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A B S T R A C T 

The dependence of galaxy clustering on local density provides an ef fecti ve method for extracting non-Gaussian information from 

galaxy surv e ys. The two-point correlation function (2PCF) pro vides a complete statistical description of a Gaussian density field. 
Ho we ver, the late-time density field becomes non-Gaussian due to non-linear gravitational evolution and higher-order summary 

statistics are required to capture all of its cosmological information. Using a Fisher formalism based on halo catalogues from 

the Quijote simulations, we explore the possibility of retrieving this information using the density-split clustering (DS) method, 
which combines clustering statistics from regions of different environmental density. We show that DS provides more precise 
constraints on the parameters of the ν� CDM model compared to the 2PCF, and we provide suggestions for where the extra 
information may come from. DS impro v es the constraints on the sum of neutrino masses by a factor of 7 and by factors of 4, 3, 3, 
6, and 5 for �m 

, �b , h , n s , and σ 8 , respectively. We compare DS statistics when the local density environment is estimated from 

the real or redshift-space positions of haloes. The inclusion of DS autocorrelation functions, in addition to the cross-correlation 

functions between DS environments and haloes, reco v ers most of the information that is lost when using the redshift-space 
halo positions to estimate the environment. We discuss the possibility of constructing simulation-based methods to model DS 

clustering statistics in different scenarios. 

Key words: cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

n our standard cosmological picture, the � cold dark matter
 � CDM) model, the present large-scale distribution of galaxies
volved from small-scale density perturbations in the early Universe.
hese perturbations are thought to have originated from quantum
uctuations during a period of inflation, freezing out as a nearly
aussian random field (Guth & Pi 1982 ; Hawking 1982 ); for a re vie w
f primordial non-Gaussianity studies and their implications, see
esjacques & Seljak ( 2010 ). As such, the statistical properties of the

nitial density field can be fully characterized by the power spectrum
 ( k ), or, in configuration space, its inverse Fourier transform, the two-
oint correlation function (2PCF) ξ ( r ). As the distribution of density
uctuations evolves through gravitational collapse, it becomes non-
aussian: although o v erdensities can grow freely, underdensities

re al w ays bounded from below, as the density contrast in regions
evoid of matter can never go below δ = −1. As a consequence, the
ensity field develops significant skewness and kurtosis, departing
 E-mail: enrique.paillas@uwaterloo.ca 
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rom Gaussianity (Einasto et al. 2021 ). This distribution cannot
e completely characterized by the 2PCF anymore, and higher-
rder correlation functions are needed to describe the density field.
epartures from Gaussianity rely on gravity being able to mo v e
atter out of its primordial position, so the effect is expected to be

ess rele v ant at scales that are much larger than the typical scale of
hese motions. 

Finding summary statistics complementary or supplementary
o the 2PCF is now an active area of research in cosmology.
xamples include the three-point correlation function (Slepian &
isenstein 2017 ) or bispectrum (Philcox & Ivanov 2022 ), the

our-point correlation function (Philcox, Hou & Slepian 2021 )
r trispectrum (Gualdi, Gil-Mar ́ın & Verde 2021 ), counts in cell
tatistics (Szapudi & Pan 2004 ; Klypin et al. 2018 ; Jamieson &
o v erde 2020 ; Uhlemann et al. 2020 ), non-linear transformations
f the density field (Neyrinck, Szapudi & Szalay 2009 ; Neyrinck
011 ; Wang et al. 2011 , 2022 ), the separate universe approach
Chiang et al. 2015 ), the marked power spectrum (Massara &
heth 2018 ; Massara et al. 2022 ), the wavelet scattering transform
Valogiannis & Dvorkin 2022 ), void statistics (Correa et al. 2020 ;
awken et al. 2020 ; Nadathur et al. 2020 ; Woodfinden et al. 2022 ),
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ensity-split gravitational lensing (Friedrich et al. 2018 ; Gruen et al. 
018 ), and other related statistics. Given that modelling how these 
tatistics change with the cosmological parameters analytically can 
e challenging and inaccurate on non-linear scales, most studies rely 
n N-body simulations with varying cosmologies to measure the 
nformation content of the statistics in the non-linear regime, such 
s the Quijote suite of simulations (Villaescusa-Navarro et al. 2020 ). 
 or e xample, Hahn et al. ( 2020 ) found that the non-linear redshift-
pace bispectrum (in particular its monopole) can break degeneracies 
etween cosmological parameters that lead to five times tighter 
onstraints on the sum of neutrino masses, compared to the power 
pectrum. 

Another useful way to retrieve information that leaks to higher 
rders is by studying galaxy clustering as a function of environmental 
ensity (Abbas & Sheth 2007 ; Tinker 2007 ; Bayer et al. 2021 ; Paillas
t al. 2021 ; Bonnaire et al. 2022 ). Splitting the galaxy field into
ifferent density bins naturally captures the non-Gaussian nature of 
he PDF, and the combination of clustering statistics from different 
nvironments can help break parameter degeneracies and impro v e 
osmological constraints (Paillas et al. 2021 ). As density-split (DS) 
lustering includes the contribution from underdense regions of the 
osmic web, it also shares many of the advantages seen in studies
f void statistics. In particular, cosmic voids contain densities of 
eutrinos higher than those of baryons and dark matter (Massara 
t al. 2015 ). For this reason, void observables are more sensitive to
he sum of neutrino masses than two-point statistics (Massara et al. 
015 ; Kreisch et al. 2019 ). Here, we sho w ho w DS can also access
his information and obtain very precise constraints on the sum of
eutrino masses. 
In this work, we perform a Fisher analysis to quantify the precision

ith which DS can constrain the value of cosmological parameters 
n a ν� CDM model. We study how different definitions of environ-
ental density can affect the constraints of DS and compare them 

ith the results of the standard 2PCF. In particular, we compare 
he information content of DS when the environments are defined 
n either real or redshift space. In previous studies (Paillas et al.
021 ), several limiting assumptions had to be made to model the
lustering of DS multipoles analytically. Paillas et al. ( 2021 ) assumed
 fixed cosmological template and focused on constraints on the 
rowth rate of structure from redshift-space distortions. Although 
his highlighted the great potential of DS clustering at extracting non- 
aussian information from galaxy surv e ys, it did not fully account

or the cosmological dependence of the DS correlation functions. 
o o v ercome this issue and estimate the full information content of
S, we use the Quijote suite of N-body simulations (Villaescusa- 
avarro et al. 2020 ), which allows us to explore the cosmological
ependence of the full shape of the DS correlation functions. In
ddition to the cross-correlation functions between DS environments 
nd the tracer field used in Paillas et al. ( 2021 ), we introduce the
utocorrelation functions of DS environments, and show that they 
onstitute a valuable source of cosmological information. 

The manuscript is organized as follows. In Section 2 we describe 
he simulations used in this work. In Section 3 we describe the
ensity-split clustering algorithm. In Section 4 we outline the main 
deas behind the Fisher formalism. We present our main results 
n Section 5 , including an analysis of the information content of
ensity-split clustering in different setups and a comparison against 
he standard 2PCF. We summarize and present our main conclusions 
n Section 6 . We also include an Appendix, where we present various
ests that are pertinent for a more in-depth analysis of the results
hown in the paper. 
 T H E  QU IJ OTE  SI MULATI ONS  

he Quijote project (Villaescusa-Navarro et al. 2020 ) consists of a
uite of N-body simulations that were constructed to quantify the 
nformation content on cosmological observables. The simulations 
pan a wide range of values around their fiducial cosmology, which
s set to a matter density parameter of �m 

= 0.3175, a baryon
ensity of �b = 0.049, a dimensionless Hubble constant of h =
.6711, a spectral index of n s = 0.9624, an amplitude of density
uctuations of σ 8 = 0.834, a neutrino mass of M ν = 0 . 0 eV , and a
ark energy equation of state of w = −1. The fiducial cosmological
arameters are in good agreement with the latest Planck constraints 
Planck Collaboration 2020 ). There are 15 000 realizations of the
ducial cosmology that can be used to calculate covariance matrices, 
s well as 500 realizations of paired simulations where only one
osmological parameter is changed at a time, which can be used to
stimate deri v ati ves numerically. 

While the initial conditions for most simulations were generated 
sing second-order Lagrangian perturbation theory (2LPT; Jenkins 
010 ), the simulations with non-zero neutrino mass were initialized 
sing the Zel’dovich approximation (ZA; Zel’dovich 1970 ). As we 
ill show later, for a consistent estimation of deri v ati ves with respect

o M ν , we also include simulations of the fiducial cosmology initial-
zed with the ZA (see Section 4 for more details). The specifications
f these simulations are listed in Table 1 . 
Is is worth noting that Quijote provides single- and double-step 

imulations for calculating deri v ati ves with respect to the baryon
ensity: For �+ 

b and �−
b , the step is d�b /�b ∼ 2 per cent , which 

roduces too small of a difference in our data vectors, making the
stimation of the deri v ati ves too noisy and unreliable. For �++ 

b and
−−
b , the step is d�b /�b ∼ 4 per cent , which leads to a cleaner

stimation of the deri v ati ves in our case, so we use those simulations
n this work. For all other cosmological parameters (except M ν , which
s a special case as noted in the paper), only single-step simulations
re provided by Quijote, but these produce changes in the multipoles
hat are large enough to robustly estimate the deri v ati ves. 

Dark matter halo catalogues in each simulation are generated 
sing a FRIENDS-OF-FRIENDS algorithm (Davis et al. 1985 ). The 
lgorithm works by defining a linking length, which is the maximum
istance allowed between particles for them to be considered friends .
or each particle, the algorithm looks for all other particles within

his linking length and groups them together. If two particles are
riends with the same particle, they are considered friends with 
ach other and are grouped into the same halo. The process is
epeated for all particles until all groups have been identified. In
ur case, we use a linking-length parameter b = 0.2. We select
aloes at redshift z = 0.0 imposing a minimum halo mass cut of
 min = 3 . 2 × 10 13 h 

−1 M �, which corresponds to a number density
f n = 1 . 55 × 10 −4 ( h/ Mpc ) 3 . Future surv e ys, such as DESI (DESI
ollaboration 2016 ), will be able to sample galaxies living in haloes
f much lower masses. Therefore, the constraints shown in this paper
o not serve as a forecast for future surveys, but rather serve as a
omparison between two-point statistics and DS. 

Adopting a fixed mass cut can modify the bias of the halo samples
ith respect to the underlying matter distribution, which in turn 

ffects the measured clustering statistics. To disentangle this effect 
rom those coming from variations in cosmological parameters, 
e also build halo catalogues where we impose mass cuts of
 . 1 × 10 13 h 

−1 M � and 3 . 3 × 10 13 h 

−1 M �, so that we can compute
eri v ati ves of the data vectors with respect to this mass cut and
arginalize o v er this dependence. 
MNRAS 522, 606–625 (2023) 
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Table 1. Characteristics of the Quijote simulations suite that are used in this work. 

Name �m 

�b h n s σ 8 M ν Realizations Initial conditions 

Fiducial 0.3175 0.049 0.6711 0.9624 0.834 0.0 15 000 2LPT 

Fiducial ZA 0.3175 0.049 0.6711 0.9624 0.834 0.0 500 Zel’dovich approx. 
�+ 

m 

0.3275 0.049 0.6711 0.9624 0.834 0.0 500 2LPT 

�−
m 

0.3075 0.049 0.6711 0.9624 0.834 0.0 500 2LPT 

�++ 
b 0.3175 0.051 0.6711 0.9624 0.834 0.0 500 2LPT 

�−−
b 0.3175 0.047 0.6711 0.9624 0.834 0.0 500 2LPT 

h + 0.3175 0.049 0.6911 0.9624 0.834 0.0 500 2LPT 

h − 0.3175 0.049 0.6511 0.9624 0.834 0.0 500 2LPT 

n + s 0.3175 0.049 0.6711 0.9824 0.834 0.0 500 2LPT 

n −s 0.3175 0.049 0.6711 0.9424 0.834 0.0 500 2LPT 

σ+ 
8 0.3175 0.049 0.6711 0.9624 0.849 0.0 500 2LPT 

σ−
8 0.3175 0.049 0.6711 0.9624 0.819 0.0 500 2LPT 

M 

+ 
ν 0.3175 0.049 0.6711 0.9624 0.834 0.1 500 Zel’dovich approx. 

M 

++ 
ν 0.3175 0.049 0.6711 0.9624 0.834 0.2 500 Zel’dovich approx. 

M 

+++ 
ν 0.3175 0.049 0.6711 0.9624 0.834 0.4 500 Zel’dovich approx. 

Each row corresponds to a set of simulations with a varying cosmological parameter. The simulations are set to span a grid of cosmologies 
ready to numerically estimate deri v ati ves with respect to cosmological parameters. 
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We construct redshift-space halo catalogues by shifting the posi-
ions of haloes based on their peculiar velocities along the line of sight
LOS), which is taken to be along one of the axes of the simulation
oxes. In most cases, when showing results based on correlation
unction multipoles, we average the results over three different
OS, corresponding to the x- , y -, and z-axes of the simulations.
hese three different projections are not fully independent from
ach other, so when estimating covariance matrices, we only use the
rojection along the z-axis. This results in 1500 realizations of the
lternative cosmologies to calculate numerical deri v ati ves. We use
000 realizations of the fiducial cosmology to estimate covariance
atrices. 

 DENSITY-SPLIT  CLUSTERING  

he density-split clustering method (Paillas et al. 2021 ) consists of
plitting a collection of random points according to the local galaxy
r halo 1 density contrast at their locations and then extracting cos-
ological information from the clustering statistics that characterize

ach environment. We apply the DS algorithm to the dark matter
alo catalogues of Quijote simulations using our publicly available
ode. 2 The pipeline can be summarized as follows: 

(i) Generate a set of N random 

random points that co v er the sample
olume and measure the integrated halo density contrast 	 ( R s ) in
pheres of radius R s around each random point. 

(ii) Classify the random points into five density bins, or quintiles ,
ased on the density contrasts measured from the previous step.
y definition, each quintile will have the same number of random
oints. In Fig. 1 we show the random points that were classified as
he least (DS 1 ) and most dense (DS 5 ) environments in a slice of the
uijote simulations, o v erlaid on the projected dark matter density in

he slice 3 It can be seen that DS 1 points correspond to regions that
ould usually be denoted as voids, while DS 5 points correspond to
NRAS 522, 606–625 (2023) 

odes of the cosmic web. 

 While the algorithm was originally designed to run on galaxies, it can also 
e applied to catalogues of dark matter haloes or particles. 
 https:// github.com/epaillas/ densitysplit
 The projected dark matter density has been estimated using the DTFE public 
oftware ( https:// github.com/MariusCautun/ DTFE ). 
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s  
(iii) Measure the multipole moments of the cross-correlation
unctions between the points in each quintile and the redshift-space
alo field, as well as the autocorrelation function of the points in
ach quintile. The use of the autocorrelations is an addition that was
ot previously considered in Paillas et al. ( 2021 ). In what follows,
e denote autocorrelations of the i -th quintile as DS 

qq 
i and cross-

orrelations between the i -th quintile and the redshift-space halo
eld as DS 

qh 
i . 

(iv) Use the measured multipoles to estimate constraints on the
arameters of the ν� CDM model through a Fisher analysis. 

The multipole moments are defined as 


 ( s ) = 

2 
 + 1 

2 

∫ 1 

−1 
d μ ξ ( s , μ) P 
 ( μ) , (1) 

here s is the pair separation in redshift space, μ is the cosine
f the angle between the separation vector and the line of sight,
 
 ( μ) are the Legendre polynomials, 
 = 0, 2 for the monopole and

he quadrupole, respectively, and ξ ( s , μ) denotes either the cross-
orrelations between quintiles and the halo field in redshift space,
r autocorrelations of quintiles. In principle, valuable information
ould also be contained in the hexadecapole moment ( 
 = 4), but
ts statistical uncertainty for the samples considered in this analysis
eads to noisy estimates of the numerical deri v ati ves, so we have
xcluded it from our calculations. 

We have run tests with different choices of N random 

, and we have
ound that the clustering measurements converge when this number
s set to five times the number of haloes in each simulation. Therefore,
e set N random 

= 5 N haloes throughout the rest of this work. We set the
efault smoothing radius R s to 20 h 

−1 Mpc , which is well abo v e the
ean halo separation in the simulations, but still sufficiently small

o capture non-Gaussianities in the density PDF. 
The estimation of the halo density around random points in step

i) can be carried out in real or redshift space. Paillas et al. ( 2021 )
howed that, from a theoretical point of view, it is easier to model
edshift-space multipoles when the density quintiles are defined in
eal space. Ho we ver, this can be dif ficult to apply in real observ ations,
here we only have direct access to the redshift-space galaxy field.
 similar problem is found in void-galaxy cross-correlation studies

Nadathur et al. 2019a ) where reconstruction algorithms (Nadathur,
arter & Perci v al 2019b ) are commonly used to detect voids in real

pace. Ho we ver, the reconstruction step also introduces additional

https://github.com/epaillas/densitysplit
https://github.com/MariusCautun/DTFE
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Figure 1. The positions of the DS 1 and DS 5 density-split quintiles (white circles) in a region of 500 × 500 × 50 ( h −1 Mpc ) 3 from one of fiducial Quijote 
simulations at z = 0. The colourmap shows the projected dark matter density. DS 1 centres populate the most underdense environments of the cosmic web, 
whereas DS 5 centres cluster on high density environments. 
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omplexity when estimating the likelihood of the data given the cos-
ological parameters, since the reconstructed data depend on some 

f the parameters being fitted (such as the growth rate of structure,
 , or the linear galaxy bias). Moreo v er, reconstruction algorithms
re not perfect and might introduce biases in the estimates of real-
pace quantities that would impact the inference on cosmological 
arameters. This will be particularly rele v ant when small scales are
ncluded in the analysis, where the signal-to-noise ratio is the largest. 
ere, we compare both the definitions of the density split and the

esulting constraints. 
The autocorrelation and cross-correlation functions of each density 

nvironment are calculated using PYCORR , 4 which is a wrapper 
round a modified version of CORRFUNC (Sinha & Garrison 2020 ). 
e use 28 radial bins within 10 h 

−1 Mpc < s < 150 h 

−1 Mpc , and
40 μ bins from −1 to 1 for the calculation of redshift-space 
ultipoles. We also measure the multipoles from the halo 2PCF 

ith the same binning scheme for comparison. 
Since the distribution of query points that are split by density is

andom, the sum of the cross-correlation functions of all quintiles 
anishes by construction. This means that any of the DS autocor- 
elation functions can be expressed as a linear combination of the 
ther four quintiles. As a consequence, any combination of four 
uintiles already contains all the available cosmological information 
rom DS. Therefore, when combining the information from different 
nvironments in the likelihood analysis, we do not include the middle 
uintile, DS 3 . This quintile is the closest to the average density,
hich makes it less remarkable in terms of its clustering attributes 

han other quintiles for this particular analysis. Ho we v er, we hav e
xplicitly checked that our cosmological constraints remain largely 
naltered if we remo v e a different quintile from the data vector. 
 https://github.com/cosmodesi/pycor r 

b
a

.1 The impact of identifying density environments in real or 
edshift space 

or observational data, we can only access the redshift-space posi- 
ions of galaxies. Ho we ver, as in void-galaxy cross-correlation stud-
es, their real space positions can be estimated using reconstruction 
lgorithms (Nadathur et al. 2019b ). In this section, we examine the
ey differences between density splits identified in real ( r -split),
edshift ( z-split), or reconstructed ( recon -split) space, and we will
ater use the Fisher formalism to determine the impact that split
dentification has on cosmological constraints. 

First, we compare the real and redshift splits using the same set of
andom centres. This allows us to make a one-to-one comparison of
eal- and redshift-space environments. In Fig. 2 , we show the joint
istribution of o v erdensities estimated using either the real-space 
ositions of the halos, 	 

r , or through their redshift-space positions,
 

z . The contours are slightly tilted: underdense (o v erdense) re gions
ppear more underdense (o v erdense) in redshift space. In underdense
egions, outflows of matter will produce deeper density contrasts in 
edshift space, whereas in o v erdense re gions, coherent infall of matter
ill tend to produce denser environment estimates. 
On the right-hand side of Fig. 2 , we show the percentage of random

oints that belong to a given quintile in real and redshift space.
hen the density split is performed in redshift space, a substantial

raction of each quintile consists of misclassified points, which would 
ave been part of a different quintile based on their true (real-space)
ensity. This misclassification mostly shifts points from one quintile 
o its nearest neighbour(s), and larger shifts are rare. 

We will now focus on the effect that this has on the multipoles of
utocorrelations and cross-correlations. 

Fig. 3 shows the multipoles of DS cross-correlation ( DS 

qh 
i ) 

etween points in a quintile and the halos’ redshift-space positions, 
nd autocorrelation ( DS 

qq 
i ) functions of random points within the 
MNRAS 522, 606–625 (2023) 

art/stad1017_f1.eps
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Figure 2. On the left, we show the joint distribution of o v erdensities, 	 , when identified either in real space 	 

r , or in redshift space, 	 

z . In underdense regions, 
redshift-space densities tend to appear slightly more underdense, whereas o v erdense re gions also appear more o v erdense. On the right hand side, we show 

the per cent of centres in real space that have been identified as split i but appear as split j in redshift space. 

Figure 3. Multipoles of the DS autocorrelation functions (left-hand panel) and DS-halo cross-correlation functions (right-hand panel). The subpanels compare 
the cases when the quintiles are defined in redshift or real space (left and right sub-panels, respectively). Error bars represent the standard deviation associated 
to a (1 h −1 Gpc ) 3 volume, estimated from multiple mock realizations of the fiducial cosmology. 
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ame quintile, when the o v erdensities are estimated from the real-
pace positions of halos ( r -split) or from their redshift-space positions
 z-split). 

For the autocorrelations, shown on the left-hand side of Fig. 3 , the
onopole is very similar in both the real-space and redshift-space

plits. In both cases, the largest signal is found for the o v erdense
egions DS 5 , closely followed by the underdense regions DS 1 . We
ote that even though DS 1 , DS 2 , and DS 3 are expected to have a
e gativ e tracer bias due to their underdense nature, all autocorrelation
onopoles are positive since the bias enters as its square in the
apping from matter to tracer autocorrelation functions, i.e. ξ tracer =
 

2 ξmatter . Both DS 1 and DS 5 show a significant enhancement in
lustering on a scale of ∼ 100 h 

−1 Mpc corresponding to the acoustic
NRAS 522, 606–625 (2023) 
cale set by the baryon acoustic oscillations (BAO). The other
uintiles also feature the BAO signal at the same scale, although
t is harder to notice because of their smaller amplitudes. 

The quadrupole, on the other hand, is completely different for
he real-space and redshift-space identification scenarios. It is com-
atible with zero for splits identified in real space, whereas it is
l w ays ne gativ e for splits done in estimated redshift-space densities.
n the r -split scenario, where density splits are performed in real
pace, there is no preferred direction, and so statistical isotropy
ictates a quadrupole signal consistent with zero. When estimating
ensities in redshift space, peculiar velocities along the line of sight
ntroduce a direction-dependent distortion to the estimated density
eld, which creates a redshift-space distortion (RSD) anisotropy in
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he distribution of the DS centres themselves. As discussed earlier, 
SD results in a misclassification of some of the random points,
hich tend to swap to their neighbouring quintile in redshift space. 
his misclassification occurs in an anisotropic way, which leads to 
 distorted clustering pattern of the quintile centres. In Appendix A ,
e explicitly show how these misidentifications contribute to the 
uadrupole by decomposing it into the contributions from the 
orrectly identified and misidentified centres. Generally, a non-linear 
ransformation of a tracer density field performed in redshift space, 
uch as large-scale structure identification from halo catalogues, 
ill itself have RSD, with an additional velocity bias (Seljak 2012 ;
huang et al. 2017 ). 
We caution the reader against interpreting the differences between 

-split and r -split identified DS multipoles based on the inferred 
otion of the random centres. One could define a velocity to be

ssociated with the random centres based on the average velocities 
f the dark matter particles within the spheres that were used to
stimate the environment density, and then use these velocities to map 
 -split multipoles into z-split ones. Ho we ver, this interpretation could
ot explain the negative quadrupole of ne gativ ely biased density split
entres such as DS 1 . A ne gativ e bias implies a positive mean pairwise
elocity on large scales, which would produce a positive quadrupole 
y elongating the 2PCF along the line of sight. We have also used the
ame random seed when generating the random points for performing 
he r -split and z-split, so that the random centres by construction
ave the same positions in real and redshift space, and no motion
ccurs. One should therefore a v oid thinking about the motion of
he random centres since in the DS pipeline the random centres are
ev er mo v ed but simply re-classified into different quintiles in the
-split scenario. One should instead interpret the anisotropies in the 
orrelation function in terms of how the same random centres are 
lassified in either real or redshift space. 

On the right-hand side of Fig. 3 , we show the multipoles resulting
rom cross-correlating the random centres in each quintile with the 
alos’ redshift space positions. In the left column, we show the cross-
orrelation with centres identified in redshift space, whilst on the right
e show the same cross-correlation when centres are identified in 

eal space. In both cases, the halo positions are in redshift space.
he monopole moment, which appears to be largely unaffected by 

he density split definition, shows a wide range in amplitudes at 
mall scales, going from the most underdense regions in DS 1 , having
ensity contrasts close to −1, to the o v erdense environments of
S 5 , which correspond to cluster-like environments with density 

ontrasts around 2. These amplitudes also reflect the non-Gaussian 
ature of the density PDF: DS 1 regions are al w ays constrained from
elow, as voids cannot be emptier than empty ( δ = −1). Ho we ver,
he densities in DS 5 can go well beyond 1, breaking the symmetry
f the distribution. At large scales, the monopole moments slowly 
onverge towards the mean density. In a Gaussian random field, 
he splits would be perfectly symmetric; deviations from it are a 
ignature of non-Gaussianity in the density field. Around the scale of
00 h 

−1 Mpc we can distinguish the signal coming from BAO for all
ensity quintiles, both for the cross-correlation and autocorrelation 
unctions. 

Regarding the quadrupole moment of the cross-correlations, they 
how features that can be very different between the two identification 
cenarios. On large scales, where the two cases behave qualitatively 
imilarly, we see positive amplitudes in DS 1 , DS 2 and DS 3 , while
e gativ e amplitudes are observed in DS 4 and DS 5 . According to our
onvention for the redshift-space multipoles (equation 1 ), a negative 
positive) quadrupole for overdensities (underdensities) means that 
he distribution of haloes around these quintiles appears to be 
attened along the line of sight. We also observe that the amplitudes
f the quadrupoles for DS 1 and DS 5 are higher in z-split than in r -
plit. This is again a consequence of the misidentification of quintiles
nd the additional anisotropy that the redshift-space definition of 
uintiles introduces. 
For the redshift-space identification scenario, the quadrupoles 
aintain their sign across the whole scale range. Ho we ver, for the

eal-space identification, we see an abrupt change from positive to 
e gativ e amplitudes for DS 1 . This transition, which translates to an
pparent elongation of the underdensities along the line of sight, 
as also been observed in the void-galaxy cross-correlation function 
Nadathur et al. 2020 ; Woodfinden et al. 2022 ), and can be driven
y the coherent outflow of galaxies from voids (see Cai et al. 2016 ;
adathur & Perci v al 2019 , for a more in-depth discussion about the
hysical interpretation of this feature). 

.2 Reconstructing real-space positions 

adathur et al. ( 2019b ) proposed to detect voids after reconstructing
he approximate real-space galaxy positions by removing the effects 
f large-scale velocity flows from the redshift-space positions. The 
econstruction algorithm is similar to that used in BAO analyses 
Padmanabhan et al. 2012 ; Bautista et al. 2018 ; Chen, Vlah &

hite 2022 ), but is employed only to remo v e the RSD, not to
emo v e non-linearities in the density field. This is moti v ated by
he theoretical challenges that arise from modelling the clustering 
round cosmic voids when these are identified from redshift-space 
alaxy catalogues. By using a density-field reconstruction algorithm, 
hey were able to move galaxies back to their approximate real-space
ositions, which can then be used to identify voids. Here, we use the
ame method to remo v e RSD from the redshift-space Quijote halo
atalogues and then identify the DS quintiles in the reconstructed 
atalogues. 

Let us place ourselves in a Lagrangian framework, in which the
ulerian position � x at time t can be described in terms of the initial
agrangian position � q and a non-linear displacement field � � ( � q , t): 

�  ( � q , t) = � q + 

� � ( � q , t) . (2) 

he halo o v erdensity field δh ( � x , t), can be related to the displacement
eld by (Nusser & Davis 1994 ) 

 · � � + 

f 

b 
∇ · ( � � · ˆ r ) ̂ r = − δh 

b 
, (3) 

here b is the linear bias of the halo sample. The full solution to
quation ( 3 ) includes contributions to the velocity flow coming from
alaxy peculiar velocities at the corresponding redshift, as well as 
dditional non-linear evolution that can be traced back to earlier 
pochs. In BAO analyses (e.g. Alam et al. 2017 ), in an attempt to
ndo all effects of non-linear clustering to sharpen the BAO feature
o the best extent possible, galaxy or halo positions are shifted by

� � using the full displacement field. 
In our analysis, we are only concerned with removing the RSD

oming from halo peculiar velocities at a certain epoch, so the part
f the solution we are interested in is 

� 
 RSD = −f ( � � · ˆ r ) ̂ r . (4) 

hifting the redshift-space halo positions by − � � RSD , we obtain a 
seudo real-space halo catalogue that can be used to define the DS
uintiles. 
Several reconstruction implementations have been introduced in 

he literature. Here, we use the Iterative FFT Particle Reconstruction 
MNRAS 522, 606–625 (2023) 
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Figure 4. Comparison of multipoles when the densities are identified in 
either real (dots) or reconstructed halo positions (lines). Left: DS-halo 
cross-correlation functions. Right: DS autocorrelation functions. Shaded 
regions represent the standard deviation associated to a (1 h −1 Gpc ) 3 volume, 
estimated from multiple mock realizations of the fiducial cosmology. 

c  

u  

P  

t  

(  

c  

e  

t  

p  

fi  

t  

h  

1  

fi  

d  

r  

(  

N
 

fi  

s  

i  

s  

s  

b  

c  

a  

D  

m  

s  

D  

w  

p  

w

5

4

W  

u  

T  

c  

c  

 

m

F

w  

θ  

a
 

a  

a  

t  

s  

i  

F  

i  

t  

p  

l
 

t  

a

F

i  

o
 

i  

e

σ

 

d  

o

F

 

w  

s  

i  

d  

t  

c

F

 

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/1/606/7109279 by guest on 31 January 2024
ode implemented in PYRECON , 5 which solves equation ( 3 ) by
sing an iterative Fast Fourier Transform (FFT) procedure (Burden,
erci v al & Ho wlett 2015 ). This is the same algorithm that was applied

o reconstruct the galaxy field in the eBOSS cosmological analysis
Bautista et al. 2018 ), and for reconstruction in void-galaxy cross-
orrelation measurements (Nadathur et al. 2019a , 2020 ; Woodfinden
t al. 2022 ). Equation ( 3 ) shows that reconstruction is sensitive to
he ratio of the linear growth rate of structure f and the linear bias
arameter b . We estimate the value of f from the cosmology of the
ducial Quijote simulation as f = �m 

( z) 0.55 = 0.532. We estimate
he linear halo bias taking the square root of the ratio between the
alo and the matter power spectrum, which yields a value of b =
.7 at large scales. The FFT procedure operates on the density
eld on a regular grid, which we set to have a size of 512 3 . The
ensity field δh is smoothed with a Gaussian kernel of width R 

recon 
s to

educe sensitivity to small-scale density modes, for which equation
 3 ) becomes inaccurate. We adopt R 

recon 
s = 10 h 

−1 Mpc , in line with
adathur et al. ( 2020 ) for easier comparison. 
We show the multipoles obtained when splitting the density

eld using the reconstructed real-space positions of halos ( recon -
plit) in Fig. 4 , where we also compare against the real-space
dentification scenario ( r -split). Qualitatively, we find that the recon -
plit multipoles closely follow the key features observed in the r -
plit multipoles: (i) the quadrupole of the autocorrelation functions
eing consistent with zero, (ii) the smaller amplitudes of the cross-
orrelation functions’ quadrupole with respect to the z-split case,
nd (iii) the transition from a positive to negative quadrupole for the
S 1 cross-correlation function. Overall, we find that the recon -split
ultipoles lie within 1 σ of the r -split multipoles for a wide range of

cales, although some deviations can be seen in the quadrupole of
S 1 and DS 5 around ∼ 50 h 

−1 Mpc . In the next section, we will assess
hether we can reco v er unbiased constraints for the cosmological
arameters using recon -split multipoles if we model them as if they
ere r -split measurements. 
NRAS 522, 606–625 (2023) 
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 FISHER  FORMALI SM  

e quantify the information content of the summary statistics
sing the Fisher formalism (Fisher 1935 ; Tegmark 1997 ; Tegmark,
aylor & Heavens 1997 ). Given a set of model parameters θ (in our
ase, the parameters of the ν� CDM cosmological framework), we
an measure the information on θ carried by an observed data vector

d (in our case, the 2PCF or DS multipoles) by calculating the Fisher
atrix, defined as 

 ij ( θ) = 

〈(
∂ 

∂ θi 

log L ( d | θ ) 

)(
∂ 

∂ θj 

log L ( d | θ ) 

)〉
d 

(5) 

here L ( d | θ ) is the likelihood of the data vector given the parameters
. We note that the expectation is taken o v er the data, since it is itself
 random variable. 

The deri v ati ve of the likelihood with respect to the parameters is
lso known as the score function s( θ ) = 

∂ 
∂ θ

log L ( d | θ), which is zero
t the maximum likelihood point. Equation ( 5 ) can be interpreted as
he variance of the score function, since the expected value of the
core function is zero. A random variable that contains high Fisher
nformation implies that the absolute value of the score is often high.
isher information is used to quantify the effect that small changes

n θ have on the likelihood. If small changes in θ substantially vary
he likelihood, then we will be able to set tight constraints on the
arameters, and we say that the information content of d in θ is
arge. 

When the likelihood can be differentiated twice, it can be shown
hat the variance of the score is also related to the second deri v ati ve,
nd therefore to the curvature, of the likelihood function 

 ij ( θ) = −
〈 

∂ 2 

∂ θi ∂ θj 

log L ( d | θ) 

〉 

, (6) 

mplying that a more peak ed lik elihood contains more information
n the parameters than a flatter one. 
The Cram ́er–Rao bound states that the inverse of the Fisher

nformation is a lower bound on the variance of any unbiased
stimator of θ

θi 
≥

√ 

( F 

−1 ) i,i . (7) 

In particular, if the likelihood follows a multi v ariate Gaussian
istribution, we can compute the expectation value in the calculation
f the Fisher matrix analytically, finding 

 ij ( θ) = 

1 

2 
Tr 

[ 

C 

−1 ∂ C 

∂ θi 

C 

−1 ∂ C 

∂ θj 

+ C 

−1 

( 

∂ d 
∂ θi 

∂ d 
∂ θj 

� 

+ 

∂ d 
∂ θi 

� ∂ d 
∂ θj 

) ] 

, 

(8)

here C is the covariance matrix associated with the data vector d . As
hown by Carron ( 2013 ), the first term in equation ( 8 ) artificially adds
nformation that was already included in the second term through the
eri v ati ve of the mean vector. In the rest of the paper, we neglect this
erm to rather produce a conserv ati ve estimate of the information
ontent and compute the Fisher matrix as 

 ij ( θ) = 

∂ d 
∂ θi 

C 

−1 ∂ d 
∂ θj 

� 

. 

(9) 

In Appendix C , we show that the likelihood for DS statistics
s indeed very close to a multi v ariate Gaussian. We note that
on-Gaussianities in the likelihood could lead to artificially tight
ounds on the cosmological parameters when using the Fisher matrix
ormalism described by equation ( 9 ; Park et al. 2023 ). 

art/stad1017_f4.eps
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Figure 5. (Left) deri v ati ves of the DS-halo cross-correlation multipoles with respect to �m 

, expressed in units of the variance of the multipoles. The upper and 
lo wer ro ws in each panel sho w deri v ati ves of the monopole and quadrupole moments, respectively, while the left and right columns compare results when the 
quintiles are defined in redshift or real space. (Right) same as the other panel, but showing the DS autocorrelation functions. 
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For most of the cosmological parameters, the deri v ati ves can be
umerically approximated as 

∂ d 
∂ θi 

� 

d ( θi + d θi ) − d ( θi − d θi ) 

2d θi 

, (10) 

hich is a second-order approximation in θ i . Equation ( 10 ) cannot
e used to estimate the deri v ati ves with respect to M ν , as the neutrino
ass cannot be ne gativ e. In that case, we instead approximate it as

ollows: 

∂ d 
∂ M ν

� 

d (4d M ν) − 12 d (2d M ν) + 32 d (d M ν) − 21 d ( M ν = 0) 

12d M ν

, 

(11) 

hich is of second order in M ν . For a consistent estimation of the
eri v ati ves, the M ν = 0 data vector in equation ( 11 ) is measured
rom simulations of the fiducial cosmology with initial conditions 
enerated using the Zel’dovich approximation (see Section 2 ). 
We calculate deri v ati ves of the redshift-space 2PCF and DS
ultipoles on each of the 500 realizations of the paired simulations

long three different lines of sight (taken to be the x -, y -, and z-
xes of the simulations), which ef fecti vely gi ves us 1500 realizations
 v er which we take the average (Smith et al. 2020 ). Fig. 5 shows an
xample of these deri v ati ves for the matter density parameter, �m 

.
ach quintile shows a distinct sensitivity to �m 

as a function of scale.
he largest contribution comes from small scales, where we expect 

he density field to deviate the most from a Gaussian distribution.
he auto- and cross-correlation functions also sho w dif ferent scale 
ependencies, which, as we will corroborate later, highlight the 
mportance of combining these two sets of statistics to maximise the 
osmological constraining power. We also note that the contribution 
rom the quadrupole of the r -split autocorrelations is consistent with 
ero, which agrees with the discussion presented in the previous 
ection, where we showed that in this scenario the centres of the DS
uintiles are distributed isotropically in the simulation volume. 
We estimate the covariance matrix from the multiple realizations 

f the fiducial cosmology as 

 = 

1 

n sim 

− 1 

n sim ∑ 

k= 1 

(
d k − d 

) (
d k − d 

)
, (12) 
here n sim 

= 7000 and d is the mean data vector averaged over all
he realizations. In Appendix D we show that the inferred errors on
he parameters converge when using these numbers of realizations 
or the calculation of the deri v ati ves and covariance. 

In order to obtain the parameter constraints, two matrix inversions 
eed to be performed: the inversion of the covariance matrix in
quation ( 9 ), and that of the Fisher matrix in equation ( 7 ). Although
he estimator of the covariance matrix (equation 12 ) is unbiased,
hese two inversions lead to biased constraints on the parameters. To
ccount for this, we apply a correction to the covariance matrix 

 

′ = 

n sim 

− 1 

n sim 

− n bins + n θ − 1 
C , (13) 

here n θ is the number of parameters and n bins is the number of bins
n the data vector. The deri v ation of this correction factor is presented
n Appendix B . 

Fig. 6 shows the correlation matrix associated with this covariance 
or the z-split DS and 2PCF data v ectors. F or DS, the covariance
ncludes contributions from the monopole and quadrupole moments 
f the auto and cross-correlation functions for each for the DS
uintiles. Since we use 28 radial bins in the range 10 < s <
50 h −1 Mpc, this results in a 560 × 560 matrix. For the 2PCF, we
ave a 56 × 56 matrix resulting from the contributions from the
onopole and quadrupole. 

 I N F O R M AT I O N  C O N T E N T  O F  

ENSITY-SPLIT  CLUSTERI NG  

.1 Identifying environments 

he first step of the DS algorithm described in Section 3 consists of
stimating the halo density in spheres of radius R s centred around
andom points, which is then used to calculate the density PDF
nd define the DS quintiles. The density PDF itself depends on
osmology, which is the main source of information used in methods
uch as counts-in-cells statistics (Uhlemann et al. 2020 ). We also
xpect DS to be sensitive to this information, as any changes in the
ensity PDF will translate into changes in the average density in each
MNRAS 522, 606–625 (2023) 

art/stad1017_f5.eps


614 E. Paillas et al. 

M

Figure 6. Correlation matrices of the DS and 2PCF data vectors, which include contributions from the monopole and quadrupole moments of the redshift-space 
correlation functions. 

Figure 7. Response of the average density of each DS quintile to changes in 
cosmology. The vertical axis shows the difference in average density that is 
produced when we change �m 

, σ 8 , or M ν , in units of the 1-  errors of the 
density. The horizontal axis shows results for each quintile separately. 
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uintile, 	 ( R s ), which then propagates into changes in the observed
ultipoles. 
Fig. 7 illustrates this by sho wing ho w the average density per

uintile responds to changes in the cosmological parameters. In-
reasing �m 

makes DS 1 , DS 2 , DS 3 , and DS 4 denser, while the
pposite happens for DS 5 . On the one hand, given that we have fixed
he minimum halo mass, increasing �m 

will increase the number
f halos abo v e this threshold. F or the densest quintile, DS 5 , the
ncreased merger rate could reduce the number of halos in a given
NRAS 522, 606–625 (2023) 
phere. On the other hand, when all other parameters are kept fixed,
he effect of raising �m 

is to reduce the amplitude of the galaxy or
alo power spectrum (Kobayashi et al. 2020 ) by reducing the halo
ias with respect to the underlying matter distribution, which brings
he density of the quintiles slightly closer to the cosmic average.
hanging σ 8 produces a similar effect on the quintiles, which is
gain related to an increase in the number of halos abo v e the mass
hreshold and a reduced halo power spectrum for larger σ 8 values. 

The effect of varying the neutrino mass goes in the opposite
irection. Having a non-zero neutrino mass lowers the density from
S 1 to DS 3 and boosts the density in DS 5 . This effect is very similar

o that of decreasing �m 

, since increasing the mass of neutrinos
educes the amount of cold dark matter. This is consistent with the
icture that neutrinos, which do not cluster below their free-streaming
cale, reduce the growth of cold dark matter perturbations. Although
assive haloes can still form in the peaks of the density field and

e resolved in Quijote, haloes forming in shallower regions of the
ensity field will not reach masses abo v e our selection threshold. The
 v erall effect is an increased halo bias with respect to the fiducial
ase with M ν = 0 (Kreisch et al. 2019 ), which in turn makes the
oids emptier and the clusters denser. 

.2 Comparing the information content of density-split 
lustering to two-point statistics 

n this section, we present the constraints obtained on the cosmologi-
al parameters through equations ( 7 ) and ( 9 ). Unless stated otherwise,
he DS constraints we show correspond to the z-split scenario, i.e.
hen density quintiles are defined in terms of the redshift-space
 v erdensities. 
Modelling the full cosmological dependence of the real-space or

edshift-space-identified quintiles analytically would be challenging.
n fact, previous studies (Paillas et al. 2021 ) have only modelled
he real-to-redshift space mapping. Ho we ver, the Fisher formalism
llows us to estimate the entire information content from direct
easurements in N-body simulations. 

art/stad1017_f6.eps
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Figure 8. Fisher forecasts for constraints on the ν� CDM model parameters from the 2PCF multipoles (blue) and density-split clustering using only voids 
(DS 1 , green), clusters (DS 5 , red), or the combination of all quintiles (yellow). 
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In Fig. 8 we compare the constraints obtained by combining the 
S autocorrelation and cross-correlation functions of four quintiles, 
S 

qq + qh 
1 + 2 + 4 + 5 , against the halo 2PCF, using multipoles within the scale 

ange 6 10 < s < 150 h 

−1 Mpc . We can observe how DS can break
ome key parameter degeneracies that result when analysing two- 
oint statistics, such as the one between �m 

and σ 8 , or that of
 s and σ 8 . In particular, when we combine the information from
ll quintiles, the de generac y between M ν and the other parameters
s significantly reduced. The standard halo 2PCF suffers from the 
ell-known de generac y found between σ 8 and M ν , which limits its

onstraining power. Although the individual quintiles DS 

qq + qh 
1 and 

S 

qq + qh 
5 also exhibit this degeneracy to some extent, the combined 

S data set is able to reduce it due to the different sensitivity of
ach density environment to these parameters. Overall, DS 

qq + qh 
1 + 2 + 4 + 5 

ncreases the constraining power with respect to the halo 2PCF by a
 We limit the measurements to scales larger than 10 h −1 Mpc since we are 
nly analysing central halos, whose behaviour will be very different from 

hat of galaxies on small scales, and because on these scales the effects of 
aryonic physics would be negligible. 

t
d  

m  

h  

a
b  
actor of approximately 4, 7, 3, 3, 6, and 5 for �m 

, M ν , �b , h , n s , and
8 , respectively. 
The noisy deri v ati ves of the quadrupole for certain quintiles

hown in Fig. 5 might raise a concern about the robustness of
he estimation of the information content of DS in the analysis.
o assess this, in Fig. 9 we show constraints obtained by only
tting the monopole or the quadrupole moments of the correlation 
unctions. We find that most of the constraining power is actually
oming from the monopole alone (which has a higher signal-to- 
oise and thus smoother numerical deri v ati ves), while the quadrupole
nly adds a marginal contribution to the combined power. Although 
e only show constraints for �m 

, σ 8 , and M ν , we have verified
hat the same trend is present in other regions of the parameter
pace. 

In Fig. 10 we show the individual contribution of each quintile
o the parameter constraints. Interestingly, we find that DS 1 pro- 
uces the weakest constraints for the sum of neutrino masses after
arginalizing o v er all other parameters. On the other hand, as we

av e e xplicitly checked, it produces the tightest constraints when
ll other parameters are fixed. One expects underdense regions to 
e more sensitive to the properties of neutrinos since their free-
MNRAS 522, 606–625 (2023) 
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Figure 9. Comparison of the cosmological constraints from density-split 
clustering when using only the quadrupole (blue), monopole (red), or the 
combination of the two (red). 

Figure 10. Constraints on the cosmological parameters from individual and 
combined DS quintiles identified in redshift space (solid). The constraints 
from the 2PCF are shown by the grey, dashed contours for comparison. 
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Figure 11. We compare the constraints obtained through cross-correlations 
of the density-split centres and the entire halo field, DS qh , to the those obtained 
from the combination of cross-correlations and autocorrelations of the 
density-split centres, DS qq + qh . We show both results for density-split centres 
identified in real space ( r -split), and density-split centres identified in redshift 
space ( z-split). This figure demonstrates that quintile autocorrelations, DS qq , 
have a bigger impact in redshift identified quintiles than they do in real 
identified ones. 
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treaming motions imply that the ratio of neutrino density to that of
ark matter is higher in void regions than in o v erdensities. Ho we ver,
egeneracies between the different cosmological parameters degrade
he constraining power of underdense regions in DS. Furthermore,

ost quintiles individually produce tighter constraints than the 2PCF,
xcept for DS 3 and �m 

. 
Fig. 11 compares the information content of DS clustering when

he o v erdensities are identified in redshift ( z-split) or real space ( r -
NRAS 522, 606–625 (2023) 
plit). The combined constraints on the cosmological parameters
re shown in Table 2 . The real-space identification of quintiles
onsistently produces better parameter constraints, especially for
he parameters �m 

and σ 8 . When quintiles are identified in redshift
pace, some cosmological information is lost by the blurring of the
S quintiles. Ho we ver, some of this lost information can be recovered

hrough the quadrupole of autocorrelations when these are identified
n redshift space. This can be seen in Fig. 11 : although the additional
nformation contained in the autocorrelations is small for the r -split
cenario, it has a large impact on improving the constraints for DS
entres identified in redshift space. 

.3 Where does the additional information come from? 

e have seen that at the same fixed minimal scale, DS al w ays
utperforms 2PCF for constraining cosmological parameters. This
emains true when we increase the minimal scale, as shown in Fig. 12 .

e can see that even when s min is very large, e.g. ∼ 100 h 

−1 Mpc ,
here we expect the density field to be close to Gaussian, the

onstraints from DS are still significantly tighter than 2PCF. 
There are at least two different effects that can lead to a better

erformance of DS o v er the 2PCF on different scales. First, DS is
ble to extract non-Gaussian features in the density field that are
ot fully captured by the 2PCF. This effect is expected to be more
mportant for smaller s min values, where stronger deviations from
aussianity are found. Secondly, DS quintiles are defined in terms
f the density contrasts in spheres with the radius R s = 20 h 

−1 Mpc ,
o even when we truncate the multipoles at large s min values, DS still
arries information about the PDF of the density field smoothed at
 s , which is not present in the 2PCF multipoles. 
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Table 2. Comparison to Fisher forecasts for different summary statistics also based on the halo field. 

Statistic Scales Redshifts �m 

M ν �b h n s σ 8 Reference 

DS qq + qh 
1 + 2 + 4 + 5 ( z-split) 10 < r < 150 0.0 ±0 .01128 ±0 .05330 ±0 .0067 ±0 .06560 ±0 .04231 ±0 .02231 This work 

DS qq + qh 
1 + 2 + 4 + 5 ( r -split) 10 < r < 150 0.0 ±0 .00346 ±0 .05115 ±0 .00632 ±0 .05486 ±0 .03378 ±0 .01288 This work 

Halo 2PCF 10 < r < 150 0.0 ±0 .04221 ±0 .39053 ±0 .01686 ±0 .20976 ±0 .24549 ±0 .11742 This work 
B 0 ( k ) k < 0.5 0.0 ±0 .011 ±0 .054 ±0 .004 ±0 .039 ±0 .034 ±0 .014 Hahn et al. ( 2020 ) 
k NN 10 < r < 40 [0.0, 0.5] ±0 .0111 ±0 .0925 ±0 .0029 ±0 .0273 ±0 .0206 ±0 .0108 Banerjee & Abel ( 2021 ) 
MST(d,l,b,s) k < 0.5 0.0 ±0 .036 ±0 .23 ±0 .0083 ±0 .073 ±0 .065 ±0 .067 Naidoo, Massara & Lahav ( 2022 ) 
Void 2PCF 15 < r < 200 0.0 ±0 .037 ±0 .13 − ±0 .089 ±0 .086 ±0 .067 Kreisch et al. ( 2022 ) 
Void-halo CCF 15 < r < 200 0.0 ±0 .027 ±0 .10 − ±0 .067 ±0 .066 ±0 .063 Kreisch et al. ( 2022 ) 

Figure 12. Constraints on the cosmological parameters from DS and the 2PCF, as a function of the minimum scale used to calculate the Fisher matrix. We also 
include the individual constraints obtained through the two extreme quintiles, DS 1 and DS 5 . 
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8 While the 2PCF almost perfectly matches the DS constraints for �b and h , 
and it outperforms DS for σ 8 , we find that DS yields constraints that are a 
factor of 1.2 better for �m 

. Some of this discrepancy could be attributed to 
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To double check the abo v e reasoning, we test it with ideal
aussian random fields. Starting from primordial power spectra 
ith the same parameters as those described in Table 1 , we use
OCKFACTORY 

7 to generate a Gaussian random field at z = 0.0, 
ampled with particles with tracer bias similar to the Quijote haloes. 
e compute the 2PCF and DS correlation functions using 30 radial 

ins in the scale range 0 < r < 150 h 

−1 Mpc and estimate the Fisher
atrix numerically as described in Section 4 . For simplicity, all 
easurements are performed in real space, so that all information 

s contained in the monopole moment of the correlation func- 
ions. 

In this Gaussian case, the 2PCF, which is a measure of the variance
f the field as a function of scale, should be able to fully describe its
tatistical properties, and we expect DS and the 2PCF to contain the
ame cosmological information. We can see that this is indeed the 
 https://github.com/cosmodesi/mockfactory 

n
w
t
t

ase, as shown in the left-hand panel of Fig. 13 . Under this setup, DS
nd the 2PCF show similar constraints on �m 

, σ 8 , h , and �b using
he full-scale range. 8 

The right-hand panel of Fig. 13 repeats this comparison using 
 minimum scale s min = 10 h 

−1 Mpc . In this case, DS leads to
ignificantly impro v ed constraints o v er the 2PCF for all parameters.
his may go against the intuition that DS should not be able to
utperform the 2PCF in the Gaussian scenario. Ho we ver, as discussed 
n the beginning of this subsection, we should keep in mind that the
S quintiles are defined in terms of the halo densities in spheres
MNRAS 522, 606–625 (2023) 

umerical errors in the Fisher matrix due to the finite number of mocks from 

hich the numerical deri v ati ves are estimated, although we have checked that 
he constraints converge to better than 10 per cent for the number of mocks 
hat we used. 
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Figure 13. Cosmological parameter constraints from DS and the 2PCF in a Gaussian random field, using scales down to 0 h −1 Mpc (left) or 10 h −1 Mpc (right) 
Blue: Constraints from the real-space halo 2PCF. Red: Constraints from the combination of DS cross-correlation and autocorrelation functions in real space. 
Green: Constraints from the combination of the halo 2PCF and the average density in DS quintiles. We note that DS-related quantities only make use of the first 
two quintiles, DS 1 & DS 2 , which contain all the information if the density PDF is symmetric. 
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f radius R s = 20 h 

−1 Mpc . This makes the DS quintiles sensitive
o the variance of the field within R s , even when the multipoles are
runcated at s min = 10 h 

−1 Mpc (as formally shown in Pinon et al.,
n preparation). To account for this effect, we include the average
ensity in each quintile, 	 ( R s ), as part of the observable, calculating
he Fisher matrix of the concatenated data vector 2PCF + 	 ( R s ),
hich accounts for the covariance between the two measurements.

t can be seen from the figure that the resulting constraints from this
ombination match the constraints from DS much better, reco v ering
he agreement seen earlier in the left-hand panel. 

We note that in simulations where the density field is non-Gaussian
Quijote), we have explicitly checked that DS outperforms 2PCF
 	 ( R s ). This is because the addition of the 	 ( R s ) information is

qui v alent to sampling the density PDF at a single scale, R s , which
aptures only part of the non-Gaussian information. On the other
and, the DS-halo cross-correlation in each quintile is equi v alent
o measuring the average enclosed halo o v erdensity around those
S centres. 9 Thus measuring the cross-correlation DS 

qh 
1 + 2 + 4 + 5 ( s) is

qui v alent to sampling the density PDF at a range of scales s . 
In summary, the combination of the five DS-halo correlations
easures the PDF of the density field as a function of scale i.e.

he histograms of 	 ( R ). It thus captures non-Gaussianities at all
cales of our measurements, and outperforms 2PCF for cosmological
onstraints. When there is a minimal scale cut off, DS can outperform
PCF even more because it implicitly contains information about the
DF of the density at the smoothing scale. 
We caution that the abo v e reasoning may be incomplete and that

here may be room for other reasons to account for the additional
nformation in DS. We will have more discussions on this in Section
 , and leave a more rigorous study on this point for a future work. 
NRAS 522, 606–625 (2023) 

 This follows since DS qh 
x ( s) represents the average halo o v erdensity at 

istance s from the DS centres in quintile x , and the enclosed o v erdensity 
 ( s) for the quintile is simply an integral of this. 

z
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t  

a  
.4 Information content of reconstructed density-split 
ultipoles 

n the previous section, we showed that performing the density split
n the real-space galaxy field in principle provides significantly more
nformation than doing so in redshift space, as the Fisher information
ontent of the r -split multipoles is higher. Ho we ver, in practical
pplications to data, the real-space galaxy positions would not be
vailable to allow such a measurement. 

One way to proceed would be to accept the loss of information
ssociated with the redshift-space density split procedure and to
se the z-split multipoles alone for cosmological inference. (While
e currently lack an analytical model to predict r -split or z-split
ultipoles from first principles, we envisage an inference procedure

ased on constructing an emulator for these quantities using N -body
imulations; such an emulator could equally be constructed for either
 -split or z-split quantities.) 

On the other hand, in Section 3.2 we also showed that it is
ossible to use a reconstruction method to reco v er approximate real-
pace galaxy positions before performing the density split, and that
he ‘ recon -split’ multipoles thus obtained closely match the r -split

ultipoles. Therefore, the use of recon -split multipoles could, in
rinciple, allow the reco v ery of much of the information contained
n the r -split multipoles that is lost when using the z-split. This is
hown in Fig. 14 , where we compare the marginalized contours of

m 

, σ 8 , and M ν between the different DS identification scenarios.
n terms of the information content, recon -split largely outperforms
-split for �m 

and σ 8 , resulting in constraints that are only a factor of
.21 and 1.18 weaker than r -split, respectiv ely. F or M ν , recon -split
nd r -split agree within 10 per cent, while recon -split outperforms
-split by a factor of 1.13. 

As practical reconstruction methods are not perfect, there are small
ifferences between the r -split multipoles and those that can be ob-
ained from the reconstruction procedure (Fig. 4 ). Any cosmological
nalysis using the recon -split multipoles would therefore require
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Figur e 14. Mar ginalized constraints on �m 

, σ 8 , and M ν when the density- 
split quintiles are identified in redshift space (blue), real space (green) or 
in a pseudo-real space where RSD has been remo v ed using reconstruction 
(red). The constraints have been obtained by combining the cross-correlation 
and autocorrelation functions of all density quintiles, which is referred to as 
DS qq + qh 

1 + 2 + 4 + 5 in previous figures. 
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heoretical modelling that specifically accounts for these differences. 
onstructing an emulator for the recon -split multipoles would be a 
ore complicated proposition than doing so for z-split. Apart from 

he increased computational cost of reconstructing the density field 
efore splitting the densities, we need to consider the additional 
ependence on cosmology due to the sensitivity of reconstruction to 
he ratio between the linear growth rate and the tracer bias f / b . The
esults might also be sensitive to the different choices of configuration 
arameters in the algorithm, such as the scale used to smooth the
ensity field and the resolution of the grid used to perform the Fourier
pace operations. We plan to address the feasibility of modelling such 
ffects within the DS framework in future work. 

It might be tempting to a v oid these difficulties by simply using
odel predictions for the r -split multipoles – which would be easier 

o construct – as a proxy for the recon -split multipoles that are
ore practical to measure in surv e y data. Ho we ver, in this case, the

ifferences seen in Fig. 4 could potentially lead to systematic errors
n the inferred cosmological parameters. In the remainder of this 
ection, we investigate and quantify this possibility. 

We estimate the bias in the inferred cosmological parameters 
ntroduced by the imperfections in reconstruction using the Fisher 

atrix (Huterer & Takada 2005 ) 

θα = 〈 θ recon −split 〉 − 〈 θ r−split 〉 

= 

∑ 

β

F 

−1 
αβ

∑ 

ij 

[ 
d recon −split 

i − d r−split 
i 

] 
C 

−1 
ij 

∂ d r−split 
j 

∂ θβ

. (14) 

In Fig. 15 , we show the biases in the inferred cosmological
arameters that would be caused by such a misapplied model, as
 function of the minimum scale considered in the analysis. M ν ,
m 

and σ 8 are the parameters that are most affected by errors 
ue to the imperfect reconstruction of halo positions. In particular, 
iases are found when including the monopole and quadrupole 
f cross-correlations between quintiles and the halo field, ξ qh 

0 , 2 , on 
cales smaller than the DS smoothing radius. In Fig. 4 , we have
hown that the errors introduced by reconstruction mostly affect 
he quadrupole of cross-correlations. Using only the monopole of 
uintile autocorrelations, ξ qq 

0 , one can obtain unbiased constraints on 
he cosmological parameters using the full range of scales. Ho we ver,
he constraining power of autocorrelations on small scales is smaller 
han that of cross-correlations with the halo field, and therefore 
e would lose more information than if we were to estimate the
 v erdensity around random centres directly in redshift space. 
We note that the results presented in this section apply to

 particular choice of reconstruction algorithm, which has been 
escribed in Section 3.2 . Other algorithms (e.g. White 2015 ; Wang
t al. 2022 ) may lead to different parameter constraints, although a
etailed comparison of different reconstruction techniques is beyond 
he scope of this manuscript. 

As described in Section 3.2 , reconstruction also smooths the 
ensity field below a given scale R 

recon 
s , which is a free parameter

n the algorithm. In our analysis, this scale was set to 10 h 

−1 Mpc .
e do not expect reconstruction to work below R 

recon 
s , where the

lustering information has been washed out, and consequently, the 
emoval of RSD may be inaccurate. Future surv e ys, such as DESI-
GS (Zarrouk et al. 2022 ), are expected to reach much higher tracer
umber densities than those probed by Quijote, and the range of
cales at which reconstruction is reliable may differ. We plan to
tudy this in further detail in future work. 

In summary, the information content in the resulting recon -split 
ultipoles is similar to the one obtained by real-space identification 

 r -split) and thus has a better constraining power than DS performed
n redshift space ( z-split). Building a model for recon -split is expected
o be more challenging than for the other two identification scenarios.
 tempting shortcut would be to build a model for r -split multipoles

nd compare it with recon -split multipoles measured from real data.
lthough this approach seems to work on large scales, it could lead

o significant biases in the inferred cosmological parameters below 

20 h 

−1 Mpc . 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

n this work, we have studied the cosmological constraining power 
f density-split clustering (DS; Paillas et al. 2021 ) in the context
f the ν� CDM model. This method consists in characterizing the
lustering of biased tracers as a function of environmental density, 
xploiting the sensitivity of each environment (density quintiles) 
o the cosmological parameters. DS offers an alternative to extract 
on-Gaussian information from a galaxy surv e y. The density field at
mall scales is highly non-Gaussian due to non-linear gravitational 
volution, and therefore the power spectrum or the 2PCF, which are
easures of the variance of the density field, become incomplete 

escriptions of the galaxy distribution. DS is able to capture the
issing information through a collection of correlation functions that 

re conditioned on environmental density, which naturally captures 
he non-Gaussian nature of the PDF. 

We quantify the information content of DS through the Fisher 
atrix, estimated numerically from the halo catalogues of the Quijote 

uite of simulations (Villaescusa-Navarro et al. 2020 ). We have found
hat DS impro v es the constraints on each cosmological parameter
etween a factor of 3 and 8, compared to the standard halo 2PCF. 

In Paillas et al. ( 2021 ), it was already shown that the cross-
orrelations between galaxies and DS quintiles could impro v e the
onstraints on the growth rate of structure by 30 per cent o v er the
MNRAS 522, 606–625 (2023) 
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Figure 15. Bias in the cosmological parameters introduced by systematic errors caused by reconstructing the halo’s real space positions, computed using 
equation ( 14 ). The true value of the parameters is shown on a grey dashed line. We show the bias introduced by each of the statistics used to infer the 
cosmological parameters: (i) ξqq 

0 , the monopole of the quintile autocorrelation, (ii) ξqh 
0 , the monopole of the cross-correlations between quintiles and halos, 

and (iii) ξqq 
0 + ξ

qh 
0 + ξ

qh 
2 , the combination of all the abo v e with the quadrupole of the cross-correlations between quintiles and halos. The error bars show the 

statistical uncertainty associated to a (1 h −1 Gpc ) 3 volume. Points that are plotted next to each other were conducted at the same s min , but are horizontally shifted 
for clarity. 
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PCF function analysis if the Gaussian streaming model (Peebles
980 ; Fisher 1995 ) was used to model the real-to-redshift space
apping. Ho we ver, the analytical model presented in Paillas et al.

 2021 ) relied on measurements of cross-correlation functions of
eal space galaxy catalogues from � CDM simulations, and their
osmological dependence was ignored in the analysis. This limits
he amount of cosmological information that can be extracted to that
f the real-to-redshift-space mapping. Here, we have shown for the
rst time that if we can model the full cosmological dependence of DS
sing N-body simulations, we can obtain much tighter constraints. 
Moreo v er, we hav e presented the autocorrelations of the DS

uintiles for the first time and have shown that they are also a valuable
ource of cosmological information, in addition to the DS cross-
orrelation functions. In particular, the quintile autocorrelations can
eco v er some of the cosmological information that is lost when
erforming the density split in redshift space. 
The Quijote simulations have allowed us to explore the sensitivity

f DS clustering to different cosmological parameters, such as the
um of neutrino masses M ν . The combination of all DS quintiles
laces a constraint of σM ν

= 0 . 05330 for a (1 h 

−1 Gpc ) 3 volume,
ssuming that we can model the redshift-space DS multipoles down
o a scale of 10 h 

−1 Mpc . Similarly, we obtain σ�m = 0 . 01128,
�b = 0 . 0067, σ h = 0.06560, σσ8 = 0 . 02231, and σn s = 0 . 04231,
hich corresponds to a factor of 3.7, 2.5, 3.2, 5.3, and 5.8 of im-
ro v ement o v er the 2PCF, respectively. We note that our constraints
re conserv ati ve, since the number density of resolved dark matter
alos in the Quijote simulations is much lower than that expected in
uture galaxy surv e ys. 

Our results are in line with forecasts from other summary statistics
hat aim at extracting non-Gaussian information from density fields.
NRAS 522, 606–625 (2023) 
 natural approach is to include higher-order correlation functions
r polyspectra. Hahn et al. ( 2020 ) found that the redshift-space
alo bispectrum provides tighter constraints on the cosmological
arameters of ν� CDM, compared to the halo power spectrum. In
articular, the bispectrum is five times better at constraining the sum
f neutrino masses M ν , assuming that the bispectrum can be modelled
p to k max = 0 . 5 h Mpc −1 . Including even higher-order correlations
ight tighten the cosmological constraints; ho we ver, e ven the full

ierarchy of polyspectra may fail to contain all statistical information;
ee Carron ( 2011 ) for an example using log-normal fields. Moreo v er,
he signal-to-noise ratio of higher-order moments decreases with the
rder of the correlators, and the computational complexity of higher-
rder statistics rises with the order of function chosen. Therefore,
t is important to develop alternative statistics to the hierarchy of

oments. 
Most alternative summary statistics exploit the environmental

ependence of clustering, but differ on the particular definition
f environment. Massara et al. ( 2022 ) showed that the marked
ower spectrum of the galaxy field can impro v e the constraints o v er
he standard power spectrum by a factor of 3–6 for the ν� CDM
arameters. In their method, galaxies are weighted or ‘marked’ with
 function that depends on local density. Marks can be chosen
o that low-density regions are up-weighted, which increases the
ensitivity of the clustering to certain regions of the parameter space.
s opposed to DS, where the density field is sampled around random

entres, marked correlations use the positions of tracers to determine
nvironment densities, and therefore their sensitivity to regions where
here are no galaxies (such as void centres) may be different. 

Uhlemann et al. ( 2020 ) showed that the one-point probability
istribution function of counts-in-cells statistics provides particu-
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arly powerful constraints for �m 

, σ 8 , and M ν . They highlight the
mportance of combining information from different redshift bins in 
rder to maximise information gain, which is something we have 
ot explored in this work but could potentially be promising for DS.
oreo v er, giv en the low number density of our halo catalogues, we

ave not explored the additional information that the PDF might bring 
o DS statistics in full detail. We plan to study how complementary
hese two statistics are in future work. 

Banerjee & Abel ( 2021 ) used the k-nearest-neighbour ( k NN)
istributions of haloes as a way to constrain cosmology. Validating 
heir method with the Quijote halo catalogues, they found that the 
 NN cumulative distribution functions improve the constraints on 
he cosmological parameters by roughly a factor of 4, using the 
cale range 10 < s < 40 h 

−1 Mpc and two redshift slices z = 0,
.5. Naidoo et al. ( 2022 ) has analysed the information content of
he minimum spanning tree (MST), the minimum weighted graph 
hat connects a set of points without forming loops, finding that the

ST breaks common parameter degeneracies in the ν� CDM model, 
ightening the constraints on M ν , h , and n s . 

One could also detect the positions in the cosmic web of tracers of
ifferent environments and use their statistics to constrain cosmology. 
 or e xample, Kreisch et al. ( 2022 ) looked at the constraining power
f cosmic void statistics, finding that the void size function, the 
oid autocorrelation, and the void-halo cross-correlation functions 
rovide tight constraints on M ν on their own. Moreo v er, Bonnaire
t al. ( 2022 ) used the eigenvalues of the tidal tensor to segment the
osmic web into nodes, filaments, walls, and voids, and used them to
ompute their respective power spectra in real space. In this paper, 
e have shown that cross-correlations between the halo field and the 
ifferent environments add additional cosmological information to 
hat of the autocorrelations (see Fig. 11 ). Although the environment 
ere is defined differently from Bonnaire et al. ( 2022 ), we expect that
imilar gains could be achieved through the introduction of cross- 
orrelation using their environment definition. Moreo v er, Bonnaire 
t al. ( 2022 ) assumed that the real space positions of the tracers
ere known when identifying environments, but did not analyse the 

mpact that identifying environments in redshift space could have on 
he resulting cosmological constraints. 

Table 2 summarizes the constraining power of different summary 
tatistics found using the dark matter halos of the Quijote suite of
imulations. We do not include studies based on the dark matter or
alaxy field, since a one-to-one comparison would not be possible. It
ho ws ho w DS can obtain state-of-the-art constraints on the cosmo-
ogical parameters �m 

, M ν , and n s while still obtaining competitive 
onstraints on the remaining parameters. Rather than advocating 
or a particular summary statistic, we highlight the possibility of 
omplementing these different probes, exploiting the degeneracy- 
reaking power that each of them has to offer. We caution the reader
hat our reported cosmological constraints, especially those for �b , 
 , and n s , should not be taken at face value as precise parameter
orecasts for galaxy surv e ys, since the y rely on the estimation of
umerical deri v ati ves that could be considered as not being fully
onverged (see Fig. D1 . Instead, they should be interpreted to assess
he relativ e impro v ement in constraining po wer between dif ferent
ummary statistics that operate on the same data set. 

We have shown that the DS clustering statistics depend on whether 
he density environments are defined in real or redshift space. Real-
pace identified quintiles yield better constraints for all cosmological 
arameters, in particular �m 

and σ 8 , and indeed in Paillas et al. 
 2021 ) it was shown that if one has access to the real-space galaxy
ositions to identify the quintiles in this way, it is possible to
odel the real-to-redshift space mapping of the DS cross-correlation 
unctions analytically using the Gaussian streaming model down 
o ∼ 15 h 

−1 Mpc. Ho we ver, galaxy catalogues in real space are
ot immediately available in observations, and one would have to 
ely on reconstruction algorithms to approximately remo v e RSD 

rom galaxies (Nadathur et al. 2019a ). But, as shown in Section
.4 , reconstruction algorithms could potentially introduce systematic 
rrors in the inferred cosmological parameters when not modelled 
ppropriately, which would then need to be added to the total error
udget. 

When presenting the main cosmological constraints of our anal- 
sis, we have put aside the complications related to theoretical 
odelling and implicitly assumed that we have access to a model

hat can perfectly match the measurements down to 10 h 

−1 Mpc .
n analytical prediction of how the multipoles of DS statistics 

hange with cosmology is a challenging task. We plan to work
n a simulation-based model to allow for a comparison between 
imulations and data, which will be presented in a future paper. This
ramework could potentially allow us to directly emulate the redshift- 
pace DS multipoles, without the need for reconstruction. Moreo v er,
e have focused here on DS statistics for dark matter halos, but
e will work on simulation-based models for the DS statistics of
alaxies. We expect DS to set tight constraints on environment-based 
ssembly bias (Xu, Zehavi & Contreras 2021 ). 

We note that since the different samples obtained through DS are
xpected to share the same sample variance, they can also make
se of sample variance cancellation techniques such as proposed in 
cDonald & Seljak ( 2008 ) and Seljak ( 2009 ). In fact, part of the

ain in signal-to-noise we obtained o v er the standard 2PCF analysis
ight be related to this ef fect. Ho we ver, sample v ariance cancellation

an only meaningfully contribute to the signal-to-noise if the shot 
oise contribution is small, which is not the case for the Quijote
imulations. Ho we ver, DS could be a promising analysis technique to
xploit sample variance cancellation in a future high-density sample 
uch as DESI-BGS (Zarrouk et al. 2022 ). 

Zero-biased tracers have been shown to be a promising way to
chieve optimal constraints on primordial non-Gaussianity (Casto- 
ina et al. 2018 ). Since it is basically impossible to obtain zero-biased
racers through colour or magnitude cuts, DS again might provide a
seful tool for such studies. 
Relati vistic ef fects can only be analysed in the cross-correlation

f differently biased tracers, the signal itself being proportional to 
he difference in galaxy bias (Yoo 2010 ; Bonvin & Durrer 2011 ;
hallinor & Lewis 2011 ). DS might pro v e useful for such studies,
iven the wide range in galaxy bias accessible with this technique. 
Ongoing and upcoming large-area surv e ys, such as DESI (DESI

ollaboration 2016 ), Euclid (Laureijs et al. 2011 ), and Roman
pace Telescope (Green et al. 2012 ), will offer unprecedented 
tatistical precision for galaxy clustering, due to their large volume 
o v erage and galaxy number density. A tremendous amount of
nformation from these Stage-IV experiments will be available 
n the mildly non-linear regime, where the density field is non-
aussian. Methods that can grant access to higher-order statis- 

ical information beyond two-point statistics, such as DS, will 
hus play a key role in extracting cosmological information that 
annot be readily accessed with the power spectrum. This will 
equire per cent-level precision from the modelling side, while 
nsuring that the models can circumvent the observational sys- 
ematic effects that will be inherent to these data sets. A note-
orthy difficulty compared to the idealized scenario of this paper 

s that one will need to account for the selection function of
he surv e y when estimating the o v erdensities around the random
entres. 
MNRAS 522, 606–625 (2023) 
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PPENDIX  A :  T H E  I M PAC T  O F  M I X I N G  

U INTILES  W H E N  ESTIMATING  

V ERDENSITIES  IN  REDSHIFT  SPAC E  

n this section, we examine the contribution to the quadrupole of
uintile autocorrelations in terms of the signal coming from random 

entres that have been correctly identified in redshift space, and those 
hat have been misidentified. 

Let us begin by defining the set of correctly identified random 

oints for DS i as 

 ∩ R = 

{
x ∈ 

(
DS 

Z 
i ∩ DS 

R 
i 

)}
, (A1) 

here superscript Z and R, denote redshift- and real-space identifi- 
ation, respectively. We denote those incorrectly identified as 

 / ∈ R = 

{
x : x ∈ DS 

Z 
i , x / ∈ DS 

R 
i 

}
. (A2) 

or a given density split quintile, DS i , we separate the contribution
o the quadrupole from the two sets as 

qq 
2 = 

( | Z ∩ R | 
N random 

)2 

ξZ ∩ R 
2 + 

( | Z / ∈ R | 
N random 

)2 

ξZ / ∈ R 
2 

+ 2 
| Z ∩ R || Z / ∈ R | 

N 

2 
random 

ξ
Z ∩ R , Z / ∈ R 
2 (A3) 

here | Z ∩ R | and | Z �∈ R | are the number of points correctly and
ncorrectly identified, respectively. The first term in equation ( A3 )
uantifies the anisotropy resulting from missing random centres that 
ave not been correctly identified, the second term represents the 
ontribution of anisotropies present in the random centres that have 
een incorrectly added, whereas the last term quantifies the cross- 
orrelation between those centres that have been correctly identified 
nd those that have been added. 
igure A1. The contribution from correctly (Z ∩ R) and incorrectly classi- 
ed (Z / ∈ R) random points to the quadrupole of autocorrelations. We show 

oth the effect for DS 1 (left) and DS 5 (right), estimated for only one realization 
f the fiducial Quijote simulations. 
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Fig. A1 shows the contribution of each term in equation ( A3 ). For
oth DS 1 and DS 5 , all terms contribute to the o v erall squashing of
he autocorrelation. 

PPENDI X  B:  C O R R E C T I O N  TO  T H E  

OVA R I A N C E  MATRI X  

e now consider how to debias the errors on model parameters
btained from our Fisher-matrix-based procedure given that the 
ovariance matrix C is derived from simulations (equation 12 ) and
ence represents a random draw from a Wishart distribution. The 
ollo wing deri v ation forms part of the analysis presented in Perci v al
t al. ( 2022 ) – see Section 3.1 of that paper – but was not considered
n our context. Consider a Gaussian Fisher information matrix with 
 covariance matrix C , 

 C = 

∂ d 
∂ θ

� 

C 

−1 ∂ d 
∂ θ

, (B1) 

here C is calculated using n sim 

simulations, ef fecti vely being drawn
rom a Wishart distribution 

 ( C| ) = f W 

( C| / ( n sim 

− 1) , n sim 

− 1) , (B2) 

ith expected (true) value . θ are the model parameters and d the
ata vector. 
The true Fisher matrix would be 

  = 

∂ d 
∂ θ

� 

 

−1 ∂ d 
∂ θ

, (B3) 

nd unbiased model parameter error estimates could be obtained by 
nverting this relation if we knew . That is, for the variances quoted
n the model parameters, we want F 

−1 
 , but we use an estimator with

ean 〈 F 

−1 
C 〉 = 〈 ( M C 

−1 M 

� ) −1 〉 , where M ≡ ∂ d 
∂ θ

� 

is a n θ × n bins 

atrix, with n θ the number of model parameters, and n bins the size
f the data vector. 
A property of the Fisher matrix is that 

f ( ( M C 

−1 M 

� ) −1 | ) = 

f W 

(
( M C 

−1 M 

� ) −1 

∣∣∣∣ ( M  

−1 M 

� ) −1 

n sim 

− 1 
, n sim 

− n bins + n θ − 1 

)
(B4) 

see theorem 3.2.11 in Muirhead 1982 ). 
From the expectation of a Wishart-distributed variable [for f W 

( C | R ,
), 〈 C 〉 = νR ] we can write down 

 ( M C 

−1 M 

� ) −1 〉 = 

n sim 

− n bins + n θ − 1 

n sim 

− 1 
F 

−1 
 . (B5) 

hus, we see that we need to use C 

′ 
rather than C , where 

 

′ = 

n sim 

− 1 

n sim 

− n bins + n θ − 1 
C , (B6) 

n order to obtain an unbiased estimator for F 

−1 
 . We note that this is

lose to the Hartlap, Simon & Schneider ( 2007 ) factor, which would
ive 

 

′ = hC = 

n sim 

− 1 

n sim 

− n bins − 2 
C , (B7) 

xcept where n θ is large. This can be easily understood: the factor in
quation ( B6 ) corrects for skewness in both the inversion of C to give
he Fisher matrix and the subsequent inversion of the Fisher matrix
o obtain parameter constraints. The Hartlap factor only corrects for 
he first of these inversions. Thus, the correct factor looks like the
artlap factor, when the number of model parameters is small, and
o additional skewness is introduced by the inversion of the Fisher
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atrix. Ho we ver, if n θ ∼ n bins , the skewness of the second inversion
ancels that of the first, and the factor reduces to unity. 

PPENDIX  C :  ASSESSING  T H E  GAUSSIANI TY  

F  T H E  DENSITY-SPLIT  L I K E L I H O O D  

n this section, we check that the likelihood of DS statistics is dis-
ributed as multi v ariate Gaussian, follo wing the analysis in Friedrich
t al. ( 2021 ). We first compute the χ2 value of the summary statistic
easured in each of the fiducial simulations 

2 
i = 

(
d i ( s) − d̄ ( s) 

)� 

C 

−1 
(

d i ( s) − d̄ ( s) 
)
, (C1) 

here d i represents the value of the summary statistic for the i -th
ducial simulation e v aluated at the pair separation vector s , d̄ ( s) is

he average of the summary statistic over all fiducial simulations at
he pair separation vector s , and C is the covariance matrix estimated
rom all the fiducial simulations. 

If the likelihood of the summary statistic is Gaussian distributed,
he χ2 

i values should also follow a χ2 distribution with degrees of
reedom determined by the number of pair-separation bins. 

Furthermore, if the likelihood is Gaussian, the distribution of χ2 
i 

hould also be very close to that of sampling from a multi v ariate
aussian with a mean given by d̄ and the covariance measured from

he simulations. 
In Fig. C1 , we show how the 2PCF and DS statistics χ2 

i calculated
rom the data follow a very similar χ2 distribution as that of the
andom samples generated from a multi v ariate Gaussian. 
NRAS 522, 606–625 (2023) 

igure C1. A qualitative assessment of the Gaussianity of the likelihoods for t
edshift space (right). The coloured histograms show the distribution of χ2 values, 
istribution with the same mean and covariance as the simulations (pink). The soli
umber of pair separation bins. 
PPENDI X  D :  C O N V E R G E N C E  O F  FISHER  

ORECASTS  

he results presented in Section 5.2 are based on Fisher matrices
stimated using a finite number of mocks. There are two ingredients
hat are needed to calculate them: the deri v ati ves of the multipoles
ith respect to the cosmological parameters, and the covariance
atrix of the multipoles in the fiducial cosmology. 
Fig. D1 shows how do the inferred errors on the cosmological

arameters change as we increase the number of simulations used
o estimate the deri v ati v es and the co variance matrix. The results
re expressed in terms of the 1 σ errors of the model parameters,
ompared to the limiting case of 1500 simulations for the deri v ati ves
nd 7000 simulations for the covariance matrix, as adopted in the
aper. 

For the covariance matrix, a tight convergence is guaranteed even
hen using a relatively small number of simulations: the errors on

he parameters change by less than 2 per cent when using between
000 and 4000 realizations, and by less than 1 per cent when using
ore than 4000 realizations. 
The number of mocks that is used to estimate the deri v ati ves has

 strong impact on the inferred errors on the parameters. Only when
sing more than ∼1100 realizations, we can expect fluctuations in
he errors of less than 10 per cent for all parameters. 

We have also explicitly checked that a similar convergence is
chieved for the 2PCF multipoles, as well as for the density-split
ultipoles identified in real space, both for Quijote and the Gaussian
ocks presented by the end of Section 5.2 . 
he 2PCF (left), DS identified in real space (middle) and DS identified in 
as measured from the Quijote simulations (blue) and a multivariate Gaussian 
d line shows a theoretical χ2 distribution with degrees of freedom set to the 
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Figur e D1. Conver gence of the constraints estimated through the Fisher matrix. The left-hand panel shows the 1 σ errors on each model parameter as a function 
of the number of mocks used to estimate the covariance matrix, where the errors are normalized by the default case when N cov = 7000. The right-hand panel 
shows the same convergence tests but for the number of mocks used to estimate the deri v ati ves, where the errors are normalized by the default case N deriv = 

1500. The grey shaded bands show regions where the agreement is better than 10 per cent. The dashed lines show the variation in number of mocks compared 
to the default cases, either N cov /7000 (left) or N deriv /1500 (right). 
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