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Automatically discovering ordinary differential
equations from data with sparse regression
Kevin Egan 1, Weizhen Li 1 & Rui Carvalho 1,2✉

Discovering nonlinear differential equations that describe system dynamics from empirical

data is a fundamental challenge in contemporary science. While current methods can identify

such equations, they often require extensive manual hyperparameter tuning, limiting their

applicability. Here, we propose a methodology to identify dynamical laws by integrating

denoising techniques to smooth the signal, sparse regression to identify the relevant para-

meters, and bootstrap confidence intervals to quantify the uncertainty of the estimates. We

evaluate our method on well-known ordinary differential equations with an ensemble of

random initial conditions, time series of increasing length, and varying signal-to-noise ratios.

Our algorithm consistently identifies three-dimensional systems, given moderately-sized time

series and high levels of signal quality relative to background noise. By accurately discovering

dynamical systems automatically, our methodology has the potential to impact the under-

standing of complex systems, especially in fields where data are abundant, but developing

mathematical models demands considerable effort.
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S ince Newton discovered the second law of motion, scientists
have sought to formulate mathematical models in the form
of differential equations that accurately represent natural

phenomena. In the past half-century, dynamical systems have
been employed in various disciplines such as physics1,2,
chemistry3, biology4–9, neuroscience10–12, epidemiology13,14,
ecology15,16 and environmental sciences17,18. Nonetheless,
developing these models remains challenging and typically
requires considerable effort from specialists in the relevant
fields19,20.

As early as the 1980s, scientists turned to statistical methods to
reverse engineer governing equations for nonlinear systems from
data21. This approach, often referred to as the inverse problem22

or system identification23, aims to automatically discover math-
ematical models that accurately represent the inherent dynamics.
Building on this foundation, symbolic regression has been
instrumental in advancing our ability to develop more inter-
pretable models of complex systems24,25. Sparse regression has
emerged as a practical method for this problem, eliminating the
time-consuming task of determining equations manually. A
remarkable breakthrough is the sparse identification of nonlinear
dynamics (SINDy)26, an approach that employs a sparsity-
promoting framework to identify interpretable models from data
by only selecting the most dominant candidate terms from a
high-dimensional nonlinear-function space. This methodology
has significantly advanced system identification, serving as a
foundational influence for numerous subsequent sparse regres-
sion techniques27–29. Over time, SINDy has evolved and expan-
ded its framework, incorporating Bayesian sparse regression30

and ensemble methods to estimate inclusion probabilities31,
integrating neural networks32,33, and deploying tools to better
manage noisy data34.

Among these advancements, a distinct variant, SINDy with
AIC, aims to automate the model selection procedure35. This
approach uses a grid of sparsity-promoting threshold parameters
in conjunction with the Akaike information criterion (AIC) to
determine the model that most accurately characterizes the
dynamics of a given system. However, it encounters several
obstacles that limit its practicality. Key challenges include its
dependence on prior knowledge of the governing equations for
model validation and identification, as well as the requirement for
high-quality measurements given its limited capacity to compute
numerical derivatives from previously unseen data. Furthermore,
the efficacy of SINDy with AIC has only been demonstrated on
data sets generated using specific initial conditions, sufficient
observations, and low levels of noise, indicating the need for more
comprehensive and rigorous analyses to assess its performance in
diverse settings.

While existing methods, such as SINDy, use the Savitzky-Golay
filter to both reduce noise and compute numerical derivatives,
they require users to manually select the filter parameters36–38.
Additionally, effective system identification often hinges on rig-
orous variable selection methods. To address these concerns, our
contribution lies in developing an automated approach that
employs a grid to fine-tune the Savitzky-Golay filter parameters
and subsequently leverages bootstrapping to estimate confidence
intervals and establish the governing terms of the system. As a
result, our algorithm significantly improves the accuracy and
efficiency of model discovery in low to medium-noise conditions
while requiring only the assumptions of model sparsity and the
presence of governing terms in the design matrix. We demon-
strate the effectiveness of our approach by examining its success
rate on synthetic data sets generated from known ordinary dif-
ferential equations, exploring a range of initial conditions, time
series of increasing length, and various noise intensities. Our
algorithm automates the discovery of three-dimensional systems

more efficiently than SINDy with AIC, achieving higher identi-
fication accuracy with moderately sized data sets and high signal
quality.

Results
Modeling systems of ODEs with linear regression. Ordinary
differential equations (ODEs) are often used to model dynamical
systems in the form of

d
dt

xjðtÞ ¼ _xjðtÞ ¼ f jðxðtÞÞ j ¼ 1; ¼ ;m; ð1Þ

where x ¼ xðtÞ ¼ x1ðtÞ x2ðtÞ � � � xmðtÞ
� �T 2 Rm is a state space

vector, and f ðxðtÞÞ : Rm ! Rm describes the system’s evolution
in time39. We approximate the dynamics symbolically by

_xj � θTF ðxÞβj; j ¼ 1; ¼ ;m; ð2Þ
where βj 2 Rp is a sparse coefficient vector of system parameters
and θF(x) is a feature vector containing p symbolic functions, each
representing an ansatz that we can use to describe the dynamics.

To identify the system from data, we first construct a state
matrix ~X 2 Rn´m from measurements of x(t) taken at times
t1, t2, . . . , tn, then apply the Savitzky-Golay filter40 to smooth each
column xj ¼ SGð~xjÞ and calculate the derivative _xj. We next

consolidate X and _X and build the block design matrix
ΘðXÞ 2 Rn ´ p:

ΘðXÞ ¼
j j j j j
1 X X½2� � � � X½d� ΦðXÞ
j j j j j

0
B@

1
CA; ð3Þ

where X[i] for i= 1,…, d is a matrix whose column vectors
denote all monomials of order i in x(t), and Φ(X) can contain
nonlinear functions such as trigonometric, logarithmic, or
exponential26.

Finally, we perform a linear regression with the above matrices:

_X ¼ ΘðXÞBþ E; ð4Þ
where B 2 Rp ´m and E 2 Rn ´m denote the coefficient and
residual matrices, respectively.

Automatic regression for governing equations (ARGOS). Our
approach, ARGOS, aims to automatically identify interpretable
models that describe the dynamics of a system by integrating
machine learning with statistical inference. As illustrated in Fig. 1,
our algorithm comprises several key phases to solve the system in
Eq. (4). These include data smoothing and numerical approx-
imation of derivatives, as well as the use of bootstrap sampling
with sparse regression to develop confidence intervals for variable
selection.

In the first phase, we employ the Savitzky-Golay filter, which
fits a low-degree polynomial to a local window of data points,
reducing noise in the state matrix and approximating the
derivative numerically40. The Savitzky-Golay filter enables us to
mitigate the effects of noise while maintaining our goal of
automating the entire identification process. To optimize the
filter, we set polynomial order o= 4 and construct a grid of
window lengths l41. For each column of the noisy state matrix ~X,
we find the optimal l* that minimizes the mean squared error
between each noisy signal ~xj and its smoothed counterpart xj
(Algorithm 1 in Supplementary Note 1).

Following smoothing and differentiation, we construct the
design matrix Θ(X) with monomials up to the d-th degree and
extract the columns of _X and B from Eq. (4). As the noise in the
data increases, the mean squared error between xj and ~xj increases
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exponentially with the signal-to-noise ratio (SNR), consequently
distorting the columns of Θ(X) (Supplementary Fig. S7). Using
Θ(X), we formulate a regression problem to identify the
governing equations of each component of the system:

_xj ¼ ΘðXÞβj þ ϵj; j ¼ 1; ¼ ;m: ð5Þ

We then apply either the least absolute shrinkage and selection
operator (lasso)42 or the adaptive lasso43 during the model selection
process (Algorithm 2 in Supplementary Note 1). Both algorithms
add the ℓ1 penalty to the ordinary least squares regression (OLS)
estimate, shrinking coefficients to zero. This allows for the selection
of the nonzero terms for parameter and model inference.

After identifying an initial sparse regression estimate of βj in Eq.
(5), we trim the design matrix to include only monomial terms up
to the highest-order variable with a nonzero coefficient in the
estimate. Using the updated design matrix, we reapply the sparse

regression algorithm and employ a grid of thresholds to develop a
subset of models, each containing only coefficients whose absolute
values exceed their respective thresholds (see the Algorithm
implementation subsection in the Methods). Next, we perform
OLS on the selected variables of each subset to calculate unbiased
coefficients and determine the point estimates from the regression
model with the minimum Bayesian information criterion (BIC)44.
As a final step, we bootstrap this sparse regression process with the
trimmed design matrix to obtain 2000 sample estimates45. We then
construct 95% bootstrap confidence intervals using these sample
estimates and identify a final model consisting of variables whose
confidence intervals do not include zero and whose point estimates
lie within their respective intervals.

Assessing ARGOS systematically. To evaluate the effectiveness
of our approach, we expanded several well-known ODEs using

95% Confidence interval Point estimate Selected
terms0

e Bootstrap confidence intervals f Identified model

⇒

a  Smoothing and differentiation 

b Trim design matrix

c Point estimate

d Bootstrap sampling

.
 
.
 
.

.

 

.

 

.

Fig. 1 Automatic regression for governing equations (ARGOS). This example illustrates the process of identifying the _x1 equation of a two-dimensional
damped oscillator with linear dynamics. We first (a) smooth each noisy state vector in ~X and calculate the derivative _x1 using the Savitzky-Golay filter.
Next, we (b) construct the design matrix Θ(0)(X), containing the observations x(t) and their interaction terms up to monomial degree d= 5 —see Eq. (3).
Following Eq. (5), we perform sparse regression using either the lasso or the adaptive lasso and determine the highest-order monomial degree with a
nonzero coefficient in the estimate β̂

ð0Þ
(in this example, we detect terms up to d= 2). We then trim the design matrix to include only terms up to this

order and (c) perform sparse regression again with the trimmed design matrix and the previously used algorithm (lasso or adaptive lasso), apply ordinary
least squares (OLS) on the subset of selected variables, and determine the final β̂

ð1Þ
point estimates. Finally, we (d) employ bootstrap sampling to obtain

2000 sample estimates and (e) develop 95% bootstrap confidence intervals to (f) identify the β̂ by selecting the coefficients whose intervals contain the
point estimate but do not include zero.
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100 random initial conditions, emulating real-world settings
where we cannot select these initial values. We then generated
data sets with varying time series lengths n and SNRs (see
the Building the data sets and tests subsection in the Methods)
before introducing a success rate metric, defined as the propor-
tion of instances where an algorithm identified the correct terms
of the governing equations from a given dynamical system. This
metric allowed us to quantitatively measure the performance of
an algorithm across different dynamical systems, as well as dif-
ferent SNR and n values (see Supplementary Tables S1 and S2).
Figure 2 highlights success rates exceeding 80%, demonstrating
that our method consistently outperformed SINDy with AIC in
identifying the underlying system of the data. We accurately
represented linear systems with less than 800 data points
and medium SNRs, underscoring the method’s ability to handle
straightforward dynamics (see Supplementary Note 2). Even with
only moderately-sized data sets or medium SNRs, we successfully
identified three out of five of the two-dimensional ODEs using
the lasso with ARGOS, showcasing the effectiveness of integrating
classic statistical learning algorithms within our framework46,47.
The adaptive lasso was able to identify the non-linear ODEs in
three dimensions with higher accuracy than the other algorithms
tested (see Supplementary Note 3)48. These results suggest that
the adaptive lasso is suitable for identifying non-linear ODEs in
higher dimensional systems. In practice, we recommend
employing the adaptive lasso for such systems, while the lasso can
serve as a valuable initial exploration tool for most cases.

The systematic analysis, presented in Fig. 2, emphasized the
efficacy of our approach as n and SNR increased. The importance of
data quality and quantity is further supported by Fig. 3, which
illustrates the frequency at which our approach identified each term
in the design matrix across different values of n and SNR. The boxes
in the figure delineate regions where each algorithm achieved model
discovery above 80% for the Lorenz system, providing insights into
the selected terms contributing to the success and failure of each
method across different settings. When faced with limited observa-
tions and low signal quality, our approach identified overly sparse
models that failed to represent the governing dynamics accurately,
while SINDy with AIC selected erroneous terms, struggling to obtain
a parsimonious representation of the underlying equations. Figure 3
also illustrates the decline in our method’s performance for
deterministic systems, as it identified several ancillary terms for the
Lorenz dynamics when SNR=∞. The decrease in identification
accuracy stemmed from the identified model’s violation of the
homoscedasticity assumption in linear regression, which occurs
when residuals exhibit non-constant variance. Figure 4 demonstrates
that our method did not satisfy this assumption when identifying the
_x1 equation of the Lorenz system. Consequently, our approach
selected additional terms to balance the variance among the model’s
residuals while sacrificing correct system discovery. As the noise in
the system slightly increased, however, homoscedasticity in the
residuals became more pronounced, enabling our approach to
distinguish the equation’s true underlying structure. In contrast,
SINDy with AIC avoids traditional statistical concerns by comparing
the predicted X̂ with the true X. However, our method embraces
statistical inference, even with its inherent challenges. This adherence
proves advantageous in real-world applications, particularly where
data contains low levels of noise in the signal, enhancing our
method’s reliability in identifying accurate governing equations.
While this approachmay encounter issues in noiseless environments
due to the assumption of homoscedasticity, it maintains a rigorous
framework for model discovery. Our method’s commitment to
statistical inference, despite potential drawbacks, underscores its
effectiveness in extracting meaningful insights from observational
data, even when true system dynamics are elusive.

Our method outperformed SINDy with AIC in identifying a
range of ODEs, especially three-dimensional systems. One
potential explanation for the lesser performance of SINDy with
AIC is that multicollinearity in the design matrix often causes
OLS to produce unstable coefficients. Due to the sensitivity of the
estimated coefficients, small changes in the data can lead to
fluctuations in their magnitude, making it difficult for the
sparsity-promoting parameter to determine the correct model. As
a result, the initial phase of the hard-thresholding procedure of
SINDy with AIC inadvertently removed the true dynamic terms
of the underlying system. Therefore, this model selection
approach will likely face persistent challenges when discovering
higher-dimensional systems that contain additional multicolli-
nearity in the design matrix.

Figure 5 shows the computational time, measured in seconds,
required for our approach and SINDy with AIC to perform
model discovery. While our method demanded greater computa-
tional effort for the two-dimensional linear system than SINDy
with AIC, it demonstrated better efficiency in identifying the
Lorenz dynamics as n increased. The decrease in efficiency
of SINDy with AIC can be attributed to its model selection
process, which involves enumerating all potential prediction
models—a procedure that becomes progressively more expensive
with data in higher dimensions35. In contrast, our approach
displayed a similar rate of increase in computational complexity as
the time series expanded for both systems, suggesting that our
method was less affected by the growing data dimensionality than
SINDy with AIC. Thus, our method offers a more efficient
alternative for identifying three-dimensional systems with increas-
ing time series lengths.

Comparison with Ensemble-SINDy. Expanding on our analysis
in the subsection Assessing ARGOS systematically, we directed
our focus to a more recent alternative within the SINDy frame-
work to emphasize the advantages of our method. In particular,
we examined Ensemble-SINDy (ESINDy), a variant that employs
bagging (bootstrap aggregation) and bragging (robust bagging) to
obtain a distribution of estimates before thresholding based on
specific inclusion probabilities31. For a direct comparison with
our method, we integrated ESINDy with Algorithm 1 (see Sup-
plementary Note 1) to smooth the data and approximate the
derivative automatically. During the model discovery phase, we
used ESINDy’s default values for the thresholding hyperpara-
meter λSINDy= 0.2 and inclusion probability tolerances tolstan ¼
0:6 and tollib= 0.4 for its standard and library versions31.

In Fig. 6a, ESINDy with bagging improved identification
performance as the length of the time series n increased.
However, the performance of other ESINDy variants decreased
with increasing n, signaling a complex relationship between
hyperparameter fine-tuning and the length of the time series.
Moreover, the inconsistent performance across different time
series lengths suggests that achieving optimal results with
ESINDy would necessitate frequent hyperparameter adjustments,
a task that is often impractical and resource-intensive in real-
world scenarios, where data characteristics can vary widely, and
re-tuning may not always be feasible. Figure 6b further indicates
that ESINDy with bagging and library ESINDy with bragging are
advantageous, especially with high levels of SNR. Nevertheless,
achieving this level of performance requires careful tuning of
multiple hyperparameters, highlighted by fluctuating perfor-
mance as the observations increase.

By contrast, our approach performs its hyperparameter tuning
process automatically, enhancing adaptability for various
systems. We employ cross-validation to determine the optimal
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regularization parameter λ for the lasso and the adaptive lasso.
Then, we use a grid of hard thresholding values η and select the
one that minimizes the Bayesian Information Criterion (BIC) for
the final model. Figures 7 and S6 demonstrate the variability in
these hyperparameters, reinforcing the impracticality of manual
tuning without specific domain-specific knowledge (see Supple-
mentary Note 3). Finally, we perform bootstrap sampling to
develop confidence intervals, allowing for inference on the

identified predictors rather than constraining estimates based
on a user-specified threshold.

Discussion
We have demonstrated an automatic method, ARGOS, for
extracting dynamical systems from scarce and noisy data while
only assuming that the governing terms exist in the design matrix.
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Fig. 2 Success rate of ARGOS versus SINDy with AIC for linear and nonlinear systems. We generate 100 random initial conditions and examine the
success rate of ARGOS and SINDy with AIC in discovering the correct terms of the governing equations from each system at each value of n and signal-to-
noise ratio (SNR). a, b Linear systems. First-order nonlinear systems in two (c, d) and three (e, f) dimensions. g, h Second-order nonlinear systems. We
increase the time-series length n while holding SNR= 49dB (left panels) and fix n= 5000 when increasing the SNR (right panels). Shaded regions
represent model discovery above 80%.
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Our approach combines the Savitzky-Golay filter for signal
denoising and differentiation with sparse regression and boot-
strap sampling for confidence interval estimation, effectively
addressing the inverse problem of inferring underlying dynamics
from observational data through reliable variable selection. By

examining diverse trajectories, we showcased the capabilities of
our algorithm in automating the discovery of mathematical
models from data, consistently outperforming the established
SINDy with AIC, especially when identifying systems in three
dimensions.
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Fig. 3 Frequency of identified variables for the Lorenz system across algorithms. Colors correspond to each governing equation; filled boxes indicate
correctly identified variables, while white boxes denote erroneous terms. Panels show the frequency of identified variables for data sets with (a) increasing
time-series length n (signal-to-noise ratio (SNR) = 49 dB), and (b) SNR (n= 5000). Purple-bordered regions demarcate model discovery above 80%.
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In our study, we diverge from the approach originally taken by
SINDy with AIC35, particularly in calculating the derivative and
the breadth of testing scenarios. Unlike SINDy with AIC, which
was originally examined using derivatives calculated directly from
the true Lorenz system equations, our methodology employs the
Savitzky–Golay filter for automated smoothing and numerical
derivative approximation (detailed in Algorithm 1 in Supple-
mentary Note 1). This distinction is non-trivial, as direct deri-
vative calculation, while precise, often lacks feasibility in real-
world applications where true system equations are not readily
accessible. Conversely, while the Savitzky-Golay method intro-
duces an element of approximation error, it significantly enhan-
ces the applicability of our approach in diverse and unpredictable
real-world scenarios. Furthermore, the systematic analysis we
adopted is more expansive, assessing each method’s effectiveness
across a range of initial conditions, not just a specific set. This
rigorous testing paradigm not only underscores our method’s
robustness but also provides a more holistic view of its perfor-
mance in varied practical contexts, which is an aspect that was
not previously as thoroughly explored with SINDy with AIC.

While we have shown promising results with our approach, it
is important to note several potential limitations. First, although
our method effectively automates model discovery, it can only
correctly represent the true governing equations if the active
terms are present in the design matrix, a constraint inherent in
regression-based identification procedures. Building on this point,
we stress the importance of data quantity and quality as

identification accuracy improved with sufficient observations and
moderate to high signal-to-noise ratios. We also found that our
method performs better when data contains low levels of noise, as
opposed to noiseless systems. The linear regression assumption of
homoscedasticity is violated under noiseless conditions, and the
method identifies spurious terms to develop a more constant
variance among the residuals. However, this issue can be miti-
gated in the presence of a small amount of noise in the data,
leading to a more constant variance in the residuals of the true
model and enabling more accurate identification. Lastly, as the
number of observations and data dimensionality increase, boot-
strap sampling becomes computationally demanding, which can
significantly prolong the model selection process and limit our
algorithm’s applicability in real-time. Nonetheless, obtaining
confidence intervals through bootstrap sampling serves as a
reliable approach for our method, allowing us to eliminate
superfluous terms and select the ones that best represent the
underlying equations, ultimately leading to more accurate pre-
dictions of the system’s dynamics.

In this information-rich era, data-driven methods for unco-
vering governing equations are increasingly crucial in scientific
research. By developing automated processes, researchers can
develop concise models that accurately represent the underlying
dynamics in their data, accelerating advancements across various
disciplines in science. Our study endorses an inference-based
approach that combines statistical learning and model assessment
methods, emphasizing the importance of thorough model
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evaluation for building confidence in discovering governing
equations from data. As data-driven techniques advance, we look
forward to further developments in automatic system identifica-
tion that will continue contributing to the search for the elusive
laws governing many intricate systems.

Methods
The lasso and adaptive lasso for variable selection. For the jth
column of _X and B in Eq. (4), we implement sparse regression by
adding weighted ℓq penalties to the OLS regression estimate49

argmin
β

∑
n

i¼1
_xi � β0 � ∑

p

k¼1
θðXÞi;kβk

� �2

þ λ ∑
p

k¼1
wkjβkjq

( )
: ð6Þ

When all weights wk= 1 for k= 1,…, p, Eq. (6) represents the
lasso for q= 1 and ridge regression for q= 242,50. Furthermore,
the adaptive lasso is derived from the lasso by incorporating
pilot estimates ~β and setting wk ¼ 1=j~βkjν43. The weighted pen-
alty in the adaptive lasso can be interpreted as an approximation
of the ℓp penalties with p= 1− ν51. Therefore, fixing ν= 1 allows
us to achieve a soft-threshold approximation to the ℓ0

penalty, providing an alternative to the hard-thresholding in the

SINDy algorithm, which requires a choice of the cut-off
hyperparameter26.

As λ increases in Eq. (6), ridge regression, the lasso, and the
adaptive lasso shrink the coefficients toward zero. However, of these
three methods, the lasso and the adaptive lasso perform variable
selection by reducing small coefficients to exactly zero42. We use
glmnet to solve Eq. (6) by producing a default λ grid and applying
10-fold cross-validation to determine the optimal initial tuning
parameter λ�0

52. We then refine the grid around λ�0 with 100 points
spanning ½λ�0=10; 1:1 � λ�0 � and impose this updated grid on glmnet
to solve Eq. (6) again, identifying the optimal λ* that best predicts _xj.

The lasso is effective when only a few coordinates of the
coefficients β are nonzero. However, like OLS, the lasso provides
unstable estimates when predictors are collinear, whereas ridge
regression produces more stable solutions when multicollinearity
exists in the data49. Therefore, we apply ridge regression to the
data in the first stage of the adaptive lasso to obtain stable pilot
estimates ~β and reduce the effects of multicollinearity43.

The second stage of the adaptive lasso then uses the ~β pilot
estimates to calculate the weights vector w, enabling variable
selection by solving the problem in Eq. (6). Here, we calculate
the weights vector w using pilot estimates ~β corresponding to
the optimal λ�ridge ridge regression model before identifying a
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separate tuning parameter λ�adaptive lasso. In doing so, we make
Eq. (6) less computationally expensive since we optimize twice on
a single parameter rather than simultaneously optimizing over
λ�ridge and λ�adaptive lasso

53.
The adaptive lasso often yields a sparser solution than the lasso

since applying individual weights to each variable places a
stronger penalty on smaller coefficients, reducing more of them to
zero. Here, small ~β coefficients from the first stage of the adaptive
lasso lead to a larger penalty in the second. Larger penalty terms
in the second stage of the adaptive lasso result in more
coefficients being set to zero than the standard lasso method.
Furthermore, a smaller penalty term enables the adaptive lasso to
uncover the true coefficients and reduce bias in the solution53.

The adaptive lasso, valuable for system identification, obtains
the oracle property when the ~β pilot estimates converge in
probability to the true value of β at a rate of 1=

ffiffiffi
n

p
(

ffiffiffi
n

p
-consistency). As n increases, the algorithm will select the

true nonzero variables and estimate their coefficients as if using
maximum likelihood estimation43.

Algorithm implementation. When applying ARGOS for model
selection, we use threshold values strategically to establish a range
conducive to successful model discovery. Specifically, we employ
a logarithmically spaced grid defined as η= 10−8, 10−7,…, 101 to
threshold the sparse regression coefficients. Subsequently, we
perform OLS on each subset Ki ¼ fk : jβ̂kj≥ ηig; i ¼
1; ¼ ; cardðηÞ of selected variables, determining an unbiased
estimate for β49. We then calculate the BIC for each η regression
model and select the model with the minimum value, further
promoting sparsity in the identification process44,54.

The number of bootstrap sample estimates B must be large
enough to develop confidence intervals for variable selection45.
Therefore, we collect B= 2000 bootstrap sample estimates and

sort them by β̂
OLSf1g
k ≤ β̂

OLSf2g
k ≤ ¼ ≤ β̂

OLSfBg
k . We then use the

100(1 - α)% confidence level, where α= 0.05, to calculate the
integer part of Bα/2 and develop estimates of the lower and upper
bounds: CIlo= [Bα/2] and CIup= B− CIlo+ 1. Finally, we
implement these calculations to develop confidence intervals

½β̂OLSfCIlogk ; β̂
OLSfCIupg
k � from our sample distribution55.

To automatically identify the system using SINDy with AIC,
we deploy Algorithm 1 (see Supplementary Note 1), which
facilitates signal smoothing and derivative approximation with
the Savitzky-Golay filter. This consistent use of Algorithm 1
ensures a standardized comparison between SINDy with AIC
with our proposed algorithm.

Both our method and SINDy with AIC use information criteria
in their methodologies, but their applications diverge. Specifically,
SINDy with AIC employs AIC to ascertain the optimal model
between the estimated system state-space, X̂, and the true system
state-space, X, representing the ground truth35. In contrast, our
method leverages BIC to determine the prediction model
corresponding to the optimal hard-thresholding parameter η*,
thereby promoting sparsity in the model selection process54.

Building the data sets and tests. We conducted two sets of
numerical experiments to assess the impact of data quality and
quantity on the performance of the algorithms. Central to our
approach is the use of a distribution of random initial conditions. By
leveraging this strategy, we evaluated our method’s efficiency with
random data, reflecting its potential in real-world settings marked by
inherent unpredictability and variability (see Supplementary Note 4).

To evaluate the algorithms’ performance with limited data, we
first kept the signal-to-noise ratio constant (SNR= 49) and

increased the number of observations n for each ODE system. We
generated 100 random initial conditions and used temporal grids
starting with tinitial= 0 and a varying tfinal between 1 (n= 102)
and 1000 (n= 105) with a time step Δt= 0.01. For the Lorenz
equations, we used Δt= 0.001, resulting in tfinal values ranging
from 0.1 (n= 102) and 100 (n= 105)26. Furthermore, we
implement the systems’ corresponding Δt as dt in Algorithm 1
for smoothing and differentiation (see Supplementary Note 1).

To examine the algorithms’ performance under noisy conditions,
we varied the SNR in the data by corrupting the state matrix with a
zero-mean Gaussian noise matrix Z � N ð0; σ2ZÞ. In this setting, we
determined the standard deviation σzj of each column of Z as

σzj ¼ σxj � 10
�SNR20 ; j ¼ 1; ¼ ;m; ð7Þ

and develop the noise corrupted ~X as56

~X ¼ X þ Z: ð8Þ
Keeping n constant, we again used 100 random initial conditions
and generated ~X matrices increasing in noise levels such that
SNR= 1, 4,…, 61dB with ΔSNR = 3 dB, including a noiseless
system (SNR=∞).

For both the tests with varying n and SNR, we constructed the
design matrix Θ(0)(X) with monomial functions up to d= 5 of
the smoothed columns of X26. We then performed system
identification with each data set and calculated the success rate of
each algorithm as the probability of extracting the correct terms
of the governing equations. Additionally, we analyzed the most
frequently selected variables of each method.

Finally, we measured the computational time, in seconds, for
running our method and SINDy with AIC by performing model
discovery on 30 instances of the two-dimensional linear system
and the Lorenz system for time series lengths
n= 102, 102.5,…, 105, using one CPU core with a single thread.

Data availability
All data generated for this study can be generated with the code available at http://github.
com/kevinegan31/ARGOS. We provide a snapshot of the data on GitHub.

Code availability
All code used in this study is available at http://github.com/kevinegan31/ARGOS.
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