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Abstract
1.	 Camera traps have great potential for generating wildlife insights by providing 

high resolution site-specific data. Methods of data collection and analysis reliant 
on these tools for population density estimation can be relatively resource inten-
sive, hindering their mainstream adoption.

2.	 Here, we explore the potential of population density estimates derived from a dis-
tance sampling method based on optics theory, which greatly simplifies the pro-
cess of setting up camera sites and analysing data. Specifically, we (1) tested the 
method on human subjects in an artificial environment, (2) compared it to another 
method relying on virtual grids on images using wild populations of black-backed 
jackal (Canis mesomelas) and African civet (Civettictis civetta) in South Africa and 
(3) deployed it to estimate wild boar (Sus scrofa) population densities in Hungary.

3.	 The initial human trials resulted in an estimate that was extremely close to true 
population density. When compared to the virtual grid method, results suggest 
that our distance sampling method can deliver accurate estimates with increased 
convenience and robustness against disruptions of the camera sites. The wild 
boar study resulted in a realistic density estimate, which can be used as a baseline 
when assessing future fluctuations in population density.

4.	 As this new approach does not have special requirements for setting up camera 
sites, it is efficient and widely applicable across other density estimation methods 
requiring an estimate for effective detection distance. Additionally, the method 
can be applied in the retrospective analysis of existing datasets.
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1  |  INTRODUC TION

With the rate of species loss currently at an all-time high (Cardinale 
et  al.,  2012), monitoring remaining populations is more import-
ant than ever to inform and assess the efficiency of conservation 
policies. The use of density indices was formerly considered to 
be sufficient to monitor the effects of most ecological problems 
(Caughley, 1977), but it is increasingly apparent that the success of 
management decisions largely depends on the accuracy of measure-
ments (Nichols & Williams, 2006). Accurate density surveys are typi-
cally resource-intensive, creating a strong incentive to develop more 
efficient methods that maintain accuracy.

The last 15 years have seen rapid developments in using camera 
traps to monitor the abundance and population density of species 
that cannot be individually identified. Recently proposed methods 
include relative abundance indices (Kuprewicz, 2013; O'Brien, 2011), 
occupancy models (MacKenzie & Royle, 2005), the random encoun-
ter model (REM; Rowcliffe et al., 2008) and its variations, random 
encounter and staying time (REST; Nakashima et  al.,  2018), and 
multi-species REM (Wearn et al., 2022), time to event (TTE) and its 
variations (Moeller et al., 2018), and camera trap distance sampling 
(CTDS; Howe et al., 2017).

Common to the more recent of these methods is the require-
ment to estimate the distances and angles from the camera trap to 
the locations of detected animals. Various methods have been de-
veloped for this, such as tracking animal movements on the images 
based on nearby landmarks (Rowcliffe et  al.,  2011) or calibration 
imagery (Henrich et al., 2023; Wearn et al., 2022), using a physical 
cane grid (Caravaggi et al., 2016), or using poles along the midline of 
the field of view (FOV; Hofmeester et al., 2017; Mason et al., 2022). 
All of these methods require extra equipment to be transported to 
the field, and/or considerable extra time spent analysing images and 
setting up camera sites. As a result, the uptake of these methods has 
not been high. This highlights a clear requirement for a method of 
distance estimation that is easy to implement and straightforward 
to analyse.

Recent works addressing the efficiency of distance estimation 
include the use of virtual distance grids laid over the landscape 
(McKaughan et  al.,  2023) and a semi-automated distance estima-
tion method requiring calibration for each camera site (Haucke 
et al., 2022; Henrich et al., 2023). Meanwhile, the fully AUtomated 
DIstance esTimation (AUDIT) method (Johanns et al., 2022) simpli-
fies both processes of camera site preparation and distance esti-
mation using machine learning algorithms. AUDIT achieved a Mean 
Absolute Error value of <1 metre during testing, building the case 
for methods requiring no alteration of camera sites. This has great 
promise but will require extensive testing to ensure generality; cur-
rently, it has been developed to work with video data capture. As a 
result, advances in streamlined methods for manual distance estima-
tion remain relevant.

Here, we show how Optical Camera Trap Distance Estimation 
(OCTDE)—a method to estimate detection distances and angles 
based on optics theory—can be applied to estimating population 

density. OCTDE estimates detection distance based on the size of 
the captured subject on the image. Like AUDIT, this approach—as-
suming that it provides accurate estimates—allows for a simpler 
and more convenient site setup than existing alternatives, requir-
ing no extra equipment besides the cameras. This can reduce the 
manpower and time needed to set up camera trap studies of species 
density.

To establish the viability of OCTDE, we began with a prelimi-
nary assessment on human subjects. Then, we assessed the perfor-
mance of OCTDE on two South African species by comparing it to 
an established alternative, based on a virtual distance grid method 
(McKaughan et al., 2023). We then applied OCTDE to estimate the 
density of a Hungarian wild boar (Sus scrofa) population. We chose 
wild boars because there is an increased interest in them, owing to 
the spread of African swine fever (ASF), a highly contagious disease 
resulting in an almost 100% mortality rate in domestic pigs (Galindo 
& Alonso, 2017; Quembo et al., 2018). Better approaches for mon-
itoring boar populations are needed and camera trapping is one of 
the strongest candidate methods (Guerrasio et  al.,  2022; Palencia 
et al., 2023). With this set of studies, we aim (1) to build a case for 
the use of OCTDE as a less resource-intensive method of distance 
estimation for unmarked animals to support the measurement of 
population density and (2) to provide comparative data to aid with 
the development and generalisation of proposed monocular depth 
mapping.

2  |  MATERIAL S AND METHODS

Optics theory can be used to estimate the distance of an object to 
the camera in a given image, if the following information is avail-
able: focal length; the object's real-life size (i.e. any linear dimen-
sion); and the object's size on the sensor (Leorna et al., 2022; Zuleger 
et  al.,  2022). The latter value can be calculated from the object's 
size on the image in pixels and the size of the sensor in both pixels 
and millimetres (Greivenkamp, 2004; Hecht, 2012). Specifically, the 
object's size on the sensor, s (in mm), is given by:

where Ss and Sp are the sizes of the sensor in mm and pixels, respec-
tively, and Hp is the size of the object on the sensor in pixels. Given s, 
the distance to the object, d (in m), can be calculated as:

where Os is the size of the object in m (estimated based on literature 
or prior measurements of the population), and f is the focal length of 
the camera in mm.

The variables required for OCTDE are relatively straightforward 
to obtain, since sensor size and focal length specifications are usu-
ally available in the metadata of images, online, or provided by the 
manufacturer. If unavailable, these metrics can be estimated for 
each axis using the equations above and images taken of an object 
of known size and at known distance from the sensor. Since field of 

(1)s =
(

Ss × Hp

)

∕Sp

(2)d =
(

Os × f
)

∕ s
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view estimates were already available in our case, sensor size on the 
x axis was calculated using:

where α is field of view in degrees, d is distance in m, Ss and Sp are the 
sensor size in mm and pixels, respectively. Ss for the y axis was calcu-
lated using simple proportioning of the known variables of Ss on the x 
axis and Sp on both axes.

The size of an object on the image in pixels can be measured 
with most types of photo editing software, for example, by using the 
Ruler tool in Adobe Photoshop. The only unknown variable is the 
real object size in the image, which differs for every photographed 
individual. However, if average measurements of animals in a given 
population are known or can be obtained from published data, and 
images are assumed to be unbiased for subject size, it follows that 
the theory can be used to estimate distance by Equation 2.

Across all experiments, we used Browning Strike Force HD Pro 
and Browning Strike Force HD Pro X and the field of view estimates 
(42.5° and 43.7° respectively) were based on data from TrailCamPro 
(https://​www.​trail​campro.​com). The estimates available on the web-
site were verified to be reasonable and within the standard error 
range of our measurements. All data analyses were carried out using 
R (Version 3.6.1) (R Core Team, 2018), with the package “Distance” 
(Miller, 2020) and the camera trap analysis code available at https://​
github.​com/​Marcu​sRowc​liffe/​​dista​nceDF​ used to estimate density.

2.1  |  Preliminary tests of estimating the density of 
a model population

Initially, six Browning Strike Force HD Pro camera traps were de-
ployed in random locations within a woody area of c. 2 ha in the City 
of Durham, UK. As the experiment was carried out on the private 
grounds of the University of Durham, no permission for fieldwork 
was needed. On triggering, the camera traps were set to take 3 im-
ages with a 2 s delay between each frame. Human subjects were used, 
as they could be instructed to move continuously through the study 
area over 30 min, without leaving it. The subjects' average height was 
180 cm, with a standard error of 1.41 cm. Measurements of object size 
in pixels were taken using Adobe Photoshop's Rectangular Marquee 
tool (version: 21.0.2). If the participants were visible on the images 
in their entirety, height was used to estimate distance. Otherwise, 
smaller parts of the body were measured, and height was extrapolated 
from these measurements using established anthropometric propor-
tions (Govind, 2012). Angles of detection were estimated for every 
image using the camera traps' field of view of 42.5° and the distance of 
the centre of the subject's body from the midline of the image.

The R package “Distance” calculates effective detection dis-
tances (r) and effective detection angles (π) by fitting models to the 
number of sightings at various distances and angles, respectively. 
The estimate of overall effort is

where θ is the effective detection angle in radians, Tp is cumulative time 
spent active across all camera traps, and t is the time between sampling 
instances (Howe et al., 2017). Activity can also be factored into the 
estimation of effort (Rowcliffe et al., 2014), but activity was constant in 
this pilot study. Density is then calculated with the following equation:

where D is the density per km2, R is the number of sightings, r is the 
effective detection distance in km, and E is the effort calculated in 
Equation 4 (Howe et al., 2017). Figure 1 summarises the steps of the 
OCTDE process, covering data collection, analysis, and subsequent 
density estimation.

2.2  |  Comparing distance and density estimates 
from OCTDE and virtual distance grids

Data used for this assessment came from a camera trap survey con-
ducted in South Africa in 2019 (McKaughan et  al., 2023). Camera 
traps were spread across 192 km2 of the Alldays area, Limpopo 
Province, South Africa, 60 km south of the intersection of the South 
African, Botswanan, and Zimbabwean borders. Twenty-five camera 
traps (Browning Strike Force HD Pro) were deployed at the inter-
sections of a grid with 3 km spacing with a random origin, super-
imposed over the study site. On triggering, the camera traps were 
set to take 6 images with a delay of 0.3 s between each frame and 
1 s before a new trigger event could occur. Deviations from the grid 
were allowed, in order to find a tree on which the cameras could 
be mounted; only one camera was placed further than 30 m from 
its designated intersection (78 m away). Cameras were set at 0.7 m 
above-ground, angled parallel to the ground and faced north. A vari-
ation of ±30° from north facing was allowed, so that the cameras 
were not facing directly at an obstacle, but only two cameras were 
not facing directly north.

Cameras remained active for 90 days, from the 1 June to the 29 
August in 2019. The 90-day study period ensured that data collec-
tion was maximised for the subject species but minimised violations 
of the assumptions of closed populations (Karanth & Nichols, 1998; 
Kelly & Holub, 2008) and potential effects of environmental changes 
due to seasonality. Due to theft, or wildlife affecting camera traps, 
some camera traps had a smaller window of operation; this was 
accounted for when calculating survey effort. Across all camera 
traps, the cumulative number of camera days was 2047.4 (minimum 
50.2 days for a single location).

Population densities of two relatively common meso-carnivores, 
African civet (Civettictis civetta) and black-backed jackal (Canis me-
somelas) were estimated using OCTDE. OCTDE requires linear di-
mension estimates of various body parts of the studied species. 
All average metrics for both species were based on estimates from 
previous literature. For civets, the average shoulder height was es-
timated to be 40 cm (Shorrocks & Bates, 2015). On a single close-up 
image, 5 cm was used as the average ear length. This metric was 

(3)Ss = tan (� ∕2) × d∕Sp

(4)E = � ∕(2�)
(

Tp ∕ t
)

(5)D = R∕
(

r2�
)

(1∕E)
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chosen to be just below the range identified by Ray (1995) for adult 
civets, to account for the inclusion of younger specimens. For jack-
als, the metric used for shoulder height was also 40 cm, which is 
within the ranges reported by Walton and Joly  (2003) and Stuart 
and Stuart (2015). This metric was used for the vast majority of cases 
but, in a few instances, estimations were based on ear (11 cm) and 
tail (32 cm) measurements (Walton & Joly, 2003). To assess the sen-
sitivity of the density estimate to average metrics assumptions, pop-
ulation densities were estimated in two separate analyses. First, to 
assess the impacts of error in our size metrics, we repeated all anal-
yses assuming average size metrics were over- or under-estimated 
by 12.5%. Second, to assess the impacts of interspecific variation 
in size, we repeated the analyses 100 times, each time drawing the 
body size metric independently for each observation from a normal 
distribution with a mean equal to the average dimensions used, but 
a coefficient of variation of 6.25%.

The same dataset was also analysed using distances estimated 
using reference pictures taken in the field, with a distance overlay 
grid (McKaughan et al., 2023). The grid was created using an iden-
tical setup to the cameras in the field in a flat and open area, with 
markers at 1 m intervals used to create a reference image of dis-
tances that could be overlaid on each camera trap photo. For each 
camera, the grid was then adjusted to the location's landscape using 
a distance marker at 3 m and another, at most, 10 m from the cam-
era, before distances of animals in images were recorded. Distance 
and density estimates obtained by the two methods were compared. 
For these comparisons, observations in the ‘>25 m’ category using 

distance grid estimates were discarded in statistical analyses for 
both species, owing to the difficulty of distinguishing distances over 
25 m using that method.

To explore why the distance estimates derived from the two 
methods differed, sightings where the difference between esti-
mates was greater than 5 m were investigated for common features 
that could introduce biases. A distance of 5 m was selected because 
some established distance estimation methods work with 2.5 m dis-
tance bins (Hofmeester et al., 2017). By analysing cases with differ-
ences in estimates larger than 5 m, we could be sure that at least one 
of the methods' estimates differed by more than 2.5 m from the true 
distance.

2.3  |  Estimating wild boar density in Bükk 
National Park

Bükk National Park (423 km2) in north-eastern Hungary is in the 
most mountainous region of the country. It is densely forested and 
features karst formations, such as large caves, swallow-holes and 
ravines. In 2019, as part of MammalNet Hungary, the Hungarian 
branch of a European volunteer-based camera trap network (Smith 
et  al.,  2023), officers at Bükk National Park (BNP) were given six 
Browning Strike Force HD Pro X camera traps and associated equip-
ment. As the deployment of the cameras was part of the officers' 
standard daily operations, no additional permission for fieldwork 
was needed for the study. On triggering, the camera traps were set 

F I G U R E  1 Summary of the steps making up the OCTDE process. Yellow dotted lines are schematic examples of the measurement 
process.
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to take 3 images with a 0.3 s delay between each frame. Our study 
used data collected between October 2019 and March 2020.

Staff at BNP were free to use the camera traps as they wanted but 
were told not to use baits when trapping and not to deliberately place 
camera traps next to nests or feeding stations; these instructions were 
intended to avoid bias in estimates (Foster & Harmsen,  2012). The 
six camera traps were spread out across the National Park and were 
active for a cumulative total of 452.4 camera days. Wild boar linear 
measurements were based on 248 wild boars from three Hungarian 
game farms: 72.6 cm for withers height, 12.5 cm for ear length, and 
44.6 cm for head length (Bodnár et al., 2015).

3  |  RESULTS

3.1  |  Estimating density of a model population

The woodland study of human density yielded 94 images contain-
ing subjects. Given the number of participants (5) and the size of 
the area (19,797 m2), the true density was 252.6 people per km2. 
For calculating θ (the effective detection angle), distance sampling 
algorithms selected the half-normal key function, and the esti-
mate was 42.4° (±20.65 SE), due to the lack of a significant drop in 
the number of observations towards the edge of the field of view 
(Figure 2a). For calculating r (the effective detection distance), the 
hazard-rate key function was selected, and the estimate was 14.58 
(±0.80 SE) m (Figure 2b). The estimated density using OCTDE was 
265.65 (±142.14) people per km2. Despite the very high uncer-
tainty, the point estimate is very close to the actual value.

3.2  |  Density estimates from OCTDE and distance 
grids on South African civet and jackal populations

Left truncation can help realise the assumption that detection prob-
ability is certain at the lowest detection distance. From the left, 
any observations at shorter distances than the first observation 
category with 0 observation events were discarded, if the images 
amounted to less than 5% of all data from the camera site. The civet 
dataset was truncated at 2.5 m from the left and 18 m from the right, 

while the jackal data were truncated at 1.5 m from the left and 24 m 
from the right. Truncation resulted in a loss of approximately 5.3% 
of civet and 3.6% of jackal observations. The frequencies of differ-
ent detection distance angles and estimates (Figure 3) were used to 
estimate θ and r, respectively.

In the case of both species, half-normal key functions were 
used for calculating θ, and hazard-rate key functions for calculat-
ing r. Those, in turn, were used to estimate densities for each spe-
cies (Table 1). Design-based standard error values (Dunning, 2010; 
Howe et al., 2017) derived using the Delta method (Seber, 1982) 
are provided for all estimates. The method used CVs from (1) 
detection probability (which encompasses the uncertainty of ef-
fective detection distance), (2) the encounter rate, (3) the activ-
ity multiplier, and (4) the effective detection angle multiplier; the 
encounter rate accounts for 99% of the variability. Tables 2 and 3 
show the results of testing the sensitivity of population density 
values to changes in assumptions for average body metrics of the 
subject species.

3.3  |  Comparing distance estimates from 
OCTDE and distance grid

Linear models of OCTDE distance estimates as a function of dis-
tance grid estimates had non-zero intercepts and slopes of less 
than 1.0 (Table 4). This was because although the two measures 
were strongly positively correlated for distances relatively close 
to the camera, that positive relationship was lost further from the 
camera. In fact, a segmented linear relationship provided a better 
fit to the data across both species (Figure 4, Table 5). The break-
points between the slopes in the segmented regression are ap-
proximately 8 m for the civet and 12.5 m for the jackal. The initial 
slopes were larger than 1, while the second slopes were nearly 0 
for both species.

Also, 264 (of 1527) comparable observations across the two spe-
cies displayed a difference of more than 5 m between the estimates. 
Out of the 25 camera traps, a non-level horizon on the images was 
seen in seven, suggesting some degree of tilt. 250 (95%) of the 264 
observations with large differences in estimates were derived from 
these seven camera traps.

F I G U R E  2 Distributions of the angle of 
detection (a) and detection distance (b).
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F I G U R E  3 Frequency of observations 
by the angle of detections and detection 
distances for civet (a and b, respectively) 
and jackal (c and d, respectively).

TA B L E  1 Effective detection angle (θ) and effective detection distance (r) and values from OCTDE analysis and the results of both 
OCTDE and the distance grid method by species.

Species (number of observations)
Effective detection 
angle (°)

Effective detection 
distance (m)

OCTDE population 
density estimate (/km2)

Distance grid population 
density estimate (/km2)

African civet (265) 31.92 (±2.20 SE) 13.46 (±0.26 SE) 0.074 (±0.079 SE) 0.108 (±0.06 SE)

Black-backed jackal (1297) 28.89 (±0.70 SE) 13.58 (±0.24 SE) 0.325 (±0.192 SE) 0.365 (±0.150 SE)

TA B L E  2 Density estimates of jackals and civets using OCTDE, with average, 12.5% larger and 12.5% smaller body metrics.

Species (number of observations)

OCTDE population density estimate 
using +12.5% assumed body metrics 
(/km2)

OCTDE population density estimate 
using average metrics (/km2)

OCTDE population 
density estimate using 
−12.5% assumed body 
metrics (/km2)

African civet (265) 0.059 (±0.062 SE) 0.074 (±0.079 SE) 0.097 (±0.103 SE)

Black-backed jackal (1297) 0.257 (±0.152 SE) 0.325 (±0.192 SE) 0.423 (±0.250 SE)

TA B L E  3 Summary of 100 density estimates of jackals and civets using OCTDE while generating a different assumed body metric for 
each individual observation. Each metric was randomised using a normal distribution with a standard deviation of ±6.25% around the 
average metric.

Species (number of observations)
Minimum OCTDE population 
density estimate (/km2)

Mean OCTDE population 
density estimate (/km2)

Maximum OCTDE population 
density estimate (/km2)

African civet (265) 0.069 (±0.074 SE) 0.075 (±0.080 SE) 0.080 (±0.085 SE)

Black-backed jackal (1297) 0.321 (±0.190 SE) 0.326 (±0.193 SE) 0.330 (±0.196 SE)

TA B L E  4 Linear regression analysis of the distance estimates from OCTDE and Distance Grid. Selected models, based on AIC, are in bold.

Species (number of observations) y = ax + b AIC y = ax AIC Intercept (±SE) Slope (±SE)
R2 of 
trendline

R2 of 
x = y

Civet (n = 265) 1325.0 1435.8 5.291 (±0.448) 0.455 (±0.045) 0.278 −0.131

Jackal (n = 1262) 6986.8 7188.5 4.025 (±0.271) 0.672 (±0.025) 0.359 0.245
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    |  7 of 13TERNYIK et al.

F I G U R E  4 Relationship between distance estimates for (a) civet and (b) jackal using OCTDE and the distance overlay grid. Points represent 
individual observations. The orange lines represent an ideal 1:1 ratio between the two factors, where all objects are estimated to be at the 
same distance by the two methods. The green and blue lines are models describing the observed relationship between the two variables using 
linear regression and segmented regression, respectively. Models were fitted by excluding observations in the >26+ category on the x-axis.
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3.4  |  Estimating wild boar density in Bükk 
National Park

Here 856 observations of wild boars were obtained. Using the 
half-normal key function with cosine (2) adjustments we esti-
mated θ = 38.35° (± 1.31 SE), due to a decrease in the number of 
observations towards the edge of the field of view (Figure  5a). 
Using a hazard-rate key function, we estimated r = 9.26 (± 0.24) m 
(Figure 5b). The estimated density using OCTDE was 0.480 (± 0.35 
SE) wild boar per km2.

4  |  DISCUSSION

Generally, the development, testing, and application of OCTDE 
highlights its potential as a viable tool for efficiently estimat-
ing distances of animals in camera trap images, with important 
insights gained across all three studies. Here, we discuss the 
performance of our method, its limitations, strengths, future po-
tential, and implications for wild boar population density in Bükk 
National Park, Hungary.

4.1  |  Testing OCTDE in the field

In the human trial, the density estimate obtained using OCTDE 
was extremely close to the actual value. As with many applica-
tions of camera trap density estimation, the standard error of the 
estimate was very large. This is likely to have arisen because of the 
very short trial and the small number of camera traps. A longer 
trial and more camera traps would have yielded a larger number 

of detections from a wider spread of sampling locations and thus 
greater precision.

When we applied OCTDE to data on jackal and civet popu-
lations in South Africa, the resultant point estimates of density 
were close to the estimates derived from the distance grid-based 
method for both species. The estimates are also realistic compared 
to generally reported densities. Civet and jackal density estimates 
generally fall between 0.003–0.1/km2 (Mullu & Balakrishnan, 2014; 
Rich et al., 2019) and between 0.31-22/km2, respectively, in African 
studies (Bingham & Foggin, 1993; Hiscocks & Perrin, 1987; Jenner 
et al., 2011; Rowe-Rowe, 1982). For both species, our OCTDE den-
sity estimates are within the reported ranges, suggesting that—al-
though, in the absence of knowledge of the ‘true’ densities in our 
study area, we cannot state with confidence that they are accurate—
they are certainly plausible (McKaughan et al., 2023).

Although the density estimates from the two methods were sim-
ilar, there were differences in the precise distance measurements. 
The segmented regression analysis for both species suggested a 
plateauing of the relationship between OCTDE and inferred dis-
tance overlay grid estimation above threshold distances (8 and 12 m, 
respectively, for civet and jackal). The presence of these plateaus 
suggests that, once the animal is above a certain distance, at least 
one of the methods has very little capacity to differentiate distances 
accurately. Both approaches rely on the accuracy with which image 
subjects can be treated, and reductions in image fidelity with in-
creasing distance from the camera mean that, the further the sub-
ject is from the camera, the lower the information content of the 
image. With OCTDE, a large difference in estimated distance can 
result from a small difference in measured height in pixels when 
the animal is far away, due to the exponential relationship between 
estimated distance and pixel size. Similarly, the resolution of the 
distance grid drops exponentially as the subject gets further away 

TA B L E  5 Segmented regression analysis of the distance estimates from OCTDE and Distance Grid. Selected models, based on AIC, are in 
bold.

Species (number of 
observations) y = ax + b AIC y = ax AIC Intercept (±SE) First slope (±SE) Break-point (±SE) Second slope (±SE) R2

Civet (n = 265) 1225.8 1230.4 −2.073 (±0.845) 1.641 (±0.139) 7.882 (±0.296) 0.037 (±0.152) 0.511

Jackal (n = 1262) 6780.4 6778.7 N/A 1.178 (±0.013) 12.482 (±0.321) −0.016 (±0.067) 0.901

F I G U R E  5 Histograms of the number 
of wild boar observations by the angle of 
detections (a) and detection distances (b).
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from the camera. Both methods have sensitivity to radial distortion 
towards the edges. This effect is relatively small due to the narrow 
field of view of the camera traps but could be corrected in future 
studies using software, such as OpenCV (Hartley & Kang, 2007; Lee 
& Hua, 2014).

Based on the comparison alone, it is not possible to tell which 
method of distance measuring is more accurate. Variance in subject 
height can introduce bias in the case of OCTDE. On the other hand, 
the distance grid can become very inaccurate if the camera is slightly 
tilted around the roll axis (Figure  6) by animals, by environmental 
forces, such as rain or wind, or when initially mounted. This can lead 
to inferred grids not being completely parallel with the ground, which 
results in an overestimation of the distance on one side of the image 
and underestimation on the other. Horizontally sloping terrain will 
also decrease the accuracy of distance grids. When assessing the 
images, it is relatively easy to determine whether camera tilt might 
be responsible for errors in distance estimation, but much harder 
to say whether those errors might have arisen because the animal 
was of atypical size. Focusing on the former explanation, therefore, 
images with distance estimate discrepancies were assessed to de-
termine whether camera tilt might be responsible for the observed 
discrepancies.

Because 95% of images with a difference in distance estimates 
of more than 5 m were derived from camera traps with a non-level 
horizon, and because the size of the subjects on the images (and 
thus OCTDE distance estimates) are unaffected by tilt around the 
roll axis, most cases of strongly differing estimates could plausibly 
be attributed to limitations of the distance grid method. Thus, whilst 
inaccuracies of OCTDE are hard to estimate from the data, since the 
true height of the individual subjects is not known, the large discrep-
ancy in some estimated distances is not necessarily attributable to 
inaccuracies in OCTDE.

Despite the reassurance provided by our checks for camera tilt, 
it remains likely that some of the discrepancies between distance 
estimation methods will be attributable to an error in assumed body 
sizes used in OCTDE. In the case of jackals, uncertainty in height 
measurements is around 25% (Sheldon,  1992). Since the assumed 
average body metric values are important inputs for the model, the 
effect of change in these metrics was tested. Increasing the jackal 
and civet body length metrics by 12.5% led to decreases of around 
20% in density estimates, whilst decreasing assumed body size met-
rics by 12.5% led to increases of around 30% in density estimates 
(Table  2). This emphasises the importance of accurate estimation 
of body sizes. However, it also suggests that quite large errors in 
assumed body sizes can still give useful inferences of population 
densities. Even with a 25% (relatively broad) difference between 
the minimum and maximum body size measurements, minimum and 
maximum estimates displayed smaller than two-fold differences. 
Owing to our large sample sizes, density estimates from assigning 
different assumed body metrics, drawn from a normal distribution, 
to individual detection events did not deviate from those derived by 
assuming the average metrics. This result suggests limited impact 
from the uncertainty of body sizes when individuals are of reason-
ably similar size (i.e. outside of periods when juveniles are still sub-
stantially smaller than adults) but the average metrics are accurately 
estimated.

4.2  |  Using OCTDE to estimate wild boar density in 
Bükk National Park

Wild boar population density was estimated to be 0.480/km2 by 
OCTDE in the research area. Populations of wild boar in western 
Eurasia generally occur at densities between 0.01 and 10 individuals 
per km2 (Melis et al., 2006). The most recent estimate of wild boar 
population density in the area comes from a report produced by the 
Hungarian Ministry of Agriculture (2018), stating that the wild boar 
population has surpassed 2–3 boars per km2 in a ‘significant part’ of 
BNP. Over 1000 wild boars were shot throughout the culling season 
of 2019, across the National Park (P. Gombkötő, BNP zoologist, pers. 
comm.), equivalent to 2.36 boars per km2. Although the population 
had some potential for recovery before our survey, deforestation 
and burns, the spread of large carnivores, and large-scale building 
of fences in the study area could limit this. Our density estimate is 
highly plausible in this context.

While the aim of this study was to explore the application of 
OCTDE, the approach of selecting camera trap locations was not 
systematic, which could bias our estimates. This approach was 
used because the establishment of citizen science projects re-
quires a balance between the ease of participation and the rigour 
of required actions (Wiggins & Crowston, 2011). The requirement 
for systematic randomisation of site locations by volunteers would 
have been hard to verify and could also deter them from partici-
pating. With large enough engagement in the country, the sam-
pling effort might allow the potential biases of non-randomised 

F I G U R E  6 The three axes of tilt of an object. The comparison of 
the virtual grid method and OCTDE identified a high sensitivity of 
the former to tilt around the roll axis.
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camera placement (Cusack et al., 2015, Steenweg et al., 2016) to 
be assessed and controlled for.

While our results are limited to Bükk National Park for a pe-
riod between October 2019 and March 2020, data collection from 
three Hungarian National Parks as part of MammalNet Hungary 
and various other countries across Europe (www.​mamma​lweb.​org) 
is ongoing. Camera trapping datasets are providing opportunity for 
retrospective analysis with OCTDE allowing deeper understanding 
of ecological processes. The density estimate here serves as a pre-
liminary baseline for future studies of the region and ongoing study 
could provide a clearer understanding of the effects of African swine 
fever on wild boar populations in Central-Eastern Europe.

4.3  |  The future of OCTDE

The main limitation of OCTDE stems from the use of average size 
metrics to estimate all distances. Our brief sensitivity assessment 
suggests that significant departures from an accurate estimate of av-
erage dimensions can still yield useful density estimates (well within 
the range of uncertainty of most published estimates for the den-
sity of wild populations; Bessone et al., 2020; Cappelle et al., 2019; 
McKaughan et  al.,  2023); however, the extent to which body size 
variation within a population affects distance and subsequent den-
sity estimations is yet to be studied. Different sex and age categories 
present a particular problem, especially given that age composition 
will vary seasonally for many wildlife populations. Given the large 
size differences between male and female adults, yearlings and ju-
veniles, this is a particular concern for wild boar. This issue could be 
minimised by using a different set of metrics for juveniles or by omit-
ting them from studies. However, the identification of age (or sex) 
classes is a difficult and inexact process for many species and is even 
harder when done through camera trap images. It is also expected 
that the body posture of the observed individual and its alignment 
with the camera trap could affect the results of distance and sub-
sequent density estimations; these effects remain to be quantified.

Despite the obvious complexities of applying OCTDE in het-
erogeneous populations, this method has many advantages over 
those previously established. Firstly, apart from the camera trap, 
no extra equipment, such as cane grids (Caravaggi et  al., 2016) or 
poles (Hofmeester et al., 2017; Mason et al., 2022), is needed when 
setting up a new camera site (although they can be used to support 
OCTDE by generating study-specific average size metrics). This is 
not only beneficial for making the standardisation and logistics of 
studies easier, but it also eliminates some weak points in study de-
sign, since cane grids and poles can be broken or knocked over by 
animals. This allows OCTDE to be applied efficiently in difficult en-
vironments, such as marshlands or mountainous setups, where the 
placing of markers is not feasible. Furthermore, the simplification of 
setting up a camera site even when compared to methods requir-
ing calibration (Haucke et  al.,  2022; Henrich et  al.,  2023; Wearn 
et al., 2022) makes the process less cumbersome, which can increase 
community engagement (Wiggins & Crowston, 2011). This can help 

solve the recent issue of volunteers becoming increasingly hard to 
enlist in citizen science projects (Willi et al., 2019), which is—other-
wise—a promising approach to tackling the problems of data collec-
tion in large-scale camera trap studies (Hsing et al., 2022; McShea 
et  al.,  2016; Swanson et  al.,  2015). While recently proposed auto-
mated alternatives (Johanns et al., 2022) are exciting and offer hope, 
they are at an early stage of development, with little assessment of 
generalisability (Rees,  2023). Meanwhile, the simplicity of OCTDE 
suggest that it should be applicable across a wide variety of species 
in multiple types of environments, while producing results of simi-
lar accuracy and robustness. OCTDE can also be used in established 
datasets retrospectively, while that is not the case for automated 
methods like AUDIT, or methods requiring calibration or extra equip-
ment at camera sites.

Another advantage of OCTDE is that, based on our experience, 
analyses are quick relative to, for example, mapping the movement of 
animals based on the nearby landmarks in each camera site (Rowcliffe 
et al., 2011). This can save time and resources in surveys. Since this 
has not been quantified experimentally, it would be worthwhile to 
measure the amount of time saved during analysis with OCTDE com-
pared to other methods. A third advantage is that this method is rela-
tively robust to changes in camera view or height, and tilts around the 
yaw and roll axes (Figure 6), because the known size of a focal object 
will still indicate its distance from the lens. Of course, changes in tilt 
around the pitch axis would require additional adjustments for esti-
mations, as the ‘keystone distortion’ caused by this type of tilt would 
affect the relationship between distance and the number of pixels 
covered by an object. The required adjustments would be specific to 
camera specifications, but methods are available to correct for the 
‘keystone distortion’ effect (Liu et al., 2019). In most cases, however, 
significant tilting around the pitch axis would stop the data collection 
process (as the frame would show the ground below or the sky above 
the camera site) and therefore its implications were not explored fur-
ther. Finally, a potential advantage of OCTDE over the distance grid 
option is that sizes can be estimated even when the subject is over 
25 m away. For example, using the Browning Strike Force HD Pro 
with a resolution of 2080 × 3744 pixels, an average jackal 25 m away 
would be 77 pixels tall, while 30 m away, it would be 64 pixels tall. 
This is still a substantial difference, which could be further improved 
with increased fidelity of the images.

Validation for OCTDE beyond this paper is derived from previous 
tests of its photogrammetry (Leorna et al., 2022; Zuleger et al., 2022) 
and population density estimation approaches (Howe et  al.,  2017). 
Here, it was tested on a model population of known size and compared 
to an alternative method that also has associated uncertainty. The re-
sults from these tests showcase the potential of OCTDE, but further 
research is needed on the propagation of uncertainty when using the 
method. One example would be taking images of individual animals of 
known body size metrics at various distances and trying to estimate 
these distances. A study like this could shed light on the effects of 
variance in body size and posture on distance estimates. Estimating 
densities of populations of known abundance would also be useful to 
further probe the accuracy of OCTDE. Further comparisons with other 
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distance and density estimation methods could increase our under-
standing of the advantages and disadvantages of OCTDE.

We tested OCTDE's applicability in a complete density estimation 
method, mostly based on CTDS (Howe et al., 2017), and found that it 
provided an efficient process of distance estimation of observations 
for the calculation of effective detection distance. Consequently, this 
approach is also applicable to any other density estimation methods 
requiring or benefiting from an effective detection distance value, 
such as REM (Rowcliffe et al., 2008). Further research could usefully 
assess how OCTDE can be complemented with methods relying on 
physical objects in the camera site (Caravaggi et al., 2016; Hofmeester 
et al., 2017; Mason et al., 2022; Rowcliffe et al., 2011) to achieve the 
optimal balance between practicality and accuracy.

OCTDE has significant potential for exploitation in animal den-
sity estimation, due to its practicality both in the field and during 
data analysis. Furthermore, since OCTDE does not have special 
requirements for setting up camera sites, it could be used for ret-
rospective analyses on a large number of already existing datasets. 
Before that, however, OCTDE would need to be tested in a wide 
range of subject species and environments, to determine its true 
utility. Hopefully, it will become another tool in the toolbox of ecol-
ogists and conservationists.
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