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A B S T R A C T 

Large-scale astronomical surv e ys can capture numerous images of celestial objects, including galaxies and nebulae. Analysing 

and processing these images can reveal the intricate internal structures of these objects, allowing researchers to conduct 
comprehensive studies on their morphology, evolution, and physical properties. However, varying noise levels and point-spread 

functions can hamper the accuracy and efficiency of information extraction from these images. To mitigate these effects, we 
propose a no v el image restoration algorithm that connects a deep-learning-based restoration algorithm with a high-fidelity 

telescope simulator. During the training stage, the simulator generates images with different levels of blur and noise to train 

the neural network based on the quality of restored images. After training, the neural network can restore images obtained by 

the telescope directly, as represented by the simulator. We have tested the algorithm using real and simulated observation data 
and have found that it ef fecti vely enhances fine structures in blurry images and increases the quality of observation images. 
This algorithm can be applied to large-scale sk y surv e y data, such as data obtained by the Large Synoptic Surv e y Telescope 
(LSST), Euclid , and the Chinese Space Station Telescope ( CSST ), to further impro v e the accuracy and efficiency of information 

extraction, promoting advances in the field of astronomical research. 

Key words: methods: numerical – techniques: image processing – software: data analysis. 
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 I N T RO D U C T I O N  

k y surv e y projects obtain numerous observational images con- 
aining celestial objects with extended structures, including neb- 
lae and galaxies, which are of utmost interest and importance 
or astronomical research. Scientists select these targets for in- 
epth analysis. Ho we ver, aberrations and noise in astronomical 
bservations can degrade image quality, resulting in blurred and 
istorted images of celestial objects. These factors significantly 
ffect the precision of scientific information extracted from such 
mages. Thus, it is crucial to develop and utilize image restoration 
lgorithms to impro v e image quality and enable further scientific 
 xploration. Recent dev elopments in deep neural networks have 
ed to the emergence of se veral ne w image restoration algorithms,
hich take advantage of the powerful representation capabilities of 
eep neural networks and have demonstrated impressive results. Two 
rimary types of image restoration algorithms have been proposed 
ased on different representation strategies: algorithms based on the 
roperties of astronomical images and those based on the properties 
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f the degradation process, such as the point-spread function (PSF) 
f telescopes and the characteristics of noise. These algorithms 
an enhance the quality of images obtained from astronomical 
bservations. 
Image restoration algorithms based on image properties are 

ften developed with generative neural networks, such as Auto- 
ncoding Variational Bayes (VAE) (Kingma & Welling 2013 ), U- 
et (Ronneberger, Fischer & Brox 2015 ), or Generative Adversarial 
etworks (GANs) (Goodfellow et al. 2020 ). These neural networks 

re trained on a large number of high signal-to-noise ratio (SNR)
nd high spatial resolution real observation images, from which they 
earn features. The learned features are then used to restore low
NR or low spatial resolution images. Properly selected training 
ata can lead to ef fecti ve results for galaxy images (Schawinski
t al. 2017 ; Arcelin et al. 2021 ; Gan, Bekki & Hashemizadeh
021 ; Jia et al. 2021 ; Li et al. 2022 ) or solar images (Jia et al.
019 ). Ho we v er, manual interv entions are often required to obtain
ppropriate training data, and o v erfitting or training on improper data
an result in the generation of f ak e structures by the neural network
Jia et al. 2021 ). 

Image restoration algorithms based on the properties of PSFs aim 

o learn the generalized inverse function of PSFs. The method first
onstructs a PSF model using wavefront decomposition (Beltramo- 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. The image restoration framework is illustrated in the diagram, 
which is composed of three main parts: the Monte Carlo simulation part, the 
image restoration part, and the parameter selection part. In the Monte Carlo 
simulation part, PSFs are generated under different observation conditions 
and sample images are convolved to generate blurred images as training 
data. The image restoration part restores these blurred images. Meanwhile, 
the parameter selection part e v aluates the quality of the restored images and 
generates parameter dictionaries for the data generation part. To speed up the 
training process, we employ the MPI technology to run the data generation 
and image restoration parts in separate processors or computers. 
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Figure 2. This figure shows the structure of PSF-NET. It includes an image 
restoration neural network (RESTORE) and a PSF generation neural network 
(PSF). 
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artin et al. 2019 ; F ́etick et al. 2019 ; Fusco et al. 2020 ; Jia et al.
020 ) or PSF basis (Jia et al. 2017 ; Sun et al. 2020 ), and then uses this
odel as prior knowledge to restore images through supervised or

nsupervised learning. In unsupervised learning algorithms, the PSFs
re decomposed into parameters, and the image restoration algorithm
ts these parameters through training (Qi et al. 2014 ; Gao et al.
017 ; Sureau, Lechat & Starck 2020 ). Ho we ver, these algorithms
lso face the parameter-tuning problem encountered by classical
mage restoration algorithms. In supervised learning algorithms,
SFs are used to generate blurred images as the training set (Jia
t al. 2020 ; Li & Alexander 2023 ; Wang et al. 2022 ). Ho we ver, two
ssues limit the application of supervised algorithms. First, PSFs are
ecessary as prior information for supervised learning algorithms.
lthough some methods have been proposed to extract star images

s PSF templates (Terry et al 2023 ), obtaining appropriate PSFs
s complicated due to the presence of sky background noise or
ead-out noise. Furthermore, obtaining star images from extended
arget images (such as galaxies or nebulae) is challenging (Long
t al. 2019 ). Second, the neural network’s generalization ability is
ependent on the training set. Because PSFs can change significantly,
t is difficult to obtain PSFs and develop datasets that can reflect
ifferent states of real observation data. Improper PSF datasets may
ntroduce epistemic uncertainty, which can limit the performance
f trained image restoration algorithms (H ̈ullermeier & Waegeman
021 ). 
Therefore, we present a no v el framework for processing images

rom large-scale astronomical sk y surv e ys. Our framework inte grates
 high-fidelity simulator of a specific telescope and a deep neural
etwork based image restoration algorithm with the active learning
trategy. The simulator is customized for the telescope used in the
k y surv e y and can generate simulated images with various PSFs
nd noise levels typically encountered in real observations. The
mage restoration algorithm restores these images, and we e v aluate
he quality of the restored images by computing the mean square
rror (MSE) between the original and restored images. The active
earning strate gy go v erns the simulator to generate more images
ith PSFs or noise levels that the image restoration neural network

ould not restore well, thereby further training the neural network.
NRAS 527, 6581–6590 (2024) 
his approach enables us to obtain an ef fecti ve neural network for
mage restoration. We discuss our framework in detail in Section 2
nd demonstrate its ability to restore simulated and real observation
mages with varying levels of blur in Section 3 . Finally, we draw our
onclusions and outline future work in Section 4 . 

 T H E  F R A M E WO R K  

arge-scale astronomical surv e ys produce a vast number of blurred
mages with varying quality, making it impractical to process them

anually one by one using human intervention-based algorithms.
herefore, an image restoration framework capable of producing
table results for images captured by the sky survey project is
ecessary. This work proposes a framework that addresses this need,
hich is illustrated in Fig. 1 . The framework consists of three parts:

he Monte Carlo simulation part, the image restoration part, and
he parameter selection part. To expedite the training process of
he framework, we propose using parallel computing technology
o run the data generation and image restoration parts on different
omputers or processors. We will discuss the details of our framework
n the following subsections. 

.1 The Monte Carlo simulation part 

he Monte Carlo simulation part generates PSFs of the tele-
cope for various observation conditions and convolves sam-
le images to create blurred images as the training data. The
maging process of an optical telescope can be modelled with 
quation ( 2 ): 

 mg( x , y ) = [ Obj ( x , y ) ∗ P S F ( x , y )] pixel ( x ,y ) + Noi s e( x , y ) , (1) 

here Obj ( x , y ) and Img ( x , y ) are original and observed im-
ges. PSF ( x , y ) is the point-spread function of the telescope,
] pixel( x , y ) stands for the pixel response function of the detector,
nd Noise ( x , y ) stands for the noise from the background and the
etector. 
This work focuses primarily on studying long-exposure images

aptured by ground-based optical telescopes, but our framework
an be applied to images collected by any telescope, provided
hat we have an appropriate simulator. In the case of ground-
ased long-exposure observations, atmospheric turbulence has a
ignificant impact on the PSFs, which can be accurately modelled
y using the Moffat model with β equal to 4.765 (Moffat 1969 ).
e set the full width at half-maximum (FWHM) of the PSF

s the first free parameter in the simulator. Additionally, we use
aussian random numbers to model various levels of noise caused
y the detector and background, and we set the standard deviation
s the second free parameter in the simulator. By using these
arameters, we can generate images with realistic PSFs and noise,
hich represent actual observation conditions for image restora-

ion algorithms better. Finally, we convolv e sev eral high-resolution
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Figure 3. The left panel of the figure displays the architecture of the PSF neural network, which is similar to that of the RESTORE neural network. The middle 
panel illustrates the convolutional block, while the right panel depicts the residual block. 
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emplate images with PSFs and add noise to generate the training 
ata. 

.2 The image restoration part 

he image restoration neural network we use in this study is
SF-NET, which was proposed by Jia et al. ( 2020 ). PSF-NET
onsists of two neural networks, namely the PSF network (PSF) 
nd the RESTORE network (RESTORE), as shown in Fig. 2 . Here
s a detailed description of their roles and functionalities. Firstly, 
he primary task of the PSF network is to model the image’s
lurring process. It achieves this by learning and representing 
he characteristics of the PSF and noise, transforming a high- 
esolution image into a blurred v ersion. The objectiv e of this step
s to capture the fundamental information regarding image blurring, 
hereby enhancing the accuracy and efficiency of the subsequent 
estoration process. Secondly, the RESTORE network plays the 
ole of a deconvolution algorithm, tasked with generating high- 
esolution, clear images from the blurred images. After being 
rained, the RESTORE network is capable of ef fecti vely restoring
lurred images to high-quality images, reco v ering the fine details 
nd information in the image. It is noteworthy that both the 
SF and RESTORE networks comprise six residual blocks, along 
ith several convolutional and transposed convolutional blocks. 
he structures of these blocks are depicted in Fig. 3 . During

he training phase, we adopt a joint training approach to train 
oth the PSF and RESTORE networks, thereby improving train- 
ng efficiency and mitigating overfitting risks. After training, the 
ESTORE network can be deployed for the task of restoring blurred 

mages. 
An important point to consider is that both the PSF network and

he RESTORE network are trained together, with the PSF network 
cting as a constraint for the RESTORE netw ork. Unlik e a simple
econvolution algorithm, the RESTORE network handles deconvolu- 
ion and noise reduction. Therefore the PSF network learns impacts 
rought by the PSF and the noise. This structural design not only
nfuses the restoration process with enhanced physical realism but 
lso bolsters the model’s ability to generalize, enabling it to address
arious blurring scenarios effectively. The PSF neural network in this 
tudy generates blurred images from high-resolution images, while 
he RESTORE neural network generates high-resolution images 
rom blurred images. To reflect the functions of these two neural 
etworks, we have designed the loss function as presented in 
quation ( 2 ): 

oss = L idt + L rec + L fl, (2) 

here L idt is the identity loss function, L rec is the cycle loss function,
nd L ffl is the focal frequency loss function. They are defined in
quation ( 3 ): 

L idt = ‖ P SF ( I mg org ) − I mg blur ‖ 2 
+‖ Re store ( I mg blur ) − I mg org ‖ 2 , 

 rec = ‖ Re store ( P SF ( I mg org )) − I mg org ‖ 2 
+‖ P S F ( Res tore( I mg blur )) − I mg blur ‖ 2 , 

L ffl = W × L fl, (3) 

here PSF and Restore stand for operators carried out by the
SF neural network and the RESTORE neural network, while 
mg blur and Img org stand for blurred images generated by the 
imulation method and original high-resolution images. We use 
 idt and L rec to set the MSE between the original images and

he images restored by the neural network to be as small as
ossible. 
Both the PSF neural network and the RESTORE neural network 

dopt an encoder–decoder structure. Ho we ver, since the decoder 
ontains several upsampling deconvolution layers that may introduce 
aps in restored images, using only the aforementioned loss function 
ay pose a problem. Our empirical observations suggest that 

aps affect the structure of restored galaxy images and are more
oticeable in the spatial frequency domain. To address this issue, 
e propose using the focal frequency loss L ffl to further enhance the
erformance of our neural netw ork. L ffl w as originally introduced
y Jiang et al. ( 2021 ), and involves the use of regularized weights
 to modulate the power spectral density, with L fl representing 

he mean squared error (MSE) between the original and restored 
mages in the spatial frequency domain, as defined in equation 
 4 ): 

W = | F F T ( I mg org ) − F F T ( Re store ( I mg blur )) | α, 
 fl = ‖ F F T ( I mg org ) − F F T ( Re store ( I mg blur )) ‖ 2 , (4) 

he fast Fourier transform is represented by FFT 

nd the regularized parameter α is used in the focal 
requency loss L ffl, which we defined as 1 in this
tudy. 
MNRAS 527, 6581–6590 (2024) 
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Figure 4. The flow chart of the parameter selection part is shown in this figure. The parameter selection part comprises two ranks, each with its own distinct 
role. Rank0 is responsible for training and testing the image restoration component, and runs primarily on a computer equipped with an RTX 3090 GPU. On the 
other hand, Rank1 is responsible for generating blurred images using the simulation component and runs on several other computers equipped with CPUs. For 
this purpose, we utilize older laptops or desktops that are equipped with i5 or i7 processors to run the simulation code. 
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.3 The parameter selection part 

he parameter selection part is the central part of our framework,
esponsible for adjusting the proportion of images with various
lur or noise levels used for training the neural network. Addition-
lly, this part o v ersees the e x ecution of the simulation and image
estoration parts in parallel using the (MPICH) Message Passing
nterface Implementations for Computing Heterogeneous clusters.
Gropp 2002 ). We will discuss the parameter selection component
elow. 
To begin, our parameter selection part involves defining a dictio-

ary to control the distribution of images with varying blur or noise
evels in the training set. The keys of this dictionary are determined
y the FWHMs of PSFs and noise levels, while the values represent
he mean loss function of all images with the respective FWHM or
oise level in the test set. These values are updated at the end of each
poch. Subsequently, we generate a new set of images based on these
pdated key values using equation ( 5 ): 

test count ( r i ) = ( t ot al( r i ) − 10) × (1 − li s t( r i )) + 10 , 

rain count ( r i ) = ( t ot al( r i ) − 10) × li s t( r i ) . (5) 

ere, test count ( r i ) and train count ( r i ) represent the total number of
mages with a particular FWHM and noise level ( r i ) in the test set
nd the training set, respectively, total ( r i ) represents the total number
f images with the same FWHM or noise level, and list represents
he parameter dictionary used to store the normalized mean value of
he loss function for all images with predefined FWHMs of PSFs or
oise levels. The values in list are used to calculate the percentage of
mages at a particular FWHM and noise level. By generating more
lurred images that cannot be restored well by the restoration neural
NRAS 527, 6581–6590 (2024) 
etwork in the previous epoch, the network is trained to gain better
erformance for these images in the next epoch because we have
ore images of that particular blur or noise level. With the parameter

election part, our neural network can ef fecti vely sample the space
f blur levels or noise levels for a particular sky survey project and
btain a stable generalization ability for all images obtained by the
roject. 
To accelerate the computationally e xpensiv e simulation and image

estoration parts, we propose dynamically adjusting the computation
oad on different computers during the training stage. The parameter
election part controls the data generation and image restoration
arts and is illustrated in Fig. 4 . The parameter selection part has
wo ranks. Rank0 trains and tests the image restoration part, which
equires significant GPU resources on a single computer. Rank1
enerates blur images with the data generation part on several other
omputers, which require CPU resources. The training data are set
ith an appropriate number based on the data generation and image

estoration speeds. During the training stage, Rank1 generates blur
mages and sends a ‘TRUE’ signal to Rank0 when all images in the
raining set of one epoch are generated. Rank1 continues to generate
lurred images even after sending the ‘TRUE’ signal. Meanwhile,
ank0 restores these blur images before receiving the ‘TRUE’ signal

rom Rank1. Upon receiving the ‘TRUE’ signal, Rank0 stops training
nd e v aluates the qualities of all restored images. The parameter
election part calculates the MSE of all restored images in the
est set and updates the parameter dictionary. The framework runs
ontinuously with the parameter dictionary as input parameters until
he set number of iterations is reached or the loss does not decrease
or ten consecutive epochs. 
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 P E R F O R M A N C E  EVALUATION  WITH  

IMULATED  A N D  R E A L  OBSERVATION  

MAG ES  

o assess the ef fecti veness of our framework, we will test it on
oth simulated and real observational data. In Section 3.1 , we 
ill introduce several criteria for evaluating its performance. In 
ection 3.2 , we will use simulated data to test the framework’s
erformance. Since we have control over the blur and noise levels, we
an ef fecti vely e v aluate the neural network’s generalization ability
sing simulated data. In Section 3.3 , we will e v aluate the framework’s
erformance using real observational data obtained from the Sloan 
igital Sky Survey (SDSS) project (Abazajian et al. 2009 ). We send

mages of galaxies directly to the neural network and the results
emonstrate the ef fecti veness of our framework. Further details about 
ur framework will be discussed below. 

.1 Performance evaluation criteria 

e employ the peak signal-to-noise ratio (PSNR) as defined by Xu 
t al. ( 2014 ) and the structural similarity (SSIM) as defined by Wang
t al. ( 2004 ) to assess the quality of the images quantitatively. The
SNR can be found using equation ( 6 ): 

 S NR( i mg, i mg ref ) = 20 log 10 

(
MAX( img ref ) √ 

MSE 

)
, 

MSE = 

1 √ 

N × M 

N ∑ 

i= 1 

M ∑ 

j= 1 

(
i mg ( i,j ) − i mg ref ( i,j ) 

)
, 

(6) 

here N × M is the size of the image, and img and img ref are restored
mages and original images. For simulated images, we could obtain 
mg and img ref , and for real observation images, img ref is the mean
alue of img . The PSNR can reflect the similarity between restored
mages and blurred images directly. Images with larger PSNR will 
ave better quality. Meanwhile, the SSIM is defined in equation ( 7 ): 

 S I M( i mg, i mg ref ) = l( i mg, i mg ref ) · c( i mg, i mg ref ) · s ( i mg, i mg ref ) , 

l( i mg, i mg ref ) = 

2 μimg μref + C 1 

μ2 
img + μ2 

ref + C 1 
, 

c( i mg, i mg ref ) = 

2 δimg δref + C 2 

δ2 
img + δ2 

ref + C 2 
, 

s ( i mg, i mg ref ) = 

δimg , ref + C 3 

δimg δref + C 3 
, 

C 1 = ( K 1 L ) 2 , 

C 2 = ( K 2 L ) 2 , 

C 3 = C 2 / 2 , (7)

here μ and δ are the average and standard deviation of the greyscale 
 alues, respecti v ely, δimg,ref is the co variance of the gre yscale values, L
s the dynamic range of the image, and K 1 and K 2 are small arbitrary
alues (0.001 in this work). The SSIM is a perceptual model that
onsiders the brightness, contrast, and intensity scale of two images 
imultaneously. The quality of an image is considered better if its
SIM is larger. 

.2 Performance evaluation with simulated images 

n order to e v aluate the ef fecti veness of our frame work on simulated
mages, we first simulate an observation scenario carried out by a 
round-based telescope with long exposure. We obtain galaxy images 
o  
n the r band from SDSS DR 7 and generate blurred images through
imulation. Our simulator assumes that the PSF follows the Moffat 
odel, with a FWHM distribution ranging from 2.0–8.0 pixels 

equi v alent to 0.792–3.168 arcsec) across five dif ferent le vels and
aussian noise distributed equally across five different levels with σ

anging from 1.0–15.0. This results in a total of 25 different levels of
lurred images. We train our framework using the images generated 
y the simulator with the aforementioned parameters. Additionally, 
e generate blurred images with higher levels of blur and noise to
 v aluate the performance of our algorithm. We divide the FWHM of
he PSFs into 13 bins ranging from 2–14 pixels (equi v alent to 0.792–
.544 arcsec), with the FWHMs of the PSFs in each bin considered
s random variables. We also divide the noise levels into 24 bins
anging from 2–25, with σ considered as a random variable in each
in. 
In this section, we apply the e v aluation criteria outlined in

ection 3.1 to assess the ef fecti veness of our framework. We utilize
ox plots to illustrate the performance of our algorithm and the
ichardson–Lucy method (RL) with the Gaussian denoising method 
cross varying noise levels and different PSFs. In Fig. 5 , results
btained from our algorithm are denoted in green, RL algorithm 

esults in red, and the original blurred data in blue. Upon analysing
hese box plots, it becomes apparent that our algorithm consistently 
utperforms the RL method under diverse conditions, encompassing 
 arious noise le vels and distinct PSFs. Notably, our algorithm
xhibits a significant advantage when dealing with datasets char- 
cterized by fluctuating noise levels, demonstrating its robustness 
nd stability in the presence of noisy input data. 

Furthermore, we conduct a t -test to determine whether a significant
erformance difference exists between the RL algorithm and our 
odel. Under the null hypothesis (H0), we assume there is no

erformance difference between the RL algorithm and our model. 
he alternative hypothesis (H1) posits a performance difference 
etween the RL algorithm and our model. In this study, we conduct
tatistical significance analyses for different scenarios and calculate 
 -values, all of which are less than 0.05, as shown in Tables 1 , 2 , 3 ,
nd 4 . In all these cases, we reject the null hypothesis, signifying a
ignificant performance difference between the RL algorithm and our 
odel. These findings collectively underscore the remarkable image 

estoration quality achieved by our algorithm. When e v aluated using
SNR or SSIM metrics, our algorithm consistently outperforms the 

raditional RL method. In summary, our test results unequivocally es- 
ablish the superior performance of our image restoration framework 
cross various observation conditions. 

To assess the performance of our algorithm in a qualitative 
anner, we utilize simulated images to test the ef fecti veness of

ur framework. Specifically, we apply the trained RESTORE neural 
etwork to restore simulated images that have PSFs and noise levels
ithin the range defined by the training set. The resulting images are
resented in Fig. 6 . The figure illustrates that the trained RESTORE
eural network can enhance the quality of the images significantly. 
he fine details, such as the spirals and bars of galaxies, can be
learly observed in the restored images. Additionally, we test the 
erformance of our framework on simulated images that have PSFs 
r noise levels that exceed the range defined in the training set.
he results are shown in Fig. 7 , and it is evident that the trained
ESTORE neural network exhibits a strong generalization ability, 
ven for images with larger FWHM or higher noise levels. 

.3 Performance evaluation with real observation images 

irst, we demonstrate the efficacy of our framework with real 
bservation data obtained from SDSS Data Release 7 (York et al.
MNRAS 527, 6581–6590 (2024) 
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Figure 5. Comparison of different image restoration algorithms under different noise and PSF conditions. The box plot shows the differences between our 
restoration algorithm (green) and the RL (red) method under different PSF conditions (top panel) and different noise levels (bottom panel). 

Table 1. Statistical analysis of SSIM performance for RL and our algorithm under different blur levels (PSFs). 

FWHM 2 4 6 8 10 12 14 

t -statistic 17.97 20.46 17.57 20.27 20.76 18.79 24.56 

p -value 5.96e −38 1.23e −43 5.08e −37 3.40e −43 2.72e −44 7.41e −40 3.21e −52 

Table 2. Statistical analysis of PSNR performance for RL and our algorithm under different blur levels (PSFs). 

FWHM 2 4 6 8 10 12 14 

t -statistic 49.69 73.94 56.31 75.21 76.49 68.05 110.96 

p -value 6.02e −90 6.82e −113 4.29e −97 6.88e −114 7.09e −115 4.77e −108 8.31e −137 

Table 3. Statistical analysis of SSIM performance for RL and our algorithm under different noise levels. 

Sigma 2 9 12 15 18 21 23 25 

t -statistic 1.70 17.81 26.46 32.40 32.12 40.43 40.60 43.98 

p -value 4.88e −02 3.25e −29 1.05e −40 5.35e −47 1.00e −46 4.40e −54 3.24e −54 1.63e −54 

Table 4. Statistical analysis of PSNR performance for RL and our algorithm under different noise levels. 

Sigma 2 9 12 15 18 21 23 25 

t -statistic 6.66 34.76 42.52 39.62 43.38 50.09 47.96 59.78 

p -value 3.52e −09 3.11e −49 1.02e −55 1.98e −53 2.27e −56 4.52e −61 1.19e −59 6.52e −67 
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000 ; Abazajian et al. 2009 ). We employ our method to restore
mages of low surface brightness galaxies (LSBGs) as detected
y Yi et al. ( 2022 ). LSBGs are a class of galaxies with central
urface brightness fainter than the sky background, often exhibiting
igh gas content and believed to be in the early stages of galaxy
ormation or to have recently undergone a burst of star formation
NRAS 527, 6581–6590 (2024) 
Impey & Bothun 1997 ). Due to their low luminosity, studying
SBGs is challenging (Du et al. 2015 ), making image restoration
lgorithms necessary to enhance their image quality before any
cientific analysis can be performed. Ho we ver, it is dif ficult to
se traditional deconvolution-based image restoration algorithms,
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Figure 6. The performance of our framework in the restoration of images that are generated within FWHMs or noise levels defined by the training set. 

Figure 7. The performance of our framework in the restoration of images that are generated with larger FWHM or higher noise level defined by the training set. 
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hich require bright stars as references, and content-based image 
estoration methods are inef fecti ve due to the very small number of
hotons in LSBGs. Thus, we use our framework to restore LSBG
mages. 

These images in the SDSS project are captured by a 2.5-m 

elescope and have a pixel scale of 0.396 arcsec with an exposure
ime of 53.9 s. As a result, the PSF and noise levels used in
he simulation model in Section 2.2 can reflect the properties of
eal observation data. Therefore, we train our framework with the 
imulator and the aforementioned parameters to obtain the weights 
f the RESTORE neural network. Subsequently, we apply the 
ESTORE neural network directly to process the LSBG images 
aptured by the SDSS project in the r band. Fig. 8 exhibits both
he original images and the images restored by our neural network. 
dditionally, we also employ the RL deconvolution algorithm (Fish 

t al. 1995 ) and select PSF references according to Infante-Sainz, 
rujillo & Rom ́an ( 2020 ) to restore these images for comparison.
urthermore, we present the LSBG images acquired by the DESI 
e gac y Imaging Surv e ys (De y et al. 2019 ) in this figure to provide
 reliable reference. Since larger telescopes are used to e x ecute the
ESI Le gac y Imaging Surv e ys, the data obtained from them can

mpro v e our e v aluation of the ef fecti veness of our method. 
Firstly, as demonstrated in the upper left corner of each figure, our
ramework can efficiently impro v e the PSNR of LSBGs in less time
around 10 times faster than the RL method with appropriate prior
SFs). Ne xt, we e xamine the restored images in detail. Although the
L method could provide ef fecti ve results, thanks to the accurate
SF model, images restored by the RL method are still affected by
trong noise. Our framework effectively restores fine structures of 
hese galaxies, such as spirals, discs, and filaments, and also reduces
ffects brought by noise. When comparing the restored images with 
hose obtained by the DESI Le gac y Imaging Surv e ys, we find that
tructures restored by our framework are true. It is worth noting
hat our framework builds PSFs and the deconvolution procedures 
or image restoration, so in principle it does not generate artificial
eatures. Moreo v er, our framework can effectively suppress noise 
n these images, resulting in some images with even better quality
han those obtained by the DESI Le gac y Imaging Surv e ys. Ov erall,
ur framework can assist scientists in studying the properties and 
orphological structures of LSBGs in greater detail. 
In our further investigation, our primary focus was on e v aluating

he algorithm’s performance concerning the enhancement of pho- 
ometry accuracy and detection efficiency. To do this, we randomly 
elect SDSS R -band images, each with dimensions of 1024 × 1024
MNRAS 527, 6581–6590 (2024) 
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Figure 8. This figure shows original images obtained by the SDSS project in the r band, images restored by the RL method, with references of PSFs provided 
by Infante-Sainz, Trujillo & Rom ́an ( 2020 ), images restored by our framework, and images of the same LSBG obtained by the DESI Le gac y Imaging Surv e ys. 
In the upper left corner of each figure, we show the PSNR of restored images and calculation speed of different methods in restoration of different images. As 
shown in this figure, our framework could restore blurred images effectively. 
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ixels. Subsequently, we apply both our image restoration algorithm
nd the RL algorithm to restore these images. Following restoration,
e utilize SEXTRACTOR for detection and photometry (Bertin &
rnouts 1996 ). The results of this study are presented visually in
NRAS 527, 6581–6590 (2024) 
ig. 9 . We conduct this analysis for each magnitude, considering
 dataset of 2000 images for e v aluation. Subsequently, we assess
hese results through a rigorous statistical analysis. Our findings
ndicate that the processed data, particularly the data treated with
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Figure 9. Comparison of photometry and detection results for stars with different magnitudes. MagErr: the average percentage error between photometric 
measurements and true values. P −R curve: the precision-recall (P −R) curve is a graphical representation of the trade-off between precision and recall for a 
binary classification model. Precision is the ratio of true positive predictions to the total number of positive predictions, while recall is the ratio of true positive 
predictions to the total number of actual positive instances. 
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ur algorithm, show a higher recall rate and precision rate. This
utcome demonstrates that our algorithm significantly impro v es 
he efficiency of celestial object detection, especially for stars 
ith low signal-to-noise ratio. Moreo v er, our method has pro v en

f fecti ve in enhancing photometry accuracy, as vividly depicted 
n the top panel of Fig. 9 . These results provide strong support
or the practical applicability of our algorithm in the field of
stronomy. 

 C O N C L U S I O N S  A N D  F U T U R E  WO R K  

e have introduced a novel framework in this article for restoring
lurred astronomical images by merging deep learning techniques 
ith simulation algorithms. Our framework actively trains the 

estoration neural network using a simulation algorithm that rep- 
esents a specific telescope. Once trained, the restoration neural 
etwork can produce restored images more efficiently compared 
ith the traditional RL deconvolution algorithm. We have tested 
ur method on both simulated and real observational data and 
ave found that it ef fecti vely minimizes the impact of noise
nd PSFs, making previously unseen fine structures of galaxies 
isible. 
We have also identified two areas for future impro v ement. Firstly,

e have shown that the physical parameters and prior model used
o represent the image degradation process are crucial for our 
ramework. To extend our approach to data from different sky survey
rojects, we need to develop an adequate parametric PSF model 
nd an adequate telescope simulator. Therefore, we will introduce 
hysics-informed machine learning algorithms as necessary tools 
o build PSF models. Meanwhile, the digital twin technology is 
 promising method for generating simulation data according to 
elemetry data and high-fidelity simulators, and we are currently 
eveloping a digital twin as a telescope simulator (Jia et al. 2022 ;
han et al. 2022 ). Secondly, we use the L 2 norm and FFL to train our

estoration neural network, and we could investigate further new reg- 
larization methods based on human attention and big data obtained 
rom previous sky survey projects to improve the performance of our
ramework. 

Overall, our proposed framework is suitable for restoring images 
btained from future sky survey projects, such as the LSST, Euclid ,
MNRAS 527, 6581–6590 (2024) 
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nd the CSST . Our framework could help scientists to recognize
he morphology of galaxies better, which could increase outcomes
rom citizen science platforms. Also, our framework could increase
he accuracy of shape measurements for galaxies with low signal-
o-noise ratio. We are now using our framework to process data
btained by Dark Energy Camera Le gac y Surv e y (DECaLS) Dark
nergy Camera Le gac y Surv e y. (Dark Energy Surv e y Collabora-

ion et al. 2016 ) for further scientific research. We will deploy
ur method for data obtained by the CSST and Euclid in the
uture. 
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