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Abstract
1. Camera traps have great potential for generating wildlife insights by providing 

high resolution site- specific data. Methods of data collection and analysis reliant 
on these tools for population density estimation can be relatively resource inten-
sive, hindering their mainstream adoption.

2. Here, we explore the potential of population density estimates derived from a dis-
tance sampling method based on optics theory, which greatly simplifies the pro-
cess	of	setting	up	camera	sites	and	analysing	data.	Specifically,	we	(1)	tested	the	
method	on	human	subjects	in	an	artificial	environment,	(2)	compared	it	to	another	
method relying on virtual grids on images using wild populations of black- backed 
jackal (Canis mesomelas)	and	African	civet	(Civettictis civetta)	in	South	Africa	and	
(3)	deployed	it	to	estimate	wild	boar	(Sus scrofa)	population	densities	in	Hungary.

3. The initial human trials resulted in an estimate that was extremely close to true 
population density. When compared to the virtual grid method, results suggest 
that our distance sampling method can deliver accurate estimates with increased 
convenience and robustness against disruptions of the camera sites. The wild 
boar study resulted in a realistic density estimate, which can be used as a baseline 
when assessing future fluctuations in population density.

4.	 As	this	new	approach	does	not	have	special	requirements	for	setting	up	camera	
sites, it is efficient and widely applicable across other density estimation methods 
requiring	an	estimate	for	effective	detection	distance.	Additionally,	the	method	
can be applied in the retrospective analysis of existing datasets.
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1  |  INTRODUC TION

With the rate of species loss currently at an all- time high (Cardinale 
et al., 2012),	 monitoring	 remaining	 populations	 is	 more	 import-
ant than ever to inform and assess the efficiency of conservation 
policies. The use of density indices was formerly considered to 
be sufficient to monitor the effects of most ecological problems 
(Caughley, 1977),	but	it	is	increasingly	apparent	that	the	success	of	
management decisions largely depends on the accuracy of measure-
ments	(Nichols	&	Williams,	2006).	Accurate	density	surveys	are	typi-
cally resource- intensive, creating a strong incentive to develop more 
efficient methods that maintain accuracy.

The	last	15 years	have	seen	rapid	developments	in	using	camera	
traps to monitor the abundance and population density of species 
that cannot be individually identified. Recently proposed methods 
include relative abundance indices (Kuprewicz, 2013; O'Brien, 2011),	
occupancy models (MacKenzie & Royle, 2005),	the	random	encoun-
ter model (REM; Rowcliffe et al., 2008)	 and	 its	variations,	 random	
encounter	 and	 staying	 time	 (REST;	 Nakashima	 et	 al.,	 2018),	 and	
multi- species REM (Wearn et al., 2022),	time	to	event	(TTE)	and	its	
variations (Moeller et al., 2018),	and	camera	trap	distance	sampling	
(CTDS; Howe et al., 2017).

Common	 to	 the	more	 recent	 of	 these	methods	 is	 the	 require-
ment to estimate the distances and angles from the camera trap to 
the	 locations	of	detected	animals.	Various	methods	have	been	de-
veloped for this, such as tracking animal movements on the images 
based on nearby landmarks (Rowcliffe et al., 2011)	 or	 calibration	
imagery (Henrich et al., 2023; Wearn et al., 2022),	using	a	physical	
cane grid (Caravaggi et al., 2016),	or	using	poles	along	the	midline	of	
the	field	of	view	(FOV;	Hofmeester	et	al.,	2017; Mason et al., 2022).	
All	of	these	methods	require	extra	equipment	to	be	transported	to	
the field, and/or considerable extra time spent analysing images and 
setting	up	camera	sites.	As	a	result,	the	uptake	of	these	methods	has	
not	been	high.	This	highlights	a	clear	requirement	for	a	method	of	
distance estimation that is easy to implement and straightforward 
to analyse.

Recent works addressing the efficiency of distance estimation 
include the use of virtual distance grids laid over the landscape 
(McKaughan et al., 2023)	 and	 a	 semi-	automated	 distance	 estima-
tion	 method	 requiring	 calibration	 for	 each	 camera	 site	 (Haucke	
et al., 2022; Henrich et al., 2023).	Meanwhile,	the	fully	AUtomated	
DIstance	esTimation	(AUDIT)	method	(Johanns	et	al.,	2022)	simpli-
fies both processes of camera site preparation and distance esti-
mation	using	machine	learning	algorithms.	AUDIT	achieved	a	Mean	
Absolute	Error	value	of	<1 metre during testing, building the case 
for	methods	requiring	no	alteration	of	camera	sites.	This	has	great	
promise	but	will	require	extensive	testing	to	ensure	generality;	cur-
rently,	it	has	been	developed	to	work	with	video	data	capture.	As	a	
result, advances in streamlined methods for manual distance estima-
tion remain relevant.

Here, we show how Optical Camera Trap Distance Estimation 
(OCTDE)—a	 method	 to	 estimate	 detection	 distances	 and	 angles	
based	 on	 optics	 theory—can	 be	 applied	 to	 estimating	 population	

density. OCTDE estimates detection distance based on the size of 
the	captured	subject	on	the	image.	Like	AUDIT,	this	approach—as-
suming	 that	 it	 provides	 accurate	 estimates—allows	 for	 a	 simpler	
and	more	 convenient	 site	 setup	 than	 existing	 alternatives,	 requir-
ing	no	extra	equipment	besides	 the	 cameras.	This	 can	 reduce	 the	
manpower and time needed to set up camera trap studies of species 
density.

To establish the viability of OCTDE, we began with a prelimi-
nary assessment on human subjects. Then, we assessed the perfor-
mance	of	OCTDE	on	two	South	African	species	by	comparing	it	to	
an established alternative, based on a virtual distance grid method 
(McKaughan et al., 2023).	We	then	applied	OCTDE	to	estimate	the	
density of a Hungarian wild boar (Sus scrofa)	population.	We	chose	
wild boars because there is an increased interest in them, owing to 
the	spread	of	African	swine	fever	(ASF),	a	highly	contagious	disease	
resulting in an almost 100% mortality rate in domestic pigs (Galindo 
&	Alonso,	2017; Quembo et al., 2018).	Better	approaches	for	mon-
itoring boar populations are needed and camera trapping is one of 
the strongest candidate methods (Guerrasio et al., 2022;	 Palencia	
et al., 2023).	With	this	set	of	studies,	we	aim	(1)	to	build	a	case	for	
the use of OCTDE as a less resource- intensive method of distance 
estimation for unmarked animals to support the measurement of 
population	density	and	(2)	to	provide	comparative	data	to	aid	with	
the development and generalisation of proposed monocular depth 
mapping.

2  |  MATERIAL S AND METHODS

Optics theory can be used to estimate the distance of an object to 
the camera in a given image, if the following information is avail-
able: focal length; the object's real- life size (i.e. any linear dimen-
sion);	and	the	object's	size	on	the	sensor	(Leorna	et	al.,	2022; Zuleger 
et al., 2022).	 The	 latter	 value	 can	 be	 calculated	 from	 the	 object's	
size on the image in pixels and the size of the sensor in both pixels 
and millimetres (Greivenkamp, 2004; Hecht, 2012).	Specifically,	the	
object's size on the sensor, s	(in	mm),	is	given	by:

where Ss and Sp are the sizes of the sensor in mm and pixels, respec-
tively, and Hp is the size of the object on the sensor in pixels. Given s, 
the distance to the object, d	(in	m),	can	be	calculated	as:

where Os is the size of the object in m (estimated based on literature 
or	prior	measurements	of	the	population),	and	f is the focal length of 
the camera in mm.

The	variables	required	for	OCTDE	are	relatively	straightforward	
to obtain, since sensor size and focal length specifications are usu-
ally available in the metadata of images, online, or provided by the 
manufacturer. If unavailable, these metrics can be estimated for 
each	axis	using	the	equations	above	and	images	taken	of	an	object	
of known size and at known distance from the sensor. Since field of 

(1)s =
(

Ss × Hp

)

∕Sp

(2)d =
(

Os × f
)

∕ s
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view estimates were already available in our case, sensor size on the 
x axis was calculated using:

where α is field of view in degrees, d is distance in m, Ss and Sp are the 
sensor size in mm and pixels, respectively. Ss for the y axis was calcu-
lated using simple proportioning of the known variables of Ss on the x 
axis and Sp on both axes.

The size of an object on the image in pixels can be measured 
with most types of photo editing software, for example, by using the 
Ruler	 tool	 in	Adobe	Photoshop.	The	only	unknown	variable	 is	 the	
real object size in the image, which differs for every photographed 
individual. However, if average measurements of animals in a given 
population are known or can be obtained from published data, and 
images are assumed to be unbiased for subject size, it follows that 
the theory can be used to estimate distance by Equation 2.

Across	all	experiments,	we	used	Browning	Strike	Force	HD	Pro	
and	Browning	Strike	Force	HD	Pro	X	and	the	field	of	view	estimates	
(42.5°	and	43.7°	respectively)	were	based	on	data	from	TrailCamPro	
(https:// www. trail campro. com).	The	estimates	available	on	the	web-
site were verified to be reasonable and within the standard error 
range	of	our	measurements.	All	data	analyses	were	carried	out	using	
R	(Version	3.6.1)	(R	Core	Team,	2018),	with	the	package	“Distance”	
(Miller, 2020)	and	the	camera	trap	analysis	code	available	at	https:// 
github. com/ Marcu sRowc liffe/  dista nceDF  used to estimate density.

2.1  |  Preliminary tests of estimating the density of 
a model population

Initially,	 six	 Browning	 Strike	 Force	 HD	 Pro	 camera	 traps	 were	 de-
ployed in random locations within a woody area of c.	2 ha	in	the	City	
of	Durham,	UK.	 As	 the	 experiment	was	 carried	 out	 on	 the	 private	
grounds of the University of Durham, no permission for fieldwork 
was needed. On triggering, the camera traps were set to take 3 im-
ages	with	a	2 s	delay	between	each	frame.	Human	subjects	were	used,	
as they could be instructed to move continuously through the study 
area	over	30 min,	without	leaving	it.	The	subjects'	average	height	was	
180 cm,	with	a	standard	error	of	1.41 cm.	Measurements	of	object	size	
in	pixels	were	taken	using	Adobe	Photoshop's	Rectangular	Marquee	
tool	 (version:	21.0.2).	 If	 the	participants	were	visible	on	 the	 images	
in their entirety, height was used to estimate distance. Otherwise, 
smaller parts of the body were measured, and height was extrapolated 
from these measurements using established anthropometric propor-
tions (Govind, 2012).	Angles	of	detection	were	estimated	 for	every	
image using the camera traps' field of view of 42.5° and the distance of 
the centre of the subject's body from the midline of the image.

The	 R	 package	 “Distance”	 calculates	 effective	 detection	 dis-
tances (r)	and	effective	detection	angles	(π)	by	fitting	models	to	the	
number of sightings at various distances and angles, respectively. 
The estimate of overall effort is

where θ is the effective detection angle in radians, Tp is cumulative time 
spent active across all camera traps, and t is the time between sampling 
instances (Howe et al., 2017).	Activity	can	also	be	 factored	 into	 the	
estimation of effort (Rowcliffe et al., 2014),	but	activity	was	constant	in	
this	pilot	study.	Density	is	then	calculated	with	the	following	equation:

where D is the density per km2, R is the number of sightings, r is the 
effective detection distance in km, and E is the effort calculated in 
Equation 4 (Howe et al., 2017).	Figure 1 summarises the steps of the 
OCTDE	 process,	 covering	 data	 collection,	 analysis,	 and	 subsequent	
density estimation.

2.2  |  Comparing distance and density estimates 
from OCTDE and virtual distance grids

Data used for this assessment came from a camera trap survey con-
ducted	 in	South	Africa	 in	2019	 (McKaughan	et	 al.,	2023).	Camera	
traps	 were	 spread	 across	 192 km2	 of	 the	 Alldays	 area,	 Limpopo	
Province,	South	Africa,	60 km	south	of	the	intersection	of	the	South	
African,	Botswanan,	and	Zimbabwean	borders.	Twenty-	five	camera	
traps	 (Browning	Strike	Force	HD	Pro)	were	deployed	at	 the	 inter-
sections	 of	 a	 grid	with	 3 km	 spacing	with	 a	 random	 origin,	 super-
imposed over the study site. On triggering, the camera traps were 
set	to	take	6	images	with	a	delay	of	0.3 s	between	each	frame	and	
1 s	before	a	new	trigger	event	could	occur.	Deviations	from	the	grid	
were allowed, in order to find a tree on which the cameras could 
be	mounted;	only	one	 camera	was	placed	 further	 than	30 m	 from	
its	designated	intersection	(78 m	away).	Cameras	were	set	at	0.7 m	
above-	ground,	angled	parallel	to	the	ground	and	faced	north.	A	vari-
ation of ±30° from north facing was allowed, so that the cameras 
were not facing directly at an obstacle, but only two cameras were 
not facing directly north.

Cameras	remained	active	for	90 days,	from	the	1	June	to	the	29	
August	in	2019.	The	90-	day	study	period	ensured	that	data	collec-
tion was maximised for the subject species but minimised violations 
of	the	assumptions	of	closed	populations	(Karanth	&	Nichols,	1998; 
Kelly & Holub, 2008)	and	potential	effects	of	environmental	changes	
due to seasonality. Due to theft, or wildlife affecting camera traps, 
some camera traps had a smaller window of operation; this was 
accounted	 for	 when	 calculating	 survey	 effort.	 Across	 all	 camera	
traps, the cumulative number of camera days was 2047.4 (minimum 
50.2 days	for	a	single	location).

Population	densities	of	two	relatively	common	meso-	carnivores,	
African	civet	 (Civettictis civetta)	 and	black-	backed	 jackal	 (Canis me-
somelas)	were	estimated	using	OCTDE.	OCTDE	 requires	 linear	di-
mension estimates of various body parts of the studied species. 
All	average	metrics	for	both	species	were	based	on	estimates	from	
previous literature. For civets, the average shoulder height was es-
timated	to	be	40 cm	(Shorrocks	&	Bates,	2015).	On	a	single	close-	up	
image,	 5 cm	was	 used	 as	 the	 average	 ear	 length.	 This	metric	was	

(3)Ss = tan (� ∕2) × d∕Sp

(4)E = � ∕(2�)
(

Tp ∕ t
)

(5)D = R∕
(

r2�
)

(1∕E)
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chosen to be just below the range identified by Ray (1995)	for	adult	
civets, to account for the inclusion of younger specimens. For jack-
als,	 the	metric	 used	 for	 shoulder	 height	was	 also	 40 cm,	which	 is	
within the ranges reported by Walton and Joly (2003)	 and	 Stuart	
and Stuart (2015).	This	metric	was	used	for	the	vast	majority	of	cases	
but,	 in	a	few	instances,	estimations	were	based	on	ear	(11 cm)	and	
tail	(32 cm)	measurements	(Walton	&	Joly,	2003).	To	assess	the	sen-
sitivity of the density estimate to average metrics assumptions, pop-
ulation densities were estimated in two separate analyses. First, to 
assess the impacts of error in our size metrics, we repeated all anal-
yses assuming average size metrics were over-  or under- estimated 
by 12.5%. Second, to assess the impacts of interspecific variation 
in size, we repeated the analyses 100 times, each time drawing the 
body size metric independently for each observation from a normal 
distribution	with	a	mean	equal	to	the	average	dimensions	used,	but	
a coefficient of variation of 6.25%.

The same dataset was also analysed using distances estimated 
using reference pictures taken in the field, with a distance overlay 
grid (McKaughan et al., 2023).	The	grid	was	created	using	an	iden-
tical setup to the cameras in the field in a flat and open area, with 
markers	 at	 1 m	 intervals	 used	 to	 create	 a	 reference	 image	 of	 dis-
tances that could be overlaid on each camera trap photo. For each 
camera, the grid was then adjusted to the location's landscape using 
a	distance	marker	at	3 m	and	another,	at	most,	10 m	from	the	cam-
era, before distances of animals in images were recorded. Distance 
and density estimates obtained by the two methods were compared. 
For these comparisons, observations in the ‘>25 m’	category	using	

distance grid estimates were discarded in statistical analyses for 
both species, owing to the difficulty of distinguishing distances over 
25 m	using	that	method.

To explore why the distance estimates derived from the two 
methods differed, sightings where the difference between esti-
mates	was	greater	than	5 m	were	investigated	for	common	features	
that	could	introduce	biases.	A	distance	of	5 m	was	selected	because	
some	established	distance	estimation	methods	work	with	2.5 m	dis-
tance bins (Hofmeester et al., 2017).	By	analysing	cases	with	differ-
ences	in	estimates	larger	than	5 m,	we	could	be	sure	that	at	least	one	
of	the	methods'	estimates	differed	by	more	than	2.5 m	from	the	true	
distance.

2.3  |  Estimating wild boar density in Bükk 
National Park

Bükk	 National	 Park	 (423 km2)	 in	 north-	eastern	 Hungary	 is	 in	 the	
most mountainous region of the country. It is densely forested and 
features karst formations, such as large caves, swallow- holes and 
ravines.	 In	 2019,	 as	 part	 of	 MammalNet	 Hungary,	 the	 Hungarian	
branch of a European volunteer- based camera trap network (Smith 
et al., 2023),	 officers	 at	 Bükk	National	 Park	 (BNP)	were	 given	 six	
Browning	Strike	Force	HD	Pro	X	camera	traps	and	associated	equip-
ment.	As	 the	deployment	of	 the	cameras	was	part	of	 the	officers'	
standard daily operations, no additional permission for fieldwork 
was needed for the study. On triggering, the camera traps were set 

F I G U R E  1 Summary	of	the	steps	making	up	the	OCTDE	process.	Yellow	dotted	lines	are	schematic	examples	of	the	measurement	
process.
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to	take	3	images	with	a	0.3 s	delay	between	each	frame.	Our	study	
used data collected between October 2019 and March 2020.

Staff	at	BNP	were	free	to	use	the	camera	traps	as	they	wanted	but	
were told not to use baits when trapping and not to deliberately place 
camera traps next to nests or feeding stations; these instructions were 
intended to avoid bias in estimates (Foster & Harmsen, 2012).	 The	
six	camera	traps	were	spread	out	across	the	National	Park	and	were	
active for a cumulative total of 452.4 camera days. Wild boar linear 
measurements were based on 248 wild boars from three Hungarian 
game	farms:	72.6 cm	for	withers	height,	12.5 cm	for	ear	 length,	and	
44.6 cm	for	head	length	(Bodnár	et	al.,	2015).

3  |  RESULTS

3.1  |  Estimating density of a model population

The woodland study of human density yielded 94 images contain-
ing subjects. Given the number of participants (5)	and	the	size	of	
the	area	 (19,797 m2),	 the	 true	density	was	252.6	people	per	km2. 
For calculating θ	(the	effective	detection	angle),	distance	sampling	
algorithms selected the half- normal key function, and the esti-
mate was 42.4° (±20.65	SE),	due	to	the	lack	of	a	significant	drop	in	
the number of observations towards the edge of the field of view 
(Figure 2a).	For	calculating	r	(the	effective	detection	distance),	the	
hazard- rate key function was selected, and the estimate was 14.58 
(±0.80	SE)	m	(Figure 2b).	The	estimated	density	using	OCTDE	was	
265.65 (±142.14)	 people	 per	 km2. Despite the very high uncer-
tainty, the point estimate is very close to the actual value.

3.2  |  Density estimates from OCTDE and distance 
grids on South African civet and jackal populations

Left truncation can help realise the assumption that detection prob-
ability is certain at the lowest detection distance. From the left, 
any observations at shorter distances than the first observation 
category with 0 observation events were discarded, if the images 
amounted to less than 5% of all data from the camera site. The civet 
dataset	was	truncated	at	2.5 m	from	the	left	and	18 m	from	the	right,	

while	the	jackal	data	were	truncated	at	1.5 m	from	the	left	and	24 m	
from the right. Truncation resulted in a loss of approximately 5.3% 
of	civet	and	3.6%	of	jackal	observations.	The	frequencies	of	differ-
ent detection distance angles and estimates (Figure 3)	were	used	to	
estimate θ and r, respectively.

In the case of both species, half- normal key functions were 
used for calculating θ, and hazard- rate key functions for calculat-
ing r. Those, in turn, were used to estimate densities for each spe-
cies (Table 1).	Design-	based	standard	error	values	(Dunning,	2010; 
Howe et al., 2017)	derived	using	the	Delta	method	(Seber,	1982)	
are	 provided	 for	 all	 estimates.	 The	 method	 used	 CVs	 from	 (1)	
detection probability (which encompasses the uncertainty of ef-
fective	detection	distance),	 (2)	 the	encounter	 rate,	 (3)	 the	 activ-
ity	multiplier,	and	(4)	the	effective	detection	angle	multiplier;	the	
encounter rate accounts for 99% of the variability. Tables 2 and 3 
show the results of testing the sensitivity of population density 
values to changes in assumptions for average body metrics of the 
subject species.

3.3  |  Comparing distance estimates from 
OCTDE and distance grid

Linear models of OCTDE distance estimates as a function of dis-
tance grid estimates had non- zero intercepts and slopes of less 
than 1.0 (Table 4).	This	was	because	although	the	two	measures	
were strongly positively correlated for distances relatively close 
to the camera, that positive relationship was lost further from the 
camera. In fact, a segmented linear relationship provided a better 
fit to the data across both species (Figure 4, Table 5).	The	break-
points between the slopes in the segmented regression are ap-
proximately	8 m	for	the	civet	and	12.5 m	for	the	jackal.	The	initial	
slopes were larger than 1, while the second slopes were nearly 0 
for both species.

Also,	264	(of	1527)	comparable	observations	across	the	two	spe-
cies	displayed	a	difference	of	more	than	5 m	between	the	estimates.	
Out of the 25 camera traps, a non- level horizon on the images was 
seen	in	seven,	suggesting	some	degree	of	tilt.	250	(95%)	of	the	264	
observations with large differences in estimates were derived from 
these seven camera traps.

F I G U R E  2 Distributions	of	the	angle	of	
detection	(a)	and	detection	distance	(b).
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6 of 13  |     TERNYIK et al.

F I G U R E  3 Frequency	of	observations	
by the angle of detections and detection 
distances	for	civet	(a	and	b,	respectively)	
and	jackal	(c	and	d,	respectively).

TA B L E  1 Effective	detection	angle	(θ)	and	effective	detection	distance	(r)	and	values	from	OCTDE	analysis	and	the	results	of	both	
OCTDE and the distance grid method by species.

Species (number of observations)
Effective detection 
angle (°)

Effective detection 
distance (m)

OCTDE population 
density estimate (/km2)

Distance grid population 
density estimate (/km2)

African	civet	(265) 31.92 (±2.20	SE) 13.46 (±0.26	SE) 0.074 (±0.079	SE) 0.108 (±0.06	SE)

Black-	backed	jackal	(1297) 28.89 (±0.70	SE) 13.58 (±0.24	SE) 0.325 (±0.192	SE) 0.365 (±0.150	SE)

TA B L E  2 Density	estimates	of	jackals	and	civets	using	OCTDE,	with	average,	12.5%	larger	and	12.5%	smaller	body	metrics.

Species (number of observations)

OCTDE population density estimate 
using +12.5% assumed body metrics 
(/km2)

OCTDE population density estimate 
using average metrics (/km2)

OCTDE population 
density estimate using 
−12.5% assumed body 
metrics (/km2)

African	civet	(265) 0.059 (±0.062	SE) 0.074 (±0.079	SE) 0.097 (±0.103	SE)

Black-	backed	jackal	(1297) 0.257 (±0.152	SE) 0.325 (±0.192	SE) 0.423 (±0.250	SE)

TA B L E  3 Summary	of	100	density	estimates	of	jackals	and	civets	using	OCTDE	while	generating	a	different	assumed	body	metric	for	
each individual observation. Each metric was randomised using a normal distribution with a standard deviation of ±6.25% around the 
average metric.

Species (number of observations)
Minimum OCTDE population 
density estimate (/km2)

Mean OCTDE population 
density estimate (/km2)

Maximum OCTDE population 
density estimate (/km2)

African	civet	(265) 0.069 (±0.074	SE) 0.075 (±0.080	SE) 0.080 (±0.085	SE)

Black-	backed	jackal	(1297) 0.321 (±0.190	SE) 0.326 (±0.193	SE) 0.330 (±0.196	SE)

TA B L E  4 Linear	regression	analysis	of	the	distance	estimates	from	OCTDE	and	Distance	Grid.	Selected	models,	based	on	AIC,	are	in	bold.

Species (number of observations) y = ax + b AIC y = ax AIC Intercept (±SE) Slope (±SE)
R2 of 
trendline

R2 of 
x = y

Civet (n = 265) 1325.0 1435.8 5.291 (±0.448) 0.455 (±0.045) 0.278 −0.131

Jackal (n = 1262) 6986.8 7188.5 4.025 (±0.271) 0.672 (±0.025) 0.359 0.245
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    |  7 of 13TERNYIK et al.

F I G U R E  4 Relationship	between	distance	estimates	for	(a)	civet	and	(b)	jackal	using	OCTDE	and	the	distance	overlay	grid.	Points	represent	
individual observations. The orange lines represent an ideal 1:1 ratio between the two factors, where all objects are estimated to be at the 
same distance by the two methods. The green and blue lines are models describing the observed relationship between the two variables using 
linear regression and segmented regression, respectively. Models were fitted by excluding observations in the >26+ category on the x- axis.
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3.4  |  Estimating wild boar density in Bükk 
National Park

Here 856 observations of wild boars were obtained. Using the 
half-	normal	 key	 function	 with	 cosine	 (2)	 adjustments	 we	 esti-
mated θ = 38.35°	 (± 1.31	 SE),	 due	 to	 a	 decrease	 in	 the	 number	 of	
observations towards the edge of the field of view (Figure 5a).	
Using a hazard- rate key function, we estimated r = 9.26	 (± 0.24)	m	
(Figure 5b).	The	estimated	density	using	OCTDE	was	0.480	(± 0.35	
SE)	wild	boar	per	km2.

4  |  DISCUSSION

Generally, the development, testing, and application of OCTDE 
highlights its potential as a viable tool for efficiently estimat-
ing distances of animals in camera trap images, with important 
insights gained across all three studies. Here, we discuss the 
performance of our method, its limitations, strengths, future po-
tential, and implications for wild boar population density in Bükk 
National	Park,	Hungary.

4.1  |  Testing OCTDE in the field

In the human trial, the density estimate obtained using OCTDE 
was	 extremely	 close	 to	 the	 actual	 value.	 As	with	many	 applica-
tions of camera trap density estimation, the standard error of the 
estimate was very large. This is likely to have arisen because of the 
very	 short	 trial	 and	 the	 small	 number	 of	 camera	 traps.	A	 longer	
trial and more camera traps would have yielded a larger number 

of detections from a wider spread of sampling locations and thus 
greater precision.

When we applied OCTDE to data on jackal and civet popu-
lations	 in	 South	 Africa,	 the	 resultant	 point	 estimates	 of	 density	
were close to the estimates derived from the distance grid- based 
method for both species. The estimates are also realistic compared 
to generally reported densities. Civet and jackal density estimates 
generally fall between 0.003–0.1/km2 (Mullu & Balakrishnan, 2014; 
Rich et al., 2019)	and	between	0.31-	22/km2,	respectively,	in	African	
studies (Bingham & Foggin, 1993;	Hiscocks	&	Perrin,	1987; Jenner 
et al., 2011; Rowe- Rowe, 1982).	For	both	species,	our	OCTDE	den-
sity	estimates	are	within	 the	 reported	 ranges,	 suggesting	 that—al-
though,	 in	 the	absence	of	knowledge	of	 the	 ‘true’	densities	 in	our	
study	area,	we	cannot	state	with	confidence	that	they	are	accurate—
they are certainly plausible (McKaughan et al., 2023).

Although	the	density	estimates	from	the	two	methods	were	sim-
ilar, there were differences in the precise distance measurements. 
The segmented regression analysis for both species suggested a 
plateauing of the relationship between OCTDE and inferred dis-
tance	overlay	grid	estimation	above	threshold	distances	(8	and	12 m,	
respectively,	 for	 civet	 and	 jackal).	 The	 presence	 of	 these	 plateaus	
suggests that, once the animal is above a certain distance, at least 
one of the methods has very little capacity to differentiate distances 
accurately. Both approaches rely on the accuracy with which image 
subjects can be treated, and reductions in image fidelity with in-
creasing distance from the camera mean that, the further the sub-
ject is from the camera, the lower the information content of the 
image. With OCTDE, a large difference in estimated distance can 
result from a small difference in measured height in pixels when 
the animal is far away, due to the exponential relationship between 
estimated distance and pixel size. Similarly, the resolution of the 
distance grid drops exponentially as the subject gets further away 

TA B L E  5 Segmented	regression	analysis	of	the	distance	estimates	from	OCTDE	and	Distance	Grid.	Selected	models,	based	on	AIC,	are	in	
bold.

Species (number of 
observations) y = ax + b AIC y = ax AIC Intercept (±SE) First slope (±SE) Break- point (±SE) Second slope (±SE) R2

Civet (n = 265) 1225.8 1230.4 −2.073	(±0.845) 1.641 (±0.139) 7.882 (±0.296) 0.037 (±0.152) 0.511

Jackal (n = 1262) 6780.4 6778.7 N/A 1.178 (±0.013) 12.482 (±0.321) −0.016	(±0.067) 0.901

F I G U R E  5 Histograms	of	the	number	
of wild boar observations by the angle of 
detections	(a)	and	detection	distances	(b).
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    |  9 of 13TERNYIK et al.

from the camera. Both methods have sensitivity to radial distortion 
towards the edges. This effect is relatively small due to the narrow 
field of view of the camera traps but could be corrected in future 
studies	using	software,	such	as	OpenCV	(Hartley	&	Kang,	2007; Lee 
& Hua, 2014).

Based on the comparison alone, it is not possible to tell which 
method	of	distance	measuring	is	more	accurate.	Variance	in	subject	
height can introduce bias in the case of OCTDE. On the other hand, 
the distance grid can become very inaccurate if the camera is slightly 
tilted around the roll axis (Figure 6)	 by	 animals,	 by	 environmental	
forces, such as rain or wind, or when initially mounted. This can lead 
to inferred grids not being completely parallel with the ground, which 
results in an overestimation of the distance on one side of the image 
and underestimation on the other. Horizontally sloping terrain will 
also decrease the accuracy of distance grids. When assessing the 
images, it is relatively easy to determine whether camera tilt might 
be responsible for errors in distance estimation, but much harder 
to say whether those errors might have arisen because the animal 
was of atypical size. Focusing on the former explanation, therefore, 
images with distance estimate discrepancies were assessed to de-
termine whether camera tilt might be responsible for the observed 
discrepancies.

Because 95% of images with a difference in distance estimates 
of	more	than	5 m	were	derived	from	camera	traps	with	a	non-	level	
horizon, and because the size of the subjects on the images (and 
thus	OCTDE	distance	estimates)	are	unaffected	by	tilt	around	the	
roll axis, most cases of strongly differing estimates could plausibly 
be attributed to limitations of the distance grid method. Thus, whilst 
inaccuracies of OCTDE are hard to estimate from the data, since the 
true height of the individual subjects is not known, the large discrep-
ancy in some estimated distances is not necessarily attributable to 
inaccuracies in OCTDE.

Despite the reassurance provided by our checks for camera tilt, 
it remains likely that some of the discrepancies between distance 
estimation methods will be attributable to an error in assumed body 
sizes used in OCTDE. In the case of jackals, uncertainty in height 
measurements is around 25% (Sheldon, 1992).	 Since	 the	 assumed	
average body metric values are important inputs for the model, the 
effect of change in these metrics was tested. Increasing the jackal 
and civet body length metrics by 12.5% led to decreases of around 
20% in density estimates, whilst decreasing assumed body size met-
rics by 12.5% led to increases of around 30% in density estimates 
(Table 2).	 This	 emphasises	 the	 importance	 of	 accurate	 estimation	
of	 body	 sizes.	However,	 it	 also	 suggests	 that	 quite	 large	 errors	 in	
assumed body sizes can still give useful inferences of population 
densities.	 Even	 with	 a	 25%	 (relatively	 broad)	 difference	 between	
the minimum and maximum body size measurements, minimum and 
maximum estimates displayed smaller than two- fold differences. 
Owing to our large sample sizes, density estimates from assigning 
different assumed body metrics, drawn from a normal distribution, 
to individual detection events did not deviate from those derived by 
assuming the average metrics. This result suggests limited impact 
from the uncertainty of body sizes when individuals are of reason-
ably similar size (i.e. outside of periods when juveniles are still sub-
stantially	smaller	than	adults)	but	the	average	metrics	are	accurately	
estimated.

4.2  |  Using OCTDE to estimate wild boar density in 
Bükk National Park

Wild boar population density was estimated to be 0.480/km2 by 
OCTDE	 in	 the	 research	 area.	 Populations	 of	wild	 boar	 in	western	
Eurasia generally occur at densities between 0.01 and 10 individuals 
per km2 (Melis et al., 2006).	The	most	recent	estimate	of	wild	boar	
population density in the area comes from a report produced by the 
Hungarian	Ministry	of	Agriculture	(2018),	stating	that	the	wild	boar	
population has surpassed 2–3 boars per km2	in	a	‘significant	part’	of	
BNP.	Over	1000	wild	boars	were	shot	throughout	the	culling	season	
of	2019,	across	the	National	Park	(P.	Gombkötő,	BNP	zoologist,	pers.	
comm.),	equivalent	to	2.36	boars	per	km2.	Although	the	population	
had some potential for recovery before our survey, deforestation 
and burns, the spread of large carnivores, and large- scale building 
of fences in the study area could limit this. Our density estimate is 
highly plausible in this context.

While the aim of this study was to explore the application of 
OCTDE, the approach of selecting camera trap locations was not 
systematic, which could bias our estimates. This approach was 
used because the establishment of citizen science projects re-
quires	a	balance	between	the	ease	of	participation	and	the	rigour	
of	required	actions	(Wiggins	&	Crowston,	2011).	The	requirement	
for systematic randomisation of site locations by volunteers would 
have been hard to verify and could also deter them from partici-
pating. With large enough engagement in the country, the sam-
pling effort might allow the potential biases of non- randomised 

F I G U R E  6 The	three	axes	of	tilt	of	an	object.	The	comparison	of	
the virtual grid method and OCTDE identified a high sensitivity of 
the former to tilt around the roll axis.
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10 of 13  |     TERNYIK et al.

camera placement (Cusack et al., 2015, Steenweg et al., 2016)	to	
be assessed and controlled for.

While	 our	 results	 are	 limited	 to	 Bükk	 National	 Park	 for	 a	 pe-
riod between October 2019 and March 2020, data collection from 
three	 Hungarian	 National	 Parks	 as	 part	 of	 MammalNet	 Hungary	
and various other countries across Europe (www. mamma lweb. org)	
is ongoing. Camera trapping datasets are providing opportunity for 
retrospective analysis with OCTDE allowing deeper understanding 
of ecological processes. The density estimate here serves as a pre-
liminary baseline for future studies of the region and ongoing study 
could	provide	a	clearer	understanding	of	the	effects	of	African	swine	
fever on wild boar populations in Central- Eastern Europe.

4.3  |  The future of OCTDE

The main limitation of OCTDE stems from the use of average size 
metrics to estimate all distances. Our brief sensitivity assessment 
suggests that significant departures from an accurate estimate of av-
erage dimensions can still yield useful density estimates (well within 
the range of uncertainty of most published estimates for the den-
sity of wild populations; Bessone et al., 2020; Cappelle et al., 2019; 
McKaughan et al., 2023);	 however,	 the	 extent	 to	which	 body	 size	
variation	within	a	population	affects	distance	and	subsequent	den-
sity estimations is yet to be studied. Different sex and age categories 
present a particular problem, especially given that age composition 
will vary seasonally for many wildlife populations. Given the large 
size differences between male and female adults, yearlings and ju-
veniles, this is a particular concern for wild boar. This issue could be 
minimised by using a different set of metrics for juveniles or by omit-
ting	them	from	studies.	However,	the	 identification	of	age	(or	sex)	
classes is a difficult and inexact process for many species and is even 
harder when done through camera trap images. It is also expected 
that the body posture of the observed individual and its alignment 
with the camera trap could affect the results of distance and sub-
sequent	density	estimations;	these	effects	remain	to	be	quantified.

Despite the obvious complexities of applying OCTDE in het-
erogeneous populations, this method has many advantages over 
those previously established. Firstly, apart from the camera trap, 
no	extra	 equipment,	 such	 as	 cane	grids	 (Caravaggi	 et	 al.,	2016)	 or	
poles (Hofmeester et al., 2017; Mason et al., 2022),	is	needed	when	
setting up a new camera site (although they can be used to support 
OCTDE	 by	 generating	 study-	specific	 average	 size	metrics).	 This	 is	
not only beneficial for making the standardisation and logistics of 
studies easier, but it also eliminates some weak points in study de-
sign, since cane grids and poles can be broken or knocked over by 
animals. This allows OCTDE to be applied efficiently in difficult en-
vironments, such as marshlands or mountainous setups, where the 
placing of markers is not feasible. Furthermore, the simplification of 
setting	up	 a	 camera	 site	 even	when	 compared	 to	methods	 requir-
ing calibration (Haucke et al., 2022; Henrich et al., 2023; Wearn 
et al., 2022)	makes	the	process	less	cumbersome,	which	can	increase	
community engagement (Wiggins & Crowston, 2011).	This	can	help	

solve the recent issue of volunteers becoming increasingly hard to 
enlist in citizen science projects (Willi et al., 2019),	which	is—other-
wise—a	promising	approach	to	tackling	the	problems	of	data	collec-
tion in large- scale camera trap studies (Hsing et al., 2022; McShea 
et al., 2016; Swanson et al., 2015).	While	 recently	proposed	auto-
mated alternatives (Johanns et al., 2022)	are	exciting	and	offer	hope,	
they are at an early stage of development, with little assessment of 
generalisability (Rees, 2023).	Meanwhile,	 the	 simplicity	 of	OCTDE	
suggest that it should be applicable across a wide variety of species 
in multiple types of environments, while producing results of simi-
lar accuracy and robustness. OCTDE can also be used in established 
datasets retrospectively, while that is not the case for automated 
methods	like	AUDIT,	or	methods	requiring	calibration	or	extra	equip-
ment at camera sites.

Another	advantage	of	OCTDE	is	that,	based	on	our	experience,	
analyses	are	quick	relative	to,	for	example,	mapping	the	movement	of	
animals based on the nearby landmarks in each camera site (Rowcliffe 
et al., 2011).	This	can	save	time	and	resources	in	surveys.	Since	this	
has	not	been	quantified	experimentally,	 it	would	be	worthwhile	 to	
measure the amount of time saved during analysis with OCTDE com-
pared	to	other	methods.	A	third	advantage	is	that	this	method	is	rela-
tively robust to changes in camera view or height, and tilts around the 
yaw and roll axes (Figure 6),	because	the	known	size	of	a	focal	object	
will still indicate its distance from the lens. Of course, changes in tilt 
around	the	pitch	axis	would	require	additional	adjustments	for	esti-
mations,	as	the	‘keystone	distortion’	caused	by	this	type	of	tilt	would	
affect the relationship between distance and the number of pixels 
covered	by	an	object.	The	required	adjustments	would	be	specific	to	
camera specifications, but methods are available to correct for the 
‘keystone	distortion’	effect	(Liu	et	al.,	2019).	In	most	cases,	however,	
significant tilting around the pitch axis would stop the data collection 
process (as the frame would show the ground below or the sky above 
the	camera	site)	and	therefore	its	implications	were	not	explored	fur-
ther. Finally, a potential advantage of OCTDE over the distance grid 
option is that sizes can be estimated even when the subject is over 
25 m	 away.	 For	 example,	 using	 the	 Browning	 Strike	 Force	HD	Pro	
with	a	resolution	of	2080 × 3744	pixels,	an	average	jackal	25 m	away	
would be 77 pixels tall, while 30 m away, it would be 64 pixels tall. 
This is still a substantial difference, which could be further improved 
with increased fidelity of the images.

Validation	for	OCTDE	beyond	this	paper	is	derived	from	previous	
tests of its photogrammetry (Leorna et al., 2022; Zuleger et al., 2022)	
and population density estimation approaches (Howe et al., 2017).	
Here, it was tested on a model population of known size and compared 
to an alternative method that also has associated uncertainty. The re-
sults from these tests showcase the potential of OCTDE, but further 
research is needed on the propagation of uncertainty when using the 
method. One example would be taking images of individual animals of 
known body size metrics at various distances and trying to estimate 
these	 distances.	 A	 study	 like	 this	 could	 shed	 light	 on	 the	 effects	 of	
variance in body size and posture on distance estimates. Estimating 
densities of populations of known abundance would also be useful to 
further probe the accuracy of OCTDE. Further comparisons with other 
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distance and density estimation methods could increase our under-
standing of the advantages and disadvantages of OCTDE.

We tested OCTDE's applicability in a complete density estimation 
method, mostly based on CTDS (Howe et al., 2017),	and	found	that	it	
provided an efficient process of distance estimation of observations 
for	the	calculation	of	effective	detection	distance.	Consequently,	this	
approach is also applicable to any other density estimation methods 
requiring	 or	 benefiting	 from	 an	 effective	 detection	 distance	 value,	
such as REM (Rowcliffe et al., 2008).	Further	research	could	usefully	
assess how OCTDE can be complemented with methods relying on 
physical objects in the camera site (Caravaggi et al., 2016; Hofmeester 
et al., 2017; Mason et al., 2022; Rowcliffe et al., 2011)	to	achieve	the	
optimal balance between practicality and accuracy.

OCTDE has significant potential for exploitation in animal den-
sity estimation, due to its practicality both in the field and during 
data analysis. Furthermore, since OCTDE does not have special 
requirements	 for	setting	up	camera	sites,	 it	could	be	used	 for	 ret-
rospective analyses on a large number of already existing datasets. 
Before that, however, OCTDE would need to be tested in a wide 
range of subject species and environments, to determine its true 
utility. Hopefully, it will become another tool in the toolbox of ecol-
ogists and conservationists.
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