
iD1 dH3 .�i .g/p;p/

for p 2 H3, which is the critical exponent of �� with respect to the L1 product metric onQd
iD1.H

3; dH3/.
We first state the following special case of the main result of this paper.

Theorem 1.5. Let P be a ��-admissible torus packing. There exists a constant cP > 0

such that for any bounded measurable subset E � Cd with boundary contained in a proper
real algebraic subvariety, we have

lim
s!0

sıL1 .�/#¹T 2 P W Vol.T / > s; T \E ¤ ;º D cP!��.E \ƒ�/;

where !�� is a locally finite Borel measure on Cd \ƒ� which can be explicitly described. In
particular, if P is bounded, then

lim
s!0

sıL1 .�/#¹T 2 P W Vol.T / > sº D cP j!�� j:

Remark 1.6. (1) Since ıL1.�/ is bounded above by the usual critical exponent ı�� of
�� with respect to the Riemannian metric (which equals the L2 product metric) on

Qd
iD1H3,

we have
0 < ıL1.�/ � ı�� �

1
p
d

max
i
.dim.ƒ�i .�/// �

2
p
d

by [13, Corollary 3.6]; here the notation dim. � / means the Hausdorff dimension of a measur-
able subset of yC ' S2 with respect to the spherical metric.

(2) If all �i W � ! PSL2.C/ are quasiconformal deformations of � and

1 …

d[
iD1

ƒ�i .�/;(�)

then for any bounded torus packing P D ��T with T D .C1; : : : ; Cd /, P is locally finite
if and only if ¹�i .
/Ci W 
 2 �º is a locally finite circle packing for all 1 � i � d . This is
because the boundary map fi is the restriction to ƒ�i .�/ of the quasiconformal homeomor-
phism Fi W yC ! yC associated to �i , and under the hypothesis (�), the Fi are bi-Hölder maps
on any compact subset of C (see [7, 35]).

More general torus-counting theorems. In order to present a more general torus-
counting theorem, we define the length vector of a torus T D .C1; : : : ; Cd / by

v.T / D �.log radius.C1/; : : : ; log radius.Cd // 2 Rd ;

where we used the negative sign so that the i -th coordinate of v.T / tends toC1 as Ci shrinks
to a point. The following result is the main theorem of this paper.

Theorem 1.7. Let  be any linear form on Rd such that  > 0 on .R�0/d � ¹0º.
There exist ı > 0 and a locally finite Borel measure ! on ƒ� \Cd depending only on ��
and  for which the following hold: for any ��-admissible torus packing P , there exists a con-
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stant c D cP ; > 0 such that for any bounded measurable subset E � Cd with boundary
contained in a proper real algebraic subvariety, we have, as R!1,

(1.8) lim
R!1

1

eı R
#¹T 2 P W  .v.T // < R; T \E ¤ ;º D c ! .E \ƒ�/:

The description of the measure ! (Definition 6.1) depends on the higher rank Patterson–
Sullivan theory. In fact, it is equivalent to the unique .��;  0/-conformal measure on ƒ�,
where  0 is the unique ��-critical linear form (Definition 2.8) proportional to  . We refer
to Definition 2.6 for the definition of ı .

Remark 1.9. (1) Theorem 1.5 can be deduced from this theorem by considering the
linear form  W .t1; : : : ; td / 7! t1 C � � � C td (see Example 8.3).

(2) Our approach can also handle the case where  .v.T // is replaced by the Euclidean
norm of v.T / in (1.8); indeed, the analysis involved in that case is easier due to the strict
convexity of the Euclidean balls in Rd (see the last subsection of Section 8).

(3) The fact that the sublevel sets ¹t 2 Rd W  .t/ < cº are linear (hence not strictly con-
vex) presents new technical difficulties which were not dealt with in related previous works
such as [23] and [6].

We now discuss examples of admissible torus packings arising naturally from the Teich-
müller theory of Kleinian groups.

Example 1.10. (1) Let � < PSL2.C/ be a Zariski-dense and convex-cocompact sub-
group whose domain of discontinuity �� WD yC �ƒ� has a connected component which is
a round open disk B . Let C1 WD 𝜕B and d � 2. By the Teichmüller theory of � , which relates
the Teichmüller space of the Riemann surface �n�� and the quasi-conformal deformation
space of � (see [19, Theorem 5.27] and [18]) we may choose quasi-conformal deformations
�i W � ! PSL2.C/, 2 � i � d , whose associated quasiconformal maps fi W yC ! yC map C1
to a circle, say, Ci . Then T D .C1; : : : ; Cd / is a ��-admissible torus for � D .id; �2; : : : ; �d /
and hence P D ��T is a ��-admissible torus packing (see Figure 2 for an example when
d D 2). Note also that P consists of disjoint tori, and hence gives rise to a genuine packing.

Figure 2. The left-hand side is the limit set of a convex-cocompact Kleinian group � and the right-
hand side is the limit set of a quasi-conformal deformation, say, �0, of � . Denoting by f
the associated quasiconformal map, f maps the first green circle, say C , to the second
green circle. Hence the torus T D .C; f .C // is a .id � �0/.�/-admissible torus. (Image
credit: Curtis McMullen and Yongquan Zhang.)
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(2) Let � be a rigid acylindrical convex-cocompact Kleinian group, that is,�� is a union
of infinitely many round disks with mutually disjoint closures. Let �0 W � ! PSL2.C/ be
a quasiconformal deformation of � which is not a conjugation, and f W yC ! yC the associ-
ated quasiconformal map. Denoting by C the space of all round circles in yC, it follows from
[2, 20, 21] that the set of all circles C 2 C such that #C \ƒ� � 2 and f .C / is a circle is
a finite union of closed �-orbits in C . Indeed, if C 2 C meets ƒ� at more than one point, then
either C separates ƒ� or C � ƒ� . Since the set of circles contained in ƒ� is a finite union of
closed �-orbits, it suffices to note that the set of all separating circles such that f .C / is a circle
is a finite union of closed �-orbits. This follows from [20, Theorem 1.5] and [2, Theorem 1.6],
since otherwise such a set must be dense in the space Cƒ� of all circles meetingƒ� , and hence
f must map all circles in Cƒ� to circles. That implies that f is conformal [19] and hence � is
a conjugation, a contradiction.

Therefore the following 2-dimensional torus packing

P WD ¹.C; f .C // W C; f .C / are circles and #C \ƒ� � 2º

is .id��0/.�/-admissible.

On the proof of Theorem 1.7. First of all, the self-joining group �� is an Anosov
subgroup of G introduced in [10] (see Definition (2.2)), which enables us to apply the general
ergodic theory developed for Anosov subgroups. While certain types of counting problems for
orbits of Anosov subgroups in affine symmetric spaces were studied in our earlier paper [6]
using higher rank Patterson–Sullivan theory, there were certain serious technical restrictions
imposed in [6] which made it unclear what kind of torus packing counting problems could be
approached using techniques there. One of the main novelties of this paper is to have isolated
a natural class of torus packings (which are provided by the Teichmüller theory of Kleinian
groups) for which we can apply the counting machinery of [6].

It is not hard to reduce the proof of Theorem 1.7 to the case where P is of the form ��T0,
where T0 is the product of the unit circles centered at the origin and  is a so-called ��-critical
linear form (see Definition 2.8). As in [23], we first translate the counting problem for torus
packings into an orbital counting problem in HnG, where H D StabG.T0/; by introducing
a suitable bounded measurable subset B .E;R/ � HnG in (4.12), we are led to consider the
asymptotic of

#.Œe��� \ B .E;R//

asR!1. The key ingredient for obtaining (1.8) asR!1 is a description of the asymptotic
behavior of

(1.11)
Z
B .E;R/

�Z
��\HnH

f .Œh�g/ d Œh�

�
dŒg�

for f 2 Cc.��nG/, as R tends to infinity, as given in Theorem 7.1. The ��-admissibility
assumption on P D ��T0 is used to guarantee

� the existence of some compact subset S � �� \HnH , independent of R, such that the
integral (1.11) can be expressed as

(1.12)
Z
Œg�2B .E;R/

�Z
Œh�2S

f .Œh�g/ d Œh�

�
dŒg�;

� the finiteness of the skinning constant of �� \HnH (see (5.5)).
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With this information, as well as the analysis of the asymptotic shape of the family of the
subsets ¹B .E;R/ W R > 0º, we are able to apply the mixing result from [5, Theorem 3.4] and
[4, Theorem 1.3 & Theorem 1.4], and the equidistribution result from [6] which describes the
asymptotic of the integral (1.11) in terms of the Burger–Roblin measures introduced in [6]. We
emphasize that due to the higher rank nature of the subsetsB .E;R/, combined with the linear
nature of  , whose sublevel sets are not strictly concave, the uniformity aspect in these results
(see Propositions 5.6 and 5.8 for the nature of the uniformity that is required) is crucial for our
analysis. In fact, working on this article led us to conjecture the precise uniformity formulation
of the mixing results in [4], which were verified and appeared in an updated version by the
authors. Finally, we remark that the measure ! is the leafwise measure of the Burger–Roblin
measure on the strict upper triangular subgroup of G (' Cd ) (see Proposition 6.3).

Organization.
� In Section 2, we start by recalling the basic higher rank Patterson–Sullivan theory of

self-joining groups.

� In Section 3, we discuss an important property of ��-admissible torus packings and its
consequences.

� In Section 4, we define the family ¹B .E;R/ � HnG W R > 0º and explain how Theo-
rem 1.5 can be translated into an orbital-counting problem for a ��-orbit in HnG with
respect to the family ¹B .E;R/ W R > 0º.

� In Section 5, mixing and equidistribution results from [4] [6] will be recalled with an
emphasis on their uniformity aspects.

� In Section 6, the measure ! will be given explicitly and analyzed.

� In Section 7, we prove the key technical ingredient (Theorem 7.1) of the paper, which
accounts for the asymptotic distribution of the average of translates of the H -orbit over
the set B .E;R/ as R!1.

� In Section 8, we prove the main theorem (Theorem 1.5).

� In Section 9, we prove that every proper subvariety of Cd has zero Patterson–Sullivan
measure and hence zero ! measure; this is shown for a general Anosov subgroup of
a semisimple real algebraic group.

Acknowledgement. We would like to thank Dongryul Kim for useful conversations on
a related topic.

2. Self-joinings and higher rank Patterson–Sullivan theory

Let H3D¹.z; r/ W z 2C; r > 0º denote the upper halfspace model of hyperbolic 3-space
with constant curvature�1, d the hyperbolic metric on H3 and o D .0; 1/ 2 H3. The geometric
boundary of H3 is the extended complex plane yC WD C [ ¹1º, which is the Riemann sphere.
The Möbius transformation action of the group PSL2.C/ on yC extends to the action on the
compactification H3 [ yC, and gives rise to the identification

PSL2.C/ ' Isomı.H3/;



158 Edwards, Lee and Oh, Torus counting

the identity component of the isometry group of H3. Similarly, the product group

G D

dY
iD1

PSL2.C/

acts on yCd component-wise, giving rise to an isomorphism of G with Isomı.
Qd
iD1H3/, the

identity component of the isometry group of the Riemannian product .H3/d .

Self-joinings of convex-cocompact subgroups. Let � < PSL2.C/ be a torsion-free
convex-cocompact subgroup, that is, the convex core of the associated hyperbolic manifold
�nH3 is compact.

Let � D .�1 D id; �2; : : : ; �d / be a d -tuple of faithful convex-cocompact representations
of � into PSL2.C/, i.e., each �i .�/ is a convex-cocompact subgroup of PSL2.C/.

Definition 2.1. The self-joining of � by � is defined as the following discrete subgroup
of G:

�� D ¹.�1.g/; : : : ; �d .g// 2 G W g 2 �º:

Recall that throughout the entire paper we assume that

�� is Zariski-dense in G.

Anosov subgroups. Let j � j denote the word length on � with respect to a fixed finite
generating set. Since each �i is convex-cocompact, there exists C > 0 such that

(2.2) d.�i .g/o; o/ > C jgj � C�1 for all g 2 � and 1 � i � d:

In other words, �� is an Anosov subgroup (with respect to a minimal parabolic subgroup) (see
[12] and [10]). This is the most important feature of the self-joining �� which will be used
in this paper. We remark that any Anosov subgroup of G arises in this way in view of the
characterization [12, Theorem 1.5].

Limit set. The product F D yCd is equal to the Furstenberg boundary of G; note that
for d > 1, F is not the geometric boundary of

Qd
iD1H3. Let P < G be the product of the

upper triangular subgroups of the PSL2.C/ components of G, i.e., P D StabG.1; : : : ;1/.
Then

F ' G=P:

The limit set of �� in F is defined as the set of all accumulation points of any ��-orbits
in
Qd
iD1H3 on F D yCd :

ƒ� WD
°

lim
j!1

.�1.gj /o; : : : ; �d .gj /o/ 2 yC
d
W gj 2 �; gj !1

±
:

This definition coincides with the definition of the limit set given by Benoist (see [17, Lem-
ma 2.13] and [1]). Note that for d D 1, this is the usual limit set ƒ� of the Kleinian group � .
Let ƒ�i .�/ � yC denote the usual limit set of �i .�/.

By the convex-cocompact assumption on �i , there exists a unique �i -equivariant homeo-
morphism fi W ƒ� ! ƒ�i .�/:

(2.3) fi .g�/ D �i .g/fi .�/ for all g 2 � and � 2 ƒ� :



Edwards, Lee and Oh, Torus counting 159

In particular, we have
ƒ� D ¹.f1.�/; : : : ; fd .�// W � 2 ƒ�º:

Cartan projection. For t D .t1; : : : ; td / 2 Rd , set

(2.4) at D

  
e
t1
2 0

0 e�
t1
2

!
; : : : ;

 
e
td
2 0

0 e�
td
2

!!
:

We let
A D ¹at W t 2 Rd º < G and AC D ¹at W ti � 0 for all 1 � i � dº:

We respectively identify Rd and Rd
�0 with the Lie algebra a D logA and its positive Weyl

chamber aC D logAC via the map t 7! log at . For g D .g1; : : : ; gd / 2 G, the Cartan projec-
tion of g is defined as

�.g/ D .d.g1o; o/; : : : ; d.gdo; o// 2 aC:

Limit cone and its dual cone.

Definition 2.5. The limit cone of the discrete subgroup �� is the asymptotic cone of
¹�.
/ 2 .R�0/

d
W 
 2 ��º, which we denote by L�. Alternatively, it is the smallest closed

cone in aC containing ¹.`1.g/; : : : ; `d .g// W g 2 �º, where `i .g/ denotes the length of the
closed geodesic representing the conjugacy class of �i .g/ (see [3] and [1, Theorem 1.2]).

Since supg2�.`i .g/= j̀ .g// <1 for all i; j by the convex-cocompactness assumption,
we have

L� � ¹0º � int aC;

where int C denotes the interior of a cone C . We denote by a� the space of all linear forms
on a. The dual cone of L� is given by

L�� WD ¹ 2 a� W  jL� � 0º:

Note that
 jL��¹0º > 0 if and only if  2 int L�� :

Definition 2.6. For  2 int L�� , let ı 2 Œ0;1� denote the abscissa of convergence for
the series

s 7!
X

2��

e�s .�.
//:

Critical linear forms. Let k � k be the Euclidean norm on a D Rd . The growth indi-
cator function ˆ� W aC ! R [ ¹�1º (see [29, Section 4.2]) is defined as follows: ˆ�.0/ D 0
and for any vector u 2 aC�¹0º,

(2.7) ˆ�.u/ WD kuk inf
open cones D�aC

u2D

�D ;

where �D is the abscissa of convergence of the series

PD.s/ D
X


2��; �.
/2D

e�sk�.
/k:
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Definition 2.8. A linear form  2 a� is said to be ��-critical if

�  � ˆ� on aC,

�  .u/ D ˆ�.u/ for some u 2 aC � ¹0º.

The following lemma is due to Quint.

Lemma 2.9 ([29, Theorem 4.2.2, Lemmas 3.1.3 and 3.1.7]). The following statements
hold:

� For each  2 int L�� , there exists s > 0 such that s is a ��-critical linear form.

� If  is ��-critical, then ı D 1.

Proof. Set s0 WD inf¹s � 0 W s � ˆ�º; we have s0 2 .0;1/ by [29, Theorem 4.2.2].
It follows that s0 � ˆ� and s0 .u/ D ˆ�.u/ for some u 2 aC with kuk D 1, by the upper
semi-continuity of ˆ� (see [29, Lemma 3.1.7]). In particular, s0 is ��-critical and the first
assertion follows. The second assertion follows from [29, Lemma 3.1.3].

Patterson–Sullivan measures. Fix o D .0; 1/ 2 H3. By abuse of notation, we set

o D .o; : : : ; o/ 2

dY
iD1

H3:

For � D .�1; : : : ; �d / 2 yCd and g D .g1; : : : ; gd / 2 G, the vector-valued Busemann map is
defined as

ˇ�.go; o/ D .ˇ�1.g1o; o/; : : : ; ˇ�d .gdo; o// 2 a;

where ¹�i .t/ W t � 0º is a geodesic ray in H3 with limt!C1 �i .t/ D �i and

ˇ�i .gio; o/ D lim
t!C1

d.gio; �i .t// � d.o; �i .t//:

Given a linear form  2 a�, a Borel probability measure � supported on ƒ� is called
a .��;  /-Patterson–Sullivan (PS) measure if for all 
 2 �� and � 2 F ,

d
��

d�
.�/ D e� .ˇ�.
o;o//:

We will say that � is a ��-PS measure if it is a .��;  /-PS measure for some  2 a�.
Extending the Patterson–Sullivan theory for rank one groups ([27,33]), Quint [30] constructed
a .��;  /-PS measure for each ��-critical linear form  2 a� (see [3] for earlier works on
this). As �� is a Zariski-dense Anosov subgroup of G, the following is a special case of [17].

Lemma 2.10 ([17, Theorem 1.1 and Theorem 4.3]). For each u 2 int L�, there exists
a unique ��-critical linear form u 2 a� such that u.u/ D ˆ�.u/, and a unique .��;  u/-PS
measure � u . The maps u 7!  u and u 7! � u give bijections among

¹u 2 int L� W kuk D 1º $ ¹��-critical linear formsº

$ ¹��- PS measuresº:
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3. Properties of admissible torus packings

Notations. We will be using the following notations throughout the paper.
For z D .zi /diD1 2 Cd , set

(3.1) nz D

  
1 z1

0 1

!
; : : : ;

 
1 zd

0 1

!!
2 G:

We also define the following subgroups:

N D ¹nz W z 2 Cd
º; LN D ¹ntz W z 2 Cd

º;

K D

dY
iD1

PSU.2/; H D

dY
iD1

�
PSU.1; 1/ [

�
0 1
�1 0

�
PSU.1; 1/

�
;

where

PSU.2/ D

´ 
a b

�Nb Na

!
W jaj2 C jbj2 D 1

µ
and

PSU.1; 1/ D

´ 
a b

Nb Na

!
W jaj2 � jbj2 D 1

µ
:

We set

M D

´  
ei�1 0

0 e�i�1

!
; : : : ;

 
ei�d 0

0 e�i�d

!!
W �1; : : : ; �d 2 R

µ
I

note that M is equal to the centralizer of A in K.
Let C denote the space of all circles in yC (recall that a union of line and ¹1º is considered

as a circle with infinite radius) and T D C � � � � � C the space of all tori in
Qd
iD1
yC. Under the

identification made in (1.2), we may consider a torus as an element of T , and a torus packing
with a subset of T .

H -orbits corresponding to admissible torus packings. Throughout the paper, we fix
the following torus:

T0 D .C0; : : : ; C0/ 2 T ;

where C0 D ¹jzj D 1º is the unit circle centered at the origin. Note that

H D StabG.T0/ and K D StabG.o/:

Since G acts transitively on T , we can endow T ' G=H with the quotient topology on G=H .
Similarly, the topology on C will be induced from PSL.2;C/=PSU.1; 1/.

We call a torus T D .C1; : : : ; Cd / ��-admissible if for each 1 � i � d ,

� ¹�i .
/Ci 2 C W 
 2 �º is a locally finite circle packing,
� fi .C1 \ƒ�/ D Ci \ƒ�i .�/.

Definition 3.2. A torus packing P � T is called ��-admissible if

� P consists of finitely many ��-orbits of ��-admissible tori,
� P is locally finite in the sense that no infinite sequence of tori in P converges to a torus.
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The following lemma is rather standard (see for instance [23, Lemma 3.2]).

Lemma 3.3. The followings are equivalent:

(1) The torus packing ��T0� T is locally finite.

(2) The inclusion map f W �� \HnH ! ��nG is proper.

(3) ��n��H is closed in ��nG.

Proposition 3.4. If P D ��T0 is ��-admissible, for any bounded subset O � ��nG,
the subset

(3.5) ¹Œh� 2 �� \HnH W Œh�A
C
\O ¤ ;º

is bounded.

Proof. Suppose not. Then there exist three sequences gi 2 � , .hi;1; : : : ; hi;d / 2 H , and
.ti;1; : : : ; ti;d / 2 aC such that .�� \H/.hi;1; : : : ; hi;d /!1 in �� \HnH as i !1 and
for each 1 � j � d ,

(3.6) si;j WD �j .gi /hi;j

0@e ti;j2 0

0 e�
ti;j
2

1A
is a bounded sequence in PSL.2;C/.

Let H0 D StabPSL2.C/.C0/ and let D be a Dirichlet fundamental domain for the action
of � \H0 on the convex hull yC0 � H3 ofC0. By the admissibility hypothesis, �C0 is a locally
finite circle packing. Hence the inclusion map � \H0n yC0 ! �nH3 is a proper map. Since �
is convex-cocompact, it follows that

𝜕D \ƒ� D ;

(see [25, Proposition 5.1]), where 𝜕D WD D \ C0 � yC denotes the boundary at infinity of D.
By replacing hi;1 with an element of .� \H0/hi;1 and modifying gi if necessary, we

may assume that hi;1o 2 D. Since .�� \H/.hi;1; : : : ; hi;d /!1 in �� \HnH as i !1,
we must have hi;` !1 in H0 for some 1 � ` � d . By (3.6) and by the assumption that the
sequence ¹si;j W i D 1; 2; : : : º is bounded for each 1 � j � d , we have

(3.7) �j WD lim
i!1

hi;j

0@e ti;j2 0

0 e�
ti;j
2

1A o D lim
i!1

�j .g
�1
i /si;j o 2 ƒ�j .�/:

It follows from the �j -equivariance of fj that �j D fj .�1/ for each 1 � j � d .
We will need the following general fact from hyperbolic geometry: for any sequence

hi 2 H0 and ti � 0 .i 2 N/, the sequence

(3.8)

´
hi

 
e
ti
2 0

0 e�
ti
2

!
o 2 H3

W i 2 N

µ

accumulates on C0 if and only if ¹hi 2 H0 W i 2 Nº is unbounded. In this case, (3.8) shares
the same limit point with ¹hio 2 H3 W i 2 Nº along any of its convergent subsequence.
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Now, since hi;` !1, it follows from (3.7) and the above fact that �` 2 C0 \ƒ�`.�/.
Since C0 \ƒ� D f �1` .C0 \ƒ�`.�// by the assumption that P is ��-admissible, we

have �1 D f �1` .�`/ 2 C0 \ƒ� . By (3.7) and the previous fact from hyperbolic geometry, this
implies that hi;1 is unbounded and hi;1o! � as i !1. On the other hand, since hi;1o 2 D,
we have �1 2 𝜕D. Hence �1 2 𝜕D \ƒ� ; this yields a contradiction since 𝜕D \ƒ� D ;.

Proposition 3.9. If P D ��T0 is ��-admissible, then the following hold:

(1) the set
¹Œh� 2 �� \HnH W hP 2 ƒ�º

is compact,

(2) for any bounded subset S � G and any closed cone E � aC such that E \L� D ¹0º,
we have

#..HnH��/ \ .HnH exp.E/S// <1:

To prove the proposition, we use the following lemma, which is equivalent to [17, Propo-
sition 7.4] in view of the characterization of the limit cone L� as an asymptotic cone of
¹�.
/ W 
 2 ��º given in [1, Theorem 1.2].

Lemma 3.10 (Uniform conicality ofƒ�, see [17, Proposition 7.4]). There exists a com-
pact subset Q � G such that the following holds: for any g 2 G with gP 2 ƒ� and any
closed convex cone D � int aC [ ¹0ºwhose interior contains L� � ¹0º, we can find sequences

i 2 �� and log ai !1 in D such that


igai 2 Q for all i � 1:

Proof of Proposition 3.9. Let Q � G be as in Lemma 3.10. Choose any closed convex
cone D � int aC[¹0º whose interior contains L� � ¹0º. Since the inclusion map

�� \HnH ! ��nG

is a proper map, Lemma 3.10 implies that

¹Œh� 2 �� \HnH W hP 2 ƒ�º � ¹Œh� 2 �� \HnH W Œh� exp D \Q ¤ ;º:

By Proposition 3.4, the subset on the right-hand side is bounded. Therefore (1) follows.
Suppose (2) is false. Then there exists a bounded subset S � G and infinite sequences

ti 2 E , ti !1, 
i 2 ��, hi 2 H , and si 2 S such that


i D hiati si ;

and H
i ¤ H
j for i ¤ j . Since the image of 
�1i hiati D s
�1
i 2 S

�1 under the projection
G ! ��nG is bounded, it follows again from Proposition 3.4 that there exists a sequence
ıi 2 �� \H such that the sequence zhi WD ıihi is bounded. Set z
i WD ıi
i . Note that

H z
i D H
i

and z
i D zhiati si 2 ��. Since both zhi and si are bounded, the sequences ti and �.z
i / are
within bounded distance of each other. Now using the fact that L� is the asymptotic cone
of ¹�.
/ W 
 2 ��º, and E \L� D ¹0º, we have ti 62 E for all sufficiently large i , which is
a contradiction.
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Closedness of ��T0. The following proposition says that local finiteness of ��T0� T

is a consequence of the local finiteness of �C0� C when T0 is an admissible torus with
#.C0 \ƒ�/ � 3.

Proposition 3.11. Let �C0 be closed in C with the property that #.C0 \ƒ�/ � 3. If
fi .C0 \ƒ�/ D C0 \ƒ�i .�/ for each 1 � i � d , then ��T0 is closed in T and �i .�/C0 is
closed in C for all 2 � i � d .

Proof. Suppose that a sequence Tn D .�1.gn/C0; �2.gn/C0; : : : ; �d .gn/C0/ converges
to some torus T D .C1; C2; : : : ; Cd / for gn 2 � . We need to show that T 2 ��T0. Since �C0
is closed and hence locally finite by Lemma 3.3, we may assume that for all n � 1, gnC0 D C1
by throwing away finitely many gn (recall �1 D id/. Observe that

�i .gn/fi .C0 \ƒ�/ D fi .gn.C0 \ƒ�// D fi .C1 \ƒ�/

by (2.3). On the other hand

fi .C0 \ƒ�/ D C0 \ƒ�i .�/

and it contains at least three distinct points. Since two circles sharing three distinct points must
be equal to each other, we get �i .gn/C0 D C1 for all 1 � i � d and all n. It follows that
Tn D T D T0 for all n, proving the first claim. The second claim can be proved similarly.

Although we will not be using the following proposition in the rest of our paper, it is of
independent interest and extends the analogous fact for convex-cocompact groups for d D 1.

Proposition 3.12. Let T be a torus and HT be the stabilizer of T in G. Suppose ��T
is closed with #.T \ƒ�/ � 3. Then �� \HT is a non-elementary Anosov subgroup and

T \ƒ� D ƒ��\HT :

Proof. Without loss of generality, we assume that HT is the product of copies of the
group PSL2.R/. We use the characterization of an Anosov subgroup as a subgroup of G
satisfying the properties of Regularity, Conicality, Antipodality, shown in [11, Theorem 1.1].
Since HT \ �� is a subgroup of an Anosov subgroup ��, it follows that HT contains A and
HT =.HT \ P / � G=P is the Furstenberg boundary ofHT , the regularity and antipodality are
immediate.

We deduce the conicality as follows. Let � 2 T \ƒ�. We can choose h 2 HT such that
h.HT \ P / D � . Since �� is Anosov, � is a radial limit point of ��, that is, there exist an !1
in AC and ın 2 �� such that ınhan is bounded. Since the map �� \HT nHT ! ��nG is
proper by Lemma 3.3 and han 2 HT , it follows that there exists zın 2 �� \HT that zınhan is
bounded. This implies that � D h.HT \P / is a radial limit point of ��\HT inHT =.HT \P /.
Hence we have shown that T \ƒ� is equal to the set ƒrad

��\HT
of all radial limit points

of �� \HT . Since ƒ��\HT � T \ƒ�, it follows that

ƒ��\HT D ƒ
rad
��\HT

:

Thus, ��\HT is conical. This proves that ��\HT is Anosov. The hypothesis #.T \ƒ�/ � 3
now implies that �� \HT is non-elementary.
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4. Torus counting function for admissible torus packings

We write r.C / for the radius of a circle C . Given a torus T D .C1; : : : ; Cd / 2 T , we
define its length vector v.T / 2 a [ ¹1º by

v.T / D �.log r.C1/; : : : ; log r.Cd //

if r.Ci / <1 for all 1 � i � d , and v.T / D1 otherwise.
We will call a linear form  2 a� positive if  > 0 on aC � ¹0º.
In the rest of this section, we fix

� a ��-admissible torus packing P D ��T0,

� a positive ��-critical linear form  2 a�.

Definition 4.1 (Counting function). For a bounded subset E � Cd and R > 0, we set

NR.P ;  ;E/ D #¹T 2 P W  .v.T // < R; T \E ¤ ;º:(4.2)

The local finiteness assumption on P together with the positivity hypothesis on  guar-
antees that:

Lemma 4.3. For any bounded subset E � Cd and R > 0, NR.P ;  ;E/ <1.

Proof. It follows from the local-finiteness of �i .�/C0 that there are only finitely many
circles in �i .�/C0 of radius bounded from below intersecting a fixed bounded set. In particular,

n0 WD #¹T 2 P W v.T / 62 aC and T \E ¤ ;º <1:

By the positivity hypothesis on  , we have

c WD inf
v2aC;kvkD1

 .v/ > 0

and hence  .v/ � ckvk for all v 2 aC. Hence

NR.P ;  ;E/ � n0 � #

´
T D .C1; : : : ; Cd / 2 P W

dX
iD1

jlog r.Ci /j2 �
R2

c2
and T \E ¤ ;

µ

� #
dX
iD1

¹C 2 �i .�/C0 W e
�R
c � r.Ci / and C \ �i .E/ ¤ ;º;

where �i .E/ denotes the projection of E to the i -th factor yC. The last quantity is finite by the
local-finiteness of �i .�/C0. This proves the claim.

We will introduce a subset zB .E;R/ � HnG and explain how NR.P ;  ;E/ is related
to the number of ��-orbits in the set zB .E;R/.

Definition of zB .E;R/. For R > 0, we define

AC ;R D ¹at 2 A
C
W  .t/ < Rº;

where at is defined as in (2.4). As  is positive, AC ;R is bounded.
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For any subset E � Cd , we define

NE D ¹nz 2 N W z 2 Eº

where nz is defined as in (3.1). For any " > 0, set

(4.4) E�" WD
\
kwk<"

E C w and EC" WD
[
kwk<"

E C w:

Definition 4.5. For any bounded E � Cd and R > 0, we define the following bounded
subset of HnG:

(4.6) zB .E;R/ WD HnHKA
C

 ;RN�E � HnG:

The following proposition allows us to reformulate the counting problem in terms of the
sets zB .E˙" ; R/ (cf. [23, Proposition 3.7]): For " > 0, set

(4.7) q0.P ; E; "/ WD #

´
T D .C1; : : : ; Cd / 2 P W

dX
iD1

r.Ci /2 >
"2

4
and T \E ¤ ;

µ
:

The finiteness of q0.P ; E; "/ can be seen as in the proof of Lemma 4.3.

Proposition 4.8. Let E � Cd be a bounded subset. For any " > 0 small enough and
any R > 0, we have

#.Œe��� \ zB .E�" ; R// � q0 � NR.P ;  ;E/ � #.Œe��� \ zB .EC" ; R//C q0

where q0 D q0.P ; E; "/.

Proof. Let yT0 D yC0 � � � � � yC0. Note that

#.Œe��� \HnHKAC ;RN�E˙" /(4.9)

D #¹
 2 �� \Hn�� W H
 \KAC ;RN�E˙" ¤ ;º

D #¹
 2 ��=�� \H W 
HK \NE˙" .A
C

 ;R/
�1K ¤ ;º

D #¹
T0 2 P W 
 yT0 \NE˙"
.AC ;R/

�1o ¤ ;º:

Observe that for z D .zi /diD1 2Cd , t D .ti /diD1 2Rd and o D .0; 1/diD1 2
Qd
iD1H3, we have

nzato D .zi ; ti /
d
iD1 2

dY
iD1

H3:

Hence, if 
T0 2 P , 
 yT0 \NE�" .A
C

 ;R/
�1o ¤ ; and

Pd
iD1 r.�i .
/C0/2 � "2

4
, then


T0 \E ¤ ; and  .v.
T0// < R:

This observation combined with (4.9) gives the lower bound in the statement of the proposition.
Similarly, if 
T0 2 P satisfies 
T0 \E ¤ ;,  .v.
T0// < R and

Pd
iD1 r.�i .
/C0/2 � "2

4
,

then 
T0 � E"C and hence 
 yT0 \NEC" .A
C

 ;R/
�1o ¤ ;. This combined with (4.9) gives the

upper bound, proving the proposition.
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Definition of B .E;R/. Let D � int aC be any closed cone such that

(4.10) int D � L� � ¹0º:

Throughout the section we fix one such D and set, for any R > 0,

(4.11) D WD exp D and D ;R D D \ A
C

 ;R:

Analogously to zB .E;R/, we now define

(4.12) B .E;R/ D BD; .E;R/ WD HnHKD ;RN�E � HnG:

B .E;R/ in terms of G D HACK decomposition. We will now express the set
B .E;R/ in terms of the generalized Cartan decomposition G D HACK (cf. [9, p. 439]).
Given " > 0 and a subset W � G, let W" denote the intersection of W and the "-ball around e
in G.

Lemma 4.13 ([23, Proposition 4.2]). For d D 1, we have

(1) If at 2 HKasK for some s � 0, then jt j � s.

(2) For any " > 0, there exists R1."/ > 0 such that

¹k 2 K W atk 2 HKA
C for some t > R1."/º � K"M:

We set

(4.14) X" WD

²
at 2 A

C
W min
1�i�d

ti � R1

�
"
p
d

�³
;

that is, the closed R1."=
p
d/-neighborhood of 𝜕AC, where R1."=

p
d/ > 0 is the constant as

given in Lemma 4.13 (2).
We deduce the following.

Lemma 4.15. For any " > 0 and R > 0,

KAC ;R � H.A
C

 ;R �X"/K" [HX"K:

Proof. For any k D .k1; : : : ; kd / 2 K and at 2 AC, using the decomposition

G D HACK;

we can find h D .h1; : : : ; hd / 2 H , as 2 AC and ` D .`1; : : : ; `d / 2 K such that

(4.16) ki

 
e
ti
2 0

0 e�
ti
2

!
D hi

 
e
si
2 0

0 e�
si
2

!
`i

for all i D 1; : : : ; d , where t D .ti /1�i�d and s D .si /1�i�d . From Lemma 4.13 (1), we then
have si � ti . Since  jaC � 0, we have

 .s/ �  .t/:

Hence if at 2 AC ;R, we have as 2 AC ;R. Furthermore, if as 62 X", we have si > R1."=
p
d/

for each i and hence ` 2 K"M by Lemma 4.13 (2). Since K"M DMK" and M � H , this
proves the lemma.
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Further refinement. The following lemma appears in [23, Proposition 4.7] for the
case d D 1, and this implies the general d -case as the computations can be reduced to each
component.

Lemma 4.17 ([23, Proposition 4.7]). There exists `0 � 1 such that for all small enough
" > 0, and a 2 AC

aK"M � H.aA`0"/N`0":

Using Lemma 4.17, we obtain:

Lemma 4.18. For any " > 0 and a bounded subset E � Cd , there exists a compact
subset Z D Z.E;D; "/ � HnG such that

zB .E;R/ � HnHD ;RA`0"N�EC
`0"

[HnH.AC �D/KN�E [Z:

Proof. Since D is a closed cone contained in int aC, it follows thatD \X" is a compact
subset. Therefore Z WD HnH.D \X"/KN�E is a bounded subset of HnG.

Note that by Lemma 4.15 and Lemma 4.17

KAC ;R � H.A
C

 ;R �X"/K" [HX"K(4.19)

� HD ;RK" [H.A
C
�D/K [H.D \X"/K

� HD ;RA`0"N`0" [H.A
C
�D/K [H.D \X"/K:

The claim now follows from the definition of zB .E;R/.

Corollary 4.20. For any " > 0, there exist q1 D q1.E;D; "/ > 0 and `0 D `0. / such
that

#.Œe��� \ B .E;R// � #.Œe��� \ zB .E;R//

� #.Œe��� \ B .EC`0"; RC `
0"//C q1:

Proof. The first inequality is trivial. For the second inequality, choose a slightly smaller
closed cone D0 � int D such that L� � ¹0º � int D0 and set

E D aC �D0:

Note that D ;R � .D0/ ;RA`0" is a bounded set and hence applying Lemma 4.18 to the cone
D0 shows

zB .E;R/ � HnHD ;RN�EC
`0"

[HnHEKN�E [Z
0

for some compact setZ0 � HnG. Applying Proposition 3.9 with S D KN�E gives the desired
conclusion.

5. Mixing and equidistribution with uniform bounds

We fix a positive ��-critical linear form  2 a� and the .��;  /-PS measure � given
by Lemma 2.10. In this section, we recall the results of [4] and [6] on mixing (Proposition 5.6)
and equidistribution (Proposition 5.8), with emphasis placed on their uniformity aspects that
are crucial in our application.
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Burger–Roblin measuresmBR andmBR�. Recall thatP D StabG.1; : : : ;1/ denotes
the product of upper triangular subgroups. We also denote by LP D StabG.0; : : : ; 0/ the product
of lower triangular subgroups.

For g 2 G, its visual images are defined by

gC WD gP 2 F and g� WD g LP 2 F :

Let F .2/ denote the unique open G-orbit in F � F under the diagonal action, that is,

F .2/
D ¹.gC; g�/ W g 2 Gº:

The map
gM 7! .gC; g�; b D ˇg�.o; go//

gives a homeomorphism G=M ' F .2/ � a, called the Hopf parametrization of G=M . We
define a locally finite Borel measure zmBR

 onG=M as follows: for g D .gC; g�; b/2F .2/�a,

(5.1) d zmBR
 .g/ D e

 .ˇ
gC
.o;go//C2�.ˇg� .o;go// d� .g

C/dmo.g
�/db;

where mo is the unique K-invariant probability measure on F , db is the Lebesgue measure
on a, and � is the linear form on a defined by

(5.2) �.t1; : : : ; td / D t1 C � � � C td :

By abusing notation slightly, we also use zmBR
 to denote the corresponding M -invar-

iant measure on G induced by zmBR
 . The measure zmBR

 is left ��-invariant and induces an
LN -invariant locally finite measure on ��nG, which we denote by mBR

 .
Similarly, but with a different parameterization gD .gC; g�; bD ˇgC.o; go//, we define

the following N -invariant locally finite Borel measure on G:

(5.3) d zm
BR�
 .g/ D e

2�.ˇ
gC
.o;go//C .ˇg� .o;go// dmo.g

C/ d� .g
�/ db:

We have the following decomposition (see [6, (4.8)]).

Lemma 5.4. For f 2 Cc.P LN/,

zmBR
 .f / D

Z
NAM

�Z
LN

f .nam Ln/ d Ln

�
e� .loga/e .ˇn� .o;no// dmda d� .n

�/;

where dm, da, d Ln denote the Haar measures for M , A, LN , respectively.

We note that in Lemma 5.4, dm is normalized to be a probability measure on M , da is
normalized to be compatible with the restriction of the Killing form on the lie algebra of A,
and d Ln is equivalently given by the density Ln 7! e2�.ˇ LnC .o; Lno//d�0. Ln

C/, where �0 denotes the
unique K-invariant probability measure on F .

Patterson–Sullivan measure �PS
��\HnH; 

(see [6, Definition 8.7]). Define a measure
�PS
H; on H as follows: for � 2 Cc.H/, let

�PS
H; .�/ D

Z
h2H=H\P

Z
p2H\P

�.hp/e .ˇhC .o;hpo// dp d� .h
C/;
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where dp is a right-Haar probability measure on H \ P (note that H \ P is compact for
the pair .G;H/ we are considering); for h 2 H=H \ P , hC is well-defined and independent
of the choice of a representative. The measure defined above is �� \H -invariant: for any

 2 �� \H ,


��
PS
H; D �

PS
H; :

Therefore, if ��n��H is closed in ��nG, then d�PS
H; induces a locally finite Borel measure

on ��n��H ' �� \HnH , denoted by �PS
��\HnH; 

. The skinning constant of �� \HnH
with respect to � is defined as the total mass:

(5.5) sk��; .H/ WD k�
PS
��\HnH; 

k 2 Œ0;1�:

Uniform mixing. We fix the unique unit vector u D u 2 int L� such that

 .u/ D ˆ�.u/

provided by Lemma 2.10.
Since the cone aC is contained in the closed half space ¹ � 0º and  .u/ > 0, it follows

that aC can be parameterized by the map

R�0 � ker ! a;

.s; w/ 7! suC
p
sw:

The following mixing result is due to [5, Theorem 3.4] and [4, Theorems 1.4 and 1.5]:
the uniform bound as stated in the second part is crucial in our application as remarked before.

Theorem 5.6. There exists an inner product h � ; � i� on a and �; ` > 0 such that for any
f1; f2 2 Cc.��nG/ and w 2 ker ,

lim
s!C1

s
d�1
2 e.2�� /.su C

p
sw/

Z
��nG

f1.x exp.su C
p
sw//f2.x/ dx

D � e�`I.w/mBR
 .f1/m

BR�
 .f2/;

where I W ker ! R�0 is given by

I.w/ D
kwk2��hw;u i

2
�

ku k
2
�

:

Moreover, there are s0; ` > 0 andC 0DC 0.f1; f2/ > 0 such that for all .s; w/2 .s0;1/�ker 
with su C

p
sw 2 aC, we have

(5.7)
ˇ̌̌̌
s
d�1
2 e.2�� /.su C

p
sw/

Z
��nG

f1.x exp.su C
p
sw//f2.x/dx

ˇ̌̌̌
�C 0e�`I.w/:

Uniform equidistribution. Using Theorem 5.6, the following equidistribution result
can be obtained as in [6, Proposition 8.11] and using a partition of unity argument for �.

Proposition 5.8. Assume ��H is closed, let f 2 Cc.��nG/ and � 2 Cc.�� \HnH/.
For any w 2 ker , we have

lim
s!C1

s
d�1
2 e.2�� /.su C

p
sw/

Z
��n��H

f .Œh� exp.su C
p
sw//�.h/ dh(5.9)

D � e�`I.w/mBR
 .f / �

PS
��\HnH; 

.�/;
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where �; ` > 0 and I W ker ! R�0 are given by Theorem 5.6. Moreover, there exists a con-
stant C 00 D C 00.f; �/; s0 > 0 such that for all .s; w/ 2 .s0;1/ � ker with suC

p
sw 2 aC,

(5.10)
ˇ̌̌̌
s
d�1
2 e.2�� /.su C

p
sw/

Z
H

f .Œh� exp.su C
p
sw//�.h/ dh

ˇ̌̌̌
< C 00e�`I.w/:

6. The measure ! 

Fix a positive ��-critical linear form  2 a� and the .��;  /-PS measure � given by
Lemma 2.10.

Definition 6.1. We define a locally finite Borel measure ! D !��; on Cd as follows:
for all f 2 Cc.Cd /,

! .f / D

Z
Cd
f .z/e .ˇz.o;nz �o// d� .z/:

For each small " > 0, let �" 2 Cc.N"A"M"
LN"/ be a non-negative function such thatR

G �
" dg D 1, where dg is a Haar measure on G and for any z 2 Cd , set

�"z.g/ WD

Z
M

�".gmnz/ dm;

where dm is a probability Haar measure on M .
The main goal of this section is to establish Corollary 6.5, which roughly saysZ

�E

mBR
 .�

"
z/ dz � ! .E/:

Let E � Cd be a fixed bounded Borel set and let " > 0 be small enough so that

A"M"
LN"N�EN1 � NAM LN:

For all z 2 Cd , define ˆ"E 2 Cc.C
d / by

ˆ"E .z/ WD

Z
N�EMA LN

�".nzg/ dg D

Z
N�EA"M" LN"

�".nzg/ dg:

Recalling the definition of E˙" from (4.4), we have:

Lemma 6.2. For all z 2 Cd ,

1E�" .nz/ � ˆ
"
E .z/ � 1

E
C
"
.nz/:

Proof. Trivially, 0 � ˆ"E .z/ � 1. If z 2 E�" , then n�1z N" � N�E , hence

ˆ"E .z/ D

Z
N�EMA LN

�".nzg/ dg �

Z
n�1z N"MA LN

�".nzg/ dg D

Z
G

�".g/ dg D 1:

On the other hand, if z 62 EC" , then n�1z N" \N�E D ;, hence we have �".nzg/ D 0 for all
g 2 N�EMA LN by uniqueness of the NAM LN decomposition, giving ˆ"E .z/ D 0.
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We now relate the Burger–Roblin measure of �" and Patterson–Sullivan measure of ˆ".

Proposition 6.3. There exist C; c > 0 such that for all sufficiently small " > 0, we have

.1 � C"/! .ˆ
"
E�c"
/ �

Z
�E

zmBR
 .�

"
z/ dz � .1C C"/! .ˆ

"

E
C
c"

/:

Proof. By Lemma 5.4, we haveZ
�E

zmBR
 .�

"
z/ dz D

Z
�E

Z
M

Z
N

Z
AM LN

�".nz0am Ln zmnz/

� e� .loga/e .ˇz0 .o;nz0o// d Ln d zmda d� .z
0/ dmdz

D

Z
Cd

�Z
AM LNN�E

�".nz0am Lnnz/e
� .loga/dz d Ln dmda

�
d! .z

0/;

where all the densities appearing in the expression are those of the corresponding Haar mea-
sures, except for d� and d! . Note that if �".nam Lnnz/ ¤ 0, then nam Lnnz 2 N"A"M"

LN",
hence

am Ln 2 AM LN \
�
n�1N"nz exp.Adn�z .log.A"M"

LN"///
�

(6.4)

� AM LN \ .n�1nzNc0"Ac0"Mc0"
LNc0"/ D Ac0"Mc0"

LNc0"

for some c0 � 1 depending only on E. Decomposing the Haar measure dg on G according to
AM LNN and then restricting to Ac0"Mc0"

LNc0"N�E gives

e� .loga/dz d Ln dmda D .1CO."// dg

since a 2 Ac0" and dg D dz d Ln dmda for g D am Lnnz (see [14, Chapter 8]). HenceZ
�E

mBR
 .�

"
z/ dz D .1CO."//

Z
Cd

Z
AM LNN�E

�".nz0g/ dg d! .z
0/;

with the implied constant depending only on E. Using the maximum of kAdnz k over z 2 ˙E
together with the NAM LN decomposition of exp.Adn�z .log.Ac0"Mc0"

LNc0"/// as above gives
the existence of c � c0 such that

N�E�c"A"M"
LN" � Ac0"Mc0"

LNc0"N�E � N�ECc"
Ac"Mc"

LNc":

Combined with (6.4), for every z0 2 Cd we haveZ
N�E�c"AM

LN

�".nz0g/ dg �

Z
AM LNN�E

�".nz0g/ dg �

Z
N
�E
C
c"
AM LN

�".nz0g/ dg;

giving the desired inequality.

Combining Lemma 6.2 and Proposition 6.3 gives the following result.

Corollary 6.5. There exist C; c > 0 such that for all " > 0 sufficiently small,

.1 � C"/! .E
�
.1Cc/"/ �

Z
�E

mBR
 .�

"
z/ dz � .1C C"/! .E

C

.1Cc/"
/:
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7. Equidistribution in average

We fix a positive ��-critical  2 a�, � and u D u , continuing the notations from
Sections 4 and 5. We also fix a closed cone D � int aC such that int D � L� � ¹0º and set
D WD exp D as in (4.10) and (4.11). Recall the notation B .E;R/ D HnHKD ;RN�E for
a bounded subset E � Cd , and �, ` > 0 given by Theorem 5.6.

The main goal of this section is to prove the following main technical ingredient of the
proof of Theorem 1.7, using Proposition 5.8.

Theorem 7.1. For any f 2 Cc.��nG/ and a bounded measurable subsetE � Cd such
that ! .𝜕E/ D 0,

lim
R!1

e�R
Z
B .E;R/

Z
��\HnH

f .��hg/ d Œh� d Œg� D c��; 

Z
�E

mBR
 .fz/ dz;

where

c��; WD
� sk��; .H/
ˆ�.u/

�Z
ker 

e�`I.w/ dw

�
and fz 2 Cc.��nG/ is defined by

fz.x/ WD

Z
M

f .xmnz/ dm:

In the above, dŒg� denotes theG-invariant measure onHnG which is compatible to Haar
measures dg and dh on G and H respectively, that is, for any f 2 Cc.G/,Z

G

f .g/ dg D

Z
HnG

�Z
H

f .hg/ dh

�
dŒg�:

Integral computation. For each w 2 ker , let QR.w/ � .0;1/ be defined as

(7.2) QR.w/ WD ¹s 2 R>0 W suC
p
sw 2 AC ;Rº:

Since  .w/ D 0, we compute that for all R > 0, QR.w/ is an interval of the form

QR.w/ D .0;
1

ˆ�.u/
R/:

The uniform bound in Proposition 5.8 enables us to use the dominated convergence theorem to
prove the following result.

Lemma 7.3. For f 2 Cc.��nG/, � 2 Cc.H/ and a bounded measurable subset E
of Cd , define for each w 2 ker ,

pR.w/ D e
�R

Z
E

Z
QR.w/

s
d�1
2 e2�.suC

p
sw/

Z
H

fz.��h exp.suC
p
sw//�.h/ dh ds dz:

Then:

(1) limR!1 pR.w/ D
��PS
H; .�/

ˆ�.u/
e�`I.w/

R
E m

BR
 .fz/ dz and

(2) pR.w/ � Ce�`I.w/ for some C D C.f;E; �/ > 0.
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Proof. For simplicity, set cu D ˆ�.u/ in this proof. For all sufficiently large R > 0, we
may rewrite pR.w/ as

pR.w/ D e
�R

Z
E

Z R=cu

0

ecusJ.s; w; z/ ds dz

D

Z
E

Z 0

�R=cu

ecus
0

J.s0 CR=cu; w; z/ ds
0 dz

where

J.s; w; z/ D s
d�1
2 e.2�� /.suC

p
sw/

Z
H

fz.��h exp.suC
p
sw//�.h/ dh:

By Proposition 5.8, J.s; w; z/! �e�`I.w/mBR
 .fz/�

PS
H .�/ as s !1 and

J.s; w; z/ � C 00e�`I.w/;

where C 00 D C 00.supz2E fz; �/ is as in Proposition 5.8. Hence (1) follows from the dominated
convergence theorem as R!1. Assertion (2) follows from the bound

pR.w/ � Vol.E/
Z 0

� R
cu

ecusJ.s C R
cu
; w; z/ ds

by setting C D 1
cu

Vol.E/C 00.

Proof of Theorem 7.1. Without loss of generality, we may assume that f � 0. For
Œg� 2 HnG, set

f H .Œg�/ WD

Z
��\HnH

f .��hg/ dh:

By Proposition 3.4, and using the expression of g with respect to the generalized Cartan decom-
position G D HACK, we can choose � 2 Cc.�� \HnH/ depending only on the support
of f and E such that

(7.4) f Hz .Œg�/ D

Z
��\HnH

fz.��hg/�.h/ dh

for all z 2 E. This will allow us to apply Proposition 5.8 directly to f Hz . Furthermore, by
Proposition 3.9(1), the support of �PS

��\HnH; 
is compact, so we may additionally assume that

� D 1 on the support of �PS
��\HnH; 

and hence

sk��; .H/ D �
PS
��\HnH; 

.�/:

By Proposition 3.9 (2), Z
HnH.AC�D/KN�E

f H .Œg�/ d Œg� <1:

Since dŒatnz� D e2�.t/dt dz, where �.t/ D
Pd
iD1 ti , we deduce from Lemma 4.18 and the

inclusion B .E;R/ � zB .E;R/ that

lim sup
R!1

e�R
Z
B .E;R/

f H .Œg�/ d Œg�(7.5)

� lim sup
R!1

e�R
Z
�E
C

`"

Z
A
C

 ;RC`"

f H .Œatnz�/e
2�.t/ dt dz:
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Since M � H , we have

f H .Œatnz�/ D f
H .Œmatnz�/ D f

H .Œatmnz�/

D

Z
M

f H .Œatmnz�/ dm D f
H
z .Œat �/:

We now compute the upper limit in (7.5).
Using (7.2) and (7.4) together with the fact that t D suC

p
sw on aC hence

dt D s
d�1
2 ds dw;

we first rewrite (7.5) as lim supR!1
R

ker pR.w/ dw, where

pR.w/ WD e
�R

Z
�E
C

`"

Z
QRC`".w/

s
d�1
2 e2�.suC

p
sw/f Hz .Œexp.suC

p
sw/�/ ds dz

D e�R
Z
�E
C

`"

Z
QRC`".w/

s
d�1
2 e2�.suC

p
sw/

�

Z
��\HnH

fz.��h exp.suC
p
sw//�.h/ dh ds dz:

Applying Lemma 7.3 by replacing R with RC `" and E with �EC
`"

, by the dominated
convergence theorem,

lim
R!1

Z
ker 

pR.w/ dw D

Z
ker 

lim
R!1

pR.w/ dw

D

� �PS
��\HnH; 

.�/e`"

ˆ�.u/

Z
ker 

e�`I.w/ dw

Z
�E
C

`"

mBR
 .fz/ dz:

Altogether, we have thus obtained

lim sup
R!1

e�R
Z
B .E;R/

f H .Œg�/ d Œg� � c��; e
`"

Z
�E
C

`"

mBR
 .fz/ dz:

Similarly, but applying Lemma 4.18 to zB .E�`"; R � `"/ and D0 D exp D0, where D0 is
a cone such that L� � ¹0º � int D0 � D0 � D , we have

lim inf
R!1

e�R
Z
B .E;R/

f H .Œg�/ d Œg� � c��; e
�`"

Z
�E�

`"

mBR
 .fz/ dz:

Note that by Corollary 6.5, we have

.1 � C"/! .E
�
.1Cc/"/ �

Z
�E

mBR
 .�

"
z/ dz � .1C C"/! .E

C

.1Cc/"
/

for all sufficiently small " > 0. Since ! .𝜕E/ D 0, taking "! 0C completes the proof.

8. Proof of the main counting theorem

In this section, we prove the following main theorem of this paper.
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Theorem 8.1. Let P be a ��-admissible torus packing. For any positive linear form
 2 a�, there exist a constant c D cP ; > 0 such that for any bounded measurable subset
E � Cd with boundary contained in a proper real algebraic subvariety, we have

(8.2) lim
R!1

e�ı RNR.P ;  ;E/ D c ! .E/:

Example 8.3. Note that Vol.T / D .2�/de��.v.T // since �.t1; : : : ; td /D t1C � � � C td .
Hence, we have

NR.P ; �; E/ D #¹T 2 P W Vol.T / � .2�/de�R; T \E ¤ ;º:

Since � 2 a� is positive, Theorem 1.5 is a special case of Theorem 8.1, with ıL1.�/ D ı� ,
cP D .2�/

dıcP ;� and ! D !��;� .

The proof of the following lemma is postponed until the final section (Theorem 9.2).

Lemma 8.4. For any bounded measurable subset E � Cd with 𝜕E contained in
a proper real algebraic subvariety, we have ! .𝜕E/ D 0.

Since every homothety class of a positive linear form can be represented by a positive
��-critical linear form (Lemma 2.9) and ı D 1 for critical linear forms, Theorem 8.1 follows
from Lemma 8.4 and the following.

Proposition 8.5. For any positive ��-critical linear form  2 a� and any bounded
measurable subset E � Cd with ! .𝜕E/ D ;, we have

lim
R!1

e�RNR.P ;  ;E/ D c ! .E/

for some constant c > 0.

Special case: P D ��T0. We will first prove Proposition 8.5 for the special case when
P D ��T0. This will allow us to apply the results obtained in previous sections.

Let D be as defined in (4.10), and for any R > 0, AR denote the R-neighborhood of e
in A. Fix closed cones D˙ � int aC such that

L� � ¹0º � int D�; D� � ¹0º � int D and D � ¹0º � int DC:

Let D˙ D exp D˙ and R0 > 0 be such that

D� � AR0 �
\
a2A1

Da;
[
a2A1

.D � AR0/a � D
C:

Recall the definitions of D˙ ;R and E˙" from (4.4) and (4.11). Now defining

B0 .E;R/ WD HnHKDŒR0;R/N�E ;(8.6)

B" .E;R/
�
WD HnHKD�ŒR0;R/N�E

�
"
;

B" .E;R/
C
WD HnHKDC

ŒR0;R/
N
�E
C
"
;

where D˙
ŒR0;R/

D D˙ ;R � AR0 , we have the following inclusions.
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Lemma 8.7 ([23, Lemma 6.3]). For all " > 0 small enough, there exists a neighborhood
O" � G of the identity such that for all R > R0,

B" .E;R � "/
�
� B0 .E;R/O" � B

"
 .E;RC "/

C:

We now use the sets B" .E;R˙ "/
˙ to obtain the asymptotic of #.Œe��� \ B0 .E;R//.

Let us define functions FR, and F ";˙R on ��nG by

FR.Œg�/ WD
X


2.��\H/n��

1B0 .E;R/
.H
g/;

and

(8.8) F
";˙
R .Œg�/ WD

X

2.��\H/n��

1B" .E;R˙"/˙
.H
g/:

Note that

(8.9) FR.Œe�/ D #.Œe��� \ B0 .E;R//;

and by Lemma 8.7, we have

F
";�
R .Œg�/ � FR.Œe�/ � F

";C
R .Œg�/

for all Œg� 2 Œe�O" and all " small enough and less than the injectivity radius of Œe� 2 ��nG.
Now fix any non-negative function �" 2 Cc.Œe�O"/ such that

R
�".Œg�/ d Œg� D 1, where dŒg�

is a Haar measure on ��nG. Then

(8.10) hF
";�
R ; �"i � FR.Œe�/ � hF

";C
R ; �"i;

where
h 1;  2i D

Z
��nG

 1.Œg�/ 2.Œg�/ d Œg�

whenever the integral converges. We will use Theorem 7.1 to estimate the integrals hF ";˙R ; �"i

(cf. [23, (6.6), p. 30] and [6, Proposition 9.10]).

Proposition 8.11. For any " > 0 small enough, we have

hF
";˙
R ; �"i � c e

R˙"

Z
�E˙"

mBR
 .�

"
z/ dz as R!1;

where the constant c D c��; is given in Theorem 7.1.

Proof. Using unfolding, we have

hF
";˙
R ; �"i D

Z
��nG

� X

2.��\H/n��

1B" .E;R˙"/˙
.H
g/

�
�".Œg�/ dg

D

Z
��\HnG

1B" .E;R˙"/˙
.Hg/�".Œg�/ dg

D

Z
B" .E;R˙"/

˙

�Z
��\HnH

�".��hg/ dh

�
d.Hg/:

Since the set difference between B" .E;R˙ "/
˙ and BD˙; .E

˙
" ; R˙ "/ is bounded inde-

pendent of R, Theorem 7.1 then gives the claimed identity.
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Proof of Proposition 8.5 when P D ��T0. Let us note that the set difference between
B0 .E;R/ and BD; .E;R/ is bounded independent of R. Hence, by Proposition 4.8 and
Corollary 4.20,

lim inf
R!1

e�R#.Œe��� \ B0 .E
�
" ; R// � lim inf

R!1
e�RNR.P ;  ;E/

� lim sup
R!1

e�RNR.P ;  ;E/

� lim sup
R!1

e�R#.Œe��� \ B0 .E
C

.`0C1/"
; RC `0"//:

Let "0 D .`0 C 2/". The above computation, combined with (8.9), (8.10) and Proposition 8.11
gives

c e
�"0

Z
�E�"0

mBR
 .�

"0
z / dz � lim inf

R!1
e�RNR.P ;  ;E/

� lim sup
R!1

e�RNR.P ;  ;E/

� c e
"0

Z
�E
C
"0

mBR
 .�

"0
z / dz:

Corollary 6.5 now gives

c e
�"0.1 � C"0/ ! .E

�
.2Cc/"0

/ � lim inf
R!1

e�RNR.P ;  ;E/

� lim sup
R!1

e�RNR.P ;  ;E/

� c e
"0.1C C"0/ ! .E

C

.2Cc/"0
/:

Since ! .𝜕E/ D 0 by Lemma 8.4, the regularity of ! gives

lim
"!0C

c e
˙".1˙ C"/! .E

˙
.2Cc/"/ D c ! .E/;

completing the proof.

General case. Without loss of generality, we may assume that P consists of a single
��-orbit; hence let P D ��T be a ��-admissible torus packing. We write

T D g0T0;

where g0 D nz0at0 ; here z0 is the vector consisting of the centers of the circles of T and
t0 D log r0, where r0 D .r1; : : : ; rd / are the corresponding radii. Set

�g0� WD g
�1
0 ��g0:

Note that

NR.P ;  ;E/ D #¹T 0 2 ��T W T 0 \E ¤ ; and  .v.T 0// � Rº

D #¹T 0 2 ��g0T0 W T 0 \E ¤ ; and  .v.T 0// � Rº

D #¹T 0 2 �g0� T0 W g0T
0
\E ¤ ; and  .v.g0T 0// � Rº:

D #¹
 2 .�g0� \H/n�
g0
� W g0


�1T0 \E ¤ ; and  .v.g0
�1T0// � Rº:

Similarly to Proposition 4.8, we can obtain the following estimate of NR.P ;  ;E/ in terms
of zB .E˙" ; R/.
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Proposition 8.12. For any " > 0, there exists q0 D q0.P ; "/ > 0 such that for any
R > 0 and any bounded measurable subset E � Cd , we have

#.Œe��g0� \ zB .E
�
" ; R/g0/ � q0 � NR.P ;  ;E/ � #.Œe��g0� \ zB .E

C
" ; R/g0/C q0:

Note that �g0� is also a self-joining of convex cocompact representations. Let ƒg0� and
L
g0
� denote its limit set and limit cone, respectively. It is immediate from the definition that

ƒg0� D g
�1
0 ƒ� and Lg0

� D L�:

Now, writing g0 D .g0;1; : : : ; g0;d /, the homeomorphisms in (2.3) associated to �g0� can be
written as g�10;i fig0;1, where 1 � i � d . A direct computation shows that T is ��-admissible if
and only if T0 is �g0� -admissible. Hence, we can apply the results obtained in previous sections
for a new subgroup �g0� .

Transition from �� to �g0� . Let ˆg0� D ˆ�g0� denote the growth indicator function
associated to �g0� . The following lemma is standard and can be proved using [1, Lemma 4.6],
[29, Lemma 3.1.6] and the definition of ˆ�.

Lemma 8.13. We have
ˆg0� D ˆ�:

Since  is ��-critical, it follows from Lemma 8.13 that  is �g0� -critical. The unique
unit vectors, as provided by Lemma 2.10 remain the same, regardless of whether we view  

as a ��-critical linear form or �g0� -critical linear form. We denote by �g0 the .�g0� ;  /-PS
probability measure supported on ƒg0� . Define a measure z�g0 on yCd via the formula

dz�
g0
 .z/ D e

� .ˇz.o;g0�o//d..g0/��
g0
 /.z/:

Lemma 8.14. We have
z�
g0
 

jz�
g0
 j
D � :

Proof. Since the support of �g0 is ƒg0� D g�10 ƒ�, we have

.g0/��
g0
 .ƒ�/ D �

g0
 .g

�1
0 ƒ�/ D 1:

Therefore, z�g0 is also supported on ƒ�. Furthermore, for any 
 2 ��, we have

d
�z�
g0
 .z/ D e

� .ˇ

�1z

.o;g0o//d
�.g0/��
g0
 .z/

D e� .ˇz.
o;
g0o//d.g0/�.g
�1
0 
g0/��

g0
 .z/

D e� .ˇz.
o;
g0o//e
� .ˇ

g�1
0
z
.g�10 
g0o;o//

d.g0/��
g0
 .z/

D e .ˇz.
g0o;
o//e .ˇz.g0o;
g0o//e .ˇz.o;g0o//dz�
g0
 .z/

D e .ˇz.o;g0o//e .ˇz.g0o;
g0o//e .ˇz.
g0o;
o//dz�
g0
 .z/

D e .ˇz.o;
o//dz�
g0
 .z/;
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i.e.,
d
�z�

g0
 

dz�
g0
 

.z/ D e� .ˇz.
o;o//:

This shows that z�g0 =jz�
g0
 j is a .��;  /-PS probability measure. By [17, Theorem 1.3], � is

the unique .��;  /-PS probability measure, and hence the lemma is proved.

Let !g0; denote the measure defined as in (6.1), associated to �g0� and  . Using Lem-
ma 8.14, we can now show the following result.

Lemma 8.15. There exists cg0 > 0 such that

!g0; .g
�1
0 E/ D cg0! .E/

for all Borel sets E � Cd .

Proof. By Definition 6.1,

!g0; .g
�1
0 E/ D

Z
E

d.g0/�!g0; .z/ D

Z
E

e
 .ˇ

g�1
0
z
.o;n

g�1
0
z
o//
d.g0/��

g0
 .z/:

Now writing as seen above g0 D nz0at0 , we thus have by Lemma 8.14

!g0; .g
�1
0 E/ D

Z
E

e
 .ˇ

g�1
0
z
.o;g�10 nzat0o//e .ˇz.o;g0o// dz�

g0
 .z/

D jz�
g0
 j

Z
E

e .ˇz.g0o;nzat0o//e .ˇz.o;g0o// d� .z/

D jz�
g0
 j

Z
E

e .ˇz.o;nzat0o//e� .ˇz.o;nzo// d! .z/

D jz�
g0
 j

Z
E

e .ˇz.nzo;nzat0o// d! .z/

D jz�
g0
 je

 .ˇ0.o;at0o//! .E/

D jz�
g0
 j e

� .t0/! .E/;

as desired.

Next, let
mBR
�
g0
� ; 

D mBR
g0; 

denote the Burger–Roblin measure associated to �g0� and the linear form  . Denote the right
G-action on functions on �g0� nG by .g � f /.Œh�/ D f .Œhg�/ and let G" be the "-neighborhood
of e in G. For any �" 2 Cc.�

g0
� nG/ whose support is contained in Œe�G", we have the follow-

ing.

Lemma 8.16. For all small enough " > 0,Z
�E˙"

mBR
g0; 

..g0 � �
"/z/ dz D e

 .t0/

Z
�g�10 E˙"

mBR
g0; 

.�"z/ dz:
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Proof. Denote the �g0� -invariant lift of mBR
g0; 

to G by zmBR
g0; 

. We use the G D KA LN
decomposition to write

(8.17) d zmBR
g0; 

.kau/ D e� .loga/duda d�
g0
 .k/

by [6, Lemma 4.9], where the measure �g0 on K is defined byZ
K

f .k/ d�
g0
 .k/ D

Z
K=M

Z
M

f .km/ dmd�
g0
 .k

C/

for all f 2C.K/. For any f 2Cc.G/, and measurableL�Cd , using the fact that g0D nz0at0 ,
we haveZ
�L

zmBR
g0; 

..g0 � f /z/ dz D

Z
�L

Z
M

Z
G

f .gmnzg0/ d zm
BR
g0; 

.g/ dmdz

D

Z
z0�L

Z
M

Z
G

f .gmnzat0/ d zm
BR
g0; 

.g/ dmdz

D e2�.t0/
Z
a�t0 .z0�L/

Z
M

Z
G

f .gat0mnz/ d zm
BR
g0; 

.g/ dmdz:

From (8.17), we obtainZ
G

f .gat0mnz/ d zm
BR
g0; 

.g/ D

Z
KA LN

f .kauat0mnz/e
� .loga/duda d�

g0
 .k/

D e�2�.t0/
Z
KA LN

f .kaat0umnz/e
� .loga/duda d�

g0
 .k/

D e. �2�/.t0/
Z
G

f .gmnz/ d zm
BR
g0; 

.g/:

This gives Z
�L

zmBR
g0; 

..g0 � f /z/ dz D e
 .t0/

Z
�g�10 L

zmBR
g0; 

.fz/ dz;

proving the claim.

Proof of Proposition 8.5 for the general case. We define a counting function that we
again denote by FR, on �g0� nG by

FR.Œg�/ D
X


2.�
g0
� \H/n�

g0
�

1B0 .E;R/
.
g/:

We have

(8.18) #.Œe��g0 \ B0 .E;R/g0/ D .g
�1
0 � FR/.Œe�/:

Let B" .E;R/
˙ be as in (8.6) and let O" be as in Lemma 8.7. Set now

(8.19) F
";˙
R .Œg�/ WD

X

2.�

g0
� \H/n�

g0
�

1B" .E;R˙"/˙
.
g/:

Then
.g�10 � F

";�
R /.Œg�/ � .g�10 � FR/.Œe�/ � .g

�1
0 � F

";C
R /.Œg�/
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for all g 2 O". Thus, choosing a non-negative �" 2 Cc.�
g0
� nG/ with support in Œe�O" such

that
R
�".Œg�/ d Œg� D 1 gives

(8.20) hF
";�
R ; g0 � �

"
i � FR.Œg0�/ � hF

";C
R ; g0 � �

"
i:

Similarly as in Proposition 8.11, we have

(8.21) hF
";˙
R ; g0 � �

"
i � ceR˙"

Z
�E˙"

mBR
g0; 

..g0 � �
"/z/ dz

as R!1, where c D c
�
g0
� ; 

.
Similarly to the proof for the special case, from Corollary 4.20, Proposition 8.12, (8.18),

(8.20) and (8.21), we obtain for "0 D .`0 C 2/",

ce�"0
Z
�E�"0

mBR
g0; 

..g0 � �
"0/z/ dz � lim inf

R!1
e�RNR.P ;  ;E/

� lim sup
R!1

e�RNR.P ;  ;E/

� ce�"0
Z
�E
C
"0

mBR
g0; 

..g0 � �
"0/z/ dz:

Applying Lemma 8.16 and Corollary 6.5 gives

e .t0/.1 � C"0/ !g0; .g
�1
0 E�.2Cc/"0/ �

Z
�E˙"0

mBR
g0; 

..g0 � �
"0/z/ dz

� e .t0/.1C C"0/ !g0; .g
�1
0 EC

.2Cc/"0
/:

We now use Lemma 8.15 to change !g0; to ! and then taking "! 0 as in the case T D T0
gives

lim
R!1

e�RNR.P ;  ;E/ D c0! .E/

for some positive constant c0 > 0. Since the left-hand side of the above equation does not
depend on the choice of g0, we in fact have that c0 cannot depend on g0 either, proving the
theorem.

On Remark 1.9 (2). There exists a unique vector u D u�� 2 .R�0/
d with the prop-

erty that ˆ�.u/ D max¹ˆ�.v/ W kvk � 1º, called the direction of the maximal growth of ��.
Moreover, u 2 int L� (see [28, 32]). Let  D  u be as defined in Lemma 2.10. Then for all
w 2 ker , the subset

(8.22) QR.w/ WD ¹s 2 R>0 W ksuC
p
swk < Rº

is an interval of the form .0; 1
2
.�kwk2 C

p
kwk4 C 4R2//. Then using [6, Lemma 9.4] sub-

stituting Lemma 7.3, our proof yields the following:

(8.23) lim
R!1

e�ı��R#¹T 2 P W kv.T /k < R; T \E ¤ ;º D c 
0! .E \ƒ�/;

where ı�� D ˆ�.u/ and c 0 > 0.
We remark that whereas Lemma 7.3 relied on the uniformity in the mixing Theorem 5.6,

[6, Lemma 9.4] did not need such uniformity. The reason is that for eachw 2 ker , the amount
of time the trajectory s 7! suC

p
sw spends in the set ¹v 2 aC W kvk < Rº is much less than

the time it spends in ¹v 2 aC W  .v/ < Rº to the extent that when viewed from a proper scale,
it gives rise to an L1-function on ker .
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9. PS-measures are null on algebraic varieties

In this section, we prove that � .S/ D 0 for any proper real algebraic subvariety S of yCd .
Since ! is absolutely continuous with respect to � , it follows that ! .𝜕E/ D 0 whenever
E has boundary contained in a proper real algebraic subvariety, and in particular, Lemma 8.4
follows.

We will in fact prove this in a more general setup, which we now explain.
Let G be any connected semisimple linear real algebraic group. Let P DMAN < G

be a minimal parabolic subgroup with a fixed Langlands decomposition. Let a denote the
Lie algebra of A. Let i denote the opposition involution on a. We remark that the opposi-
tion involution is non-trivial if and only if G has a simple factor of type An (n � 2), D2nC1
(n � 2) andE6 (see [34, Section 1.5.1]). For instance, whenG is a product of rank one groups,
i is trivial.

A Borel probability measure � on F D G=P is called a .�;  /-conformal measure for
a linear form  2 a� if for all 
 2 � and � 2 F ,

d
��

d�
.�/ D e� .ˇ�.
;e//;

where ˇ denotes the a-valued Busemann map [6, Definition 2.3]. When supported on the limit
set ƒ, it is called a .�;  /-PS-measure.

We recall the following result: consider the diagonal action of � on F � F .

Proposition 9.1 ([16, Proposition 6.3]). Let � < G be a Zariski-dense Anosov sub-
group of G (with respect to P ). Let  2 a� be a linear form. Let � and �i be respectively
.�;  / and .�;  ı i/-PS measures. Then .F � F ; � � �i; / is �-ergodic.

Theorem 9.2. Let � < G be a Zariski-dense Anosov subgroup ofG. For any .�;  /-PS
measure � for some  2 a� with  ı i D  , we have

�.S/ D 0

for any proper real algebraic subvariety S of F .

Theorem 9.2 follows from the following by Proposition 9.1.

Theorem 9.3. Let � < G be a discrete subgroup and let � be a .�;  /-PS measure for
some  2 a� such that the diagonal �-action on .F � F ; � � �/ is ergodic. Then

�.S/ D 0

for any proper real algebraic subvariety S of F .

Proof. Suppose the theorem is false. Let S be a proper subvariety of F with �.S/ > 0
and of minimal dimension. We may assume without loss of generality that S is irreducible.

As .� � �/.S � S/ D �.S/ � �.S/ > 0, it follows that the �-ergodicity of � � � implies
that �.S � S/ must have full � � �-measure. Since for any 
0 2 � , .� � �/.S � 
0S/ > 0,
there must exist 
 2 � such that .S \ 
0S/ \ .
S � 
S/ has positive � � �-measure. This
implies �.S \ 
S/ > 0 and �.
0S \ 
S/ > 0. Since S is an irreducible variety, for any 
 2 � ,
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either S D 
S or the dimension of S \ 
S is strictly smaller than that of S , and hence we have
�.S \ 
S/ D 0. Therefore S D 
S D 
0S . Since 
0 was arbitrary, it follows that �S D S ;
a contradiction to the Zariski-density of � .

We deduce the following corollary when G is of rank one. In this case, G D IsomC.X/
for a rank one symmetric space X and F is equal to the geometric boundary of X . For a non-
elementary discrete subgroup � < G of divergence type (e.g., geometrically finite), there exists
a unique �-conformal measure, say �� , of dimension equal to the critical exponent ı� and the
diagonal �-action on .F � F ; �� � ��/ is ergodic [31, Theorem 1.7]. Therefore we obtain

Corollary 9.4. Let G be of rank one and let � < G be a Zariski-dense discrete sub-
group of divergence type. Then ��.S/ D 0 for any proper real algebraic subvariety S of F .

This corollary was obtained in [8] whenG D SO.n; 1/ and � < G is geometrically finite.
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