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A B S T R A C T 

In this series of papers, we present an emulator-based halo model for the non-linear clustering of galaxies in modified gravity 

cosmologies. In the first paper, we present emulators for the following halo properties: the halo mass function, concentration–
mass relation and halo-matter cross-correlation function. The emulators are trained on data extracted from the FORGE and 

BRIDGE suites of N -body simulations, respectively, for two modified gravity (MG) theories: f ( R ) gravity, and the DGP model, 
varying three standard cosmological parameters �m0 , H 0 , σ 8 , and one MG parameter, either f̄ R0 or r c . Our halo property 

emulators achieve an accuracy of � 1 per cent on independent test data sets. We demonstrate that the emulators can be combined 

with a galaxy–halo connection prescription to accurately predict the g alaxy–g alaxy and galaxy–matter correlation functions 
using the halo model framework. 

Key words: dark energy – large-scale structure of Universe – cosmology: miscellaneous – cosmology: theory. 
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 I N T RO D U C T I O N  

ngoing and upcoming galaxy surv e ys, such as those that will
e made with the Dark Energy Spectroscopic Instrument (DESI;
ESI Collaboration et al. 2016 ), the Vera Rubin Observatory (LSST
cience Collaboration et al. 2009 ) and Euclid (Laureijs et al. 2011 ;
mendola et al. 2013 ; Troja, Tutusaus & Sorce 2022 ) will map

he large-scale structure (LSS) of the Universe with unprecedented
tatistical precision. Measurements of the LSS can potentially be
sed to unveil the nature of the dark matter and dark energy, and to
ook for any deviation from the predictions of general relativity (GR).
heories of gravity beyond GR – modified gravity (MG) models – can
xplain the observed accelerated expansion of the Universe without
nvoking a cosmological constant (e.g. Koyama 2018 ; Ferreira 2019 ).
tudies of such models will not only shed light on the nature of the
osmic acceleration, but also serve as useful tests of GR on cosmic
cales. 
 E-mail: chzruan@gmail.com 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
The impact of modifications to GR has been well studied in
erms of the cosmic expansion history and the LSS, i.e. at the
ackground and linear perturbation levels. In the late universe, the
ro wth of LSS e v entually enters the non-linear re gime o v er a wide
ange of length-scales, and linear theory predictions cease to be
alid. This point becomes even more acute in the context of MG,
iven that such models have intrinsically non-linear features, such
s screening mechanisms and non-linear field equations for new
egrees of freedom, which cannot be captured by linear theories (e.g.
i et al. 2013 ). Often a choice is made to exclude small-scale data,

hereby losing a wealth of information from high signal-to-noise ratio
easurements. Such non-linearities must be properly incorporated

nto theoretical modelling if one wishes to make the best use of
he current and next generation cosmological surv e ys to constrain
osmological parameters and test gravity theories. 

A fully non-linear treatment – N -body simulations – is essential
o accurately solve the non-linear dynamics of cosmic structure
ormation (see e.g. Kuhlen, Vogelsberger & Angulo 2012 ; An-
ulo & Hahn 2022 , for recent rei ve ws). The main hurdle of N -
ody simulations is their e xpensiv e computational cost. A Monte
arlo Markov chain (MCMC) analysis, usually used to confront
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heoretical predictions with data, requires sampling at least 10 4 –10 5 

odels in the cosmological parameter space. Probing such a large 
umber of models using simulations is computationally prohibitive. 
he situation is even worse for MG models, which usually involve 
artial differential equations go v erning the new physics. Current MG 

imulations can take between 2 to O(10) times longer than standard 
 CDM simulations with the same specifications (e.g. Li et al. 2012 ;
rnold, Leo & Li 2019a ). 
There are several approaches to dealing with the non-linear regime 

n addition to simulations. N -body simulation results can be used 
o develop phenomenological or semi-analytical fitting formulae to 
escribe the statistical properties of matter and dark matter haloes, 
uch as the halo mass function calibrated by Tinker et al. ( 2008 ),
nd the HALOFIT prescription for the matter power spectrum (Smith 
t al. 2003 ; Takahashi et al. 2012 ; Smith & Angulo 2019 ; Mead
t al. 2021 ) and bispectrum (Takahashi et al. 2020 ). The most up-
o-date version of HALOFIT implemented by Mead et al. ( 2021 )
chieves an accuracy of 5 per cent down to deeply non-linear scales.
o we ver, such parametric fits may no longer be fit for purpose
ith the advent of next-generation surveys that promise to reach 
easurements with per cent level precision. 
The halo model (Neyman & Scott 1952 ; Ma & Fry 2000 ;

eacock & Smith 2000 ; Seljak 2000 ; Cooray & Sheth 2002 ; Schmidt
016 ; Philcox, Spergel & Villaescusa-Navarro 2020 ; Mahony et al. 
022 ; Dvornik et al. 2022 ) is a successful analytical description of the
SS in the non-linear regime. In this framework, all matter, including 
alaxies and any other tracers, is assumed to reside within haloes. 
hen, the problem of predicting the clustering can be split into the

ollowing steps: 

(i) the abundance of haloes as a function of halo mass, i.e. the halo
ass function (HMF); 
(ii) the distribution of tracers around the halo centre, i.e. the 

alo density profile, usually assumed to be a Navarro–Frenk–White 
NFW) profile (Navarro, Frenk & White 1996 , 1997 ) specified by a
alo mass–concentration relation; and 
(iii) the clustering of the haloes themselves, e.g. the halo two-point 

orrelation function (TPCF) in configuration space and the halo auto 
ower spectrum in Fourier space. 

These basic properties of dark matter haloes constitute the halo 
odel ingredients. The halo model provides a physically moti v ated 

escription of the clustering statistics and is flexible enough to be 
xtended to incorporate new physics such as massive neutrinos and 
aryonic feedback (e.g. Massara, Villaescusa-Navarro & Viel 2014 ; 
ose et al. 2021 ; Carrilho et al. 2022 ), as well as models beyond
 CDM and GR (e.g. Barreira et al. 2014 ; Lombriser, Koyama & Li

014 ; Hu, Liu & Cai 2018 ; Cataneo et al. 2019 ). 
The halo model ingredients can be derived from analytic methods. 

 or e xample, the HMF can be predicted using the spherical collapse
odel of the linear matter density field (Press & Schechter 1974 )

nd the excursion set formalism (Bond et al. 1991 ; Sheth, Mo &
ormen 2001 ), whereby the dependence of the HMF on redshift and
osmology is expressed in terms of the root-mean-square fluctuations 
n the linear matter power spectrum. Jenkins et al. ( 2001 ) found
hat this universality of the HMF holds at an approximate level. As
imulation predictions impro v ed further, it was disco v ered that the
edshift evolution of the mass function, even for � CDM, deviates 
rom the universal prediction at the 5–10 per cent level, and several
ew fitting formulae were proposed (e.g. Tinker et al. 2008 ; Courtin
t al. 2011 ). Moreo v er, the univ ersality of the HMF is broken further
n extensions of � CDM (e.g. Bhattacharya et al. 2011 , for wCDM)
nd modified gravity models (e.g. Schmidt, Hu & Lima 2010 ; Lam &
i 2012 ; Li & Efstathiou 2012 ; Lombriser et al. 2013 ; Cataneo et al.
016 ; Gupta et al. 2022 ). In order to obtain even tighter constraints on
osmological parameters and to test gravity theories, one therefore 
eeds to proceed beyond the traditional approaches, given their 
imitations in accuracy and coverage of parameter space. 

In this series of papers, we develop simulation-based theoretical 
emplates called emulators to obtain accurate predictions for basic 
alo properties as a function of halo mass and (modified gravity)
osmology and to construct accurate predictions for clustering ob- 
ervables in preparation for ongoing and future galaxy surv e ys. There
av e been sev eral previous works on the emulation of cosmological
uantities in the � CDM model and its extensions, such as Heitmann
t al. ( 2006 ), Habib et al. ( 2007 ), the Coyote Universe (Heitmann et al.
010 , 2009 ; Lawrence et al. 2010 ), PkANN (Agarwal et al. 2012 ,
014 ), the Mira–Titan Universe (Heitmann et al. 2016 ; Lawrence
t al. 2017 ; Bocquet et al. 2020 ), Kwan et al. ( 2013 , 2015 ), Aemulus
DeRose et al. 2019 ; McClintock et al. 2019 ; Zhai et al. 2019 ), Dark
uest (Nishimichi et al. 2019 ; Kobayashi et al. 2020 ; Miyatake et al.
020 ; Cuesta-Lazaro et al. 2022 ), matryoshka (Donald-McCann 
t al. 2022 ) and AbacusSummit (Maksimova et al. 2021 ; Yuan et al.
022 ), as well as in non-standard cosmologies, such as Winther et al.
 2019 ), Ramachandra et al. ( 2021 ), Arnold et al. ( 2022 ), Brando et al.
 2022 ), Harnois-D ́eraps et al. ( 2022 ). 

To build emulators, we use the machine-learning interpolation 
echnique of neural networks, which allows us to predict halo 
roperties for any given cosmology within the range of parameters 
o v ered by the training data set. We use the FORGE (F-Of-R Gravity
mulator) and BRIDGE (BRaneworld-Inspired DGP Gravity Emu- 

ator) modified gravity N -body simulations described in Arnold et al.
 2022 ), which together co v er a v ery broad range of parameters in
wo MG theories: f ( R ) gravity and the DGP model. The emulated
alo properties incorporate all the complicated effects on non-linear 
cales, such as the non-linear halo bias, the halo exclusion effect, and
he screening mechanism. 

Following the spirit of the Dark Quest project (Nishimichi et al.
019 ; Cuesta-Lazaro et al. 2022 ), we do not perform an end-to-
nd emulation of galaxy clustering statistics in the joint param- 
ter space of cosmological and galaxy–halo connection models. 
nstead, we develop emulators for each halo property separately, 
nd assemble these ingredients within the halo model framework to 
onstruct analytical predictions of galaxy clustering statistics. This 
mulator-based halo model gives us the flexibility to insert different 
rescriptions of galaxy–halo connection for different galaxy samples. 
oreo v er, emulators for basic halo properties themselves are very

seful. F or e xample, calibrating the cosmology dependence of the
MF is crucial to control the systematic uncertainty in galaxy cluster

bundance studies (e.g. McClintock et al. 2019 ; Bocquet et al. 2020 ).
The layout of this paper is as follows: in Section 2 , we present a

hort description of the modified gravity theories studied here and 
 brief o v erview of the FORGE and BRIDGE N -body simulation
uites. In Section 3 , we outline the measurement and post-processing
f the halo properties from the simulations. Section 4 describes the
onstruction of the halo property emulators using neural networks, 
nd Section 5 shows their performance in reproducing the simulation 
esults. In Section 6 , we demonstrate how these emulators can be
ombined with a galaxy-halo connection prescription to predict 
alaxy statistics. 

Throughout this paper, we use log to denote the base-10 logarithm,
og ≡ log 10 , and ln to indicate the natural logarithm. Unless otherwise
tated, we use a subscript 0 to denote the present-day value of
 physical quantity and an o v erbar for the background value of a
uantity. 
MNRAS 527, 2490–2507 (2024) 
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 MODIFIED  G R AV I T Y  T H E O R I E S  A N D  

IMULATIONS  

e briefly describe the two modified gravity models analysed in this
ork, f ( R ) gravity (Hu & Sawicki 2007 ), and the Dvali–Gabadadze–
orrati (DGP) brane-world models (Dvali, Gabadadze & Porrati
000a ). These are two of the most widely studied MG models and,
s we discuss below, are representative examples of the two main
lasses of screening mechanisms, which make them good test-beds
or generic MG models. For more detailed descriptions of these
odels, we refer the reader to Sotiriou & Faraoni ( 2010 ) and De
elice & Tsujikawa ( 2010 ) for f ( R ) gravity, and Sahni & Shtanov
 2003 ) and Maartens & Koyama ( 2010 ) for DGP models. 

.1 f ( R ) gravity 

he f ( R ) gravity is a generalization of Einstein’s GR. In f ( R ) gravity,
he Einstein–Hilbert action in GR has an additional term, which is a
unction of the Ricci scalar R , 

 = 

∫ 
d 4 x 

√ −g 

{
M 

2 
Pl 

2 
[ R + f ( R)] + L m 

}
, (1) 

here M Pl = (8 πG ) −1/2 is the reduced Planck mass, G is Newton’s
onstant, g is the determinant of the metric g μν , and L m 

is the
agrangian density for matter fields. Varying the action with respect

o the metric g μν gives the modified Einstein equation, 

 μν + f R R μν −
(

1 

2 
f − �f R 

)
g μν − ∇ μ∇ νf R = 8 πGT m 

μν, (2) 

here 

 μν ≡ R μν − 1 

2 
g μνR, (3) 

s the Einstein tensor, f R ≡ d f ( R )/d R , ∇ μ is the covariant derivative
orresponding to the metric g μν , � ≡ ∇ 

α∇ α , and T m 

μν is the energy
omentum tensor for matter. 
Equation ( 2 ) is a fourth-order partial differential equation in

 μν . This equation can also be considered as the standard Einstein
quation in GR with a new dynamical degree of freedom, f R , which is
ubbed the scalaron (e.g. Zhao, Li & Koyama 2011 ). The equation of
otion of f R can be obtained by taking the trace of equation ( 2 ): 

f R = 

1 

3 
( R − f R R + 2 f + 8 πGρm 

) , (4) 

here ρm 

is the matter density. 
For cosmological simulations in standard gravity, the Newtonian

imit is commonly adopted. This includes the approximations that the
ravitational and scalar fields are weak (such that their higher-order
erms can be neglected) and quasi-static (so that the time deri v ati ves
f the fields can be neglected compared to their spatial deri v ati ves).
ost modified gravity simulations (including the ones used in this
ork) adopt this assumption. In the context of f ( R ) gravity and the
ewtonian limit, the modified Einstein equation ( 2 ) becomes 

 

2 	 ≈ 16 πG 

3 
a 2 ( ρm 

− ρ̄m 

) + 

1 

6 
a 2 [ R( f R ) − R̄ ] , (5) 

nd the equation of motion of the scalaron reduces to 

 

2 f R ≈ −1 

3 
a 2 [ R( f R ) − R̄ + 8 πG ( ρm 

− ρ̄m 

)] , (6) 

here 	 is the Newtonian potential, ∇ is the three-dimensional
radient operator, and an o v erbar denotes the cosmic mean of a
uantity. 
NRAS 527, 2490–2507 (2024) 
An f ( R ) gravity model is fully specified by the functional form
f f ( R ). Here, we adopt the well-studied Hu–Sawicki model (Hu &
awicki 2007 ), which is given by 

 ( R) = −m 

2 c 1 ( −R/m 

2 ) n 

c 2 ( −R/m 

2 ) n + 1 
, (7) 

here m 

2 ≡ �m 0 H 

2 
0 , and c 1 , c 2 , and n are free parameters. The

arameter n is a positive number, which is set to n = 1 in this work
s in most previous studies of this model (ho we ver see e.g. Li & Hu
011 ; Ramachandra et al. 2021 ; Ruan et al. 2022 , for some examples
f n �= 1). With this functional form, we have 

 R = − ∣∣f̄ R0 

∣∣ ( R̄ 0 

R 

)n + 1 

, (8) 

here R̄ 0 and f̄ R0 are, respectively, the present-day values of the
ackground Ricci scalar and f̄ R . For brevity, we will adopt the follow-
ng nomenclature to label models: the model with − log 10 

(| f̄ R0 | 
) =

 . 5 will be called F5.5, and so on. 
The remaining free parameter of the theory is the background value

f the scalar field f R at redshift z = 0, f̄ R0 . With a suitable choice
f this parameter, f ( R ) gravity reverts to GR in high-density regions
this is necessary to be consistent with Solar system tests through

he associated chameleon mechanism (Khoury & Weltman 2004b ,
 ). A larger value of | f̄ R0 | means a stronger deviation from standard
ravity. The F5 model is in slight tension with small-scale tests, see,
.g. Lombriser ( 2014 ) for a recent re vie w of current cosmological
onstraints on f̄ R0 . But since we aim to test gravity on cosmic scales,
odels with such strength of MG are nevertheless still valuable to

tudy: given their stronger deviations from GR compared to models
ith smaller | f̄ R0 | , they can lead to important insights into how the
eviations from GR can affect large-scale cosmological observables
uch as weak lensing and galaxy clustering statistics. In order to
ully explore the gravity testing capacities of upcoming cosmological
bservations, it is important to gain a detailed understanding of how
hese measures are influenced by possible modifications to gravity. 

.2 The Dvali–Gabadadze–Porrati (DGP) model 

n the Dvali–Gabadadze–Porrati braneworld model (Dvali,
abadadze & Porrati 2000b ), the Universe is a four-dimensional
rane embedded in a five-dimensional space–time (called the bulk).
he gravitational action in this model is given by 

 = 

∫ 
brane 

d 4 x 
√ −g 

(
R 

16 πG 

)
+ 

∫ 
bulk 

d 5 x 
√ 

−g (5) 

(
R 

(5) 

16 πG 

(5) 

)
, 

(9) 

here a superscript (5) denotes the quantity in the five-dimensional
ulk. This model has a self-accelerating branch of solution (sDGP),
hich gives a natural explanation for the cosmic acceleration.
o we ver, the sDGP branch suffers from the ghost problems (Koyama
007 ) and cannot be considered as a physical model. Moreo v er, its
redictions have been found to be inconsistent with observations such
s cosmic microwave background (CMB) and local measurements
f the Hubble parameter H 0 (e.g. Song, Sawicki & Hu 2007 ; Fang
t al. 2008 ). 

The so-called normal branch DGP (nDGP) gravity (Koyama 2007 )
annot accelerate cosmic expansion by itself, so in order to explain
he cosmological observations it has to introduce additional dark
nergy components. This model is nevertheless still of interest as a
seful toy model that features the Vainshtein screening mechanism
Vainshtein 1972 ). Here, we assume that there is an additional non-
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Figure 1. Visualization of the cosmological parameters C [equations ( 16 )–
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lustering dark energy component in this model, which results in 
ts expansion history being identical to that of � CDM. The nDGP
odel provides an explanation of why gravity is much weaker than 

he other fundamental forces (Maartens & Koyama 2010 ): all matter 
pecies are assumed to be confined to the brane, while gravity could
ropagate through (leak into) the extra spatial dimensions. There is 
ne new free parameter in the nDGP model, which can be defined as
he ratio of G 

(5) and G , and is known as the crosso v er scale, 

 c ≡ 1 

2 

G 

(5) 

G 

. (10) 

The modified Friedmann equation in the normal branch DGP 

odel is given by 

H ( a) 

H 0 
= 

√ 

�m 0 a −3 + �DE0 ( a) + �rc −
√ 

�rc , (11) 

here �rc ≡ 1 / (4 H 

2 
0 r 

2 
c ), and �DE0 is the density parameter of the

dditional dark energy component. The dimensionless quantity H 0 r c 
s used to quantify departures from the standard gravity. If H 0 r c →
 then equation ( 11 ) returns to the � CDM case. A larger value of
 0 r c means a weaker deviation from GR. Hereafter, an nDGP model
ith H 0 r c = X will be referred to as N X . F or e xample, a model with
 0 r c = 1 is called N1. 
The modified Poisson equation and the scalar field equation are 

iven by (Koyama 2007 ), 

 

2 	 = 4 πGa 2 δρm 

+ 

1 

2 
∇ 

2 ϕ, (12) 

nd 

 

2 ϕ + 

r 2 c 

3 β a 2 c 2 

[
( ∇ 

2 ϕ ) 2 − ( ∇ i ∇ j ϕ ) 2 
] = 

8 πG a 2 

3 β
δρm 

, (13) 

here ϕ is a new scalar degree of freedom, δρm 

= ρm 

− ρ̄m 

and 

( a) ≡ 1 + 2 H r c 

(
1 + 

Ḣ 

3 H 

2 

)

= 1 + 

�m 0 a 
−3 + 2 �� 0 

2 
√ 

�rc ( �m 0 a −3 + �� 0 ) 
. (14) 

.3 Modified gravity N -body simulations 

o construct emulators for dark matter halo properties, we use 
he FORGE and BRIDGE suites of N -body simulations (Arnold 
t al. 2022 ), co v ering 49 f ( R ) gravity, and 49 DGP models, along
ith 49 � CDM counterparts. The simulations were performed 
sing 1024 3 dark matter particles in a cube of side 500 h 

−1 Mpc
hereafter the high-resolution runs, denoted HR) or 1500 h 

−1 Mpc 
low-resolution runs, labelled LR), using the modified gravity ver- 
ion of the AREPO cosmological simulation code (Springel 2010 ; 
rnold, Leo & Li 2019b ; Weinberger, Springel & Pakmor 2020 ).
he mass resolutions of the HR and LR runs are 9.1 × 10 9 

nd 1 . 5 × 10 12 ( �m 0 / 0 . 3) h 

−1 M 	, respectively. The gravitational
oftening lengths of simulations are 15 (HR) and 75 h 

−1 kpc (LR).
he initial conditions were generated using second-order Lagrangian 
erturbation theory [2LPT, Crocce, Pueblas & Scoccimarro ( 2006 )] 
t z init = 127. Each cosmology (also called ‘node’) has two in-
ependent realizations with the pairs of initial conditions selected 
o minimize the sample variance on large scales o v er the real-
zations. All nodes were initialized with the same (two) random 

eeds. See Section 3.2 of Arnold et al. ( 2022 ) for a detailed 
escription. 
The cosmological parameters were drawn from a Latin hypercube 

esigned to efficiently sample a four-dimensional parameter space 
or a three-dimensional space in the case of � CDM), as shown
n Fig. 1 , following a similar approach to that used in the cosmo-
LICS project (Harnois-D ́eraps, Giblin & Joachimi 2019 ). Since 
ORGE and BRIDGE were partly designed to emulate weak lensing 
tatistics, they sampled directly in the composite structure growth 
arameter 

 8 ≡ σ8 

√ 

�m 0 

0 . 3 
, (15) 

nstead of the physical matter fluctuation amplitude parameter σ 8 . 
he use of S 8 accounts better for the de generac y between �m0 and σ 8 

n the cosmic shear analysis. The 49 nodes form the training data set
or each gravity model. It is common practice to use a small portion
called validation set) of the training set to determine whether the
rocess has finished. We choose the nodes 11, 13, 22, 34, and 36 as
he validation set. 

The following three standard cosmological parameters and one 
G parameter are varied, 

 = { �m0 , h, S 8 } , for � CDM , (16) 

 = { �m0 , h, S 8 , log 10 | f̄ R0 |} , for f ( R) , (17) 

 = { �m0 , h, S 8 , log 10 ( H 0 r c ) } , for DGP , (18) 
MNRAS 527, 2490–2507 (2024) 
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here h ≡ H 0 / (100 km s −1 Mpc −1 ) and H 0 is the present day Hubble
onstant. The range of the parameters explored is 

0 . 11 < �m 0 < 0 . 54 

0 . 61 < h < 0 . 81 

0 . 6 < S 8 < 0 . 9 

−6 . 2 < log 10 | f̄ R0 | < −4 . 6 

−0 . 6 < log 10 ( H 0 r c ) < 1 . 0 . (19) 

he density parameter of baryons was fixed to �b0 = 0.049199 and
assive neutrinos are ignored. The dark energy density is given by 

� 0 = 1 − �m 0 . (20) 

he remaining cosmological parameter is the slope of the primordial
urv ature po wer spectrum normalized at 0 . 05 Mpc −1 , which is n s =
.9652 (Arnold et al. 2022 ). 
We also need test data set to assess the performance of the emula-

ors independently. In both cases, the test set consists of two models.
he MG test cases are F5 and F6 for f ( R ) gravity, and for DGP they
re N1 and N5, and they share the same cosmological parameters,
iven by the fiducial Planck cosmology (Planck Collaboration et al.
020 ), 

�m0 = 0 . 31315 , �� 0 = 0 . 68685 , �b0 = 0 . 049199 , 

h = 0 . 6737 , σ8 = 0 . 82172 , n s = 0 . 9652 . (21) 

ach test model has eight realizations. 
The dark matter halo catalogues were obtained using the SUBFIND

alo finder (Springel et al. 2001 ). The haloes were first identified
sing a fast parallel friends-of-friends (FOF) algorithm with link
ength set to b = 0.168 times the mean interparticle separation.
pherical o v erdensity halo catalogues are then built out from the
otential minimum of each FOF halo. The halo mass definition
dopted is 

 200c ≡ 4 π

3 
( R 200c ) 

3 × 200 ρcrit , 

here ρcrit ( z) ≡ 3 H 

2 ( z)/(8 πG ) is the critical density of the Universe,
nd R 200c is the spherical halo radius within which the spherically
veraged mass density equals 200 ρcrit . Only main haloes with masses
bo v e 10 12 h 

−1 M 	 from the HR simulations are considered in this
ork. The halo catalogues at 

 = 0 . 00 , 0 . 25 , 0 . 50 , 0 . 75 , 1 . 00 , 1 . 25 , 1 . 50 , 1 . 75 and 2 . 00 

re available for all nodes. Besides these common redshifts, Arnold
t al. saved particle snapshots and halo catalogues at pre-selected
edshifts to construct past light cones for weak-lensing analysis,
herefore enabling the emulation of halo properties as a function
f redshift. In the main text, we present the performance of the
mulators at redshift zero, since the measurement and emulation at
ther redshifts are performed in the same way. 

 DATA  SET  

n this section, we describe the measurement and post-processing
f the halo properties from the simulations, including the HMF,
oncentration–mass relation, and halo-matter cross-correlation 
unction. 

.1 Halo mass functions 

he differential halo mass function (dHMF) quantifies the number
ensity of haloes as a function of halo mass for a given cosmology
NRAS 527, 2490–2507 (2024) 
 and redshift. It is denoted as 

d n ( M; z, C ) 

d M 

or 
d n ( log M; z, C ) 

d log M 

. (22) 

n the cumulative form, the cumulativ e HMF (cHMF) giv es the
umber density of haloes abo v e a given mass threshold M , 

 ( > M; z, C ) = 

∫ ∞ 

M 

d m 

d n ( m ; z, C ) 

d m 

. (23) 

The HMF is measured by creating a histogram of the halo mass,
hich is affected by shot noise and sample variance, especially

or massive haloes. Also, HMFs span many orders of magnitude
n abundance, typically from 10 −3 to 10 −8 ( h 

−1 Mpc ) −3 . Taking the
ogarithm of the HMF to reduce the dynamic range does not help
uch, since the interpolation errors in the logarithmic quantity
ould be exponentially amplified. To overcome these problems,
 commonly used approach (e.g. followed by McClintock et al.
019 ; Nishimichi et al. 2019 ; Cuesta-Lazaro et al. 2022 ) is to fit
he measured HMF using fitting formulae like those proposed by
enkins et al. ( 2001 ), Tinker et al. ( 2008 ), and then to emulate the
ass and cosmology dependence of the fitting parameters. Ho we ver,

he performance of such fitting functions in MG simulations is not
uaranteed (e.g. Schmidt et al. 2009 ; Gupta et al. 2022 ) and therefore
ay cause systematic errors. 
We adopt an alternative method to emulate the HMF. The main

deas include: (1) emulating the ratio between the simulation result
or the HMF and a realistic fitting formula to reduce the dynamic
ange. (2) Considering the cumulative HMF instead of the differential
ne to allow for smaller steps in halo mass, thereby providing more
raining data. 

Tinker et al. ( 2008 ) (hereafter T08 ) derived fitting functions for
he HMF applicable o v er a wide range of halo masses and halo
efinitions, with a precision of � 5 per cent . We work with the ratio
f the cumulative HMFs between the simulation measurements and
he T08 fitting formulae, 1 

 ( M ; C , z) ≡ n sim 

h ( > M; C , z) 

n T08 
h ( > M; C , z) 

. (24) 

he HMF ratios are then interpolated across parameter space using
eural networks to construct the emulator. To obtain the differential
MF for any given cosmology C any , one can calculate the ratio for

his cosmology using the trained emulator, multiply it with the T08
MF and take the deri v ati ve. The emulation process is sketched in
ig. 2 . 
In each snapshot, we measure the number densities of haloes
ore massive than a series of masses, beginning at 10 12 h 

−1 M 	 and
ncreasing in steps with a bin width of  log [ M/ ( h 

−1 M 	)] = 0 . 02.
he maximum mass varies across redshifts. Fig. 3 presents the ratios
f HMFs for 49 f ( R ) gravity simulations at z = 0. The ratios are
ently varying functions o v er a lower dynamic range than HMFs
hemselves therefore resulting in a higher emulation accuracy. 

.2 The individual halo density profile and the 
oncentration–mass relation 

ne of the most remarkable disco v eries from cosmological N -body
imulations was that dark matter haloes display a universal density
rofile in simulations of both the standard � CDM (Navarro et al.
996 , 1997 ; Wang et al. 2020 ) and a class of MG theories (e.g. Naik
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Figure 2. Flow chart illustrating the process of emulating HMFs. We start 
from measuring the cumulative HMF from the simulations in the training 
data set. For each simulation, we calculate the cHMF predicted by the fitting 
formula of T08 for the same cosmology C . We then interpolate the ratios 
between the two cHMFs across parameter space using neural networks. To 
obtain the commonly used differential HMF for any given cosmology C any , 
we can calculate the ratio, multiply the ratio by the T08 function and take the 
deri v ati ve. 

Figure 3. Cumulative halo mass function (cHMF) ratios between simulation 
measurements for 49 f ( R ) gravity models and the fitting formula calibrated 
by T08 for the same cosmology (except for the MG parameter f̄ R0 , which 
is set to zero), at redshift 0. The dynamic range of the ratios are signifi- 
cantly decreased compared with cHMFs themselves therefore increasing the 
emulation accuracy. (source code). 
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t al. 2018 ; Mitchell et al. 2019 , 2021 ; Tamosiunas et al. 2022 ),
rom the host haloes of dwarf galaxies to those of massive galaxy
lusters. Specifically, it was shown that the spherically averaged 
ensity profile of individual relaxed haloes can be described by the
ell kno wn Nav arro, Frenk & White (NFW) profile. The NFW profile

s described by two parameters, the characteristic density and scale 
adius of a halo, or equi v alently the halo mass and concentration, 

NFW 

( r| r −2 , ρ−2 ) = 

4 ρ−2 (
r 

r −2 

)(
1 + 

r 

r −2 

)2 , (25) 

here r −2 is the characteristic radius (also denoted as r s ) of a halo at
hich the logarithmic slope of the density profile equal to −2, 

d log [ ρNFW 

( r) ] 

d log r 

∣∣∣∣
r= r −2 

= −2 , (26) 

nd ρ−2 ≡ ρNFW 

( r = r −2 ). The halo concentration c is defined as the
atio between the halo radius (which is adopted as R 200c in this work)
nd r −2 , 

 ≡ R 200c 

r −2 
. (27) 

he other NFW parameter ρ−2 is related to the concentration as 

−2 = 

ρcrit ( a) 

4 

200 

3 �m 

( a) 

c 3 

f ( c) 
, (28) 

here �m 

( a) ≡ ρ̄m 

( a) /ρcrit ( a) is the matter density parameter at a
iven scale factor a ; f ( c ) ≡ ln (1 + c ) − c /(1 + c ). 
Previously, attention was focused on measuring halo concentra- 

ions for the best-fitting WMAP or Planck cosmologies, or similar 
odels close by in parameter space (e.g. Gao et al. 2008 ; Prada

t al. 2012 ; Diemer & Kravtsov 2015 ; Klypin et al. 2016 ; Child et al.
018 ). Such calibrated fitting functions cannot be simply extended 
eyond the cosmological and gravity models for which they have 
een tested. In order to o v ercome potential problems associated with
he extrapolation of fitting functions to a wider range of cosmologies,
e build emulators for the halo concentration–mass relation and halo 
ensity profiles. 
We study the concentration–mass relation for haloes in the cos- 
ologies co v ered by the FORGE and BRIDGE simulation suites.
e consider only the haloes containing more than 1000 particles, 

orresponding to a mass of 10 13 h 

−1 M 	 for the fiducial Planck
osmology. F or sev eral reasons set out below we do not exclude
nrelaxed haloes that contain a large amount of substructure as was
one in some previous work (e.g. Neto et al. 2007 ; Prada et al. 2012 ;
lypin et al. 2016 ). First, our aim is to predict the halo profile as

n ingredient of the halo model, instead of studying the formation
nd evolution of relaxed haloes. Galaxies are expected to reside 
n all haloes, regardless of their dynamic state. Second, excluding 
nrelaxed haloes would bias the concentration high because haloes 
n the rapid mass accretion stage tend to have low concentrations
Child et al. 2018 ). Third, such a cut remo v es typically 30–50 per
ent haloes, which would make the measurement of halo properties 
ess reliable, by introducing larger statistical errors. 

To measure halo concentrations, we follow the approach taken by 
itchell et al. ( 2019 ) and briefly re vie w the main aspects below. As
entioned in Section 2.3 , we use M 200c and R 200c as the definitions

f the halo mass and radius, respectively. The halo centre is adopted
s the gravitational potential minimum. The halo particles are split 
nto 20 logarithmically spaced radial bins from the halo centre, 
o v ering the range [0.05, 1.00] R 200c . We then fit the NFW profile
equation 25 ) to the density in the radial bins of each halo, treating
MNRAS 527, 2490–2507 (2024) 
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Figur e 4. Conver gence test of halo concentration measurements. We fit 
the NFW profile and measure the halo concentration from three N -body 
simulations with the same particle number and different box sizes, L 200 
(the highest resolution run, thick solid lines), L 500 (the medium run, thin 
dashed lines), and L 1000 (the low resolution run, thin solid lines). Colours 
represent results obtained for different minimum radial ranges in the fitting, 
as shown by the key, with the maximum radial range fixed at R 200c in each 
case. The vertical lines present the critical mass scales lower than which 
the concentration measurements are unreliable due to insufficient resolution, 
which are ∼800 times the mass resolutions m particle , as long as r min > 

0.05 R 200c . The colour-shaded bands show the power fitting ( c ( M ) = c 0 M 

α) 
to the measured c ( M ) relations. (source code). 
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he characteristic density and concentration as free variables, by
inimizing an unweighted χ2 , 

2 = 

∑ 

i 

[
log ρsim 

( r i ) − log ρNFW 

( r i | c, ρ−2 ) 
]2 

. (29) 

e have checked that weighting the χ2 function by the number of
articles in each radial bin has a negligible impact on the best-fitting
oncentration values reco v ered. 

The mean value of the best-fitting concentration depends on
echnical details such as the halo finder used, and the number and
ange of the radial bins, which would have a non-negligible impact
f the NFW profile is not a good fit to the halo profile (Meneghetti &
asia 2013 ; Dooley et al. 2014 ). It has been argued that using the
edian instead of the mean concentration would a v oid such non-

onvergence (Diemer & Kravtsov 2015 ). Neto et al. ( 2007 ) found
hat the median of the concentration depends only weakly on the
adial range used in the fit, provided that the unrelaxed haloes are
emo v ed and r min ≥ 0.05 R vir in the fitting. 

To test the robustness of the halo concentration measurement, we
se three N -body simulations from Mitchell et al. ( 2021 ) with the
ame cosmology and particle number, N p = 1024 3 , and different
ox sizes, L = 200, 500, and 1000 h 

−1 Mpc . We then bin the halo
articles, fit the NFW profile and calculate the mean and median
alues of the concentrations in each mass bin, keeping the maximum
adius fixed at R 200c and checking the results for four different r min 

alues: (0.05, 0.07, 0.10, and 0.13) R 200c . The results are shown in
ig. 4 . All concentration–mass relations are well fitted by a power

aw, 

( M) = c 0 M 

α, (30) 

ith c 0 the amplitude and α the index, as represented by the coloured
ands in the figure. The median concentrations (as well as the mean)
nd the best-fitting amplitude are still sensitive to the minimum
adius, with a relative difference of up to 10 per cent. However, the
ower indices are practically the same for different fitting ranges. 
The convergence test also confirms our choice of the minimum

article-number cut applied to define the halo sample used. The
oncentrations from the lower resolution simulations start deviating
rom those of the higher resolution runs around the halo mass
orresponding to ∼800 times the particle mass. This pivot mass also
epends weakly on the radial range used to fit the density profile,
ith smaller minimum scales having larger pivot masses. 

.3 The averaged halo profile estimated from the halo-mass 
orrelation function 

he normalized halo density profile, u ( r | M ), that appears in the halo
odel can be estimated by measuring the halo-mass cross-correlation

unctions from an N -body simulation. As mentioned in Section 1 ,
he halo model assumes that the matter density field consists of a
uperposition of haloes at locations x i with masses M i , so that the
atter field can be written as 

m 

( x ) = 

∑ 

i 

M i u 

(| x − x i | 
∣∣M i 

)
(31) 

= 

∫ 
d 3 x ′ 

∫ 
d M 

[∑ 

i 

δ(D) ( M − M i ) δ
(D) ( x ′ − x i ) 

× M u 

(| x − x ′ | ∣∣M 

)]
, (32) 

here 
NRAS 527, 2490–2507 (2024) 
(i) The summation is for all haloes; the same results can be derived
y taking the summation o v er all microcells which are made to be
o small that each cell contains no more than one halo centre (e.g.
eebles 1980 ); 
(ii) δ(D) ( ···) is the Dirac delta function; 

(iii) 
∑ 

i 

δ(D) ( M − M i ) δ
(D) ( x ′ − x i ) ≡ d n ( x ′ ; M) 

d M 

is the local

MF, whose integral over the halo mass gives the halo number
ensity field at the field point x ′ : ∫ 

d M 

d n ( x ′ ; M) 

d M 

= n h ( x ′ ) , (33) 

nd its ensemble average gives the common dHMF, 〈
d n ( x ′ ; M) 

d M 

〉
= 

〈 ∑ 

i 

δ(D) ( M − M i ) δ
(D) ( x ′ − x i ) 

〉 

= 

d n ( M) 

d M 

; (34) 

(iv) u ( | x − x i | 
∣∣∣M i ) ≡

ρh ( | x − x i | 
∣∣∣M i ) 

M i 

denotes the density pro-

le of a halo centred at x i , which is also assumed to be spherically
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ymmetric and depends only on its mass, 

 ( | x − x i | 
∣∣M i ) = 

{ 

ρh ( | x − x i | 
∣∣∣M i ) /M i , | x − x i | ≤ R halo ; 

0 , | x − x i | > R halo ; 

(35) 

nd u is normalized: ∫ 
d 3 x u 

(| x − x i | 
∣∣M i 

) = 1 . (36) 

For two different populations of objects with o v erdensity fields
a ( x ) and δb ( x ), the two-point cross-correlation function is defined 
s 

ab ( r ) ≡ 〈 δa ( x ) δb ( x + r ) 〉 , (37) 

here 〈···〉 denotes ensemble averaging. Assuming statistical 
sotropy reduces ξab ( r ) to a function of separation only. In the case
f the cross-correlation between halo centres and the matter field, the 
ross-correlation function is given by 

hm 

( r) ≡ 〈 δh ( x ) δm 

( x + r ) 〉 (38) 

= 

1 

n̄ h ̄ρm 

〈
n h ( x ) ρm 

( x ′ ) 
〉 − 1 , (39) 

here x ′ ≡ x + r , and the halo number density fluctuation field is
efined as 

h ( x ) ≡ n h ( x ) − n̄ h 

n̄ h 
. (40) 

No w, we deri v e the e xpressions for the halo and matter fields in
quation ( 39 ) within the halo model framework. In realistic N -body
imulations, halo catalogues al w ays have a finite halo mass range,
imited by the simulation force/mass resolution and the box size. We 
an define the halo selection function for a given mass range (MR) as 

( m | MR ) ≡
{

1 , if m ∈ MR , 

0 , otherwise . 
(41) 

n practice, MR can be a narrow mass interval, [ M , M + d M ) ≈ [ M , M
  M ), or a mass threshold interval, [ M , ∞ ). For a given halo sample,

he corresponding halo number density field can be expressed as 

 h ( x ) = 

∑ 

i 

δ(D) ( x − x i ) φ( m i | MR ) . (42) 

o obtain the expression for 〈 n h ( x ) ρm 

( x ′ ) 〉 in the halo model, we can
lug the expressions for the halo and mass fields equations ( 32 ) and
 42 ) into equation ( 39 ). The full expression can be found in equa-
ions (7) and (8) of Garc ́ıa et al. ( 2021 ). We focus only on the internal
tructure of the halo and therefore on the 1-halo term, which reads 〈
n h ( x ) ρm 

( x ′ ) 
〉

1h 
= 

∫ 
d m 

d n 

d m 

m φ( m | MR ) u ( r| m ) (43) 

= 

⎧ ⎨ 

⎩ 

d n ( M) M u ( r | M ) , MR = [ M , M + d M ) , ∫ ∞ 

M 

d m 

d n 

d m 

m u ( r| m ) , MR = [ M, ∞ ) , 
(44) 

here d n ( M ) is the number density of haloes in the mass range [ M ,
 + d M ). The 1-halo term of the halo-mass correlation function is 

1h 
hm 

( r | M ) = 

M u ( r | M ) 

ρ̄m 

− 1 = 

ρh ( r | M ) 

ρ̄m 

− 1 , (45) 

1h 
hm 

( r| > M) = 

1 

ρ̄m 

n̄ h ( > M) 

∫ ∞ 

M 

d m 

d n 

d m 

m u ( r| m ) − 1 . (46) 

We are interested in the average density profile of haloes in a
arro w mass interv al [ M , M + d M ). Ho we ver, the noise le vel of the
 U  
imulation measurements for such halo properties and statistics is 
igh because of the low number density. We bypass this problem by
easuring ξ 1h 

hm 

( r| > M) (which involves more haloes and therefore
s a smoother function) and taking the partial deri v ati ve with respect
o mass, 

 ( r | M ) = − ρ̄m 

M 

[
d n ( M) 

d M 

]−1 

× ∂ 

∂M 

{ 

n̄ h ( > M) 
[ 
1 + ξ 1h 

hm 

( r| > M) 
] } 

. (47) 

 USI NG  N E U R A L  N E T WO R K S  F O R  

EGRESSI ON  PROBLEMS  

iven a data set comprised of independent variables (also called 
eatures ) and dependent variables ( labels ), there exists an unknown
nderlying function mapping the inputs to the outputs. We can use
upervized learning algorithms to approximate this function, which 
alls in the category of a regression problem. In the context of
tructure formation, the features consist of cosmologies C , redshifts 
, halo masses M or number densities n h , etc. The labels of interest
nclude basic properties of haloes such as HMFs, concentration–

ass relations, and correlation functions. In the case of structure 
ormation, the ‘functions’ between the features and labels are known 
ut e xpensiv e: we can run N -body simulations giv en a set of
osmological parameters C , save the snapshot at a given redshift 
, identify haloes and measure the properties of haloes. But it
s computationally intractable to perform � O(10 4 ) cosmological 
imulations to explore the parameter space in a typical MCMC
nalysis. 

As shown in previous works on cosmic emulation, such as 
ishimichi et al. ( 2019 ), DeRose et al. ( 2019 ), Cuesta-Lazaro

t al. ( 2022 ), and as we will report in the following sections, it
s possible to construct emulators for halo properties by running 
ffordable numbers (e.g. 50–100) of simulations and interpolating in 
 high-dimensional parameter space. Emulators can give accurate 
redictions for halo properties for new models without running 
dditional simulations. Thanks to the development of algorithms and 
omputing power, statistics and machine learning provide us with a 
ealth of tools to solve such regression problems. 
In a regression analysis, the typical progress of approximating a 

unction can be summarized as: 

(i) Define a functional form y = f ( x | θ ) with adjustable or train-
ble parameters θ . For example, in the simplest and most common
orm — linear regression — the labels are assumed to be linear 
ombinations of the features, and the coefficients are the trainable 
arameters. 
(ii) Define a loss function on the training data set D to quantify

he difference between the real and predicted values of the target,
.g. the sum of the absolute differences (which reduces the weight of
utliers), 

 ( θ | D) ≡
∑ 

( x i , y i ) ∈ D 

∣∣ y i − f ( x i | θ ) 
∣∣. 

(iii) Find the optimal parameters θ � to minimize the loss function 
train the model). 

Gaussian process (GP) regression (e.g. Williams & Rasmussen 
006 ) has been widely adopted in cosmological emulation projects, 
uch as Dark Quest (Nishimichi et al. 2019 ), Aemulus (DeRose et al.
019 ), the Coyote Universe (Heitmann et al. 2010 ), the Mira–Titan
niverse (Bocquet et al. 2020 ), COSMIC Emulators (Kwan et al.
MNRAS 527, 2490–2507 (2024) 
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013 ), and FORGE (Arnold et al. 2022 ). GP regression is non-
arametric, i.e. no specific functional form is assumed. Ho we ver,
Ps are not easy to apply to large data sets because of their O( N 

3 )
caling where N is the size of the training data. Therefore, the
forementioned projects usually emulate matter, halo and/or galaxy
roperties using a combination of principal component analysis,
o reduce the dimensionality of the data vector, and GP, to fit the
ependence of the principal component coefficients on cosmology. 
The machine learning algorithm we adopt is a fully connected

eural network (e.g. Bishop et al. 1995 ; Alom et al. 2019 ; Zhang et al.
021 ). This is a type of artificial neural network in which all neurons
n one layer are connected to the neurons in the next layer. The neural
etwork algorithm has been widely applied to cosmology (e.g. Agar-
al et al. 2012 , 2014 ; Jennings et al. 2019 ; Kobayashi et al. 2020 ;
uesta-Lazaro et al. 2022 ), and its performance has been shown

o be competitive or sometimes better than other methods. Neural
etworks have a strong fitting ability, as reflected by the universal
pproximation theorem (Cybenko 1989 ; Hornik, Stinchcombe &
hite 1989 ; Goodfellow, Bengio & Courville 2016 ). Ho we ver,

his theorem does not provide a means to construct optimized
eural networks, but merely guarantees their existence. Also, this
trong fitting ability also makes neural networks more susceptible
o the o v erfitting problem compared to GPs. Therefore, we need
o carefully check the emulator performance using independent test
ata sets and tune the network architecture so that the generalization
rror is successfully suppressed. Moreo v er, we show dimensionality
eduction is not necessary when using neural networks, which also
mpro v es the accuracy of the emulator predictions. 

A neural network is an interconnection of neurons arranged in a
eries of layers, with each neuron in a layer connected to all other
eurons in adjacent layers with different weightings. One can impart
alues on to the neurons of the first layer (called the input layer),
hich has a number of hidden layers, and finally obtain the output

rom the last layer. F or e xample, in this work, the neural networks
mulating the HMF at fixed redshift have five nodes in the input layer,
orresponding to the halo mass and four cosmological parameters,
nd one node in the last layer outputting the HMF, 

 

(
> M| �m0 , h, S 8 , log 10 | f̄ R0 | or log 10 | H 0 r c | 

)
. (48) 

Neural networks use acti v ation functions to impart non-linearities
nto the fitting. Rectified Linear Unit (ReLU; Agarap 2018 ) is the

ost commonly used acti v ation function in current neural networks
sed to add non-linearities in the mapping between inputs and
utputs, which is defined as 

eLU ( x) = max (0 , x) , (49) 

here x is the output of the previous layer of the neural network.
ote that the acti v ations of ReLU are not differentiable at x = 0.
ere, ho we ver, we are interested in functions that are differentiable
ith respect to their inputs and, in particular, with respect to the

osmological parameters. Therefore, throughout, we use Gaussian
rror linear unit (GELU; Hendrycks & Gimpel 2016 ) as the acti v ation
unction instead, 

ELU ( x) = 0 . 5 x 

[
1 + erf 

(
x √ 

2 

)]
. (50) 

To find the optimal parameters θ � that reproduce the halo properties
easured in the N -body simulations, we minimize the L1-norm loss

unction, 

 = 

1 

N 

N ∑ 

i= 0 

∣∣y i true − y i predicted 

∣∣ (51) 
NRAS 527, 2490–2507 (2024) 
sing the Adam optimizer (Kingma & Ba 2014 ). Compared to the
ean squared error, the loss of L1 reduces the importance given

o outlier errors. To a v oid fine-tuning the learning rate, we adopt a
earning rate scheduler that reduces the learning rate by a factor of
0 every time the validation loss does not impro v e after 30 epochs.
e also stop the training process when the validation loss does not

mpro v e after 100 epochs. This iterative reduction of the learning
ate allows the model to quickly learn the broad characteristics of
he data and later reduce the errors with a smaller learning rate. The
nitial learning rate is al w ays set to 0.01. 

.1 Ideal emulation tests 

o gain a preliminary impression of the emulation process and to
uide the design of emulators in the future, we perform emulation
ests under ideal conditions. The halo properties are generated for a
imited number of randomly selected cosmologies using analytical

ethods or fitting formulae, which are noise-free mappings from
osmologies to halo properties. Then we use these data to train neural
etworks and emulate the ‘true’ model. To e v aluate the performance
f the emulator, we compare the true values with the emulator
redictions using independent test data sets. 
The cosmologies of the training set co v er 50 flat geometry ( w 0 - w a )

DM models (Linder 2003 ), where the equation-of-state parameter
or dark energy is parametrized in terms of the expansion factor, a ,
s 

( a) = w 0 + w a (1 − a) . (52) 

 key aspect of building emulators is an efficient sampling scheme.
s the training data set, the 50 cosmologies were sampled using
ptimal minimax distance sliced Latin hypercube designs (Ba,
yers & Brenneman 2015 ) in a seven-dimensional cosmological

arameter space, 

 = { �m 0 , �b0 , h, σ8 , n s , w 0 , w a } , (53) 

s shown by the grey dots in Fig. 5 . The range of parameters is 

0 . 1 < �m 0 < 0 . 7 , 0 . 02 < �b0 < 0 . 06 , 

0 . 5 < h < 0 . 9 , 0 . 5 < σ8 < 1 . 2 , 

0 . 92 < n s < 0 . 99 , 

−1 . 3 < w 0 < −0 . 7 , −0 . 1 < w a < 0 . 1 , (54) 

hile the upper and lower parameter limits depart significantly from
he current best-fitting � CDM background cosmology from the
lanck satellite (Planck Collaboration et al. 2020 ). We also generate

wo test data sets that were not used in the training: both consist of
00 random cosmologies; one set co v ers the same parameter range
s that of the training set, and the other one co v ers the inner half-
egion (in terms of the length per dimension, instead of volume)
f the parameter space. The cosmologies in the full- and half-
ange test data sets are shown in green and blue dots in Fig. 5 ,
espectively. 

We choose to emulate two basic properties of haloes in the tests:
he concentration–mass relation c ( M ), and the cumulative HMF
¯ h ( > M). F or giv en cosmologies, we generate the c ( M ) relation
alibrated in Prada et al. ( 2012 ), using the publicly available PYTHON

oolkit COLOSSUS (Diemer 2018 ), and compute the T08 , HMF with
he PYTHON package hmf (Murray et al. 2013 , 2021 ). As described
n Section 3.1 and Fig. 2 , we train the emulators directly on the ratio
f the cumulative HMF between the target HMF and a fitting formula
o reduce the dynamic range and impro v e the interpolation accuracy.
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Figure 5. Visualization of the seven-parameter ( w 0 - w a )CDM cosmologies 
studied in the ideal emulation tests. Grey dots show the training set including 
50 nodes. Green dots represent full-range test set consisting of 500 nodes 
co v ering the same range as that of the training set. Blue dots show the half- 
range test set including 500 nodes in the inner half region of the parameter 
space. (source code). 
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e choose the HMF calibrated in Jenkins et al. ( 2001 ) as the
eference. 

The upper panels of Fig. 6 show the halo properties calculated 
sing the fitting formulae and emulators. The fractional errors are 
hown in the lower subpanels. The results show that the emulator 
eproduces the analytical halo c ( M ) relation with a sub-per cent
rror in the 7D parameter space with only 50 training models. The
erformance of the HMF emulator is even better than that of the
igure 6. Ideal emulation tests. Top panels : The halo concentration–mass relatio
alf-range test (blue) sets, from the analytical methods (dots) and emulators (lines
odels and emulators. The solid and dashed lines present the median and 90-th p

green), and half-range test (blue) sets, which include 50, 500, and 500 cosmologie
oncentration emulator, although the HMF data span ∼20 orders of 
agnitude. The median absolute error of the emulator predictions is 

ower than 1 per cent for halo masses M � 10 16 h 

−1 M 	. 
We also note that the emulator precision is generally different at

he edge and centre of the parameter space, as revealed by the green
nd blue lines in the bottom panels of Fig. 6 . This suggests that
e should design the parameter space to be wider than the existing

osmological constraints. The parameter space in our ideal tests is 
esigned to be wide enough that co v ers some extreme cosmologies,
uch as �m0 = 0.7 and h = 0.5. 

In general, ideal emulation tests show that under noise-free condi- 
ions, neural network emulators can provide accurate interpolations 
n high-dimensional parameter space, using 50 efficiently sampled 
odels as the training set. In the next section, we will present the

osmic emulation in the real situation: the data are measured from
imulations and, therefore, are influenced by sample variance and 
oise. 

 RESULTS  

n this section, we demonstrate the ability of a fully connected neural
etwork to reproduce the halo properties measured from FORGE and 
RIDGE simulations. We train different emulators for each gravity 

heory: � CDM, f ( R ) gravity, and DGP. The configurations of the
eural networks for emulating three halo properties are summarized 
n Table 1 . 

.1 The emulator for the halo mass function 

s discussed in Section 3.1 , we train the neural network emulators
irectly on the ratio of the cumulative HMF between simulation 
easurements and the fitting formula calibrated in T08 to reduce the

ynamic range and impro v e the emulation accuracy. Fig. 7 compares
he cumulative and the differential HMFs from simulations and 
mulators at z = 0, for the � CDM, f ( R ) gravity, and DGP models. The
ifferential HMF of a given mass bin centred on log M i is obtained
MNRAS 527, 2490–2507 (2024) 

n (left) and HMF (right) of the training (grey), full-range test (green) and 
). Bottom panels: The absolute value of the relative difference between the 
ercentile of the emulation fractional errors among the training (black), test 
s, respectively. (source code 1, 2). 

20 by guest on 01 February 2024
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M

Table 1. Summary of the neural network configurations for emulating the halo properties. The architecture of a 
neural network is specified from the input to output layer as ( N input , N hidden1 , N hidden2 , ···, N output ) with N the number 
of neurons in each layer. The redshift is not incorporated as a feature, instead, we train emulators for halo properties 
at fixed redshifts. 

Halo Feature Label Neural network Acti v ation 
Property architecture 

HMF C , M 200c Equation ( 24 ) (5, 64, 32, 1) GELU 

Concentration C , M 200c c 200c (5, 32, 16, 1) GELU 

ξhm 

C , n h { r 2 i ξhm 

( r i ) } N= 30 
i= 1 (5, 128, 32, 30) GELU 
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y 

d n ( M) 

d log M 

∣∣∣∣
log M i 

≈ n 
(
> log M i − bw 

2 

) − n 
(
> log M i + 

bw 
2 

)
bw 

, (55) 

here bw ≡  log M = log M i + 1 − log M i is the bin width. We
dopt  log M = 0.1 throughout this paper. The lower subpanels
how the fractional difference between the emulator prediction and
he measured HMFs in a given mass bin, 

HMF emu − HMF sim 

HMF sim 

. (56) 

he performance of the emulator on the training data set is shown by
he thin lines of Fig. 7 . The emulator achieves sub-per cent accuracy
n reproducing most of the cumulative HMF for halo masses between
0 12 and 10 14 h 

−1 M 	. The residuals of the differential HMF obtained
sing equation ( 55 ) are slightly larger but still show � 2 per cent
catter around zero, with a mean consistent with zero. The thick
ines in Fig. 7 show the emulator predictions for three test models
hich are not used in the training, as described in Section 2.3 . We

gain find per cent-level agreement between the emulator predictions
nd simulation results. Furthermore, the fluctuations of the residuals
n the test set are much smaller than those of the training models,
ince each test cosmology has eight realizations and the sample
ariance of the measured dHMFs is suppressed. This confirms that
he errors of the emulator predictions are mainly random instead of 
ystematic. 

.2 The emulator for the concentration–mass relation 

s shown in Section 5.2 and Fig. 4 , the halo concentrations measured
rom simulations are sensitive to the radial range used in the fitting,
hich indicates that this is not the optimal way to describe the halo
ensity profiles. Ho we ver, the po wer-la w inde x is not sensitiv e to
he range adopted, which indicates that we can treat the amplitude
f the concentration–mass relation as a free parameter to take into
ccount this variation. We build an emulator for the c ( M ) relation
aking r min = 0.10 R 200c as a representati ve v alue. The performance
f the emulator at z = 0 is shown in Fig. 8 . The fractional errors
re sub-per cent for most of the cosmologies in the training and test
ata sets. 

.3 The emulator for the halo-mass cr oss-corr elation function 

s discussed in Section 3.3 , the average halo profile can be estimated
rom the halo-mass cross-correlation function. The halo profile
 ( r | M ) is directly related to the matter density field cross-correlated
ith the halo sample in a narrow mass range [ M , M +  M ].
o we ver, such correlation functions measured from simulations
ould be rather noisy because of the low halo number density. To
NRAS 527, 2490–2507 (2024) 
eed the neural networks with smoother data, we measure the cross-
orrelation functions between the matter field and the halo samples
ith fixed number densities, ξhm 

( r| C , ̄n h ). We then use the HMF
mulator to translate ξhm 

( r| C , ̄n h ) as a function of number density
nto ξhm 

( r | C , M ) as a function of mass, according to equation ( 47 ). 
We measure ξhm 

( r| C , ̄n h ) using the high-performance code Cor-
func (Sinha & Garrison 2020 ) for the halo number densities in

ogarithmically spaced bins o v er the range 

log 10 

[
n̄ h 

( h 

−1 Mpc ) −3 

]
= [ −5 . 1 , −2 . 9] , (57) 

sing a bin width of  log 10 n̄ h = 0 . 05. The separation r is split
nto 30 logarithmically-spaced bins from 0 . 05 h 

−1 Mpc (three times
he force resolution) to 3 h 

−1 Mpc . Furthermore, to reduce the
ynamic range of the data vector, we opt to emulate r 2 ξ hm 

( r )
nstead of ξ hm 

( r ) itself. The upper-left-hand panel of Fig. 9 shows
hm 

(
r| ̄n h = 10 −3 . 5 ( h 

−1 Mpc ) −3 
)

at z = 0 for the 49 � CDM gravity
osmologies along with the test models. 

The average halo profile is only related to the 1-halo term of ξ hm 

.
he halo-mass correlation enters the transition between 1- and 2-halo

erms as the scale increases. To estimate the range of the one-halo
erm, we only consider the scales below R 200c , which is related to the
dopted mass definition M 200c as 

 200c ( z) = 

4 π

3 
( R 200c ) 

3 200 ρcrit ( z) . (58) 

We then build emulators for ξhm 

( r| C , ̄n h ) at each redshift, to reduce
he number of features and minimize emulation errors. The lower
eft-hand subpanel of Fig. 9 shows the fractional difference between
he simulation measurements and the emulator predictions, in the
raining set along with the test models. The emulator achieves sub-
er cent accuracy for the both the training and the test models. 

The average halo density profile can be estimated from ξ hm 

using
quation ( 47 ). In the right-hand panel of Fig. 9 , we compare this type
f profile with the NFW profiles combined with three concentration–
ass relations from this work, Klypin et al. ( 2016 ) and Diemer &

oyce ( 2019 ), in five halo mass bins. We also fit the average profile
ith an NFW form, using the the data o v er the range of [0.1, 1.0] R 200c .
In the right-hand subpanel of Fig. 9 , we check the relative differ-

nce between the average profiles measured from the simulations
nd the NFW fits. There is a ∼5 per cent discrepancy between
he two types of profiles, regardless of the concentration–mass
elation, which shows that the differences between the NFW profiles
ith different c ( M ) relations are small. This level of difference is

onsistent with the results disco v ered in Section 5.1.2 of Nishimichi
t al. ( 2019 ). 

 EMULA  TO R  APPLICA  T I O N S  

ith the emulators for the HMF and density profile as ingredients,
e are able to predict galaxy clustering statistics using the halo model
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Figure 7. Cumulative (the first row) and differential (the second row) HMFs from simulation measurements and emulator predictions at z = 0, for � CDM 

(left), f ( R ) gravity (middle), and DGP (right). In each panel, the thin lines show the results of the 49 cosmologies in the training data set, and the thick lines 
represent those of the test models which were not used in the construction of the emulators. In the lower subpanel, we compare the relati ve dif ferences between 
simulations and emulators. The dark and light grey bands denote ±1 and ±2 per cent-level errors, respectively. The dHMF are obtained by finite difference of 
the cumulative HMFs according to equation ( 55 ). (source code 1, 2). 
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ramework (Cooray & Sheth 2002 ), and therefore fit galaxy clustering
easurements in the joint parameter space of cosmology and a 

alaxy–halo connection model. In this section, we demonstrate that 
he emulator-based halo model reproduces the signals measured from 

he mock HOD catalogues generated with the same specifications, 
uch as the cosmology, HOD prescription, satellite profile and/or 
oncentration–mass relation. 
.1 Galaxy two-point correlation function 

e adopt the halo occupation distribution (HOD; e.g. Zheng et al.
005 ) prescription to model the average number of galaxies in a halo
s a function of halo mass. The occupation of central galaxies is
arametrized as a Bernoulli distribution, whereas that of satellites 
s a Poisson distribution (Zheng et al. 2005 ). Both distributions are
MNRAS 527, 2490–2507 (2024) 
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M

Figure 8. Comparison between the halo concentration–mass relations from simulations (points) and emulators (lines), for � CDM (left), f ( R ) gravity (middle), 
and DGP (right). The lower subpanel shows the relative difference of the halo concentration between simulations and emulators. The sub-per cent differences 
between the emulator and simulation results are much smaller than the differences between the results for different cosmologies. (source code). 

Figure 9. Left -hand panel : Halo-mass cross-correlation functions from simulations and emulators at z = 0, for the 49 � CDM gravity cosmologies in the 
training set (gre y), fiv e test models F5 (cyan), F6 (orange), N1 (blue), N5 (purple), and the fiducial Planck � CDM model (red). In the lower subpanel, we 
compare the relative difference between the simulations and emulators. Right-hand panel : Comparison of the normalized halo density profiles, ρ( r | M )/ M , 
truncated at r = R 200c , for the fiducial Planck � CDM model (node 0) at z = 0. The average halo profiles estimated from ξhm 

( r ) according to equation ( 47 ) are 
represented by points. The solid lines show the fits to an NFW profile. The dashed, dotted, and dash–dotted lines show the NFW profiles with three different 
concentration–mass relations: this work, Diemer & Joyce ( 2019 ) and Klypin et al. ( 2016 ). Colours denote different halo masses. The lower subpanel shows the 
relati ve dif ference between the NFW profiles (lines) and the average profiles (points). (source code). 
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escribed by their mean occupation number, 〈
N g 

〉
( M) = 〈 N c 〉 ( M) + 〈 N s 〉 ( M) . (59) 

he galaxy number density n̄ g can then be obtained by integrating 
he HMF weighted by the mean occupation, 

¯ g = 

∫ 
d M 

d n ( M) 

d M 

[ 〈 N c 〉 ( M ) + 〈 N s 〉 ( M ) 
]
. (60) 

Following Cuesta-Lazaro et al. ( 2022 ), we adopt the HOD model
n Zheng, Coil & Zehavi ( 2007 ) by introducing the following HOD
arameters, 

 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

M min , σlog M ︸ ︷︷ ︸ 
G cen 

, M 1 , κ, α︸ ︷︷ ︸ 
G sat 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

. (61) 

he mean occupation number for central galaxies is given by 

〈 N c 〉 ( M| G ) = 

1 

2 

[
1 + erf 

(
log M − log M min 

σlog M 

)]
. (62) 

he mean central HOD, 〈 N c 〉 ( M) , can be interpreted as the probabil-
ty that a halo with mass M hosts a central galaxy. The mean central
OD considered here has the asymptotic behaviour that 〈 N c 〉 → 0

or haloes with M � M min , while 〈 N c 〉 → 1 for haloes with M �
 min . 
The mean satellite HOD is parametrized as 

〈 N s 〉 ( M| G ) = 〈 N c 〉 ( M| G ) λs ( M) , (63) 

here 

s ( M) = 

(
M − κM min 

M 1 

)α

. (64) 

ollowing the commonly-used prescription, we assume that satellite 
alaxies reside only in a halo that already hosts a central galaxy.
ence, in the abo v e equation, satellite galaxies can only reside in
aloes with N c = 1. Then we assume that the number distribution of
atellite galaxies in a given host halo follows the Poisson distribution
ith mean λs ( M ): 

 ( N s | N c = 1) = 

[ λs ( M) ] N s e −λs ( M) 

N s ! 
, (65) 

nd 

 ( N s | N c = 0) = δKr 
N s , 0 , (66) 

here δKr 
ij stands for the Kronecker delta. 

Given the HOD model, we populate dark matter haloes 2 in 
 f ( R ) gravity test simulations of the fiducial Planck cosmology
nd log | f̄ R0 | = −6 . 0 with mock galaxies and measure the galaxy
lustering signals, using the following randomly selected HOD 

arameters: 

log [ M min / ( h 

−1 M 	)] = 12 . 5 , σlog M 

= 0 . 6915 , 

κ = 0 . 51 , log [ M 1 / ( h 

−1 M 	)] = 12 . 9 , and α = 0 . 9168 . (67) 

We can also express the galaxy TPCF in terms of dark matter halo
roperties in the halo model framework. First, we split the one- and
wo-halo terms into correlations of central and satellite galaxies as 

gg ( r) = ξ 1h 
cs ( r) + ξ 1h 

ss ( r) 

+ ξ 2h 
cc ( r) + ξ 2h 

cs ( r) + ξ 2h 
ss ( r) . (68) 
 Because of the limited valid mass range of the emulators, only haloes 
etween 10 12 –10 14 h −1 M 	 are used in this test. 

P  

fi  

T

he terms involving both centrals and satellites lead to a con-
olution of the halo profiles and/or the halo TPCF, following 
 

d 3 x u ( x| M ) u ( | x + r | 
∣∣∣M ). It is therefore more convenient to com-

ute these terms in Fourier space, where convolutions in coordinate 
pace become simple products of the Fourier modes. Here, we focus
n the one-halo term only. The two-halo term involving the emulation 
f halo clustering will be the topic of the subsequent papers in this
eries. The expressions for the 1-halo term of the galaxy TPCF after
he central-satellite split are given by 

( r) = 

∫ ∞ 

0 

d k 

(2 π) 3 
4 πk 2 

sin ( kr) 

kr 
P ( k) , (69) 

 

1h 
cs ( k) = 

1 

n̄ 2 g 

∫ 
d M 

d n ( M) 

d M 

〈 N c 〉 ( M ) λs ( M ) u s ( k| M ) , (70) 

 

1h 
ss ( k) = 

1 

n̄ 2 g 

∫ 
d M 

d n ( M) 

d M 

〈 N c 〉 ( M ) 
[
λs ( M ) 

]2 [
u s ( k| M ) 

]2 
, (71) 

here u s ( k | M ) is (the Fourier transformation of) the radial distri-
ution of satellite galaxies within a halo, and we have highlighted
he emulated quantities in blue. In this section, we assume that the
istribution is given by an NFW profile with the concentration–mass 
elation from Diemer & Joyce ( 2019 ). 

The left-hand panel of Fig. 10 compares the model predictions 
nd the galaxy TPCF measured from mock HOD catalogues at z =
. On the scales where the 1-halo term dominates ( r � 1 h 

−1 Mpc ),
he fractional difference is within 1 per cent. The colours in the plot
epresent different contributions: the correlations of central–central, 
entral–satellite, and satellite–satellite galaxy pairs. 

As shown in Section 3.2 and Fig. 4 , the halo concentrations
easured from simulations are sensitive to the minimum radius 

n the fitting, with a relative difference of up to 10 per cent. To
est the impact on galaxy clustering, we calculate the one-halo 
erms of ξ gg [equations ( 70 ) and ( 71 )], adopting the NFW profile
ith the concentration–mass relations measured from this work and 

ncreasing or decreasing them by 10 per cent. Fig. 11 shows that a
0 per cent change in the concentration–mass relation will change 
he one-halo term by 5 per cent. The impact on the two-halo term and
he de generac y between the concentration amplitude and galaxy-halo 
onnection model parameters will be left for future work. 

.2 Galaxy-matter cr oss-corr elation function 

n the g alaxy–g alaxy weak lensing observations, the excess surface
ass density profile around lensing galaxies, � gm 

( R ) is measured,
hich can be expressed in terms of the galaxy–matter cross-power 

pectrum as (e.g. Murata et al. 2018 ; Nishimichi et al. 2019 ) 

� gm 

( R) = ρ̄m 0 

∫ ∞ 

0 

d k 

2 π
kP gm 

( k) J 2 ( kR) , (72) 

here J 2 ( x ) is the second-order Bessel function. 
In the halo model framework, we can accurately predict P gm 

( k )
ith the emulators providing the model ingredients. Under the same 

onfigurations as in the last subsection, P gm 

( k ) is related to the halo
roperties as 

 gm 

( k) = 

1 

n̄ g 

∫ 
d M 

d n ( M ) 

d M 

〈 N c 〉 ( M) 

×
[ 
1 + λs ( M) u s ( k| M) 

] 
P hm 

( k| M) . (73) 

 hm 

( k | M ) is the cross-correlation between the matter o v erdensity
eld with the halo sample in a narrow mass bin [ M , M + d M ].
he quantity that our halo-mass cross-correlation emulators output 
MNRAS 527, 2490–2507 (2024) 
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M

Figure 10. Emulator-based halo model predictions of galaxy clustering statistics. Left - hand panel : Galaxy TPCFs from simulations (marks) and emulator-based 
halo model predictions (solid lines), for the fiducial F6 runs of FORGE at z = 0. Colours represent different terms of galaxy correlations after the central/satellite 
split: g alaxy–g alaxy (black), central–central (red), central–satellite (orange), and satellite–satellite (green). Only the one-halo terms of theory predictions are 
shown. In the lower subpanel, we show the relative difference between the 1-halo term and the full correlation function measured from simulations. Right - hand 
panel : Similar to the left panel but for the galaxy-matter cross power spectrum for the same cosmology and HOD prescription. (source code). 

Figure 11. One-halo terms of the galaxy TPCFs with the NFW profiles 
combined with different concentration–mass relations. The black line shows 
the fiducial case corresponding to the c ( M ) relation measured from this work. 
The other two coloured lines present the results for increasing and decreasing 
the concentration by 10 per cent. In the lower subpanel, we show the relative 
difference with respect to the fiducial result. (source code). 
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s P hm 

( k | n h ( > M )), which can be converted as 

 hm 

( k| M) = −
[

d n h ( M) 

d M 

]−1 
∂ 

∂M 

[ 
n h ( > M) P hm 

(
k 
∣∣n h ( > M) 

) ] 
. 

(74) 

We use the publicly available, open-source PYTHON toolkit
bodykit (Hand et al. 2018 ) to measure the cross-power spectra
etween the mock galaxy catalogues and the matter field, in linear
 bins from 0.3 to 6 h Mpc −1 with a width of k = 0 . 02 h Mpc −1 .
hese measurements are compared with the halo model predictions

n the right-hand panel of Fig. 10 . The relative difference shown in
he lower subpanel is below 1 per cent except at low- k bins, where
he cosmic variance dominates the error budget. 

 DI SCUSSI ONS  A N D  C O N C L U S I O N S  

e present accurate emulators for the HMF, concentration–mass
elation, and halo-matter cross-correlation function, for � CDM and
wo representative modified gravity theories, f ( R ) gravity, and DGP,
sing the FORGE and BRIDGE suites of N -body simulations (Arnold
t al. 2022 ). The cosmological parameter space spans three non-MG
arameters, �m0 , h , S 8 , and one MG parameter, either f̄ R0 or H 0 r c ,
epending on which modified gravity model we are using. 
We construct emulators using fully connected neural networks

mplemented using the open-source PYTHON library PyTorch
ightning . We show the capabilities of neural networks under
oise-free conditions by emulating the existing fitting formulae of
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alo properties, such as the fitting function for HMFs in T08 . The
mulators mimic analytical models in a 7-D parameter space with 
ub-per cent accuracy, using only 50 training cosmologies. 

For realistic cases where the data come from N -body simulations
nd therefore have noise, the accuracy of our halo property emulators 
s summarized in Figs 7 –9 . The emulation error is less than 1 per
ent for most cosmologies in both the training and the test data sets,
n the halo mass range of 10 12 ≤ M 200c / ( h 

−1 M 	) ≤ 10 14 . 
The primary purpose of this series of papers is to extend the
odelling of galaxy clustering to non-linear scales. We employ the 

alo model framework (Cooray & Sheth 2002 ) combined with an 
dopted galaxy–halo connection model to predict galaxy clustering 
nd other cosmological observ ables, follo wing the spirit of the Dark
uest project (Nishimichi et al. 2019 ; Kobayashi et al. 2020 ; Cuesta-
azaro et al. 2022 ). We demonstrate that the emulators can be applied

o the halo model framework combined with the HOD prescription to 
redict the one-halo term of the galaxy clustering signal, achieving 
ub-per cent accuracy. The main advantages of this emulator-based 
alo model approach can be summarized as follows. 

(i) Accuracy. The model ingredients provided by emulators in- 
orporate the major complicated effects in the non-linear regime 
f structure formation, such as non-linear halo bias and the halo 
xclusion effect. 

(ii) Versatility. The halo model approach enables a joint modelling 
f cosmological observables, such as g alaxy–g alaxy and g alaxy–
atter correlation functions, for a single population of galaxies. 
he combination of different probes can mitigate the uncertainty 
f galaxy formation and evolution on cosmological parameter infer- 
nce. 

(iii) Flexibility. Instead of making an end-to-end mapping between 
he cosmological and HOD parameters to the final clustering statistics 
ith the emulation process, this ‘numerical’ version of the halo 
odel allows the flexibility of combining with any specific HOD 

rescription for different types of galaxies, without retraining the 
mulators. 

To perform cosmological parameter inference by confronting the 
mulator-based halo model prediction with galaxy surv e y obser- 
ations, we plan to implement the following impro v ements and 
xtensions in the subsequent papers of this series. 

(i) The excellent performance of the emulators is partly due to the 
maller number of parameters varied in the FORGE and BRIDGE 

imulations compared with other emulation projects, as well as the 
imited halo mass range due to the relatively small box size of
he simulations. Ho we ver, as indicated by the ideal emulation tests,
eural networks are capable of emulating halo properties up to the 
alo masses of 10 15 . 5 h 

−1 M 	 in a higher-dimensional parameter 
pace with sub-per cent accuracy. To extend the mass range of
he emulators, we plan to run additional simulations with different 
pecifications, such as box size and number of particles, to obtain 
alo properties robustly and at low cost. 
(ii) Galaxy clustering statistics are typically measured in redshift 

pace from surv e ys, which involv es not only the information about
alaxy positions but also their peculiar velocities. We will build 
mulators for the halo peculiar velocity statistics, such as pairwise 
elocity moments, and combine them using a galaxy-halo connection 
odel (e.g. Kobayashi et al. 2020 ; Cuesta-Lazaro et al. 2022 ). 
(iii) To resemble actual samples of galaxies, we need more realistic 

OD prescriptions and check the accuracy of the emulator-based 
alo model. 
In the future, we plan to use the neural network emulators on the
pcoming data from DESI and Euclid to constrain the cosmological 
nd modified gravity parameters. This requires that the models be 
rained on simulations with higher resolution to meet the demand of
he cutting-edge observational data with unprecedented volume and 
uch better controlled systematic errors. 
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