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Magnetization dynamics of elastically strained nanostructures studied by coupled
micromagnetic-mechanical simulations
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Elastically strained ferromagnetic objects have been studied by coupled micromagnetic-mechanical numerical
simulations. Both temporal evolution of the magnetization and modal frequency analysis of ferromagnetic
thin films and arrays of nanostructures are presented. For this purpose, we have numerically coupled the
micromagnetic equations (including magnetoelastic effects) to the ones of solid mechanics by including periodic
boundary conditions. Our approach has been evaluated first on an elastically strained thin film and validated
by performing in situ ferromagnetic resonance experiments. We have undertaken simulations on nanostructured
arrays (modulated arrays of nanowires) and show that the heterogeneity of the strain fields and magnetic mode
profiles of those strained nanostructures induce significative disparities in the magnetic mode energies, allowing
applications to be foreseen where one could control in a differentiated way the spin-wave energies as a function
of the applied elastic strains.
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I. INTRODUCTION

Magnetoelastic effects in thin films and nanostructures
have become a major field of research due to their funda-
mental aspects and for the industrial applications involving
them [1–10]. Magnetoelastic effects are essentially those
related to magnetostriction and which have the effect of ei-
ther straining a ferromagnetic body under the application
of a magnetic field (direct effect) or inducing a magne-
toelastic anisotropy when a stress is applied to this body
(indirect effect). Fundamental studies and applications re-
lated to these effects have been numerous during the last
century (especially in the 1960s and ’70s) but have been
revived in recent years because they are more and more di-
rectly involved in various themes of nanomagnetism [11–14].
For instance, we have seen the emergence of what can
be called “magnetic-straintronics,” in which elastic (static)
strains imposed on the system allow control of certain mag-
netic properties [2,5,9,10,15–17]. To this purpose we can
associate an even more emerging theme—the curvilinear mag-
netism which allows highlighting complex magnetic textures
in systems presenting strong curvatures [18–23]. The influ-
ence of these magnetoelastic effects is also very much studied
in flexible magnetic systems which are generally composed of
a magnetic deposit on a polymer substrate with applications
ranging from everyday gadgets to aerospace devices [12,13].
In operando, these devices will be subjected to complex strain
fields that can modify their magnetic properties [24,25]. For
these systems, magnetoelasticity can be undesirable, and it

*stephane.chiroli@univ-paris13.fr

is therefore necessary to find solutions to limit its effects.
Therefore, despite numerous experimental studies, it is of
utmost importance to develop numerical tools to describe het-
erogeneous strain and magnetoelastic fields in nano-objects.
The numerical description of magnetic nanostructure behavior
involves the resolution of the Landau-Lifshitz-Gilbert (LLG)
equation. The commonly used softwares allow one to simulate
the magnetic properties of nanostructures but are rarely used
to take into account inhomogeneous strains. The magnetoe-
lastic coupling must therefore be fully described at the scale
of these inhomogeneities. Few groups have implemented nu-
merical means that couple the LLG equation describing the
magnetization dynamics as well as the solid mechanics ones
in strain-mediated artificial multiferroics [26–31].

In this work we present a study describing the combined
effects of shape and strain on nano-object magnetic response.
Indeed, a complex-shaped object subjected to a macroscopic
strain presents a nonuniform elastic and therefore magnetoe-
lastic field distribution. These combined “shape-strain” effects
must be well quantified, especially to interpret the experimen-
tal measurements. In this global context we present here a
numerical approach to study the static and dynamic magnetic
response of strained ferromagnetic thin films and nanostruc-
tures with different shape complexities. A particular focus
is made on the energetic response of spin waves in magne-
tostrictive nano-objects, potentially affected by complex strain
distribution. This approach has been first tested and validated
thanks to experimental FMR measurements performed on thin
films with and without magnetoelastic coupling and com-
plex nanostructures that are presented later. We also simulate
the evolution of magnetostatic modes of an array of width-
modulated nanowires under an applied strain field in order to
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highlight the benefits of elastic control of spin-wave features
in such systems [32,33]. In this context, micromagnetic-
micromechanical coupling is considered, which implies that
one should be able to precisely calculate the strain field inside
the magnetic medium, especially inside nanostructures where
the strain field can be highly heterogeneous. For this purpose
we choose to use COMSOL MULTIPHYSICS software based on
the finite-element method [34]. This software has the ad-
vantage of allowing one to easily create complex geometries
and couple multiple physics together, but no micromagnetic
module exists.

II. METHODS

In this section we present the equations that we have
solved, namely, the Landau-Lifshitz-Gilbert and mechanics
equations. Thus we implemented the weak form of the fol-
lowing equations inside the software in order to use them
for the finite-element method. Most of the theoretical con-
siderations are described by Challab et al. in Ref. [31]. In
the magnetic media, the temporal evolution of the reduced
magnetization �m = 1

Ms
(Mx �ex + My �ey + Mz �ez ), with Ms as the

saturation magnetization, is governed by the LLG:

∂ �m(t )

∂t
= −μ0γ �m(t ) ∧ �Heff + α �m(t ) ∧ ∂ �m(t )

∂t
, (1)

where α is the Gilbert damping coefficient, and γ is the
gyromagnetic ratio. By considering that the magnetization
precession can be written �m(t ) = �me

iωt
, where ω is the an-

gular velocity of the spin precession, one can write Eq. (1) as
follows:

iω( �m − α �m ∧ �m) = −μ0γ �m ∧ �Heff . (2)

Equation (1) is therefore used to determine the equilibrium
configuration of the magnetization, which is then used in
Eq. (2) in order to perform a modal analysis. The magnetiza-
tion dynamics is directly influenced by the effective magnetic
field �He f f = − 1

μ0Ms

δF
δ �m , where F is the total magnetic energy

of the system. This total energy can be written as the sum of
the four energy terms we are considering in the context of this
work: F = FZee + Fex + Fms + Fel , where the first term is the
Zeeman energy density, the second one is the exchange [Fex =
A(∇ �m)2] characterized by the exchange stiffness, and the third
one is the magnetostatic energy density Fms that depends on
a demagnetizing field �Hdem (Fms = − 1

2μ0Ms �Hdem · �m). �Hdem

is determined by introducing a magnetic potential φ such as
μ0 �Hdem = −�∇φ. This potential is then calculated from the
boundary conditions and is in most cases hard to analytically
determine. Finally, the last energy term is the elastic energy,
which exists in magnetostrictive materials and allows one to
vary the magnetization by applying strain onto the material.
Throughout this paper we only consider the magnetoelastic
effects (indirect magnetostriction), because the direct magne-
tostriction is generally negligible compared to magnetoelastic
effects. This elastic energy Fel can be written as

Fel = 1
2εel : C : εel , (3)

where εel is the elastic strain, which can be expressed with the

total strain and the magnetoelastic strain εel = ε − εm, with

ε(�u) = �∇ ⊗ �u + ( �∇ ⊗ �u)T

2
, (4)

εm =3

2
λ

⎛
⎜⎜⎝

m2
x − 1

3 mxmy mxmz

mxmy m2
y − 1

3 mymz

mxmz mymz m2
z − 1

3

⎞
⎟⎟⎠. (5)

In addition, as we are considering semi-infinite films or
periodic array of nanostructures, we have applied periodic
boundary conditions (PBCs) on the border of a single meshed
unit cell, such as,

�m(�r) = �m(�r + �a), (6)

φ(�r) = φ(�r + �a), (7)

where �r is the position vector, �a is the translation to the next
unit cell, and φ is the potential related to the demagnetizing
field inside the magnetic material.

The use of these PBCs is illustrated in Fig. 1. These PBCs
allow one to simulate a small portion of an infinite thin film,
which considerably reduces the computing time. For instance,
in Fig. 1(a), we calculate the equilibrium state of a chosen
unit cell (200 × 200 × 80 nm3) in the absence of elastic strain
and at zero applied magnetic field. It should be emphasized
that the automatic mesher of COMSOL was utilized to gener-
ate the mesh for the unit cells in the conducted simulations.
Special attention has been given to the distance between two
adjacent nodes so that it is of the same order of magnitude

as the exchange length (
ex =
√

2A
μ0M2

S
). Furthermore, we have

verified that for all the simulations presented in this article, a
smaller size than this has no influence on the results obtained
apart from elongating the computation time. Without the use
of periodic boundary conditions (right image), the material
behaves like a single square dot where the magnetic moment
distribution presents a vortex configuration due to the shape
of the object. In contrast, when PBCs are applied on the four
faces of the (x, z) and (y, z) planes, we have been able to
perfectly reproduce the behavior of a semi-infinite thin film
of thickness 80 nm. Note that when PBCs are applied, it is
easy to rotate the magnetization along the in-plane directions
(as expected for a thin film with no in-plane anisotropy). This
is illustrated in Fig. 1(b). A small magnetic field (10 mT)
was applied in two different directions [along x and at 45◦
in the (x, y) plane], and we observe that the magnetic moment
distribution at equilibrium is aligned along this applied field.
However, it is very hard to saturate the magnetization along
the out-of-plane direction due to the demagnetizing field,
shown with the 500-mT and 1500-mT applied field along the
z direction, illustrated in Fig. 1(c).

Sections B and C will focus on the magnetic response
of periodic objects submitted to strain. Therefore it is also
necessary to apply PBC for the displacement field as is
done for the magnetization. However, since the strain is ap-
plied on multiple faces of the cell, it appears that some
components of the strain field will be periodic whereas
the others will be antiperiodic (an example is given in the
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FIG. 1. In all images, colors encode the x component of the nor-
malized magnetization from −1 to +1, see color bar. (a) Calculated
magnetic moment distributions at zero applied magnetic field and
at equilibrium for a unit cell 200 × 200 × 80 nm3 obtained with
(left) or without (right) the defined periodic boundary conditions
(PBCs). The PBCs have been applied at the four surfaces of the (x, z)
and (y, z) planes. (b) Magnetic moment distributions calculated in
presence of a 10-mT in-plane magnetic field applied either along x
or at 45◦ with respect to the x axis. (c) Magnetic moment distribution
calculated in presence of an out-of-plane magnetic field (500 mT and
1500 mT, respectively).

“Finite element method precisions” section of the Supplemen-
tal Material [35]).

III. RESULTS AND DISCUSSION

A. Broadband ferromagnetic resonance spectra
of unstrained objects

Our approach was first used to simulate broadband ferro-
magnetic resonance experiments performed on thin films and
nanostructures [36]. We conducted experiments to compare
our numerical results with the experimental data. For this pur-
pose, broadband ferromagnetic resonance (sweep-field FMR)
experiments [37] have been conducted on an 80-nm Ni80Fe20

thin film deposited on a Si substrate. Two modes have
been easily detected corresponding to the uniform preces-
sion mode and to the first perpendicular standing spin-wave
one (PSSW1). The study (see Supplemental Material [35])
of these two modes in different configurations (in-plane and

out-of-plane measurements) allows the determination of the
different magnetic parameters such as the effective magne-
tization Meff = 0.8 × 106 A m−1 (which is here equal to the
saturation magnetization Ms ∼ Meff , since no out-of-plane
anisotropy field has been detected), the gyromagnetic ra-
tio γ = 1.923 × 10

11
rad s−1 T−1, and the exchange stiffness

A = 1.2 × 10
−11

J m−1. These parameters were determined
by using analytical formulas obtained under the macrospin
assumptions [38]. Figure 2(a) presents the frequency of these
two modes as function of an in-plane applied magnetic field
(no in-plane anisotropy was detected for this film).

Our numerical approach was thus employed to simulate
the variations of these two modes. We have first defined a
representative elementary volume (a cuboid of dimensions
15 × 15 × 80 nm3) to which periodic boundary conditions
have been applied (at four surfaces: (xz) and (yz) planes) in
order to simulate an infinite thin film along the (xy) plane.
The magnetic parameters used in the numerical simulations
are those obtained experimentally by FMR. Before calculating
the eigenfrequencies of the different modes, the equilibrium
state (magnetic moment distribution) is first determined for a
specific applied magnetic field. For this thin film, all the sim-
ulated equilibrium states correspond to a uniform distribution
of the magnetic moments. These equilibrium states are then
defined as a starting point for the frequency calculation, which
is shown in Fig. 2(a).

The simulations of the frequency variation of the two
modes show good agreement with the experimental data. The
calculated uniform mode (green) follows almost perfectly the
measured one, and the PSSW1 is very close to the experi-
mental one. It is to be noted that although the second-order
perpendicular standing spin-wave (PSSW2) mode was not
experimentally detected, we have been able to simulate it
[red symbols in Fig. 2(a)]. In the insets of Fig. 2(a), we
have reported the calculated mode profiles for the uniform
precession, the PSSW1 and the PSSW2 modes. The color map
shows the power intensity, and it is interesting to note that, as
expected, the uniform precession mode is uniform in thickness
and along the (xy) plane. We also retrieve the well-known
profiles of the PSSW1 and PSSW2, which reinforces the rigor
of our approach regarding the calculation of mode energies
and the extraction of their spatial profiles.

In order to further in the comparison of our approach with
experiments, we have conducted FMR measurements on more
complex objects. For this purpose, a 20-nm-thick Ni80Fe20 pe-
riodic array of width-modulated nanowires [32,33] deposited
on Si has been studied. A scanning electron microscope im-
age is presented as an inset in Fig. 2(b). One can note the
width modulation of the nanowire, which makes this array
more complex from a geometrical point of view. Thus the
width is modulated so that the largest part is 230 nm wide
and the thinnest part is 150 nm, while the periodicity of the
array is around 600 nm (along y) and the modulation peri-
odicity is 280 nm (along x). This modulation creates local
inhomogeneities of the magnetization which creates several
possibilities for the localized magnetic modes as compared to
a uniform nanowire geometry.

FMR experiments were conducted in this array of width-
modulated nanowires. Figure 2(b) presents typical spectra
obtained for a magnetic field applied along the nanowires
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FIG. 2. (a) Experimental (filled symbols ) and simulated frequency (open symbols ) variations of the magnetostatic mode (uniform
precession mode and perpendicular standing spin-wave modes) frequencies as a function of the magnetic field of a 80-nm-thick Ni80Fe20 film.
The insets show 3D profiles of the different modes (colors encode the y component of the dynamic magnetization my), and a section along z is
also represented next to each of these profiles (it was obtained in the center of the cell). (b) Typical sweep-field FMR spectrum recorded at a
different driven frequency (from 7 to 15.5 GHz) in a 20-nm-thick Ni80Fe20 width-modulated array of nanowires with a magnetic field applied
along the nanowires (along x direction). The inset shows a scanning electron microscopy image of this array: the periodicity of the array is
600 nm along y, while the width-modulation periodicity is 280 nm (larger width is 230 nm and the thinnest is 150 nm). (c) Experimental (filled
symbols ) and simulated frequency (open symbols ) variations of the magnetostatic mode frequencies as a function of the magnetic field
of array of nanowires. The inset shows a typical mesh of the representative elementary volume used for the simulations. (d) Top view of the
calculated 3D magnetic mode profiles where colors encode my (see scale bar).

(along x) at multiple driven frequencies. One can clearly note
the presence of at least five distinguishable magnetostatic
modes of different amplitudes and of different linewidths.
Similarly to the thin film, we have first defined a representative
elementary volume which is presented as an inset in Fig. 2(c).
The magnetic mode energies and their three-dimensional (3D)
profiles have been then calculated. We have been able to iden-
tify the five experimental modes by comparing the numerical
and experimental variations of their frequencies [see open
symbols in Fig. 2(c)]. Typical extracted 3D modes are pre-
sented in Fig. 2(c). We found a good correlation between the
experimental magnetic mode amplitudes and their calculated
profiles—the larger the spin precession region, the larger the
amplitude. This correlation is also valid for the experimental
linewidth of the modes: the larger the region involved by the
precession of the mode, the larger the experimental linewidth.

In the following sections (B and C) the magnetoelas-
tic energy term is incorporated into the LLG finite-element
resolution to account for the indirect magnetoelastic effect
induced by the presence of external strain (see the Methods
section for more details on the equations used).

B. Elastically strained thin film and magnetization
dynamics response

The simplest application of magnetoelastic effects is the
case of a continuous thin film subjected to strains from vari-
ous sources (flexible substrate under tension or bending [39],
ferroelectric substrate subjected to a voltage [40], effects of
epitaxial interfaces [41], etc.). In this section we show how
our numerical approach described allows to take into account
these effects, whether they concern the static or the dynamic
properties of the magnetization. More precisely, we have sim-
ulated a magnetoelectric system composed of a ferroelectric
substrate on which a ferromagnetic thin film is deposited. The
interest of this example is that we were able to confront the
calculations to in situ FMR experiments (voltage applied to
the substrate) [42]. The ferroelectric substrate is composed of
polycrystalline PZT; more details can be found in Ref. [43].
Thus the imposed elastic strains by the substrate are trans-
mitted to the thin film, which is itself magnetostrictive. Thus
this study takes into account the magnetoelastic coupling in
micromagnetic calculations. Here a macroscopic strain state
is imposed on the edges of the substrate (along x and y),
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FIG. 3. (a) Schematic of Ni60Fe40 film/ferroelectric substrate system. μ0 �H corresponds to the applied magnetic field. (b) Ferroelectric
substrate strain calibration curve. (c) FMR spectra obtained at 0 V (blue) and 100 V (red). (d) Resonance field shift [μ0δHres = μ0Hres(0) −
μ0Hres(V )] as a function of the applied voltage. The experimental data are represented by symbols, while numerical results are represented by
continuous lines. (e) Resonance field shift (μ0δHres) as a function of the in-plane ϕH . (f, g) Magnetoelastic field module map calculated for
different values of the applied voltage at ϕH = 0◦ (f) and for different angle at 100 V (g).

and its distribution (in this case homogeneous) is determined
numerically.

Figure 3(a) shows a schematic of the studied system.
A Ni60Fe40 thin film (20 nm) is deposited on a ferroelec-
tric substrate whose εxx(V ) and εyy(V ) are experimentally
known thanks to digital image correlation measurements;
more details are given in Ref. [44]. εxx and εyy vary almost
linearly between 0 and 100 V and respectively reach values
of 1 × 10−3 and −0.5 × 10−3; their evolutions are presented
in Fig. 3(b). Indeed, εxx is found to be positive whereas εyy

is found to be negative with a ratio εyy/εxx � −0.5, making
the mechanical traction slightly biaxial. These in-plane strains
will then be injected in the micromagnetic simulations per-
formed with a Young’s modulus of YN60Fe40 = 180 GPa and
a Poisson ratio ν = 0.3. Figure 3(a) presents the sweep-field
FMR experiments: a static magnetic field μ0 �H is applied in
the plane of the film. The angle ϕH between μ0 �H and the main
direction of traction (x) can vary from 0 to 90 degrees. On the
schematic we have also represented the radio-frequency field
(hr f ) imposed inside the film, which can excite the magnetic
moments and thus probe the magnetostatic modes (here only
the uniform mode is concerned). The complete study of the
uniform precession mode by FMR allowed us to determine
the magnetic parameters of the Ni60Fe40 thin film, namely,

Ms = 0.95 × 106 A m−1, A = 1.2 × 10
−11

J m−1, and γ =
1.76 × 10

11
rad s−1 T−1. Those parameters will be used for

the numerical simulations. Figure 3(c) shows typical exper-
imental spectra at 8 GHz for two applied voltages (0 and
100 V). The magnetic field is applied along the main traction
(ϕH = 0◦) and the driven frequency is fixed at 8 GHz. We
observe a shift of the resonance field μ0δHres = μ0Hres(0) −
μ0Hres(V ) equal to ∼ + 8 mT. This shift is physically linked
to the magnetoelastic field μ0 �Hme induced by the imposed
in-plane strains from the substrate deformation. The positive
sign of μ0δHres allows us to deduce that the magnetostriction
coefficient of the Ni60Fe40 film λNi60Fe40 is positive. Indeed,
in this case μ0 �Hme is aligned along x, which decreases the
resonance field (making x an easy axis). The complete exper-
imental evolution (open symbols) of μ0δHres as a function of
V is shown in Fig. 3(d) for several ϕH angles. One can observe
that μ0δHres ∼ −8 mT for �H applied at 90◦, which is coherent
with a uniaxial magnetoelastic field aligned along x. The com-
plete in-plane variations of μ0δHres are presented in Fig. 3(e)
for several applied voltages. We recognize the signature of
a second-order anisotropy axis, which is directly linked to
the voltage-induced magnetoelastic anisotropy. It is clear that
this magnetoelastic anisotropy is greater the more voltage is
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FIG. 4. (a) Top view of the spatial distribution of the induced in-plane strains εxx and εyy inside the nanowires for a macroscopic applied
strain of εxx = 0.2%. Cross sections are shown on the right side of these strain maps, obtained from the black dotted lines on the mapping
images. The colors correspond to a single pixel stretched along y and serve as a guide for the eyes. (b) Top view of the spatial distribution
of the amplitude of the induced magnetoelastic field calculated in the absence of applied magnetic field (‖μ0 �Hme‖). The corresponding
magnetic moment distribution is also represented. (c) Left graph: Frequency shift as function of the applied magnetic field; the frequency
shift corresponds to the difference between the mode energies calculated at εxx = 0.2% and at εxx = 0%. Right graphs: Frequency shift of
the different magnetic modes as a function of εxx for an applied field of 100 mT along the nanowires (i.e., along x) and in the absence of
applied field. (d) Top view of the spatial distribution of the magnetic modes calculated at εxx = 0.2% and at εxx = 0%. The upper (resp. lower)
section of each map has been computed with a strain of 0% (resp. 0.2%)

applied. The variations presented in Figs. 3(d) and 3(e) allow
us to determine the magnetostriction coefficient for the thin
film; by adjusting it, we found a value of λNi60Fe40 � +12 ×
10−6, as already found in Ref. [24].

Finally, we simulated the magnetomechanical behavior of
this thin film subjected to homogeneous strains. For this
purpose, a unit cell like the one presented in the previous
section was used. The dimensions of the unit cell are 20 ×
20 × 20 nm3. The PBC were applied on the four faces of the
(x, z) and (y, z) planes to simulate a semi-infinite film in the
(x, y) plane. We verified that our results remained unchanged
by considering larger unit cells (along x and y). As expected,
the application of PBC in the mechanic equations leads well to
homogeneous induced strain fields in the film. The calculated
induced magnetoelastic fields are also homogeneous for the
different considered strain states. In this regard, Fig. 3(f) [resp.
Fig. 3(g)] corresponds to the calculated induced static mag-
netoelastic field for different applied voltages [resp. in-plane
angle ϕH ] at ϕH = 0◦ [resp. at 100 V] and at zero applied

magnetic field. The colors encode the x component of the
magnetoelastic field μ0Hme while the arrows show its distribu-
tion in the volume. In Fig. 3(f) we observe that the amplitude
of μ0 �Hme increases with the applied voltage, as shown by the
arrow sizes on the 3D views. One can note that ‖μ0 �Hme‖ �
6.3 mT at 100 V, which is different from the +8 mT found
for μ0δHres at 100 V. This is due to the slightly biaxial in-
plane stress state induced by the ferroelectric substrate, due
to the Poisson’s ratio mismatch between substrate and thin
film [44]. In addition, the same observation can be done in
the images of Fig. 3(g). We notice that the μ0 �Hme is weak but
not zero at 90◦, which would have been the case for a uniaxial
stress state. We have indeed verified that when we impose a
uniaxial stress state, the μ0 �Hme cancels for ϕH = 90◦. In order
to compare our simulations more directly to the experimental
results, we proceeded to calculations of eigenmodes as done
in the previous section but in the presence of a mechanical
stress in the film. So we added a magnetoelastic anisotropy
term to the total energy density, which is dependent on the
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mechanical stresses calculated in parallel with the resolution
of the LLG equation. The magnetic parameters that have
been used correspond to the values extracted from FMR ex-
periments. Therefore we simulated several frequencies as a
function of the applied magnetic field f (H ) curves by apply-
ing magnetic field varying from 0 to 250 mT (by steps of
10 mT) for different ϕH angles and at different mechanical
stress states. We then numerically measured on the f (H )
curves the field shifts between these curves at a specific fixed
frequency, which allows us to determine a shift similar to
the one measured experimentally (μ0δHres). We are thus in
the same conditions as the in situ sweep-field FMR experi-
ments. The continuous lines in Figs. 3(d) and 3(e) are thus
the numerical μ0δHres variations. Note that no fit parameters
were used. A very good agreement was found for both the
μ0δHres variations at fixed ϕH [Fig. 3(d)] and at fixed applied
voltage [Fig. 3(e)]. These results validate our approach, which
combines mechanical calculations with the resolution of the
LLG equation in the presence of a magnetoelastic term.

C. Differentiated elastic control of magnetic mode
energies in a modulated array of nanowires

The previous case was characterized by a homogeneous
strain field and thus is more simple to solve in terms of
induced magnetoelastic field. However, in modern objects of
nanomagnetism, the presence of strain gradients related to
complex geometries requires a numerical modeling, taking
into account the heterogeneous localization of the strains and
thus the associated magnetoelastic field [45]. The approach
developed here allows us to perform this kind of resolution
and will be illustrated in this section by the numerical study
of the magnetomechanical properties of modulated nanowires
already discussed.

For this study we employed the same magnetic parameters
as presented in Fig. 1(c). Since Ni80Fe20 is nonmagnetostric-
tive, we opted to use a magnetoelastic constant λ of 30 ×
10−6, which is typical for ferromagnetic polycrystalline thin
films. Additionally, we utilized a Young’s modulus Y of
180 GPa and a Poisson ratio ν of 0.3 for the purpose of
this study. These chosen parameters provide a reasonable ap-
proximation for the magnetoelastic behavior in the absence of
direct experimental measurements.

Modulated nanowires were numerically submitted to ex-
ternal strains along their main axis (x). PBCs were adopted
so that the representative unit cell [identical to that used in
Fig. 2(c)] allows the determination of the whole behavior.
Different external strains were applied (from 0% to 0.2%
with 0.05% step). Figure 4(a) shows the in-plane strain (εxx,
εyy) maps at the top surface of the unit cell (right images)
for a macroscopic applied strain of εxx = 0.2%. We observe
that the strain fields are heterogeneous in the (x, y) plane but
homogeneous over the thickness. This is due to the width
modulation of the nanowires; indeed, nanowires without mod-
ulation would have presented much more homogeneous strain
fields. These inhomogeneities are illustrated on the left graph
where we have represented a cut along the nanowire (dashed
line in the maps). It is interesting to note that the variations of
εxx and εyy are respectively located at around +0.2 and −0.06,
which correspond to the macroscopic values of εxx and εyy.

These heterogeneous values naturally give rise to a hetero-
geneous magnetoelastic field. This is illustrated in Fig. 4(b),
where the amplitude of μ0 �Hme has been calculated from the
strain fields presented in Fig. 4(a) and the equilibrium mag-
netization distribution [see left map of Fig. 4(b)] obtained
in the absence of the applied magnetic field for a macro-
scopic strain of εxx = 0.2%. It should be mentioned that Hme

and the magnetization distribution are obtained in a self-
consistent scheme. This magnetoelastic field configuration
is thus directly linked to the strain-field configuration and,
more particularly, to that of εxx since the magnetic moments
are mostly oriented in the x direction. We have followed the
evolution of the frequencies of the different magnetic modes
identified in the previous section at different macroscopic
strain values. Figure 4(c) (left graph) shows the frequency
shift [δ f = f (0) − f (εxx )] obtained for an applied macro-
scopic strain of 0.2% for increasing applied magnetic field.
It is interesting to note that not all modes show the same
frequency shift for a given magnetic field. Moreover, the lower
frequency modes have the largest δ f . For instance, at zero
applied field, mode 1 has a frequency shift of δ f ∼ 2.4 GHz,
while it is twice as low for mode 5 (δ f ∼ 1.2 GHz). These
lowest frequency modes’ δ f are also the most affected by
the applied magnetic field. In order to emphasize this phe-
nomenon, we plotted the δ f evolution of each mode with
respect to the applied macroscopic strain at 0 and 100 mT.
In Fig. 4(c) (right graphs) we observe an almost linear de-
pendency of the modes to the applied strain, which has been
experimentally observed in the elastic regime in saturated
magnetic configurations [24]. These graphs show that the low-
est frequency modes are getting closer to the higher modes’
behavior as the magnetic field increases, which can be related
to the experimental and numerical data shown in Fig. 2(c).
Indeed, we observe in this figure that the mode evolution
slopes are different for each mode at low magnetic field,
which gives birth to a differentiated mode control with the
applied strain. As the applied field increases, the slopes tend
to equalize, which explains the tightening evolution of all
the modes as function of εxx. To understand the observation
of such a difference at low applied field, we scrutinized the
spatial distribution of each of the magnetic modes at minimum
(εxx = 0%) and maximum applied strain (εxx = 0.2%). The
different spatial distributions of the five modes are presented
in Fig. 4(d); the upper (resp. lower) half corresponds to maps
obtained at a strain of 0% (resp. 0.2%). It is interesting to
notice that the lowest frequency modes (especially modes 1
and 2) show a clear variation of their spatial distribution,
whereas the higher frequency modes remain mainly in the
same spatial region. This is most probably related to the pro-
gressive saturation of the magnetization close to the borders of
the modulated nanowires and would explain why at high ap-
plied field the lowest frequency modes δ f are highly reduced.
These mode frequency shifts are only observable thanks to the
coupling between the LLG and the equations of mechanics in
the case of magnetostrictive materials. In the case an infinite
non magnetostrictive material (λ = 0), no shift is observed
numerically; however, in the case of the modulated nanowire
array a very small shift (negligible compared to the magnetoe-
lastic effect) is observed due to the slight shape modification
induced by the strain.
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IV. CONCLUSION

In this paper, the Landau-Lifshitz-Gilbert equation as well
as Maxwell’s equations have been implemented and solved
under COMSOL MULTIPHYSICSby coupling them with the equa-
tions of solid mechanics to take into account magnetoelastic
effects. Moreover, the introduction of periodic boundary con-
ditions allowed us to simulate the magnetization dynamics of
elastically strained thin films and arrays of nanostructures.
We were able to simulate precisely the uniform mode be-
havior of an elastically strained Ni60Fe40 thin film (with a
slightly biaxial stress) through a ferroelectric actuator. Specif-
ically, we were able to account for the voltage-induced strain
magnetoelastic anisotropy by performing measurements and
simulations for different values of the angle between the
applied field and the principal axis of the applied stress. Fi-
nally, the study conducted on modulated nanowires revealed
a differentiation in the elastic control of the spin-wave modes
which is partly due to the heterogeneity of the strain-induced
magnetoelastic field. This approach is very promising to
develop multichannel systems with simultaneous and differ-
entiated controlled frequencies in magnetic devices.

A direct extension of this work would be to consider dis-
persive effects (spin waves) to simulate the propagation of
spin waves. The approach we have developed is well suited

to tackle this by modifying the periodic boundary conditions
through phase shifts applied to different faces of our system,
effectively simulating a wave vector. This extension can be
used to simulate spin-wave propagation not only in semi-
infinite layers but also in arrays of nanostructures such as
magnonic crystals. In these arrays, spin-wave band structures
can emerge due to the confinement of spin waves and their
propagation through the crystal. Moreover, dynamic direct
magnetostrictive effects can be judiciously implemented to ac-
count for potential dynamic interactions with acoustic waves.
It is indeed possible to study the properties of so-called “mag-
phonics” crystals, which exhibit both phononic and magnonic
characteristics, by simulating their magnon and phonon band
structures along with their interactions (due to direct magne-
tostriction) [46,47].
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