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ABSTRACT

We present MGLENS, a large series of modified gravity lensing simulations tailored for cosmic shear data analyses and forecasts
in which cosmological and modified gravity parameters are varied simultaneously. Based on the FORGE and BRIDGE N-body
simulation suites presented in companion papers, we construct 100 x 5000 deg” of mock Stage-IV lensing data from two 4D
Latin hypercubes that sample cosmological and gravitational parameters in f{R) and nDGP gravity, respectively. These are then
used to validate our inference analysis pipeline based on the lensing power spectrum, exploiting our implementation of these
modified gravity models within the COSMOSIS cosmological inference package. Sampling this new likelihood, we find that cosmic
shear can achieve 95 per cent CL constraints on the modified gravity parameters of logo[ fz,] < —4.77 and log;o[Hor.] > 0.09,
after marginalizing over intrinsic alignments of galaxies and including scales up to £ = 5000. We also investigate the impact of
photometric uncertainty, scale cuts, and covariance matrices. We finally explore the consequences of analysing MGLENS data with
the wrong gravity model, and report catastrophic biases for a number of possible scenarios. The Stage-IV MGLENS simulations,
the FORGE and BRIDGE emulators and the COSMOSIS interface modules will be made publicly available upon journal acceptance.

Key words: gravitational lensing: weak —methods: numerical —dark energy —dark matter —large-scale structure of Universe.

1 INTRODUCTION

Recent measurements from dedicated cosmic shear surveys such as
the Kilo Degree Survey' (Asgari et al. 2021; van den Busch et al.
2022), the Dark Energy Survey? (Amon et al. 2021; Secco et al.
2022), and the HyperSuprime Camera Survey? (Hikage et al. 2019;
Hamana et al. 2020) have established weak gravitational lensing
as one of the most competitive probe of the dark sector of our
Universe. In addition to constraining key parameters such as the
total matter abundance 2y, the clustering amplitude og and the
dark-energy equation of state wy, lensing data have also been used to
test the gravitational sector. Indeed, the matter density field could
be affected by deviations from the theory of General Relativity
(GR) on cosmic scales, where the presence of a fifth force would

* E-mail: joachim.harnois-deraps @ncl.ac.uk
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3HSC:www.naoj.org/Projects/HSC

increase the clustering in a manner detectable by lensing (Schmidt
2008). In most viable models, a screening mechanism is invoked
to suppress the impact of modified gravity (MG hereafter) on small
scales or high-density regions, as required to satisty the tight Solar
System constraints on GR (Hu & Sawicki 2007). Screening can be
achieved in a number of ways, including: 1 - Chameleon mechanism
(Khoury & Weltman 2004a), in which the range of the fifth force is
decreased in regions of high space—time curvature, thus, effectively
hiding the additional force; 2 - Symmetron (Hinterbichler & Khoury
2010; Hinterbichler et al. 2011), in which the coupling of the scalar
field mediating the fifth force is density dependent; 3 - Vainshtein
screening (Vainshtein 1972), in which the screening effect is sourced
by the second derivative of the field value and happens mostly on
small scales; 4 - k-mouflage screening (Babichev, Deffayet & Ziour
2009). We refer to reader to Koyama (2016) for a review on modified
theories of gravitation.

In any case, a clear detection of the resulting excess clustering
in galaxy surveys is made difficult by the large uncertainty on the
galaxy bias, especially on small non-linear scales. Weak gravitational
lensing, however, naturally emerges as a potentially cleaner probe
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of MG, being unaffected by this severe limitation (Schmidt 2008).
While travelling through the foreground large scale structure on its
way to our telescopes, the light emitted by distant galaxies acquires
coherent distortions, which we measure in cosmic shear surveys.
Recently, Harnois-Déraps et al. (2015b) constrained a series of
MG models from the cosmic shear analysis of the Canada—France—
Hawaii Telescope lensing survey in a pathfinder analysis. Upgraded
investigations including a number of systematics inherent to cosmic
shear data have since been carried out with the KiDS and DES
data (Joudaki et al. 2017; Abbott et al. 2019; Troster et al. 2021;
DES Collaboration 2023), however the constraining power on MG
remains weak and model-dependent. As discussed in the above
references, exploring multiple MG hypotheses is essential in light of
the current Sg = o0g+/21,/0.3 tension between low- and high-redshift
cosmological data analyses (e.g. Heymans et al. 2021), although it
likely will not be the sole solution since MG moves Sg upwards in
both weak lensing and CMB data (Troster et al. 2021), preserving
the tension.

In these previous analyses, the constraints on MG parameters are
derived from measurements of lensing two-point statistics, either
the two-point correlation functions or the lensing power spectrum.
These choices of summary statistics are largely motivated by the
simplicity of their modelling, which involves tractable modifications
to the matter power spectrum that are well measured from N-
body simulations. Recent computational efforts led to public power
spectrum emulators, which predict the enhancement of clustering
for a variety of MG models, over a wide range of cosmological
parameters*3:67.8

It is expected that two-point statistics are not optimal for con-
straining MG, largely due to the fact that the screening mechanism is
typically density-dependent. Instead, statistics that are more sensitive
to low-density regions, for example those measuring signals around
underdense regions (e.g. Barreira et al. 2017; Davies, Cautun &
Li 2019) or upweighting these with marked correlation functions
(Armijo et al. 2018; Herndndez-Aguayo, Baugh & Li 2018; Peel
et al. 2018), have been shown to better constrain the parameters
that describe a fifth force. The main difficulty with these alternative
measurement methods is the absence of theoretical models to
describe this signal, forcing one to rely on emulators trained of a
large number of accurate weak lensing simulations to facilitate their
interpretation.

Searching for modifications to GR is a complicated enterprise,
since different theories predict sometimes radically different effects
on the formation of large-scale structures, making this a model-
dependent search. Moreover, among all existing MG simulations,
only a few have been designed to enable the extraction of weak
lensing statistics at the field level, including for example the DUST-
GRAIN Pathfinder (Giocoli, Baldi & Moscardini 2018), in which MG
models were used to co-evolve dark matter and massive neutrinos.
These simulations have shown again that non-Gaussian statistics
are better suited to break down the known degeneracy between the
increase in structure formation caused by the fifth force, and the
decrease caused by neutrino free-streaming. Other simulation efforts
studying weak lensing statistics include that of Higuchi & Shirasaki
(2016), Barreira et al. (2017), Shirasaki et al. (2017), and Li &
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SMGcAMB:github.com/sfu-cosmo/MGCAMB
SFORGE:bitbucket.org/arnoldcn/forge_emulator
7HMCODE:github.com/alexander- mead/HMcode
8REACT:github.com/nebblu/Re ACT

MGLENS 6337

Shirasaki (2018), which examine various non-Gaussian statistics in
light cones produced by the ECOSMOG modified-gravity N-body
solver (Li et al. 2012). Fast approximate N-body methods such as
MG-COLA (Valogiannis & Bean 2017) are generally not accurate
enough to model the small scales physics probed by lensing, however
speed-up of the MG sector as in Herndndez-Aguayo et al. (2022)
might prove helpful to reduce the computational cost overhead in the
future.

We present in this work the first suite of MG weak lensing
simulations designed for the analysis of current cosmic shear surveys.
Based on the FORGE (F Of R Gravity Emulator) simulations described
in Arnold et al. (2022, hereafter A21) and the BRIDGE (BRaneworld-
Inspired DGP Gravity Emulator) simulations presented in Cuesta-
Lazaro et al. (in preparation), the Modified Gravity Lensing Sim-
ulations (MGLENS) consist of two suites of lensing maps in which
three cosmological and one modified gravity parameters are varied
on a Latin hypercube over a volume that encloses most of the 2o
posterior allowed by current lensing surveys. The two MG scenarios
are modelled separately, and their respective parameters capture
the strength of the deviations from GR in the widely studied f(R)
(Hu & Sawicki 2007) and the normal branch of the DGP (nDGP
hereafter, see Dvali, Gabadadze & Porrati 2000) gravity models,
respectively. With its 2 x 50 nodes, MGLENS has enough sampling
points to emulate with better than 2.5 per cent accuracy most lensing
statistics. This is timely, as upcoming surveys might be able to place
stringent constraints on MG even with two-point statistics when
restricted to specific gravity models (Bose et al. 2020), however
even stronger constraints can be achieved with non-Gaussian lensing
probes, and the latter can also help us to explore the full degeneracy
between different gravity models and cosmology (Davies et al.
2019).

As a first application, we use MGLENS to validate a cosmic
shear analysis pipeline based on the emulation of the matter power
spectrum assuming either f{R) or nDG gravity models. We next
proceed to forecast the constraining power of upcoming Stage-
IV lensing surveys on the MG parameters, and investigate their
degeneracy with cosmological parameters for a few representative
scenarios of interest. In our second application, we deliberately
analyse MGLENS simulations with the wrong gravity model and
explore the impact on the inferred cosmology and gravity parameters.
Upcoming companion papers will use these simulations in forecasts
based on higher order statistics, where Gaussian process regression
(GPR) or neural network (NN) emulators are used to interpolate
the statistics between the nodes and therefore model the likelihood
over the full parameter volume for these alternative measurement
methods. We emphasize that the MGLENS suite is designed to cover
a parameter space that is broad enough to enable the analysis
of Stage-IIl lensing surveys, as done in Harnois-Déraps et al.
(2021).

The first part of this paper summarizes the gravitational physics
that are captured by the FORGE and BRIDGE simulation suites
(Sections 2.1 and 2.2), while Section 2.3 includes a brief overview
of their numerical implementation within the high-performance N-
body code AREPO-MG (Arnold, Leo & Li 2019; Hernandez-Aguayo
et al. 2021). After reviewing the construction of our matter power
spectrum emulator in Section 2.4 and the modelling aspects of
weak lensing two-point statistics in Section 2.5, we describe and
validate our weak lensing simulations in Section 3. We validate
our cosmological inference pipeline in Section 4, then present the
results from a series of likelihood analyses where we investigate the
detection potential from measurements of the weak lensing power
spectrum in a Stage-1V survey such as those to be probed by the Vera
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Rubin,’ Euclid,'® or Nancy Grace!' telescopes. Finally, we explicitly
demonstrate in Section 4.4 the model-dependence of such searches
by running cosmological analyses on MG data assuming the wrong
gravity model, recording extreme biases both on the gravity and
cosmology sectors.

Throughout this paper we assume a flat ACDM universe.

2 BACKGROUND

Although GR is well tested on small scales in laboratory experiments
and in the Solar system (e.g. Will 2006, 2014), possible deviations are
at the moment largely unconstrained on cosmological scales (Mpc
and above). To quantify such deviations in a self-consistent way, it
is useful to develop an array of simple representative models to be
used as templates for making predictions, which can be compared
to observational data. There is a large (probably infinite) number of
currently viable MG models, and this paper focuses on two of the
most widely studied examples, namely the Hu-Sawicky f{R) and the
nDGP gravity models, which we introduce in this section. Note that
although these do not support self-acceleration and therefore require
dark energy as well, they are two viable, representative MG models
that can guide our search.

2.1 f(R) gravity

The modified Einstein equations in f{R) gravity can be obtained from
amodified Einstein—Hilbert action in which the standard Ricci scalar
R is supplemented by an algebraic function, f{R) (hence its name):

d*x/=8(R + f(R)) + Sm(guvs ¥i)- (1

167G
In this expression G is the gravitational constant, g, is the metric,
g = det(g,,) is its determinant, and Sy, the action of the matter field,
which depends on the metric and the different matter fluids ;.
Varying S with respect to g,,, we obtain:

1
G/w + fRR;/,v - gpw (Ef(R) - DfR) - vu,vva = SJTGTE, (2)

where R, and G, are respectively the Ricci and Einstein tensors,
V. is the covariant derivative compatible with the space—time metric
guw (e V,g,, =0), 0=VIV, =g"V,V, is the d’Alembert
operator in the 4D space-time, fr = df(R)/dR and T}, is the energy—
momentum tensor for matter.

Despite the small modification to the standard Einstein—Hilbert
action, equation (2) differs from the usual Einstein equation in that
it contains up to fourth-order, rather than second-order, derivatives
of the metric, as a result of the terms O f and V, V,fr. However,
both terms are second derivatives of a scalar quantity fz, which
indicates that the fourth-order differential equation (2) can be written
as a second-order Einstein equation if f; is treated as a (new) scalar
degree of freedom (the scalaron field), which has its own evolution
equation obtained by taking the trace of equation (2). Namely:

dVerr(fr)
dfg '

where py, is the non-relativistic matter density of the Universe — this
terms originates from the trace of the energy momentum tensor, and

1
Ofr =3[R = frR+2f(R) +87Gpul = 3

9Rubin:www.lsst.org
10Euclid:euclid-ec.org
U Grace:wfirst.gsfc.nasa.gov
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thus relativistic species do not contribute directly (i.e. through direct
coupling) to the dynamics of the scalar field. In the second equality
above we have defined an effective potential, Veg(fg), of the scalaron
field.

Cosmological structure formation can be well described by
the quasi-static and weak-field approximations (see e.g. Barrera-
Hinojosa et al. 2021, for some quantitative analyses of beyond-
Newtonian effects in cosmological settings). The former approxima-
tion applies in the limit of slow, non-relativistic, motions of matter,
where the time derivatives of the metric potentials can be neglected;
the latter assumes that the potentials created by large-scale structure
are shallow so that their higher order products can also be ignored.
In the presence of a scalar field as in the case of f(R) gravity, these
approximations also apply to the scalaron itself since, as we will
show shortly, the latter can be considered as the potential of the
modified gravitational force. Note that in general the quasi-static
approximation only means that the perturbations of the scalaron
have negligible time derivatives compared to spatial derivatives,'?
though in the case of f{lR) models with a viable chameleon screening
mechanism, this can apply to the full scalar field fz. Under these
approximations, the modified Einstein’s equation (2) and the scalaron
equation of motion (3) become:

167G 1 _
V2o = %az(pm — Bu) + 2@ (R(f2) = R, @)
2
V2 fr = —%[R(fR) — R+ 87G(pm — )], ®)

where & is the gravitational potential, V is the gradient operator in
3D space, and a is the scale factor. Overbars denote the cosmic mean,
or background, value of the quantity. Note that the modified Poisson
equation (4) can be rewritten as

V20 = 47 Ga’Spy — 1V2 6
- Pm 2 va ( )

by using equation (5), with 8o, = pm — Pm. This shows that —fz/2
can be considered as the potential of the modified gravity force.

In this work we consider the Hu & Sawicki (2007) f{R) model, for
which the functional form of f{R) is given by

zcl (_R/m2)n

JRYy = = Ry + 1

@)
where m? = Q,, HZ with Hy and Qy,, respectively, the values of the
Hubble parameter and the matter density parameter today, while ¢,
¢, and n are free dimension-less model parameters, with n a non-
negative integer. In the limit |R| > m? (which holds for the entire
cosmic history up to today in the models to be studied), the scalaron
field can then be expressed as

_ RO n+1
fr = —| T, (;) . ®)

where Ry, fr, are, respectively, the present-day values of the
background Ricci scalar and fr. We fix the value of the power-
law index to n = 1 for simplicity (other values of n, such as n =
0 and 2, lead to qualitatively similar behaviours of the model, see
e.g. Ruan et al. 2022) and we vary f, in the range [107*%; 10779],
where larger values lead to larger deviations from GR. See Arnold
et al. (2022) and Table Al below for a complete list of the exact
fr, values included in this paper, along with other cosmological

12See e.g. Oyaizu (2008); Bose, Hellwing & Li (2015) for some results
showing the goodness of the quasi-static approximation in f{R) gravity.

20z Arenuer 0g uo 1sanb Aq |8Z€9Z//9EE9/¥/GTG/PI0IME/SEIUW/ W0 dNO"dlWapED.//:SA)Y WOy PAPEO|uMOQ


https://www.lsst.org
https://euclid-ec.org
https://wfirst.gsfc.nasa.gov

parameters used in our simulations. Note that hereafter we use f,
instead of fRO to improve notation.

It is well established that viable f(R) models for the late-time
Universe must invoke the chameleon screening mechanism (Brax
et al. 2004; Khoury & Weltman 2004a, b; Mota & Shaw 2006; Brax
et al. 2008), an intrinsically non-linear behaviour originating from
the functional form of f{R). The R(fz) term in the scalaron equation of
motion, equation (5), can be considered as a description of the non-
linear self-interaction of the scalaron and, along with its interaction
with matter, this determines how f; varies in space. If appropriate
parameter values are adopted, for dense spherical objects — such
as dark matter haloes in this toy example — inside a homogeneous
medium of matter, f; will transitions from the background value fx
far from the object to nearly zero at its centre, and the transition takes
place in a thin shell at the boundary of the object, which means that
fr stays constant in all but a thin shell. Because f; is the potential
of the modified gravity force, this means that this force vanishes,
or is efficiently ‘screened’, for most parts inside and outside the
object. Another way to see how this screening mechanism works is
by looking at equation (6), which shows that inside the object where
fr is nearly identically zero, the modified gravity force vanishes.

Large-scale structures offer a variety of environments, from high-
density regions such as the cores of clusters and galaxies, to low-
density regions in cosmic voids. As a result, these are ideal places
for investigating signatures of chameleon screening and constraining
f(R) gravity. However, it also poses a computational challenge as
the non-linear nature of the chameleon mechanism can only be
accurately predicted with high-resolution simulations such as FORGE.

2.2 nDGP gravity

In the gravitational model of Dvali, Gabadadze & PorratiDvali et al.,
all particle species are assumed to be confined to a 4D hypersurface
or ‘brane’, while gravitons can propagate along a fourth spatial
dimension and leak into the 5D ‘bulk’ space—time. The action of
this braneworld model is given by

_ e R 5 — R®
S= \/brane ¢ x”lénG * x/b‘ulkcl * g( ) 167TG(5> ! (9)
where g, R, G are the values on the brane and have the same meaning
as before, while the counterpart bulk quantities are denoted by g®,
R and G®.

A new parameter can be introduced from the ratio between G©
and G, known as the cross-over scale and denoted by r.:

1G®

=G
This can be considered as a critical scale above (below) which gravity
is well described by the 5D (4D) part of the action. Since 7. is a
dimensional quantity, its value is often quoted via Hyr./c, which
can be considered as the ratio between the cross-over scale and the
horizon size ¢/H, (the speed of light c is dropped out hereafter since
¢ = 1 in natural units).

The DGP model has two distinct branches of solutions. The first
is a self-accelerating branch (sDGP), which supports an accelerated
late-time cosmic expansion without the need for exotic dark energy
species. The sDGP model, however, is not deemed as a viable
alternative to standard ACDM due both to theoretical difficulties such
as ghost instabilities (e.g. Luty, Porrati & Rattazzi 2003; Charmousis
et al. 2006) and to tensions between its predictions and observational
data sets (e.g. Fairbairn & Goobar 2006; Maartens & Majerotto 2006;
Fang et al. 2008; Lombriser et al. 2009). In this paper, we work with

10)

Ie
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the normal branch (nDGP; Schmidt 2009) model, for which the
modified Friedmann equation is given by

H(a)
Hy

in which @, =1/ (4H02rf). Similarly to the Hu-Sawicky f(R) model,
the nDGP model does not support self-acceleration, and as a result
some additional dark energy component has to be added in order to
explain the late-time cosmic acceleration. This naturally makes it less
appealing as an alternative to ACDM, but it is nevertheless widely
used in studies of modified gravity as a representative model featuring
the Vainshtein screening mechanism (Vainshtein 1972; Babichev &
Deftayet 2013) and other interesting phenomenology. In this study,
we take advantage of this flexibility by tuning the additional dark
energy component pg(a) such that it counteracts the effect on the
background expansion and gives rise to an expansion history identical
to that of ACDM: the motivation for this is to enforce expansion
histories that are identical between nDGP and ACDM, so that the
two models only differ in terms of structure formation. Therefore,
departures from GR are quantified exclusively by the parameter Hyr..
As we can see from equation (11), if Hyr, — oo then the expansion
of the Universe reduces to ACDM, with the additional dark energy,
whose density parameter is denoted by Qpg(a) in equation (11),
closer to a cosmological constant A.

Cosmological structure formation in the nDGP model is again
governed by a modified Poisson equation:

= Va3 + Qe(@) + e — Ve, (11)

V2® = 47 Gd’$ lV2 12
=4nGa pm+2 ¥, (12)

and an equation of motion for the scalar field (¢) (Koyama & Silva
2007):

r? 87 G a?
V2 < V29)? —(V,;V )] = 80m, 13
0t e [(V?9)* — (Vi V)] 3 (13)
where
Qua™3 + 29,

H
=142Hr 14+ 5 ) =1
Bla)=1+ r(+3H2) +

20/ Qe(2ma=? + Q)

(14)

is a time-dependent function, with Q, =1 — Q. In the nDGP
model we consider here, 8 decreases over time is always positive.
The field ¢ is called the ‘brane-bending mode’, a scalar quantity
describing the position of the 4D brane along the fourth spatial
dimension.

Again, from equation (12), we can observe that the brane-bending
scalaron field acts as the potential of a fifth force. We can deduce
from equation (13) that its solutions have very different behaviours in
two opposite limits: (i) low-density regions, where V2¢ is small and
so the (V2¢p)? and (V;V /-(/))2 terms in equation (13) are subdominant
— in this case we have V2p ~ 87 Ga’8pn/(38), and so the strength
of the fifth force is proportional to that of the standard Newtonian
force, leading to an enhancement of Newton’s constant from G to
(1 + 1/3B)G:; (ii) high-density regions, where V>¢ is large, but the
quadratic terms in equation (13) become even larger, so that Vz(p <
871 Ga’8p,/(3B) — in this case the fifth force term in equation (12)
is much smaller than the standard Poisson term. This is essentially
the Vainshtein screening mechanism at work.

The BRIDGE simulations used in this work cover nDGP models with
Hyr, values between 0.25 and 10 (see Table Al for further details,
and Cuesta-Lazaro et al., in preparation). These simulations share
the same cosmological parameter values and initial conditions as the
FORGE simulations, and differ only in the gravity model. Moreover,
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we matched the order in the strength of the MG parameters, such
that models close to GR in FORGE are also close to GR in BRIDGE.

2.3 N-body simulations

To date, cosmological simulations are the only known tool for making
accurate predictions of physical quantities and observables of the
large-scale structure down to the small non-linear scales where
perturbation theory fails. The need for simulations in the study of
modified gravity models is even stronger because of the additional
non-linear behaviours caused by the fifth force. Over the past decade,
various simulation techniques and codes have been developed for
such models (see e.g. Winther et al. 2015; Li 2018; Llinares 2018, and
references therein, for some reviews and code comparison results).

The simulated lensing data described in this paper are based on
the FORGE and BRIDGE simulation suites described, respectively, in
A21 and Cuesta-Lazaro et al. (in preparation). Four parameters are
varied simultaneously, namely the matter density parameter 2,
the structure growth parameter Sy = 0g+/$2,/0.3 where o7 is the
usual root-mean-squared of the density fluctuations smoothed on
8 h~! Mpc scales, the reduced Hubble parameter / and either f,
or Hyr. for the FORGE or the BRIDGE suite, respectively. These two
4D parameter spaces are each sampled at 50 nodes organized in
a Latin Hyper cube, as detailed in Table Al. Details of the N-
body calculations are provided in the references mentioned above,
but we provide here a brief summary of the numerical methods
used.

For the FORGE simulations, the non-linear evolution of the particle
distribution is obtained by the AREPO Poisson solver (Springel 2010;
Weinberger, Springel & Pakmor 2020), which is used to compute
the standard Newtonian force. This is augmented by a multigrid
relaxation solver for equation (5) based on a second-order-accurate
finite difference scheme, which computes the fifth force arising from
A(R) gravity on the local grid elements. Adaptive mesh refinement
(AMR) is adopted, in which grid elements where the matter density
exceeds some threshold are refined (split) into eight child cells with
doubled spatial resolution: this ensures that higher resolution is used
inregions where a higher accuracy is needed in the scalar field solver.
The additional force is then interpolated onto the positions of particles
and used to update their velocities using the standard leapfrog
scheme, achieving second-order accuracy in the time integral. The
relaxation algorithm described in Bose et al. (2017) and extended by
Ruan et al. (2022) has been implemented, improving the numerical
stability and convergence rate; complete details on AREPO-MG can be
found in Arnold et al. (2019).

The BRIDGE simulations are also carried out with AREPO and using
multigrid relaxation with the same code structure, except that we
are instead solving the differential equation governing the dynamics
of the brane-bending mode ¢ given by equation (13). Since this
equation differs in type from equation (5), the algorithm introduced
in Li, Zhao & Koyama (2013a); Li et al. (2013b) is used instead to
ensure numerical stability. To further improve the efficiency of the
code, the scheme described in Barreira, Bose & Li (2015) is used,
where, instead of solving the scalar field equation on all levels of
mesh refinements (labelled by /), it is only solved on the lowest few
levels; in other words, the scalaron solver is truncated at some level
| = liyne, and the solutions of ¢ on level /iy, is interpolated to all
higher levels. Barreira et al. (2015) show that this truncation, while an
approximation, leads to negligible errors in the quantities of interest
in cosmology. This is because the Vainshtein screening mechanism
is very efficient at suppressing the fifth force in high-density regions,
which happen to be the highly refined regions of the simulation grid;
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while the truncation and interpolation causes certain errors in the
calculated fifth force in such regions, these are small errors on a
small quantity, which have a small overall impact on the simulation
results. For further details of the implementation in AREPO-MG, see
Herndndez-Aguayo et al. (2021).

Each of the FORGE and BRIDGE simulation suites consists of a
total of 200 collision-less, dark-matter-only runs covering the 50
f(R) and nDGP models mentioned above. For each node we have run
two independent realizations with initial conditions chosen such that
the sampling variance is greatly reduced in the mean matter power
spectrum (see A21, for more details), at two different resolutions. The
high-resolution simulations employ 1024° particles in a 500 2~! Mpc
simulation box, at a mass resolution of m, >~ 9.1 x 109h_1Mol3,
while the low-resolution simulations evolve 512% particles in a
simulation box size of 1500 ~#~' Mpc, with a mass resolution of m,
>~ 1.5 x 10"2h~' M, (the values of m, quoted here are for the fiducial
ACDM node). The gravitational softening lengths are, respectively,
15 and 75k~ 'kpc for the high- and low-resolution runs. For all
simulations, we have fixed the power index of the primordial power
spectrum, the present-day baryonic density parameter and the dark
energy equation of state to ng = 0.9652, 2, = 0.049199, and w =
—1. Note that the lensing maps described in this paper only use the
high-resolution runs, and that corresponding GR-ACDM simulations
exist for all 50 nodes.

All simulations start at z;,; = 127, with initial conditions (ICs)
generated using the 2LPTIC (Crocce, Pueblas & Scoccimarro 2006)
code, an IC generator based on N-GENIC (Springel et al. 2005)
that uses second-order Lagrangian perturbation theory to compute
more accurately the initial particle displacements for a given matter
power spectrum. The linear matter power spectra for all models are
generated with the public Boltzmann code CAMB (Lewis, Challinor &
Lasenby 2000), with the cosmological parameters specified in
Table A1. Note that for all f{R) and nDGP models, we assume that the
linear power spectra are identical to their ACDM counterparts, i.e.
the ACDM models with the same cosmological parameters — this is
a good approximation since at the initial time (z = 127) any effect of
modified gravity is negligible for the models considered here. In other
words, they share the same primordial amplitude A;. Finally, for each
cosmological model, we pre-compute the redshifts z at which particle
data'# have to be written to disc such that the consecutive projections
of half-simulation boxes can be used to construct contiguous light
cones up to z = 3.0. We describe the construction of our mass
shells in Section 3.1. We note that the matter power spectrum of
the FORGE simulations has been shown in A21 to agree within a
few per cent with HALOFIT for node-00 up to k = 10h~' Mpc, and
to a slightly lesser level with approximate methods (MG-COLA)
and fit functions REACT for non-GR cases. The P(k) emulator itself
is calibrated up to z = 2, beyond which the departure from GR
are highly attenuated. Because of projection effects, the connection
between k-scales and angular separations is not clear, however we
show in Section 3 that this few per cent level of accuracy generally
holds at least up to multipoles of £ = 5000. We have also verified
with simulations ran with higher mass resolution that scales up to
k = 8.0h~! Mpc are converged to better than two per cent, meaning
that resolution limits only affect multipoles larger than £ ~ 5000 (see
Appendix B).

13This number is for the fiducial ACDM model, or Node 0. The actual mass
resolution varies in the 50 nodes due to their different cosmological parameter
values.

4Dark matter haloes are also extracted and will be used in companion papers.
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It is important to emphasize here that the g and Sg quantities
reported in this work correspond to the input truth values at which
the GR-ACDM N-body simulations are run. When turning on MG
however, the non-linear excess structure generated by the fifth force
increases the late time og values by an amount difficult to predict,
hence our choice of labelling the simulations by their GR-ACDM
quantities."

Although this paper focuses on two-point statistics, it serves the
additional purpose of presenting the infrastructure necessary for
companion papers based on lensing statistics beyond two-point.
One of the key ingredients for such measurements is the covariance
matrix, for which analytical solutions generally do not exist. We
therefore use the public SLICS simulations.'® For this, a suite of
954 fully independent N-body runs that evolve 1536° particles in a
box size of 505 h~! Mpc on the side. These are all produced at a
fixed cosmology'” and vary only in their initial conditions, therefore
providing an ideal tool for estimating sample covariance. We refer
the reader to Harnois-Déraps & van Waerbeke (2015) for full details
on the SLICS N-body ensemble. Both of these approaches currently
assume GR and are therefore designed to analyse data in which we
search for weak MG signature. We decided to keep this matrix fixed
even for stronger models, which results in error bars that are likely
underestimated. A non-GR analytical covariance matrix could be
obtained by using the FORGE P(k) emulator instead of HALOFIT in its
calculations, which would likely result in slightly larger error bars
(unless it is ran at a cosmology with smaller Sg) which would make
MG detection even more difficult. The most accurate posterior is
obtained when the covariance matrix is evaluated at the best-fitting
cosmology. This does not always make a noticeable difference in the
end (see e.g. Burger et al. 2023), hence we leave for the future the
study of the dependence covariance matrix on gravitocosmological
parameter.

The SLICS, FORGE and BRIDGE simulations are post-processed
uniformly, creating mock survey light cones suitable for cosmologi-
cal inference. Details on the post-processing involved are presented
in Section 3.1. Beforehand, we first introduce the basic ingredients
that enter our theoretical predictions.

2.4 Modified gravity emulators

The information content of the large-scale structure is largely
encapsulated in the matter power spectrum, Ps(k; z), a two-point
statistics that is directly measurable from the matter density fields
8 in simulations and that can be inferred from galaxy surveys
via clustering or cosmic shear measurements. For example, the
N-body simulations described in A21 are used to construct the
public P; FORGE emulator, obtained by training a Gaussian process
regressor (GPR) on the measurements obtained from the 50 FORGE
nodes; the emulator provides predictions that are accurate to better
than 2.5 percent up to k = 10.02Mpc™' over the majority of the
parameter volume.

As an alternative, we use here the same measurements to train
instead fully connected neural networks (FCNN), which are es-
pecially powerful at high-dimensional interpolation (as in Cuesta-
Lazaro et al., in preparation). We train in this work a neural network
with the same characteristics on both FORGE and BRIDGE data, as a

15We use o and Sg in place of O’SGR and 58GR to declutter notation.
16SLICS: slics.roe.ac.uk

7GR-ACDM SLICS cosmology: 2, = 0.2905, og = 0.826, i = 0.6898,
ns = 0.969.
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function of redshift. Because the number of training simulations is
relatively small, we found empirically that larger networks tend to
overfit the training data. We ran hyperparameter optimization with
OPTUNA,'® and as long as the number of hidden units was kept small
we found no significant benefits of further optimizing the model. In
the end, we opted for a neural network defined by an input layer
composed of the four cosmological parameters (2, 4, og and the
modified gravity parameter, either fro for fiR), or Hyr. for nDGP
gravity) plus the redshift z, two hidden layers of 256 units each,
and an output layer that returns the power spectrum evaluated at
the different k-bins. In between hidden layers, we use a Gaussian
error linear unit activation function (Hendrycks & Gimpel 2016) to
add a differentiable non-linearity to the relation between inputs and
outputs.

To find the optimal parameters that reproduce the statistics mea-
sured in the N-body simulations, we minimize the £; loss function,
defined as:

N
1 i i
L= N § :|ytruc - yprcdiclcd| (15)
i=0

using the Adam optimizer (Kingma & Ba 2014). In the above
expression, the y* are the true and predicted matter power spectra for
each of the simulations and each of the snapshots in the simulation
suite, and N is the batch size used in the training.

Moreover, we avoid fine-tuning the learning rate with a scheduler
that reduces the learning rate by a factor of 10 when the validation loss
does not improve after 30 epochs. We also stop training the model
when the validation loss does not improve after 100 epochs. An in-
depth description of the emulator and its validation are presented in
Cuesta-Lazaro et al. (in preparation), together with the emulator’s
code. More precisely, the emulator outputs the modified gravity
enhancement factor, B(k, z), which is defined as:

B(k; 2) = Psmc(k; 2)/ Ps Hatorrr (k' 2). (16)

Here Ps mc(k;z) is the measurement for a modified gravity model
from either the FORGE or BRIDGE simulations, and Ps porr(k; 2)
is the prediction by HALOFIT (Takahashi et al. 2012) for the
ACDM counterpart of that model (we refer the reader to A2l
for a more complete description of how this is achieved in
practice). The MG enhancement can be as high as 40 percent
depending on the model, for the FORGE nodes. We find that the
FCNN slightly outperforms the GPR at modelling the enhancement
factor and is therefore our method of choice, for all gravity
models.

Finally, we notice that in the weak fg, limit the emulator does not
converge exactly to the GR case: residual deviations of a few per cent
are observed at all scales. These same residuals are also present in the
power spectrum training set, as reported in fig. 5 of A21. Although
generally small, some segments of our analysis require a smooth
convergence to GR, hence we linearly interpolate the emulated B(k)
in the range logo[ fz,] = [—7, —6.0], enforcing B(k) = 1.0 at the
lower end and for any values smaller than —7. The weak nDGP limit
does not show such residuals and hence interpolation is not necessary
in that case.

2.5 Cosmic shear two-point functions
Two-point functions are the primary cosmic shear measurement

methods and exists in different flavours, including two-point cor-

18: OPTUNA: optuna.org
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Figure 1. Normalized redshift distribution of the five tomographic bins
considered in our mock survey.

relation functions, angular power spectra, band powers, or COSEBIs
(see Asgari et al. 2021, for a comparison between some of these).
One of the key advantage of these cosmic shear statistics is that
their modelling can be directly linked to the matter power spectrum,
Ps(k; z). Thanks to an increased precision in the estimation of the
redshift distributions, the lensing catalogues are now routinely split
into different redshift bins, allowing for tomographic analyses of the
data that better measure those parameters impacting the growth rate
of large-scale structure. Specifically, predictions for the cosmic shear
power spectrum C;"/ can be obtained from a Limber integration
over the matter power spectrum via (see Kilbinger et al. 2017, for a
review):

iy XH gi Y L+1/2
Cri =/ q(x)621 0 Pa( +1/ ;z(x)> dy. (17
0 X X

where yxy is the comoving distance to the horizon, and (i, j) label the
different tomographic bins. The lensing kernels ¢'(x) are computed
as:

po 3 (HON\? x [, dzx—x
q(x)-zszm(c) a(x)/x OO )
where n(z) is the redshift distribution of the source galaxies in
tomographic bin i.

The matter power spectrum entering equation (17) can be obtained
from an array of public codes such as HALOFIT (Takahashi et al. 2012),
HMcode (Mead et al. 2021), COSMICEMU (Heitmann et al. 2014),
BACCOEMULATOR (Angulo et al. 2021), or the EUCLIDEMULATOR
(Euclid Collaboration; Knabenhans et al. 2019). Whereas these codes
provide highly accurate predictions tools for many cosmological
models, their gravity model is restricted to that of GR only. We there-
fore generate MG lensing predictions by multiplying the HALOFIT
predictions by B(k; z) as in equation (16), and then inserting the
results into equation (17). The Limber integral is carried out by
cosMosIs!'? cosmology package (Zuntz et al. 2015), which we also
use for parameter inference (see Section 4).

Our mock Stage-IV lensing survey is designed to investigate
some of the conditions that would allow MG to be detected by
upcoming two-point statistics analyses. We opted for a source
redshift distribution described by:

4z
e’
with A = 1.7865, a = 0.4710, b = 5.1843, ¢ = 0.7259. This n(z)
is shown in Fig. 1 and is taken from Martinet et al. (2021a, b) and
Harnois-Déraps, Martinet & Reischke (2022). This sample is further
split into five tomographic bins, each with a galaxy density of ngy =
6.0 gal arcmin? and shape noise of o, = 0.27 per component.

n(z)=A (19)

19cosmosis: cosmosis.readthedocs.io/en/latest/index.html
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Table 1. Properties of our Stage-IV survey. The specifications closely follow
those presented in Martinet et al. (2021a), with negr = 6.0 gal arcmin™2 per
tomographic bin and o = 0.27 per component.

tomo z range (z)

binl 0.0-0.4676 0.286
bin2 0.4676-0.7194 0.600
bin3 0.7194-0.9625 0.841
bind 0.9625-1.3319 1.134
bin5 1.3319-3.0 1.852

20 40 60 80 100

Figure 2. Cross-correlation coefficient matrix of our lensing power spectrum
data vector, defined as r;; = C;;/+/C;iC ;. The upper-left triangle shows the
analytical calculations, while the lower right part is estimated from 954 fully
independent convergence maps constructed from the SLICS (Section 3.1).
The redshift bins increase towards the upper-right corner. We show here the
autocorrelations only to enhance the visibility, but cross-redshift correlations
show a similar level of agreement.

Our method assumes no overlap between the tomographic bin,
a simplifying assumption that does not occur in realistic data
distributions but is of no consequence in a cosmic shear forecast.
A summary of the mock survey properties is presented in Table 1.
We assume a survey area of 5000 deg?, which corresponds to the
total area sampled by our flat-sky simulations at each cosmological
nodes (see Section 3).

Section 4 details our likelihood sampling analysis, which takes
as input a data vector, a covariance matrix, and a theoretical model
in which cosmology, gravity, and nuisance parameters are varied
simultaneously. As our baseline we use an analytical covariance
matrix that describes the mode correlations, the shape noise, and the
sampling covariance expected for the different elements of our data
vector. The calculations are fully detailed and validated in Harnois-
Déraps, Giblin & Joachimi (2019) and Joachimi et al. (2021a) and we
refer the reader to these for more information. In short they include
the Gaussian, non-Gaussian, and Super-Sample Covariance terms
given a cosmology, a tomographic redshift distribution, a survey
area, and binning specifications for the angular multipoles. The non-
Gaussian term requires an expensive trispectrum evaluation, while
the SSC term assumes a circular survey geometry of 5000 deg?. We
show in Fig. 2 the cross-correlation coefficient matrix obtained with

20z Arenuer 0g uo 1sanb Aq |8Z€9Z//9EE9/¥/GTG/PI0IME/SEIUW/ W0 dNO"dlWapED.//:SA)Y WOy PAPEO|uMOQ


https://cosmosis.readthedocs.io/en/latest/index.html

our survey specifications,”’ and compare our results to an estimate
obtained from the SLICS, which we describe in Section 3.1. Aside
some residual noise patterns, both methods completely agree. We
will quantify the impact of switching between these two later on, but
basically the effect is completely subdominant given our statistical
precision. This comparison validates both the theoretical approach
and the SLICS maps, which will be used in companion non-Gaussian
statistics studies.

3 WEAK LENSING SIMULATIONS

The MGLENS weak lensing simulations are constructed by ray-
tracing?' through series of mass shells obtained by collapsing the
particle data either along one of the Cartesian axes (flat-sky method)
or along the radial direction (curved-sky). Both methods have their
pros and cons; we focus mainly on the flat-sky results in this paper
for their ability to probe deeper in the small, non-linear regime,
and discuss the curved-sky method in Appendix A. In either case,
the mass sheets have a comoving thickness equal to exactly half
the simulation box size (i.e. 250 h~! Mpc), and between 15 and 23
shells are needed to continuously fill the light cones up to z = 3,
depending on cosmology. We finally produce convergence maps for
the five tomographic redshift bins shown in Fig. 1. In this paper we
do not train our emulator on statistics measured from these maps and
instead aim for their validation, however this logical extension will
be presented in companion papers.

3.1 Weak lensing maps and power spectra

Our flat-sky method heavily builds from the SIMULLENS algorithm,
the multiple-plane technique described in Harnois-Déraps & van
Waerbeke (2015): at each pre-selected redshift, the particles from
half the simulation volume are projected along the shorter direction
and assigned onto a 122882 grid. This process is repeated with the
other half-volume, and for the other two Cartesian axes, such that six
density planes are extracted per snapshot.

Light-cone mass maps, 6, (0, Ziens), are extracted from the density
planes with an opening angle of 10 deg? and 7745% pixels. At
each redshift, one of the six aforementioned planes is randomly
selected and a random origin offset is added. This means that
correlations between different mass shells are broken, but it was
shown in Zorrilla Matilla, Waterval & Haiman (2020) that this has
a subdominant effect on weak lensing statistics due to the line-of-
sight projection. Closely following Harnois-Déraps et al. (2019),
we repeat this whole ray-tracing procedure in order to create 25
pseudo-independent light cones 8:p(#, Ziens) maps from each N-
body run.?? Periodic boundary conditions are used wherever the
area of the light cone becomes larger than the simulation box
itself.

In the multiple-plane approximation, each of these mass shells acts
as a discrete gravitational lens, distorting the light as it passes through
it. Within the Born approximation, the convergence x experienced
by photons propagating along the direction @ and originating from a

20We use the SLICS cosmology in the analytical covariance matrix calcula-
tions.

2lRay-tracing in this paper assumes the Born approximation.

22We change the random seeds between the 25 cones at a given cosmology,
but use the same 25 seeds for every cosmology node, thereby keeping to a
minimum the sampling variance across cosmological models.
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source redshift distribution n(z) can be computed as:

Ki(e) = Z‘SZD(07 Zlens) qi(X(Zlens))y (20)

lens

where ¢'(x) is the tomographic lensing kernel given by equation
(18), and the index ‘lens’ runs over all foreground lens planes in the
light cone.

The cosmic shear power spectra are estimated from the square of
the Fourier-transformed convergence map, first averaged in annuli of
thickness A¢ = 35 centred on £ € [35-5000]:

CZ’ij = (k' (0K (£))aq, .

with (...)aq denoting an angular average over the solid angle of the
annulus. Our measurements are then rebinned into 25 logarithmically
spaced bands over the same £-range to further reduced the sampling
noise. We refer the reader to Harnois-Déraps & van Waerbeke
(2015) for more details on the numerical implementation of our
lensing power spectrum estimation method, which includes a mass-
assignment de-biasing step; we have also checked that our measure-
ments are consistent with those using the public code LENSTOOLS?
(Petri 2016). Our fiducial cosmological inference excludes £ < 150
modes as these are not well measured on our 10 x 10 deg? patches,
and are affected by the finite lens thickness. The high-¢ limit is an
optimistic scenario, since in the real Universe these multipoles are
plagued with systematic effects such as baryonic feedback, which
are difficult to model and largely uncertain (Chisari et al. 2018). We
therefore consider as well a more conservative scenario that further
excludes the ¢ > 3000 modes. Note that we only extract the auto-
angular power spectra in this work, however it is straightforward to
extend this to include cross-redshift terms as well.

3.2 Validation

As a first validation test, we examine the fractional error between
the C, measured from the FORGE and BRIDGE simulations and
their respective emulator predictions. We can see in Fig. 3 that
the agreement is generally at the few per cent level except for the
lowest redshift bin, where the deviations are much larger. These
are caused by reduced accuracy in the multiple lens approximation,
combined with flat-sky projection effects and broken correlations,
yielding tilted residuals in the left-most panel. Note that however
large this might seem, the precision of lensing surveys is massively
reduced at low redshifts, as seen by the black dashed lines, such that
these differences should not lead to noticeable biases at the inference
stage. On small scales (large ¢-modes) most of the measurements
scatter inside the 2.5 per cent region, consistent with the advertised
2.5 percent accuracy on the power spectrum emulator reported in
A21. The intermediate scales (300 <¢ < 1000) exhibit a larger scatter
reaching ~ 5 per cent at times, caused by limits in the emulator
predictions combined with a small amount of residual sampling
variance. For every tomographic bin, we have verified that the mean
fractional error over all models and all £-modes is always less than
0.007, which corresponds to 0.50, in the highest tomographic
bin, and much less in all other bins. From this we can expect that
emulation of weak lensing statistics from these simulations should
also reach 2-3 per cent absolute accuracy. This is also validated at
the cosmological inference level presented in Section 4.3.

We next compare the gravitational and cosmological dependence
of the signal measured in simulations to that computed by the

Blenstools.readthedocs.io/en/latest/
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Figure 3. Fractional error between the emulated lensing power spectrum and that measured from the FORGE (upper) and BRIDGE (lower) simulations. The grey
lines are obtained for all 50 nodes, each time averaged over the 50 light cones (two per initial conditions). The black dashed lines indicate the 1o statistical error
expected from our mock survey. Redshift increases from left to right, and the thin horizontal lines mark the 2.5 per cent precision target.

emulators, shown in Fig. 4 for a representative sample of FORGE
models. These are labelled as strong (model-13), medium (model-
18), and weak (model-04), referring to the strength of their departure
from GR. The match is excellent here and for most other cases;
discrepancies occur only for a handful of nodes with exceptionally
low 2, which are poorly modelled by HALOFIT and by the FORGE
emulator. This is well documented in A21 and is not expected to affect
our cosmology and gravity inference results, which are all centred
on larger values of the matter density. The emulator predictions (in
red solid) is generally within the statistical precision of our mock
survey (shown with the dashed black lines) for £ < 1000, beyond
which it occasionally deviates by a few percent. This is caused
by residual inaccuracies in the FORGE emulator itself, which was
reported in A21 (see their fig. 5) to emulate the simulated matter
power spectrum only to a few per cent precision. Similar agreements
are found for all other FORGE and BRIDGE models, which validates
both the cosmology dependence of the light cones and the COSMOSIS
implementation of the two MG emulators.

Also shown in Fig. 4 are the predictions for the pure GR case (see
the thin red-dashed curve), obtained by setting B(k, z) = 1.0 while
keeping the cosmology unchanged. The difference with respect to
the solid red line is solely due to the absence of the fifth force,
and falls well outside the statistical error for most models. In other
words, in absence of observational and astrophysical systematics
that are not included in this figure, deviations from GR would likely
be observed to a high significance in our survey, if the Universe
followed either the medium or strong FORGE models. This raises a
key question: given our mock survey, how weak could be detectable
deviations from GR, if they exist? The first step in answering this
is to understand what redshift and angular scales mostly contribute
towards such a measurement, an exercise that we carry out next with
a Fisher analysis.

MNRAS 525, 6336-6358 (2023)

3.3 Fisher information

The origin of the constraining potential on fx, and Hyr. from
measurements of the lensing power spectrum is best understood
by first fixing the cosmology in the emulators and varying only the
modified gravity parameter. This is shown in Fig. 5 for cosmology
otherwise identical to our GR simulation (model-00), where we
compare the measurements from the flat-sky GR- ACDM simulations
(solid black) to the FORGE and BRIDGE predictions with different
values of their MG parameters (the thin dotted lines). Also shown
are the expected statistical uncertainty. This figure suggests that the
information about the fzy parameter mostly comes from the high
redshift and high-¢ modes, where the deviations with respect to
GR are amplified and the statistical error bars vastly reduced. In
comparison, the constraints on Hyr, arise from larger scales as well,
again with the strongest detection potential coming from the highest
redshift bins. This difference is driven by the type of fifth forces
and screening mechanisms. In this section we dissect these signals
and shine light on the data elements that better contribute to their
constraints.

We carry out this investigation with a Fisher analysis (see e.g.
Takada & Jain 2009, for a similar Fisher matrix calculation), which
is cheaper to run than a full MCMC while providing exactly the
information we are seeking. Given measurements of the lensing
power spectrum, the Fisher information about a parameter 7 is obtain
from

_[dCe] . [dC]"
.Fn = |:E:| Cov |:E:| B (22)

where Cov is the covariance matrix shown in Fig. 2, which we assume
to be cosmology independent in our calculation. A matrix product is
taken between the three terms, resulting in a single scalar quantity

20z Arenuer 0g uo 1sanb Aq |8Z€9Z//9EE9/¥/GTG/PI0IME/SEIUW/ W0 dNO"dlWapED.//:SA)Y WOy PAPEO|uMOQ



bin1 bin2 bin3 bin4

MGLENS 6345

bin5

0.8
0.6
85 0.4 k.-.—‘--.—-—-“
e
" D.2
@
o) 1.5
= 1
&S& “ S‘trong ,’ —— MGLenS
i —— FORGE-Emu
1.5 i ---- Halofit
S lo
1=
1000

Figure 4. Ratio between the tomographic weak lensing power spectrum of different FORGE models and that of the GR model (model-00). The three rows
respectively refer to three chosen models with different strengths of deviation from GR: weak (model-04), medium (model-18), and strong (model-13). Departure
from unity is caused by differences in both cosmological and gravitational parameters. The main objective of this figure is to show that measurements from
MGLENS maps (shown by the thin black lines) are in excellent agreement with the predictions of Cyj using the FORGE matter power spectrum emulator (the
solid red lines). The pair of thick dashed lines indicate the +10 statistical uncertainty expected from our mock Stage-IV lensing survey, and redshift increases
from left to right, as indicated above the upper panels. As a comparison, we also plot with the thin dashed red lines the GR predictions from HALOFIT at these

cosmologies. The BRIDGE simulations and predictions reach a similar level of agreement.
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Figure 5. Top: Comparison between the lensing measurements on our GR simulations (model-00, shown with the black solid) relative to GR-theory (obtained
from HALOFIT, red solid), along with the expected 1o error from a 5000 deg? tomographic Stage-IV cosmic shear survey (dashed black). Predictions from f(R)
models with respect to GR are shown as thin dotted lines, which can be used as a rough indicator of how well these models can be constrained. As before,
redshift bins increases from left to right. Bottom: Same as top panels, but now the dotted lines show nDGP model with different values of Hyr,.
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Figure 6. Fisher information as a function of €1, , the highest mode included
in the data vector, shown here for different selections of tomographic bins.
The top and bottom panels are for fg, and Hyr., respectively.

per parameter 7. In short, the contribution to the information is large
for elements of the data vector that are highly sensitive to changes
in 7 (i.e. their derivative is large) and for which the covariance is
small (the inverse is large). The inverse of F provides an optimistic
estimate of the covariance about 7, which in our 1D case gives

a0 = \/ F o 204 Oty = \/ Fity,

Starting our dissection, we compute the Fisher information for
different selections of the full data vector, first allowing variations
in the maximal multipole included in our survey, £y.x. The results
are shown in Fig. 6 with the solid black line, where for fr, we
observe that the increase in information remains significant for
all scales included here. We notice a slight transition past £y,,x =
1500 where the slope becomes shallower, due to the non-linear
coupling between the different Fourier modes (Takada & Jain
2009). The flattening of the slope is more pronounced for Hyr,,
where a full information saturation is observed beyond ¢ = 3000,
similar to that found by Takada & Jain (2009, see their fig. 3)
when estimating the information content about the global amplitude
of the matter power spectrum. It is generally true that including
more angular scales results in an increase of Fisher information
about almost any parameter, however the rate at which the Fisher
information grows and saturates, and its dependence on redshift,
allows us to better understand what parts of the data are most
useful.

We next explore the impact of adding each of the tomographic bins
one at a time. The second line from the top shows the information
contained solely in the highest tomographic bin, while the other lines
correspond to different combinations of the lower redshift bins. It is
clear from this that most of the information is contained in bin 5, the
other four bins providing only a modest additional gain.

Using all scales and all tomographic bins, we could expect a
detection of at least 30 if fzo > 2.3 x 1077 orif Hyr. < 5.1, in absence
of systematics and assuming that the cosmology is perfectly known
from external data. We could include variations with cosmology and
marginalization over systematics in an upgraded Fisher calculation,
however we choose instead to run full MCMC on mock data, yielding
the most accurate picture of the inference capabilities provided by
the MGLENS simulations.
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Table 2. Priors used in our cosmological inference. Except for 8z, all
parameters are sampled with a uniform (i.e. flat) prior; a Gaussian prior of
width 0.01 is applied on the redshift parameters, reflecting a realistic precision
we should have on the redshift distributions. The last two parameters are
sometimes held fixed, see the main text for more details.

Parameter Range
Qm 0.1-0.55
SR 0.6-0.9

h 0.6-0.82
logiol /&, ] —8.0-—45
lOgl()[Horc] —0.6-1.0
Aa —5.0-5.0
87! —0.1-0.1

4 COSMOLOGY INFERENCE

This section presents the inference method with which we quantify
our ability to distinguish cosmological and gravitational parameters
in different scenarios. After validating our inference pipeline on
predictions obtained from the FORGE and BRIDGE P(k) emulators,
we run a sensitivity test on both MG models, this time varying both
cosmological and gravity parameters but first ignoring secondary
signals and systematic uncertainties. We next validate the pipeline
on measurements from the MGLENS simulations, then investigate the
catastrophic impact of analysing mock MG data with the wrong
gravity model, thereby demonstrating the strong model-dependence
of this approach. We finally study the impact of various systematics
effects on these measurements.

In all cases our data vector consists of the auto- and cross-
spectra measured from the weak, medium, and strong FORGE/BRIDGE
models in all five tomographic bins. Our likelihood assumes a
standard multivariate Gaussian functional form with a fixed co-
variance matrix (see Section 2.5). The predictions are computed
at arbitrary cosmologies using equation (17) augmented with the
B(k, z) emulators, with a flat prior on the four parameters (2,
Ss, h, and either log;o[ f&,] or logio[Hor.]) that spans the range for
which the emulators are supported, listed in Table 2. One exception
to this rule is the lower bound on logjo[ f,] which we set to —8
in order to reduce prior effects in the weak MG limit. Otherwise
the inference pipeline could wrongly reject logio[ fz,] ~ —7 simply
because it is poorly sampled. As explained before, we set B(k, z) to
1.0 whenever logo[ fz,] € [—8, —7]. Since the MG parameter range
extends over several orders of magnitude, sampling them in log-
space reduces prior volume effect that would otherwise artificially
upweight the larger values. In theory, one would need to sample MG
values up to £oo, to recover GR, but in practice logo[ fr,] = —8
and logg[Hor.] = 1.0 are undetectable with the Stage-IV survey
under consideration here and therefore serve as our GR limits. As
we discuss later, 1D posteriors significantly overlapping with these
limits are consistent with GR and only yield one-sided limits on the
MG parameters. The other cosmological parameters are held fixed
to the values used in the N-body runs. In order to better focus on
the gravity/cosmology interplay, the nuisance parameters related to
intrinsic alignments and photometric uncertainty are first set to zero.
This is relaxed in Section 4.5, at which point they are also varied in
the likelihood sampling.

‘We carry out our cosmology inferences with the likelihood sampler
MULTINEST (Feroz, Hobson & Bridges 2009), which is run within
cosMosIS. This sampling method has been used and validated in
a number of previous works, notably in the cosmic shear analysis
of the KiDS-1000 data (Asgari et al. 2021) and of the DES-Year
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3 data (Secco et al. 2022). It has been reported in Lemos et al.
(2023) that the projected contours could be slightly overconstraining
in some cases compared to alternative samplers, however we opted
for MULTINEST as it is much faster and its accuracy is sufficient to
support the scientific goals of this paper. The chains all ran in 5000
steps and are analysed with GETDIST.?*

4.1 Likelihood-based forecasts on fr, and Hyr,

Forecasts on weak lensing fg, and Hor, constraints found in the
literature need to be revisited, mostly due to recent improvements
in modelling the deep non-linear matter power spectrum in presence
of a screened fifth force. For example, Pratten et al. (2016) forecast
that with a full-sky 3D weak lensing analysis based on spectroscopic
data, and assuming that the cosmological background is fixed by
CMB data, one could constrain fx, < 5 x 1075, Their x2 analysis is
simpler than our full MCMC approach, they used a hybrid one-loop
perturbation theory and halo-model to compute the P(k) in presence
of MG, and unlike us they do not include WL systematics. Other
examples include the Euclid forecast of Thomas, Abdalla & Weller
(2009) that predicts from a Fisher analysis that the nDGP signal will
be clearly detectable from lensing alone.”> Martinelli et al. (2011)
and Casas et al. (2017) also predicts clear detection of MG signal
from Euclid, this time using MGCAMB (Hojjati et al. 2011) for the
P(k) modelling, including ¢-modes up to 5000, and assuming the
commonly used (u, ¥) phenomenological parametrization. None of
these adequately investigate the sensitivity of modern cosmic shear
surveys. Perhaps the most realistic forecast to date is that from Bose
et al. (2020), which investigate the constraining power of an LSST-
like survey on f{R) and nDGP gravity, but it ignored tomography and
secondary signals caused by intrinsic alignments of galaxy. The rest
of this paper is therefore a step forward in realism, as we present a
series of forecasts based on tomographic cosmic shear, progressively
including most of the ingredients that are relevant for lensing. Before
bringing on the full machinery, we first start with simplified scenarios
in order to gain a better physical and statistical understanding of the
measurements at hand.

Fig. 7 (top panel) presents the posterior distributions from three
likelihood samplings, in which the data are taken directly from the
FORGE emulator predictions, at cosmology-00 and for logo[ fz,] =
—6.5, —6.0, and —5.5. We observe a strong degeneracy between
&, and Sg, expected from the fact that these two parameters both
modulate the overall amplitude of the lensing signal. This degrades
the constraining performance with respect to our previous Fisher
calculation (Section 3.3). If Sg was fixed, we could indeed detect
with high significance these three models (imagine slicing through
the Sg — fr, contours along the vertical dashed line at the input Sg
value), however the two weakest models are hitting the GR-limit
when Sg becomes large. The fx, = 107> model, on the other hand,
would be detected at the ~3o level. This is an order of magnitude
less constraining than what was found by our 1D Fisher forecast, but
is more realistic as we are now fully including gravity-cosmology
degeneracies.

The lower panel of Fig. 7 shows a similar exercise carried out on
nDGP data taken directly from the BRIDGE emulator. We observe
that in all cases the three parameters are correctly inferred, and
that the [Sg — Hor.] degeneracy direction is inverted compared

24GETDIST: getdist.readthedocs.io/en/latest/.
25In their work, Thomas et al. (2009) use a different DGP parametrization,
replacing Hor. by a derived o parameter.
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Figure 7. Marginalized constraints on the FORGE (upper panel) and BRIDGE
(lower) parameters when analysing data taken directly from our f{(R) and
nDGP P(k) emulators, for different input values of log1o[ fr, ] and log10[Hor]
indicated in the legend. Values of Q,, Sg, and & are otherwise matching the
GR-model.

to fr, due to the fact that in this model strongest deviations
occur for smaller Hyr, values. Finally, whereas the posterior from
weakest nDGP model in this figure (grey contours, correspond-
ing to logio[Hor.] = 0.2) is prior-dominated towards the higher
Hyr. bound, the other two models are not: Hyr. < 1.0 could
be detected beyond 3¢ in this forecast. Once again this error is
less constraining than our Fisher forecast, as expected from the
added realism. Fixing cosmology would significantly help in this
measurement as well, as the posteriors are narrow along a fixed Sg
value.
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Figure 8. Marginalized constraints on the FORGE (upper) and BRIDGE (lower)
parameters when analysing lensing maps from the GR simulations. Given our
prior limits and the important degeneracy between Sg and the MG parameters,
we recover the expectation that the input truth is well inside the 1o contours,
but not necessarily at the centre.

4.2 Recovering the GR-A CDM simulation

Fig. 8 presents our first inference validation test on the MGLENS
simulations, where we run our analysis pipeline on the GR-only
simulations, assuming consecutively a FORGE and BRIDGE gravity
model (top and bottom panels, respectively). It is important to note
here that our noise-free data have been measured from 5000 deg?, and
our analytical covariance matrix assumes the same area and includes
shape noise. We therefore expect the input truth to lie close to the
centre of the 1o regions, but offset can be caused by residual sampling
variance in the mocks and interpolation errors from the emulators.
This is indeed consistent with what we observe in Fig. 8, establishing

MNRAS 525, 6336-6358 (2023)

that we correctly infer the input cosmological parameters, and prefer
modified gravity models that are beyond detection, with:

lng[fR()] < —542,
and
log,o[Horc] > 0.140,

in absence of systematics (both upper limits are reported with
95 percent CL). Note that these one-sided limits depend on the
prior range we adopt: larger sampled volumes (on the weak MG
side) down-weight the tails and hence artificially increase the
constraining power. For example, truncating the MCMC chains at
logiolfro] = [—7.0, —=7.5, —8.0] yield upper limits of [—5.36, —5.42,
and —5.48], respectively. We selected the middle value in this work,
but care must be taken when comparing these results with others
found in the literature. Similarly, we truncate the nDGP chains at
logio[Hor.] = 0.8 to avoid false two-sided constraints coming from
hitting the prior edge. Note that the results obtained here seem at first
to contradict Fig. 5, in which models with fg, > 10750 are more
that 30 away from GR at high-redshift (see the right-most panel),
but this observation ignores the [ fz, — Ss] degeneracy, which hinder
possible MG detections.

An important feature of this figure is that the degeneracy between
fr, and Sg vanishes when sampling lower fg, values, as seen
in the lower part of the contours which are close to vertical;
this is also seen in Fig. 7. That is likely due to the fact that a
small fg, tends to have little modification to the clustering in the
linear regime on large scales, where the amplitude of clustering is
influenced by Ss more directly; instead, it tends to cause stronger
deviations to its GR counterpart only at the very small scales, where
there is also a stronger non-linearity, thus a weaker connection
to the amplitude parameter Sg. Put together, these two factors,
the relatively stronger effect of fr, on small scales and stronger
non-linearity, naturally break the degeneracy between fg, and Sg
when fg, is small. This is not the case for other FORGE models
with a stronger MG sector, as we will see in the following
section.

For nDGP, shown on the bottom panel of Fig. 8, the degeneracy
with Sg is present at every value of Hyr., even for weak deviations
from GR, but the input cosmology is well recovered, even though
this model is at the edge of the latin hypercube.

4.3 Recovering the FORGE and BRIDGE simulations

‘We now turn our attention to other MGLENS nodes, with Fig. 9 show-
ing the inferred parameters when analysing a series of FORGE and
BRIDGE data vectors (left and right panels, respectively), specifying
the correct gravity framework ((R) or DGP) at the moment; we
investigate later the result of specifying the wrong framework. We
present, from top to bottom, models with increasing deviations from
GR. Once again the input cosmologies are recovered within lo,
which validates both the MGLENS simulations and the COSMOSIS
implementation of the FORGE and BRIDGE emulators in our end-
to-end cosmological inference. One of the most important features
seen here is the strong degeneracy between the MG parameters
(fry» Hore) and Sg. Looking now at the posteriors, according to
these results, if the gravitational physics of our Universe matched
the medium or strong models in these survey conditions, we could
strongly rule out GR and constrain the MG sector with our survey.
The marginalized posteriors on the parameters of interests are
summarized in Table 3, where, for example, our measurement for the

weak FORGE yields logyo[fzo] = —6.62707, which is fully consistent
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Figure 9. Marginalized constraints on the FORGE (left) and BRIDGE (right) parameters, for models-04 (upper panels, weak MG), —18 (middle panels, medium
MG), and —13 (lower panels, strong MG), when analysing lensing maps from the MGLENS simulations. No systematics are included here.

with the input truth (—6.09). Similar results can be seen for the The observed [ fz,, Ss] degeneracy limits the precision we can
nDGP inference analyses, where the large values of Hyr, are heavily achieve on these two parameters separately, which incites us to
disfavoured, while successfully recovering the input simulation define a combination that is better measured. Inspired by the ¥g
values. = 03(2,/0.3)* composite lensing parameter, we introduce a new
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Table 3. Measurements of the modified gravity parameters inferred from
the tomographic weak lensing power spectrum analysis of the FORGE and
BRIDGE simulations. We show the results for a selection of models (top to
bottom show GR, f(R), and nDGP gravity). The last column shows the impact
of marginalizing over the Ao nuisance parameter. In our FORGE and BRIDGE
emulators, the GR node is taken at logio[fro] = —7.0 and logo[Hor.] = 1.0,
respectively. Upper and lower limits are reported at 95 per cent CL.

Model Parameter Truth No-syst 1A
GR Qm 0313 03029940 0.298+0013
SR 0.840  0.835100% 083070000
loglo[fRO] —00 <—5.42 <—4.77
lOglo[H()rc] oo >0.140 >0.090
FORGE-weak Qn 0316 03137907 0.31375017
SSR 0.617  0.618%000% 0.6187000%
logiolfrol  —6.09  —6.627070 —6.63107%
Cry 253 272439 -27.3437
FORGE-medium Qn 0323 032070508 0.31970:085
SER 0.893  0.892+008 0.88679014
logiolfro] ~ —5.43  —5.324013 -5.197922
tr, -355 3497000 351700,
FORGE-strong Qn 0347 036270018 0.36515:016
SER 0.841  0.8617997 0.8647001¢
logiolfro]l ~ —490  —5.32793% —5.34104
o —4.33  —4.1570%2 —4.107913
BRIDGE-weak Qn 0316 031379013 0.314 +£0.018
SER 0617  0.616700%  0.6162 + 0.0084
logio[Hor.]  0.602 0.49192¢ 0.51 £+ 0.26
& x 100 036 0.367 032 0.36103%
BRIDGE-medium Qn 0323 0.322709% 0.3245F0:0089
SER 0.893  0.89379%7 0.888679:0082
logio[Hore] —0.163 —0.18979:0 —0.2097957
¢ —1478 —1.687532 —1.6733¢
BRIDGE-strong Qum 0.347  0.342%0000 0.340700%¢
SgR 0.841  0.850%000; 0.8557 00005
logio[Hor.] —0.443 —0.395709% —0.35515:9%
&, —0.845  —1.00%011  —1.047 £ 0.089

variable which runs across the minor axis of the degeneracy ellipse:

SGR o
Sy = logolfr] (87) ' 23)
0.82

where « is a free parameter to be optimized. For small values of fx,,
o = 5.0 returns a { that is mostly orthogonal to both Sg and €2,
making this an attractive target measurement for future cosmic shear
experiments. We post-pone to future work the impact of letting o
free in a likelihood analysis.

The equivalent degeneracy-breaking parameter for nDGP models
can be constructed as

SR\
{Z = log,o[Hor] <m> s 24)

where @ = 26 works better for the nDGP models. We show in
Fig. 10 the marginalized constraints on these two new parameters,
g, and ¢, where the degeneracy with respect to Sg and S is
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highly suppressed. The accuracy on these composite parameters
is increased, where for example a 8 percent measurement?® of
logio[ fr,] results in a 3 per cent precision on { in the strong FORGE
model. Similar improvements are seen on nDGP parameters, where
a 22 percent measurement of log;o[Hpr.] becomes a 13 percent
measurement of ¢ in the strong BRIDGE model. The measurements
reported in Table 3 indicate a net gain in precision for all models.

By construction, the variables ¢ and ¢ down-weight parameter
regions of weak modified gravity, which therefore interacts with prior
limits. These parameters are therefore mostly useful for medium and
strong modified gravity models, but we advise against using them
for one-sided limits.

4.4 Degeneracies between gravity models and cosmology

One of the main difficulties in detecting deviations from GR comes
from the abundance of models to be tested, which each affect the
growth of structures in different ways. A key question to be answered
is whether one can confuse a clear detection of gravity model ‘A’
at some cosmology with a different gravity model ‘B’ at a different
cosmology. The first part of the answer is already provided in the
GR-only validation test, where both the FORGE and BRIDGE emulators
recognize negligible deviations from GR in the GR-only model, both
inferring the right cosmology. This is encouraging since it suggests
that GR can be recognized as such.

Complications arise when analysing truly non-GR data with the
wrong gravity model. The lower panels of Fig. 11 shows such
examples, where three FORGE data vectors are analysed with the
BRIDGE emulator. For the weak model (left), this results in a minor
bias in 2, and Sg, and a wide posterior on Hyr, that hits the upper
edge prior, leading to inconclusive detection of MG. The central and
right panels, however, reveal catastrophic biases on the cosmological
parameters for the medium and strong models. The two cosmological
parameters are shifted towards higher values, while the posteriors
indicate an apparent Hyr, detection. We report these shifts in Table 4,
in units of statistical precision ¢. Similarly catastrophic results are
observed when, on the contrary, we analyse nDGP data with the
FORGE emulator (see the upper panels of Fig. 11); in this case most
inferred cosmological parameters are also far from the truth, and
the fr, parameter is falsely detected with high significance for the
medium nDGP model. Biases also occur if data from a modified
gravity universe is analysed within GR, in which case the additional
structure formation caused by the fifth force is interpreted as a higher
Sg value, as expected from the degeneracy between these quantities.
We see again that the weak models has almost no impact on the
inferred cosmology (shift ~1¢), whereas the stronger models can
offset 2, and Sg by tens of o. For example, with sub-percent
statistical precision on Sg, a bias of ASg = 0.05 is almost a 8o shift.

This inevitably raises the question of whether we could discover
that we are analysing the data with the wrong gravity model. One
of the approaches commonly used is to examine the goodness-
of-fit, which informs us on the quality of the data-model match.
This can be computed with the p-value measured at the best-fitting
parameters for different gravity models, from which one can test
different hypotheses.?” A p-value below 0.01 generally indicates that

26The precision is defined here as the ratio between the error and the best-
fitting value for a given parameter.

?TThe p-value is computed from the x> conditional distribution function
and the number of degrees of freedom; it is routinely used for rejection of
null-hypotheses.
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Figure 11. Catastrophic impact of mixing the gravity model. (Upper:) Marginalized parameter constraints when analysing BRIDGE simulations (left is the weak
model, centre is the medium, right is the strong model-05) with the FORGE emulator, yielding to catastrophic biases. (Lower:) Counterpart of the upper panels,

now analysing FORGE simulations with the BRIDGE emulator.

the hypothesis should be rejected. In our case this test is done with
noise-free data, so the p-values can approach 1.0 in case of excellent
fits. The ideal case here would be to obtain low p-values whenever
the wrong gravity model is being used. Table 4 presents the measured
p-values for different plausible analysis scenarios. It turns out that
some simulated data (e.g. FORGE-weak and BRIDGE-weak) can be
well fitted by all three gravity models (i.e. their p-values are high),
due to weakness of the departure from GR. f(R) gravity can also
provide a good fit to the BRIDGE-medium data, which is achieved
at the cost of significantly lowering €2,,. This bias is clearly seen
in the up per central panel of Fig. 11. One would have problems,

in such a case, to distinguish between gravity models from the sole
goodness-of-fit results. Other test cases are easier to reject based
on their bad goodness-of-fit, such as FORGE-strong and BRIDGE-
strong, which can only be well fit with the correct gravity model.
We also observe that analysing some models within GR pushes the
likelihood outside of our already wide prior, which is in itself an
indication that something is off with the modelling, even though
the solution (to switch gravity model) might not be obvious at
first.

Other metrics are better suited for model-selection, notably the
Bayesian Evidence ratio (Hobson, Bridle & Lahav 2002; Marshall,
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Table 4. Impact on the cosmological parameters 2, and Sg when analysing MG simulated data with the wrong gravity model. Column ACDM+GR shows
the results of analysing MGLENS simulations with a GR model (i.e. HALOFIT), while the “Wrong MG’ columns consider FORGE data analysed with the BRIDGE
emulator and vice versa. The parameter shifts are computed as |bestfit — true|/o, and the p-values assume four free parameters. Posteriors overlapping with prior
edges are flagged as such. We also show the evidence ratio R, defined in the main text, which is often used in model selection. It can be interpreted here as the
odds of the true model describing the data compared to the alternative model (GR or wrong MG), and R ~ O(1) means that both models are equally likely.

True True model ACDM + GR Wrong MG

Gravity model Param Shift p-value Shift p-value R Shift p-value R

FORGE-weak Qm 0.20 1.0 0.250 1.0 1.08 0.80 1.0 1.17
Sg 0.10 <0.10 0.50

FORGE-medium Qm 0.40 1.0 prior - - prior - -
Sg 0.10 limited limited

FORGE-strong Qm 0.80 1.0 9.20 0.68 3.42e5 29.60 0.0 2.18
Sg l.4o 11.00 11.70

BRIDGE-weak Qm 0.20 1.0 .10 1.0 2.44 1.30 1.0 2.46
Sg 0.10 2.20 0.90

BRIDGE-medium Qm 0.10 1.0 prior - - 17.00 1.0 836
Ss 0.00 limited 1.20

BRIDGE-strong Qm 0.80 1.0 prior - - 12.90 0.0 2.18
S3 0.80 limited 19.00

Rajguru & Slosar 2006), which relies on computing the prior-
marginalized likelihood, a quantity directly available from the output
of our MULTINEST chains. Specifically, the ratio between the Bayesian
evidences, R[1, 2] = Z,/2Z,, which are respectively computed by
integrating over the full posterior volumes obtained from analysing
the same data with models 1 and 2, provides the Bayesian probability
that model 1 better describes the data over model 2. Both models are
plausible when R is of the order of unity, while model 1 would be
strongly favoured over model 2 for R > 1.0.

We therefore compute the evidence ratios between f(R), nDGP,
and GR given the weak, medium, and strong FORGE and BRIDGE
data. For example, the evidences obtained from analysing FORGE-
strong simulation with the three gravity models are log[Z ;)] =
—16.6, log[ Zpgp] = —17.4, and log[ Zgr] = —29.4, from which we
obtain R[f(R), DGP] = 2.18 and R[f(R), GR] = 3.42 x 10°. In
this case, GR can be safely ruled out, but none of the two MG
theories can be rejected based on the evidence ratio, albeit a only
minor preference for the f{R) model. The p-value is more informative
here, being close to 0.0 when using the wrong model. All results are
reported in Table 4.

Interestingly, the two weak MG cases provide evidence ratios of
the order of unity when analysed with all gravity models, and all
have p-values of the order of unity as well. This means that given the
current summary statistics, the data are not precise enough for us to
recover with certainty the true gravity model. Possible solutions to
overcome this are to augment the analysis with prior knowledge of
the cosmological parameters from e.g. the CMB, or analyse the data
with higher order statistics to further break degeneracies, which will
be the subject of future work. In any case, having a variety of MG
simulations is critical to properly understand how gravity models
are degenerate with cosmology and propose meaningful mitigation
strategies.

It is worth mentioning that the evidence metric is dependent on
the prior volume, and for this reason the Suspiciousness statistics
(Lemos et al. 2020) is often viewed as superior, being more robust
to prior-effects, although computationally expensive (see Joachimi
etal. 2021b, for a recent discussion on the application of such metrics
to real cosmological data).
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4.5 Impact of systematics

The results from the beginning of Section 4 are obtained in unrealisti-
cally clean conditions; as discussed previously, cosmic shear surveys
are in fact affected by poorly constrained intrinsic alignments (IA),
by uncertainty on the photometric redshift (photo-z) distributions
and shape calibration, as well as by largely unconstrained baryonic
feedback. Additionally the weak lensing signal is mildly sensitive to
some of the other cosmological parameters such as the baryon density
Qp, the sum of neutrino masses Xm,, or the tiltin the primordial power
spectrum, ng, such that our constraints are likely slightly overprecise.
Here we focus on two of these, namely the photo-z and the IA,
leaving a more comprehensive study of the others for future work.
To some extent the impact of baryon can be reduced by removing
some of the non-linear scales, which we also touch upon below.
Using cosmosIs for the calculation of the theoretical cosmic
shear predictions has key advantages when it comes to modelling
and marginalizing over the known weak lensing systematics. First,
the public version includes an implementation of the widely used
non-linear alignment model (Bridle & King 2007), which describes
the IA contamination from a linear coupling between the intrinsic
galaxy orientations and the local tidal field. This results in a two-
component secondary signal that can be computed from the matter
power spectrum as (Hirata & Seljak 2004; Bridle & King 2007):

AnCip(2)

2
4
o ) )Pk, 2) 25)

Pk, z) = (

and

Por(k, 1) = —1PD 2 p i, 26)
In the above expressions, Ps(k, z) is the matter power spectrum
including the MG enhancement, p(z) is the background matter
density, D(z) is the ‘rescaled linear growth factor’ defined as
D = D(1 + 7),and C| is a constant calibrated in Brown et al. (2002),
setto5 x 107*Mg'h~2 Mpc?. These are then inserted in the Limber
integral (equation 17), where now the lensing kernels ¢'())¢/(x)
are replaced by ¢'(x)®/(x) and n(x)/(x) for the GI and II terms,
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respectively. A further redshift dependence can be implemented with
a multiplicative term of the form

1 +z mA
( 1 + Zpivot)

with zpivor and n1a two additional free parameters. This model has
been shown to accurately capture the IA signal in many cosmic shear
analyses (see e.g. Troxel et al. 2018; Asgari et al. 2021), with weak
signs of potential limitations in the most recent DES-Y3 analysis by
Secco et al. (2022). In all cases, IA significantly biases the inferred
cosmology if left unmodelled, however the redshift evolution is
only weakly constrained in these surveys. In fact, assuming no IA
redshift evolution affects the inferred cosmology by less than 0.30,
which is significantly less than the shift caused by switching to
the more physical model that includes tidal torquing (Blazek et al.
2019). Choosing the right IA model given the data is still an open
issue (Campos, Samuroff & Mandelbaum 2023), and in light of
this uncertainty we opted to ignore the poorly constrained redshift
evolution of the IA signal in our forecasts. We therefore model IA
with a single scaling parameter, A1, which we vary over the range
[—5.0, 5.0] in line with these previous analyses, and set 4 = 0.

A second advantage of using COSMOSIS is that it deals with the
uncertainty on the redshift distribution by shifting the tomographic
n'(z) by a constant quantity 8/, which we treat independently for
each tomographic bin i: n'(z) = n'(z + 81). It has been shown that
in some cases these shift parameters are correlated (Wright et al.
2020), however we ignore this here. Our five 8’ parameters are
sampled assuming a Gaussian prior of width 0.01, similar to the
accuracy achieved by current weak lensing surveys (for example,
an accuracy between 0.0084 and 0.0116 on these §, parameters is
achieved with the KiDS-1000 data, see Hildebrandt et al. 2021).
We do not include the uncertainty on shape calibration (i.e. the m-
bias, see Giblin et al. 2021) as it is currently subdominant compared
to the effect of IA and photometric redshift (Asgari et al. 2021;
Secco et al. 2022). Importantly, we neglect the impact of baryon
feedback, which is arguably the largest approximation in our analysis.
Indeed, baryons significantly redistribute the matter distribution and
suppress the lensing signal by tens of percent depending on the
scales and baryonic physics (Semboloni et al. 2011; Harnois-Déraps
et al. 2015a). We could extend our results by using for instance the
matter power spectrum provided by HMCode (Mead et al. 2021)
in which the impact of baryons is modelled, but we leave this for
future work. We finally assume a constant total neutrino mass set
to Xm, = 0.0 eV, in order to be consistent with the FORGE and
BRIDGE simulations. All of these analysis choices have an impact on
the inference and will need to be revisited in order to make robust
constraints on the MG parameters from cosmic shear data, however
our simplified likelihood evaluations represent an important first step
in this direction.

We show in Fig. 12 (and summarize the results in Table 3) the
impact of IA on the marginalized constraints for some of the FORGE
and BRIDGE models. As expected, the presence of IA degrades the
constraints on most parameters, where for example the 1.4 per cent
measurement of Sg value in the FORGE medium model becomes a
1.9 per cent measurement. The same model sees the constraints on
logiol fr,] degrade from a 5.4 per cent to a 6.7 per cent measurement.
We also note that for some models (e.g. FORGE medium, BRIDGE
strong), the IA contamination acts mostly along the [ fg, — Sg] or
[Hor, — Ss] degeneracy directions, whereas for other models the
posterior is inflated in all dimensions (e.g. FORGE-strong). Finally
low-Sg models appear to be less affected (e.g. FORGE weak), which
is expected since the IA signal also scales with Sg, causing them
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Figure 12. Marginalized constraints on the parameters best probed by
lensing, with and without including contamination from intrinsic alignment
in the modelling, inferred from the MGLENS simulated lensing data.

to be harder to distinguish from the cosmological signal given our
fixed covariance matrix. Also worth repeating here is that our data
vector includes the cross-tomographic terms, which are more affected
by IA as they are highly sensitive to the ‘GI’ alignment term, i.e.
the coupling between the background shearing and the intrinsic
alignment of foreground galaxies (Hirata & Seljak 2004). These
increase the contamination, but at the same time further help in
constraining the IA sector and therefore self-calibrate. Indeed, Ay, is
one of parameters that is best measured by cosmic shear data (Asgari
etal. 2021; Secco et al. 2022; Heydenreich et al. 2022), even though it
is an ‘effective’ model that depends on a number of physical selection
effects such as galaxy types, colours, and bias (Blazek et al. 2019).
Interestingly, there is a mild degeneracy between the Ajx and the MG
parameters, such that using the wrong gravity model can lead to an
apparent IA signal. The effect is generally small, but can lead to a
false detection larger than 1o, as it is the case for the GR analysis of
the strong BRIDGE model.

The redshift error are in comparison very small due to the narrow
informative Gaussian prior that we are able to use. We have tested
a few chains with the photo-z nuisance turned on and found almost
no visible effect on the marginalized contours. Since this is the case
for all models analysed we conclude that under these circumstances
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Figure 13. Impact of scale cuts on the marginalized constraints obtained
from the analysis of MGLENS simulated lensing data in the strong FORGE
model.

photo-z errors are completely subdominant to IA and we do not
investigate this any further.

Regarding baryons, a common approach to protect analyses
against their uncertain impact consists in excluding the deeply non-
linear scales from the data vector (as in, e.g. Troxel et al. 2018; Amon
et al. 2021), which in our case are the high-¢ modes. Lowering the
highest ¢ from 5000 to 3000 typically results in a degraded constraint
on the modified gravity parameters, largely due to an increased
degeneracy with Sg, but this degradation is not catastrophic, as shown
in Fig. 13. This is consistent with our Fisher calculations, according
to which the information partly saturates by £ = 3000. Therefore,
while we expect the impact of varying £, to lower the precision,
the amount by which it does is not easily predictable due to the
highly non-trivial degeneracies that exists in the high-dimensional
likelihood space.

Finally, as mentioned earlier, an ingredient central to cosmological
inference is the covariance matrix, which in the case of two-
point statistics can be either modelled analytically or estimated
numerically. This choice is not guaranteed to exists for all probes,
and in fact many other weak lensing statistics must rely on an
ensemble of mock data such as the SLICS to estimate the matrix.
The validation process of these multipurpose mocks generally
includes a comparison with the analytical predictions for covariance
matrix about two-point statistics. A first step of this comparison is
shown already in Fig. 2, which visually demonstrate that the cross-
correlation coefficient matrices are consistent with one another. A full
quantitative validation must go beyond this, and we show in Fig. 14
the cosmological inference resulting from using the two matrices. We
observe that both posteriors fully overlap, providing identical best-
fitting values on 2., and differences on Sg that vary by less than 0.20.
The upper limits of log;o[ f&,] shift by under 4 per cent, from —5.42
to —5.18. Note that the differences observed here are not exclusively
caused by inaccuracies in the mocks, as many other factors can source
important deviations, such as choices in the implementation of shape
noise or masking (Joachimi et al. 2021a). In particular, the total
survey areas match in both cases, however the analytical calculations
assume a spherical survey whereas the mocks are square-shaped.
Thus the small observed shifts in the cosmological inferences should
be viewed as systematic uncertainties, not as biases, which thereby
establishes the precision on the covariance one can expect from these
SLICS mocks for any alternative weak lensing probes.
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Figure 14. Comparison between the cosmological inference resulting from
using the analytical or the numerical covariance matrix when analysing the
GR simulated data.

Also note that in an actual data analysis, the accuracy of the Bs(k,
z) emulator itself should be propagated into the covariance matrix in
order to capture the modelling uncertainty.

5 DISCUSSIONS AND CONCLUSIONS

This paper introduces the MGLENS simulations, a large set of lensing
maps sampling five cosmological and MG parameters within a
volume that is wide and dense enough to analyse current Stage-II1
cosmic shear surveys. We demonstrate that the lensing power spectra
measured from these simulations match well with the theoretical pre-
dictions obtained by the BRIDGE and FORGE emulators, validating at
the same time both the simulation suite and our gravitocosmological
inference pipeline implemented within COSMOSIS.

We next carry out a series of investigations using MGLENS and
our analysis pipeline. Notably, we find that next-generation lensing
surveys will be powerful at constraining the gravity sector: in our
simplified systematics-free analysis, we forecast that 5000 deg® of
upcoming data could lead to 30 detection of a value of fg, as
weak as 5.5 x 1075, and Hyr, as low as 1.0. We acknowledge
a number of caveats, including the absence of marginalization
over baryon feedback, or fixing the values of other cosmological
parameters that have a secondary impact on the cosmic shear signal.
These will inevitably translate into a slightly larger uncertainty
budget in an more complete data analysis, however the statistical
power displayed in our survey should remain relatively unchanged.
Moreover, these forecasts are for cosmic shear data alone; adding
clustering, galaxy—galaxy lensing and/or CMB data could improve
the constraints further. An additional gain of precision could be
achieved by analysing the data with non-Gaussian statistics.

When inferring cosmology from different input model vectors,
we identify in many cases a strong degeneracy between the input Sg
value (related to the primordial power spectrum amplitude A;) and the
modified gravity parameters; we propose new composite parameters
that are better measured by lensing, namely ¢ and £, on which the
precision is increased by up to a factor of two.
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We lastly explored the impact of analysing data with the wrong
gravity model, typically finding a catastrophic impact on the inferred
cosmology with biases exceeding at times 200 in some cases, as
well as an unphysical detection of MG features. The goodness-of-
fit is generally best when using the correct gravity models, but not
always: some data are well fitted by more than one model and the
Bayesian evidence ratio is unable to tell them apart. This means that
other analysis methods will need to be developed in order to better
differentiate the gravity sector, such as the Suspiciousness metric,
the recent empirical approach of Campos et al. (2023), or by looking
at probes different from the lensing power spectrum.

The MGLENS simulations are organized as a series of flat-sky
and curved-sky convergence maps, which can be analysed with any
weak lensing statistics. Combined with the large SLICS ensemble
produced for the evaluation of covariance matrix, the MGLENS suite
are ideally suited to explore the sensitivity of novel statistics to cos-
mological and gravitational parameters. To validate this approach, we
test our inference framework with either an analytical or simulation-
based covariance matrix, finding an excellent recovery of the input
data vector in both cases. Cosmic shear analyses beyond two-point
statistics will be presented in companion papers. Our goal is to
provide the community with some of the best tools with which to
search for MG in current and upcoming lensing surveys.
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APPENDIX A: CURVED-SKY WEAK LENSING
LIGHT CONES

We develop a curved-sky ray-tracing algorithm adapted from UFAL-
CON?3 (Ziircher et al. 2021), in which the particle data falling into
spherical mass shells are assigned onto a HEALPIX (Gérski et al.
2005) maps with NSIDE = 4096, instead of the Cartesian grids used
in this paper. We again use periodic boundary conditions to fill the
light-cone volume whenever it exits the simulation box, and repeat
the procedure for 24 different observer’s positions. We modified
the original UFALCON full-sky map making algorithm to implement
instead a pencil-beam method, significantly reducing the memory
load required to fill the high-redshift shells. This is achieved by
stacking the simulation boxes along the [RA-Dec] = [0,0] direction
only, and masking any pixel with RA/Dec > 12 deg. Pseudo-
independent light cones are then extracted by selecting at random one
of the 24 shells for each redshift, repeating the procedure 24 times
per N-body simulation. The curved-sky angular power spectrum
measurements are obtained from the standard HEALPY? routine
MAP2ALM, which performs Legendre transforms on the sphere and
provides measurements for £ € [1—12 288], which we rebin to match
the flat-sky measurements for an improved comparison.

We show that both flat- and curved-sky lensing simulations
produce similar C; measurements. Fig. A1 presents the ratio between
the lensing spectra from two models (the f{iR) model-49 and the
GR model-00). The thin black lines present the mean over all flat-
sky measurements while the thin blue lines show the curved-sky
equivalent. The agreement between these two methods is excellent
in the first four tomographic bins, whereas the last tomographic bin
exhibits strong discrepancies on large scales. This is caused by the
mixing between the maps and the mask, and can be removed with
pseudo-C, estimators such as NAMASTER (Alonso et al. 2019).
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Table A1. Cosmological and gravity parameters of the FORGE and BRIDGE simulations. The listed values of the structure growth parameters og and Sg correspond
to the input truth in the corresponding GR+ACDM simulations; the actual values in MGLENS are larger than these. Note that the emulators are specifically
trained on Qm, Sg, h, and either logio[ fr,] or logio[Hor.]. In this paper we focus on weak, medium, and strong models, which are respectively models-04, —18,
and —13.

Model Qm o3 Sg h SRy Hor,
00 0.31315 0.82172 0.83954 0.6737 0 Inf

01 0.54725 0.49342 0.66642 0.78699 3.5502e-06 0.72533
02 0.53961 0.63783 0.85542 0.68393 3.0776e-06 0.81161
03 0.10721 1.2297 0.73513 0.6109 3.3107e-06 0.76647
04 0.31592 0.60111 0.61685 0.68845 8.0706e-07 3.9962
05 0.15741 0.91175 0.66044 0.71067 1.2093e-05 0.37375
06 0.35339 0.71886 0.78021 0.78052 5.2037e-06 0.56467
07 0.1124 1.2341 0.75539 0.79318 3.1185e-05 0.25000
08 0.39303 0.72152 0.82585 0.752 7.1372e-07 6.7113
09 0.18096 1.0378 0.80599 0.76132 9.1585e-07 3.3057
10 0.42927 0.5035 0.60228 0.77667 4.5479¢-06 0.62132
11 0.40249 0.55523 0.64312 0.6912 1.3401e-06 1.7208
12 0.21286 1.0669 0.89867 0.70661 7.1154e-06 0.47331
13 0.34671 0.78191 0.84059 0.70056 1.2573e-05 0.36029
14 0.15464 0.9339 0.6705 0.77273 4.0961e-06 0.65314
15 0.28172 0.71367 0.69158 0.64968 4.9744e-06 0.59191
16 0.37032 0.61264 0.68066 0.76204 2.7753e-06 0.86134
17 0.41627 0.74242 0.87454 0.63427 1.4375e-05 0.33547
18 0.32331 0.85987 0.89266 0.81749 3.6751e-06 0.6877
19 0.47784 0.56403 0.71183 0.66724 6.7404e-06 0.49385
20 0.20509 0.75641 0.62541 0.64437 5.8109e-06 0.53938
21 0.44103 0.50237 0.60912 0.62046 6.2281e-06 0.51583
22 0.46403 0.5862 0.72906 0.80296 1.4121e-06 1.5615
23 0.13644 1.2584 0.84862 0.62473 1.0481e-06 2.4364
24 0.18832 0.85396 0.67659 0.80174 1.668e-05 0.32401
25 0.12066 1.3159 0.83454 0.69563 2.4559e-06 0.91639
26 0.28854 0.65331 0.6407 0.73943 8.7041e-06 0.43601
27 0.45016 0.72241 0.88492 0.71954 2.174e-05 0.2835
28 0.17155 1.1394 0.86159 0.62768 1.5757e-06 1.4266
29 0.51949 0.59577 0.78399 0.74473 9.6963e-06 0.40305
30 0.43909 0.61327 0.74195 0.67856 1.7774e-06 1.3111
31 0.49786 0.58288 0.75088 0.80806 1.8337e-06 1.2109
32 0.40909 0.54179 0.63268 0.73799 1.211e-06 1.9119
33 0.23227 0.86433 0.76052 0.60028 1.9037e-05 0.30276
34 0.3839 0.61174 0.69201 0.6557 2.2527e-06 1.0462
35 0.26234 0.88665 0.82914 0.76998 1.0089¢-06 2.8097
36 0.25453 0.76212 0.702 0.66918 1.7789e-05 0.31312
37 0.29762 0.79347 0.79031 0.673 2.3584e-06 0.97764
38 0.22423 0.88911 0.76866 0.64603 1.3881e-05 0.34755
39 0.30799 0.71046 0.71985 0.66001 1.1732e-06 2.1452
40 0.51288 0.61834 0.80849 0.79098 7.8299¢-06 0.45407
41 0.14061 1.1712 0.80186 0.73101 1.0743e-05 0.38798
42 0.33782 0.66702 0.70781 0.72256 7.9806e-07 5.0232
43 0.5252 0.66452 0.87924 0.81347 2.3279e-05 0.27454
44 0.19435 1.0172 0.8187 0.63911 2.7347e-05 0.25781
45 0.26963 0.91366 0.86618 0.75511 9.4886e-06 0.41903
46 0.49135 0.50927 0.65176 0.60766 2.5865e-05 0.26599
47 0.47207 0.58056 0.72827 0.61562 2.0816e-06 1.1234
48 0.24424 0.85676 0.77304 0.71436 6.6853e-07 10.0000
49 0.36187 0.56321 0.61856 0.72861 2.0258e-05 0.2929
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Figure A1. Comparison between the curved- and flat-sky lensing power spectra. Plotted is the ratio between the measurements from the nodes 49 and 00, for all
five tomographic redshift bins. The right-most plot exhibits large-scales systematics due to masking, which are increasingly important towards higher redshifts.

Our flat-sky methods are mostly immune to this.

APPENDIX B: P(K) VALIDATION

We present in this section the matter power spectra P, (k) measured
from dedicated ACDM+GR N-body runs in which the box size is
varied between 1000, 500, and 200h~" Mpc. The upper panel of
Fig. B1 presents the three measurements at z = 0, while the bottom
panel shows the ratio with respect to the L200 case — given that the
particle count is fixed to 10243, the latter has the highest resolution.

Small fluctuations in the ratio are observed at low k modes are due
to residual sapling variance. While the L1000 measurements shows
a 5 per cent difference in power at most scales, the L500 case shows
an excellent match up to k = 8.0 Mpc 4~!. Equivalent measurements
carried out at z = 1 reach the same conclusion, thereby establishing
that our N-body runs are converged to a few per cent over the scales
relevant for lensing (k < 5-8.0 Mpc 4~!, depending on the redshift
of the sources).
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Figure B1. (upper:) Power spectra measured at z = 0 from GR-only N-body
simulations in which the box size is varied, keeping the particle count fixed.
(lower:) Ratio between the three curves shown in the upper panel curves and
the L200 case.
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