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Abstract. Random Walks in Cooling Random Environments (RWCRE) is a model of random walks in dynamic random environments
where the entire environment is resampled along a fixed sequence of times, called the “cooling sequence”, and is kept fixed in between
those times. This model interpolates between that of a homogeneous random walk, where the environment is reset at every step, and
Random Walks in (static) Random Environments (RWRE), where the environment is never resampled. In this work we focus on the
limiting distributions of one-dimensional RWCRE in the regime where the fluctuations of the corresponding (static) RWRE is given by
a s-stable random variable with s ∈ (1,2). In this regime, due to the two extreme cases (resampling every step and never resampling,
respectively), a crossover from Gaussian to stable limits for sufficiently regular cooling sequence was previously conjectured. Our first
result answers affirmatively this conjecture by making clear critical exponent, norming sequences and limiting laws associated with the
crossover which demonstrates a change from Gaussian to s-stable limits, passing at criticality through a certain generalized tempered
stable distribution which have not appeared as limits of random walks in dynamic random environments previously. We then explore
the resulting RWCRE scaling limits for general cooling sequences. On the one hand, we offer sets of operative sufficient conditions
that guarantee asymptotic emergence of either Gaussian, s-stable or generalized tempered distributions from a certain class. On the
other hand, we give explicit examples and describe how to construct irregular cooling sequences for which the corresponding limit
law is characterized by mixtures of the three above mentioned laws. To obtain these results, we need and derive a number of refined
asymptotic results for the static RWRE with s ∈ (1,2) which are of independent interest.
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1. Context and overview.

Perturbation of a frozen media through resetting. RWRE (Random Walks in Random Environments) is a well-known
model, of central relevance within the theory of disordered systems, for particles moving in media with impurities. It
consists of a Markov chain with random transition kernels determined by an underlying field of variables, referred to
as random environment, which is sampled at time zero from a given law and stays “frozen during the evolution of the
Random Walk (RW).

Rigorous studies on RWRE can be traced back to the 1970s [34] and along the years the model has been widely
investigated on d-dimensional integer lattices. This setup poses many challenges and still several questions remain open
when d ≥ 2, see [38]. Unlike the higher dimensional setup, for d = 1, RWRE is reversible and, by the analysis of the
associated hitting times and the so-called potential, a fairly complete picture of its limiting properties has been obtained
along the years.

Depending on the choice of the law of the environment, strong spatial local effects lead to substantial qualitative
differences with respect to a standard homogeneous RW. Indeed, due to the spatial inhomogeneities, trapping and slow-
down phenomena can give rise to a variety of rich behaviors such as sub-ballistic transience [34], non-Gaussian limiting
distributions [26, 33], sub-exponential large deviation probabilities [11, 20], aging [15, 38], etc.

In the recent [5], the authors introduce a model, referred to as RWCRE (Random Walks in Cooling Random Environ-
ments), which can be thought of as a perturbation of RWRE, obtained by resampling the environment in an independent

1

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
mailto:l.avena@math.leidenuniv.nl
mailto:conrado.da-costa@durham.ac.uk
mailto:peterson@purdue.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2

fashion over a prescribed sequence of times. This sequence is described by a function, which is referred to as cooling
map. RWCRE is thus an example of RW in dynamic random environments in which depending on the choice of the
cooling map, one can flexibly “tune” the intensity of space-time correlations. In particular, RWCRE interpolates between
RWRE, corresponding to no resetting, and a homogeneous RW after averaging over the random field, which corresponds
to resetting the environment at every time unit.

The overall goal is to see what sort of limiting behavior can emerge for different cooling maps. In this respect, it
is worth mentioning that the study of RW models in dynamic random environments has witnessed various interesting
progresses over the past decade. Yet, unlike in the RWCRE, in most of this literature where the medium changes over
time, limiting results are obtained for models with good mixing properties leading to behaviors such as the ones observed
for a standard homogeneous RW, see e.g. [1, 22] and references therein for a recent account. For RWCRE one can not
only recover some of the non-Gaussian limiting distributions of the RWRE model, but also obtain some new limiting
distributions that were not obtained either in the homogeneous RW or RWRE models [3].

Our results in the present paper continue the study of limiting distributions of RWCRE in the so-called stable regime
(i.e. when the associated RWRE has a stable limiting distribution with index s ∈ (1,2)). This regime turns out to be
significantly more difficult than the earlier studied cases, but also yields examples of limiting distributions (generalized
tempered stable distributions) that are not only new for the class of random walks in dynamic random environments, but
also (as far as we are aware) have not been obtained previously as the limiting distribution of any discrete model. Our
results not only give sufficient conditions to obtain limiting distributions of certain natural cooling maps, but also give
an algorithmic method for constructing irregular cooling maps to achieve limiting distributions which are arbitrary linear
combinations of Gaussian, stable, and generalized tempered stable random variables.
State of the art of RWCRE. The study of RWCRE in one-dimension has been pursued in a sequence of recent works [2–
5, 37] in various regimes which we next briefly describe.

A general recurrence criterion is still open, although for diverging cooling sequences, as shown in [3], it can be related
to the classical (non-local) recurrence criterion in [34] for RWRE.

For the law of large numbers for the RW displacement, Thm 1.10 in [2] and the various general statements in [4],
show that the limit speed is deterministic and can be characterized in full generality [4, Section 3]. In particular, its value
coincides with the RWRE speed for cooling maps that diverge in a Cesàro sense.

For large deviations of the empirical speed, if increments between consecutive resettings diverge, it is shown in [2]
that the (quenched) asymptotic costs for deviations are exactly as in RWRE, regardless of the speed of divergence of the
resettings. Which is to say, somewhat surprisingly in light of the fluctuation results, that large deviation rate functions for
the empirical speed of RWRE are left unchanged under a wide class of perturbation induced by the cooling map.

When we consider fluctuations and scaling limits, the picture is much more delicate and heavily depends on the law of
the corresponding RWRE that one is perturbing. Let us briefly recall that for transient RWRE, there is a certain parameter
s > 0 associated to the law of the environment (see (2.5) below), which captures essentially four different classes of
possible scaling limits:

1. Recurrent: Non-Gaussian limiting distribution with strongly sub-diffusive scaling (logn)2. Limit distribution is a
non-trivial functional of Brownian motion [25, 33].

2. Transient, s ∈ (0,1): Limiting distribution with no centering and sub-linear scaling ns. Limit distribution is a
transformation of an s-stable law [26].

3. Transient, s ∈ [1,2): Limiting distributions are s-stable with superdiffusive scaling n1/s; linear centering when
s > 1 [26].

4. Transient, s≥ 2: Gaussian limiting distribution; diffusive scaling when s > 2 [26].

So far, fluctuations results for RWCRE have been obtained only when the underlying environment is in classes 1. and
4. (for s > 2).
Cooling in the Sinai regime. A recurrent RWRE is sometimes referred to as a Sinai walk due to Sinai’s derivation of the
limiting distribution for this case [33], and the corresponding limiting distribution is called the Sinai-Kesten law due to
Kesten’s derivation of the density [25]. As shown first in [5] for some regular cooling maps, and then in great generality
in [3], convergence in distribution depends on the regularity and speed of the chosen cooling map. Sub-sequential limits
can be characterized in general and may lead to mixtures of Gaussian and Sinai-Kesten laws [3, Thm. 2]. Fluctuations are
controlled by the total variance of the RWCRE and are essentially always sub-diffusive, and the limiting distribution is
Gaussian only for cooling maps in which increments between resetting do not grow more than exponentially, see [3, Cor.
1].

In this regime, the recent [37] investigates convergence of the full RWCRE process for polynomially and exponentially
growing cooling increments leading, respectively, to a time-scaled Brownian motion [37, Thm. 1] and to a (degenerate)
random constant distributed as a standard Gaussian [37, Thm. 2].
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Cooling in the CLT regime, s > 2. The other well-understood and actually the easiest regime, corresponds to s > 2 in
the class 4. mentioned above. In this case, the limits are Gaussian for any cooling map and if the increments between
resettings diverge then the scaling is of the form c

√
n [3, Thm. 3, Cor. 2].

New results at glance: fluctuations in the stable regime s ∈ (1,2). What happens when s ∈ (0,2) (i.e. classes 2. and 3.
above) is still open, and in this paper we investigate fluctuations for s ∈ (1,2). In this case, refered to as the stable regime,
RWRE is transient and ballistic, with stable limit laws after scaling by n1/s. The analysis of the RWCRE here is much
more delicate than the previously studied cases. In particular, even determining the correct scaling for which to obtain
a limiting distribution is non-trivial. Whereas in both the Sinai regime and the CLT regime the limiting distributions for
RWCRE could always be obtained by scaling the walk by the square root of the variance, our results show that when
s ∈ (1,2) the choice of scaling for the RWCRE is more delicate and depends in very subtle ways on the particular
cooling map τ . In fact, as pointed out in Remark 3.6 below, even knowing the correct limiting distribution isn’t enough to
determine the appropriate scaling for the walk. While these difficulties prevent us from giving a complete characterization
of weak (subsequential) limits for all cooling maps as was done in the Sinai regime and CLT regime, we are able to obtain
limiting distributions under quite general conditions on the cooling maps and demonstrate a rich array of possible limiting
distributions. Our main results are summarized as follows.

The first result, Theorem 3.1 describes the scaling limit of RWCRE when the cooling map has polynomially growing
increments. In this case, the system presents three possible limiting scenarios. The critical scenario occurs when the
exponent of polynomial growth equals 1/(s− 1), and in this case the fluctuations are of the order n1/s and the limiting
distribution is neither Gaussian nor stable but instead a type of distribution which we call generalized tempered s-stable.
In the supercritical regime, fluctuations stay of order n1/s but the limiting law coincides with the stable one for static
RWRE. On the other hand, in the subcritical case the limiting distribution is Gaussian and the fluctuations are scaled by
nβ , where β ∈ (1/2,1/s) depends explicitly on the exponent of the polynomial growth of the cooling increments. Such
a crossover from Gaussian to stable limits for polynomial cooling was conjectured in [5] on the basis of the fluctuations
of the RWRE hitting times. Thus, Theorem 3.1 not only settles affirmatively this conjecture but also identifies the precise
order of fluctuations, the critical exponent where this crossover occurs, and the limiting distribution at criticality.

We then explore limit distributions for general but sufficiently regular cooling sequences. In particular, we give op-
erative conditions on the cooling sequence to obtain Gaussian (Theorem 3.2), stable or generalized tempered stable
(Theorem 3.3) limit distributions. Statements in Theorem 3.1 for polynomial cooling maps are in fact special cases of
these general theorems. Then by constructing an “interweaving” of multiple polynomial cooling maps we show in Theo-
rem 3.7 that one can construct cooling maps for which the limiting distribution can be an arbitrary linear combination of
Gaussian, s-stable, and a member of a broad class of generalized tempered stable random variables.

As with previous results on the RWCRE model, the starting point of the analysis is a decomposition of the position of
the RWCRE into sums of independent (but not identically distributed) random variables which have the same distribution
as independent copies of RWRE run to varying numbers of steps. In the proofs of the limiting distributions in the Sinai
and CLT regimes in [5] and [3], it was then argued that each of the copies of the independent RWRE random variables
could be replaced by a (re-scaled) copy of an appropriate random variable coming from the limiting distribution of RWRE
(Sinai-Kesten or Gaussian, respectively). This “replacement” technique to obtaining limiting distributions was justified by
upgrading the relevant limiting distributions for RWRE from weak convergence to L2 convergence. In the case s ∈ (1,2)
considered in this paper, one can at best prove only that the RWRE converges in Lp for p < s (see Theorem 3.8 below).
Moreover, even trying to find a different method to justify a replacement technique is bound to be limited in scope because
for any cooling map where a replacement method could be used the limiting distribution would necessarily be an s-stable
random variable. Thus, we are forced to use very different methods to obtain limiting distributions here than were used
in [5] and [3].

The proofs of the limiting distributions are different depending on the type of the limiting distribution: Lindeberg
conditions to prove Gaussian limits, and Poisson point process techniques to obtain stable and tempered stable limits.
While these techniques are standard methods to obtain such limiting distributions, their implementations here are non-
trivial. Additionally, we derive a number of precise estimates for RWRE which are specifically needed for the proofs of
the main results of the paper, but are also of independent interest. Among these technical RWRE estimates are precise
asymptotics of the mean, variance, and other Lp bounds (see Theorem 3.8) as well as moderate deviation tail bounds (see
Section 4.3).
Structure of the paper. The next section is devoted to model definitions, notation and basic results. In particular, the
classical RWRE is introduced in Section 2.1 along with the main assumptions and asymptotic results in the stable regime
which represents our point of departure. RWCRE is then defined in Section 2.2. Our main results mentioned above are
collected and discussed in Section 3.

We then start all the proofs. Those about RWRE are presented in Section 4 together with a number of other large
deviation estimates which will be instrumental for the analysis of the cooling model. Proofs of the RWCRE scaling limits
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for regular cooling maps are given in Sections 5 and 6, in which we prove, respectively, emergence of Gaussian, and of
stable or generalized tempered stable distributions. In Section 7 we treat the non-regular maps which lead to mixture of
different limiting laws, and in Section 8 we give examples of some highly irregular cooling maps which demonstrate both
how the techniques of this paper can be extended to obtain subsequential limiting distributions not contained in our main
results and also how the techniques of this paper can be applied to obtain limiting distributions even when the cooling
maps do not satisfy the regularity conditions of our main results.

We conclude with three appendices: Appendix A devoted to facts about stable laws, Appendix B, that recalls the
construction of regeneration times for RWRE and some related results, and Appendix C which contains simple technical
lemmas used in the proofs.
Notation. We close the introduction with a brief mention of some notation that we will use in the paper. First of all,
given two random variables X,Y , we will write X Law

= Y when the two random variables have the same distribution, i.e.,
when E [exp(iuX)] = E [exp(iuY )] for all u ∈ R. Secondly, throughout the paper we will use the following standard
asymptotic notation. For two sequences f(n) and g(n) we say that

• f(n)∼ g(n) as n→∞ if limn→∞
f(n)
g(n) = 1.

• f(n) =O(g(n)) as n→∞ if there is a constant C <∞ such that f(n)≤Cg(n) for all n large enough.
• f(n) = o(g(n)) as n→∞ if limn→∞

f(n)
g(n) = 0.

• f(n) = Θ(g(n)) as n→∞ there are constants 0< c <C <∞ such that c≤ f(n)
g(n) ≤C for all n large enough.

2. Setting and Background

2.1. RWRE: stable regime s ∈ (1,2)

Throughout the paper we use the notation N0 = N ∪ {0} with N = {1,2, . . .}. The classical one-dimensional (static)
RWRE model is defined as follows. Let ω = (ωx)x∈Z be an i.i.d. sequence with law

(2.1) µ= αZ,

for some probability distribution α on (0,1). We write 〈·〉 to denote the expectation w.r.t. α.
Definition 2.1 (RWRE).
Let ω be an (i.i.d.) environment sampled from µ. We call Random Walk in Random Environment the Markov chain
Z = (Zn)n∈N0 with state space Z and transition probabilities

(2.2) Pω(Zn+1 = x+ e | Zn = x) =

{
ωx if e= 1,
1− ωx if e=−1,

n ∈N0.

We denote by Pωx (·) the quenched law of the Markov chain identified by the transitions in (2.2) starting from x ∈ Z, and
by

(2.3) Pµx (·) =

∫
(0,1)Z

Pωx (·)µ(dω),

the corresponding annealed law.
One-dimensional RWRE is by now well understood, both under the quenched and the annealed law. It exhibits very

different limiting behaviors (asymptotic speed, scaling limits and large deviations) depending on the choice of µ (or α in
the present i.i.d. setting captured by (2.1)). For a general overview, we refer the reader to the lecture notes by Zeitouni [38].
Here we collect some basic facts and definitions that will be needed throughout the paper. We will focus on the annealed
stable regime as introduced below and first studied by Kesten, Kozlov and Spitzer [26].

Let us start with some assumptions on µ (or α). A crucial quantity to characterize the asymptotic properties of RWRE
is the ratio of the transition probabilities to the left and to the right at the origin (or any other vertex due to the i.i.d.
assumption (2.1)) ρ0 = 1−ω0

ω0
. For the remainder of the paper, we assume that

(2.4) 〈logρ0〉< 0,

which, as shown in [34], guarantees right transience. In what follows we restrict ourselves to the regime where there is
s ∈ (1,2) such that

(2.5) 〈ρs0〉= 1.
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This condition characterizes what we call stable regime, and as captured in the next proposition, guarantees ballisticity
of the walk (see (2.8)). Note that if conditions (2.4) holds and (2.5) is satisfied for some s > 0, this is enough to imply
that ω0 is truly random; that is the RWRE is not a homogeneous simple random walk. We further assume that

(2.6) logρ0 is non lattice,

this is a technical assumption required in [26] to characterize emergence of limiting stable laws, see Eq. (2.9) below.
Finally we require the following ellipticity condition

(2.7) 〈ρs+ε0 〉<∞, for some ε > 0,

which is needed for the tail estimate in (2.11). We will consider µ’s that satisfy all the above conditions, which we
summarize in the following definition.
Definition 2.2 (s-canonical µ for the stable regime).
We say that µ is s-canonical if it satisfies conditions (2.1), (2.4), (2.5) with s ∈ (1,2), (2.6) and (2.7).

The next proposition represents our point of departure. In this statement, and in the sequel, we denote convergence in
distribution of an arbitrary sequence of random variables (Yn)n∈N to a random variable Y∗ as n→∞ by Yn =⇒ Y∗.

Proposition 2.3 (RWRE: speed, limit law and deviations for s ∈ (1,2)).
Let µ be any s-canonical law with s ∈ (1,2) and consider the RWRE process Z with environment sampled from µ. Then:

• (LLN) under the annealed law (and under the quenched too), Z is almost surely right-transient and admits deter-
ministic limiting speed:

(2.8) Pµ0

(
lim
n→∞

Zn
n

= vµ

)
= 1, with vµ =

1− 〈ρ0〉
1 + 〈ρ0〉

> 0.

• (Fluctuations) under the annealed law Pµ0 , there exists b > 0, such that

(2.9)
Zn − vµn
n1/s

=⇒Ss, as n→∞,

where Ss is the stable (mean zero totally skewed to the left) random variable with characteristic function

(2.10) E
[
eiuSs

]
= exp

[
−b|u|s

(
1 + i

u

|u|
tan
(sπ

2

))]
, u ∈R.

• (Moderate slow-down deviations) there exists a constant K0 > 0 such that

(2.11) lim
n→∞

sup
t∈Ĩn

∣∣∣∣Pµ0 (Zn − nvµ <−t)
(nvµ − t)t−s

−K0

∣∣∣∣= 0,

where Ĩn := [n1/s(logn)3, nvµ − logn].

The LLN in (2.8) was proved in [34] and in particular it does not need assumptions (2.5), (2.6) and (2.7) in Def 2.2.
In fact, it was shown in [34] that for i.i.d. environments the LLN holds with positive speed as in (2.8) if 〈ρ0〉 < 1. The
assumption that (2.5) holds for some s > 1 implies by Jensen’s inequality that 〈ρ0〉 < 1, and thus that (2.8) holds. The
stable law convergence in (2.9) was proved in [26] under a slight weaker ellipticity assumption than the one in (2.7). The
latter is in fact only needed to show the limit in (2.11) which was proved in [8]. We remark that the constants b in (2.10)
and K0 in (2.11) are related by1

(2.12) b=K0vµΓ(1− s) cos(πs2 ),

where Γ(1− s) = Γ(2−s)
1−s = 1

1−s
∫∞

0
e−tt1−s dt.

1It follows from the proof of (2.11) in [8] that K0 can be expressed in terms of another constant C3 which appears in a tail asymptotic result in [8,
Lemma 3.2]. This same tail asymptotic result is also given in [26, Lemma 6], and it follows from this that one can derive a formula for b in (2.10) in
terms of C3 also.
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2.2. RWCRE: Cooling

The cooling random environment is the space-time random environment built by partitioning N0 into a sequence of
intervals, and assigning independently to each interval an environment sampled from µ. Formally, let (Tk)k∈N be an
increment sequence such that Tk ∈ N, we will refer to this sequence as cooling increment sequence. We denote further
by τ(k) :=

∑k
i=1 Ti the k-th cooling time, i.e. the time at which a new environment is freshly sampled from µ. We will

refer to τ as the cooling map.
Definition 2.4 (Random Walks in Cooling Random Environments (RWCRE)).
Consider a cooling increment sequence (Tk)k∈N and a distribution µ on environments. For a fixed n ∈N set

(2.13) `n + 1 := inf{` : τ(`)> n}, and T̄n := n−
`n∑
k=1

Tk.

Let ω̄ = {ω(k)}k≥1 = {(ω(k)
x )x∈Z}k≥1 be an i.i.d. sequence of environments with ω(k) ∼ µ. We define the RWCRE

sequence X = (Xn)n∈N0
in the sequence of environments ω̄ and with cooling map τ by

(2.14) Xn :=

`n∑
k=1

Z
(k)
Tk

+Z
(`n+1)

T̄n
n ∈N0,

where for k ≥ 1, Z(k)
· :=

(
Z

(k)
n

)
n∈N0

is distributed as a RWRE process with underlying environment ω(k) = (ω
(k)
x )x∈Z,

and the sequence of random walks {Z(k)
· }k≥1 are independent.

This process corresponds to a discrete-time RW evolving in a random environment with law µ which is resampled in
an independent fashion along the sequence of times τ(k) determined by the cooling map. We notice that for T1 =∞ this
model reduces to RWRE, while for Tk ≡ 1 it reduces to a homogeneous RW (under the annealed measure) with local
drift E[Z1]. The name cooling comes from the fact that when dealing with maps for which the increments Tk eventually
diverges, the environment will be resampled less and less, and hence, depending on the growth of Tk , the corresponding
motion will resemble the random walk in the static or “frozen” random environment. Notice that as defined in (2.13),
`n + 1 denotes the index of the increment in which n belongs to, and that `n counts the total number of resettings up until
time n.

We will analyze the model under the annealed law that starts from the origin. Formally this refers to the path measure
obtained by the average with respect to µN of the quenched path measure, say P ω̄,τ0 , associated to the kernel P ω̄,τ (Xn+1 =
x+ 1 |Xn = x). In what follows, to lighten the notation, we will simply denote by

(2.15) P(·) := µN ⊗ P ω̄,τ0 (·) =

∫
P ω̄,τ0 (·)dµN(ω̄),

such an annealed measure and, in each statement, we will specify that we consider RWCRE associated to a given s-
canonical law µ and a given cooling map τ . As a slight abuse of notation when discussing just a single RWRE process
(Zn)n≥0 we will also use P for the annealed measure instead of Pµ since as noted above a RWRE can be seen as a
RWCRE with T1 =∞.

2.3. Relevant Distributions

In the next section we state our results about the limit behavior of RWCRE for perturbations of RWRE in the stable
regime. As we will see, depending on the choice of the cooling map, we will encounter the following type of limit laws,
or possibly mixtures of them. These correspond to:

• the Standard Gaussian, denoted by N ;
• the (mean-zero totally skewed to the left) Stable defined by its characteristic function in Eq. (2.10), and denoted by
Ss;

• a third special type of random variableWλ defined below and referred to as (mean-zero totally skewed to the left)
generalized tempered s-stable laws.
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Definition 2.5 (Generalized mean-zero left-skewed tempered s-stable laws).
For s ∈ (1,2), a random variableWλ is said to have a generalized mean-zero left-skewed tempered s-stable law, if it has
characteristic function

(2.16) E[eiuWλ ] = exp

{∫ 0

−∞
(eiux − 1− iux)λ(x)dx

}
,

where the function λ(x) is of the form λ(x) = c|x|−s−1a(x) for some c > 0 and some non-decreasing, continuous
function a on (−∞,0] with a(0) = 1 and limx→−∞ a(x) = 0.
Remark 2.6 (Relation of the three laws). We note that the family of random variables Wλ interpolates between the
standard Gaussian N and the s-stable Ss, in the sense that they belong to the closure, with respect to weak convergence,
of the vector space of generalized tempered s-stable laws. Indeed, for any c, r > 0 let

(2.17) λc,r(x) = c|x|−s−1(1 + x/r)+, x < 0.

ThenWλc,r converges in distribution as r→∞ to the random variable Ss with characteristic function as in (2.10) with
b = −cΓ(−s) cos(πs2 ). On the other hand, as r → 0+ the random variables r

s
2−1Wλc,r converge in distribution to a

centered Gaussian. One can check these claims by taking limits of the corresponding characteristic functions.
We use the term generalized in Definition 2.5 because left-skewed tempered s-stable laws are the special case when

λ(x) = c|x|−s−1eθx for some θ > 0. Tempered stable distributions and the corresponding Lévy processes (also called
Lévy flights [28] and the CGMY model [9]) have been the subject of interest recently in financial modeling [12, 16], but
they have not arisen previously as limits of random walks in dynamic random environments.

3. Results

Our first theorem shows the mentioned crossover, from normal to stable limit, passing through an intermediate critical
generalized tempered stable law, as one changes the polynomial cooling rate in (3.1) below.

Theorem 3.1 (Trichotomy: phase transition for polynomial cooling).
Let X be a RWCRE associated to a given s-canonical law µ, as in Def. 2.2, and consider a cooling map τ with (eventual)
polynomial growth, that is, such that

(3.1) lim
k→∞

Tk
Aka

= 1, for some A,a ∈ (0,∞).

Then, the following three limiting scenarios are possible:

• (Normal) For a < 1
s−1 ,

(3.2)
Xn −E[Xn]

Bnβ
=⇒N ,

where β := a(3−s)+1
2(a+1) and B2 :=

2K0v
3−s
µ A

2−s
a+1 (a+1)

a(3−s)+1
a+1

(2−s)(3−s)(a(3−s)+1) .
• (Critical) For a= 1

s−1 ,

(3.3)
Xn −E[Xn]

n1/s
=⇒Wλc,r ,

where λc,r is defined as in (2.17) with c=K0vµs and r = vµ

(
s
s−1

)1/s

A
s−1
s .

• (Stable) For a > 1
s−1 ,

(3.4)
Xn −E[Xn]

n1/s
=⇒Ss.

The three statements in Theorem 3.1 are special cases of the following two more general theorems which give sufficient
conditions for respectively, normal, and a class of generalized tempered stable laws as in Def. 2.5 which includes Ss and
Wλc,r from Theorem 3.1. See Remark 2.6 for their relations.
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Theorem 3.2 (Sufficient conditions for pure Gaussian limits).
Let X be a RWCRE associated to an s-canonical law µ, as in Def. 2.2. If the cooling map τ is such that

(3.5) lim
n

sup
k≤n

Tk(∑n
k=0(Tk)(3−s)

)1/2 = 0,

then

(3.6)
Xn −E[Xn]√

Var(Xn)
=⇒N .

The statement above is proven in Section 5 by checking the classical Lindeberg’s conditions. We notice in particular
that the norming sequence in (3.6) is determined by the standard deviation and in particular its asymptotic behavior varies
as the growth of the cooling increment sequence varies. This variation of the scaling as a function of the cooling growth
can be appreciated in (3.2). On the other hand, as stated in Theorem 3.1, if the polynomial increments start to grow
too much, it is a signature of exiting the Gaussian world and in particular we see that for the emergence of both non-
Gaussian laws in (3.3) and (3.4), the corresponding norming sequences are not a function of the power in the polynomial
cooling growth and are given by n1/s rather than the standard deviation. In the next theorem we offer sufficient regularity
conditions on the cooling map which guarantee emergence of a sub-class of the generalized stable distributions in Def.
(2.5), which in particular include the two limiting random variables in (3.3) and (3.4). This regularity of the cooling
map is expressed in terms of the existence of a limit, see (3.7), which captures the asymptotic stability for the empirical
distribution of the increments that are large, meaning that they have non-negligible contribution on the scale (n1/s) of the
global running time to the power 1/s.

Theorem 3.3 (Sufficient conditions for generalized s-stable limits).
Let X be a RWCRE associated to an s-canonical law µ, as in Def. 2.2. Assume that the following limit exists

(3.7) lim
n

∑n
k=1 Tk1{Tk<xτ(n)1/s}

τ(n)
= g(x), for all x ∈ (0,∞),

with g being a continuous non-decreasing function on [0,∞) with g(0) = 0 and g(∞) := limx→∞ g(x) ∈ [0,1].

(S1) If supn
∑n
k=1

T
1/s
k

τ(n)1/s <∞, and limn→∞
∑n
k=1

T
1/s
k

τ(n)1/s1{Tk<m} = 0 for all m<∞, then

(3.8)
Xn −E[Xn]

n1/s
=⇒Ss.

(S2) If limn→∞
maxk≤n Tk(logTk)4s

τ(n) = 0, then

(3.9)
Xn −E[Xn]

n1/s
=⇒

{
Ss if g(∞) = 0,

Wλg + (1− g(∞))1/sSs if g(∞) ∈ (0,1],

whereWλg is the random variable with characteristic function as in Def. (2.5) with λg : (−∞,0)→ [0,∞) given
by

(3.10) λg(−t) =K0t
−s
∫ ∞
t/vµ

(
vµs

t
− s− 1

x

)
g(dx), t > 0,

and Ss has characteristic function (2.10) and is independent ofWλg .

Remark 3.4 (Regularity of the cooling & g function). The g function characterizes the density of increments at scale
τ(n)1/s, and if the cooling map is regular enough to satisfy (3.7) for some continuous g with g(0) = 0, the above
theorem suggests that a generalized tempered stable or a pure stable component should be expected in the limit. The
extra conditions (S1) or (S2) are in particular sufficient to guarantee convergence to these types of laws. Theorem 3.3
says nothing about possible Gaussian components for which increments are on scales smaller than τ(n)1/s. Moreover
the Poisson point process approach used in the proof of Theorem 3.3 is not well suited for proving Gaussian limits. We
further remark that while it is tempting to conjecture that if (3.7) holds with g(x)≡ 1 then the limit is Gaussian this is not
true as can be seen by Example 2 in Section 8 when 2s/2 ≤ r < 2.
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Remark 3.5. It is not immediately obvious that the function λg defined in (3.10) satisfies the conditions in Definition 2.5
for a generalized tempered stable law, but this will be shown at the end of Section 6.2 as part of the proof of Theorem 3.3.
Remark 3.6. The observant reader may notice from the above results that there initially appears to be a connection
between the limiting distribution of the RWCRE and the proper scaling of the walk. For the Gaussian limits in Theorem
3.2 we scale the walk by the standard deviation whereas for the tempered-stable and stable limits in Theorem 3.3 we scale
by n1/s. However, the actual determination of the proper scaling for the RWCRE is more complicated as can be seen by
Example 2 in Section 8. In that example if the parameter r ∈ (21/(3−s),2s/2) then one gets Gaussian limits when scaled
by
√
n even though the standard deviation is of the order n(log2 r)(3−s)/2�

√
n, and if the parameter r ∈ (2s/2,2) one

gets stable limits with a scaling exponent β ∈ ( 1
2 ,

1
s ).

The previous results give sufficient conditions for convergence to Gaussian, stable, or generalized tempered stable
distributions. Our next result shows that one can also obtain arbitrary independent linear combinations of these three
types of distributions at least within a certain subclass of generalized laws defined as follows. Let Λconv,s be the class of
functions of the form λ(x) = c|x|−s−1a(x), where c > 0 and a : (−∞,0]→ [0,1] is a convex, non-decreasing function
with limx→−∞ a(x) = 0 and a(0) = 1.

Theorem 3.7 (Mixed laws). Let µ be a fixed s-canonical law. Given a1, a2, a3 ≥ 0 and a function λ ∈ Λconv,s, there
exists a cooling map τ and constants b > 0 and β ∈ [1/2,1/s] such that the RWCRE X associated to the law µ with
cooling map τ satisfies

(3.11)
Xn −E[Xn]

bnβ
=⇒ a1N + a2Wλ + a3Ss,

withWλ as in (3.3), and where N ,Wλ, and Ss are independent.

The proof of the above statement, presented in Section 7, is split into several steps which in particular offer a con-
structive procedure to build the map τ by interweaving several polynomial cooling maps τ (1), τ (2), . . . , τ (n) (or by taking
limits of such interweavings in an appropriate sense).

We conjecture that Theorem 3.7 identifies all possible limiting distributions that can be obtained for this model of
RWCRE, but if one also allows for subsequential limits then there are limiting distributions not covered by Theorem 3.7
(see Example 3 in Section 8).

Since RWCRE is built upon finite pieces of RWRE, precise estimates on Zn are needed in the proofs of the previous
results. We collect in the next theorem the most relevant such precise estimates which, to the best of our knowledge, are
new and interesting for the analysis of RWRE for s ∈ (1,2). The proof of the theorem is given in Section 4 where other
concentration estimates for RWRE are derived.

Theorem 3.8 (Stable RWRE: asymptotic s−moment, mean and variance).
Let Z be a RWRE with a given s-canonical law µ as in Def. 2.2, with s ∈ (1,2). Then

(3.12) sup
n

E
[∣∣∣∣Zn − nvµn1/s

∣∣∣∣p]<∞, ∀p ∈ (0, s),

(3.13) E[Zn] = nvµ + o(n1/s),

and

(3.14) Var(Zn) = σ2
0n

3−s + o(n3−s),

where σ2
0 := 2K0v

3−s
µ /(2− s)(3− s).

The limiting distributions for RWCRE stated above are all given with centering E[Xn] rather than with a linear center-
ing nvµ as in the case of RWRE in (2.9). However, in certain cases once a limiting distribution is obtained when centered
by the mean one can then use (3.13) to show that the same limiting distribution holds when centered by nvµ. In particular,
if condition (S1) holds then one can check that E[Xn]−nvµ = o(n1/s) so that Xn−nvµ

n1/s =⇒Ss. Another consequence of
(3.13) is that the stable limit law in (2.9) also holds with centering E[Zn], that is Zn−E[Zn]

n1/s =⇒Ss, and we will use this
fact in the proof of (3.8).
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3.1. Discussion

Before moving on to the proofs of our main results, we pause briefly for some further discussion on the main results of
the paper.

• Chakrabarty and Meerschaert [10] showed that one can obtain generalized tempered stable laws as limits of random
walks by taking sums of random variables in the domain of attraction of a s-stable and truncating them above a
certain level. However, one needs to use a triangular array scheme for the limiting distributions in [10] since the
truncation level varies depending on the number of random variables summed. In contrast, in this paper we obtain
generalized tempered stable laws as limits of a fixed discrete process. In our results the “tempering” is the result
of the fact that the limiting distribution in (2.9) implies that the rescaled RWRE Zn−E[Zn]

n1/s is close in distribution
to an s-stable random variable but is bounded by 2n1−1/s. Thus, one can think of approximating Zn−E[Zn]

n1/s by
Ss1{|Ss|≤2n1−1/s}, and indeed using this heuristic one can guess some of the results in this paper. For instance,
regarding polynomial cooling maps this heuristic correctly identifies the transition from Gaussian to stable limits
at the exponent a= 1

s−1 (though it does not give the correct tempered stable law at the critical exponent).
• A natural follow up question to the results of this paper is if the limiting distributions in this paper can be extended

to functional limiting distributions for the path of the walk. We believe that the techniques in this paper can be
easily adapted to prove functional limit laws in the present setting as well, but for simplicity of presentation we
have restricted ourselves to proving limiting distributions for the endpoint of the walk only. For example, the
functional limiting distribution extensions for the limiting distributions in (3.2) and (3.4) should be a polynomial
time change of a Brownian motion (similar to what was obtained for RWCRE in the Sinai regime [37]) and a s-
stable process, respectively. Also, in cases where the limiting distribution of the RWCRE is a generalized tempered
stable distribution (such as in (3.3)), the functional limit extension would not be a Lévy process2 and thus would
be different from the tempered stable processes which occur in other places in the literature (e.g., [9, 32]).

• One of the most interesting features of the results in this paper is the existence of a new type of limiting distributions
for random walks in dynamic random environments: generalized tempered stable laws. It is natural to ask if one
might expect to see similar limiting distributions for other models of random walks in random environments.
A potential candidate would be to consider dynamic random environments which are not stationary in time but
instead become more “frozen” as time increases. For instance, one could consider the model of random walks in
a dynamic environment given by a simple symmetric exclusion process (see [6, 22, 23]) but modified so that the
speed of the underlying exclusion process becomes slower as time goes on (something similar was done to obtain
an anomalous diffusion in [24], but with the speed of the exclusion process increasing instead of decreasing).

4. Proofs: RWRE asymptotics

The aim of this section is to prove Theorem 3.8 and some other preparatory statements for RWRE related to large
and moderate deviations in the stable regime. In particular, we start in the next two sections with the proofs of (3.12)
and (3.13), respectively. Right and left tail estimates are then stated and proven in Section 4.3 and with the help of the
latter, we derive in Section 4.4 the asympotics of the variance in (3.14). The statements in this section assume without
explicit mention that Z is an RWRE with environment law given by an s-canonical law µ, as in Def. 2.2. In many of these
proofs, we will make use of the classical RWRE regeneration times sequence defined via (B.2) in Appendix B.

4.1. RWRE Lp moments estimate: proof of (3.12)

The claim in (3.12) is equivalent to E [|Zn − nvµ|p] =O(np/s), and this is what we show below. Also, without loss of
generality we can assume below that p ∈ (1, s). Let Rk , k ∈ N0, be regeneration times defined in Appendix B and let
k(n) be the number of regeneration times by time n; that is Rk(n) ≤ n < Rk(n)+1. Let E denote expectation of RWRE
with respect to P, where P is the probability P conditioned on the event {infn≥0Zn = 0}. Also, recall (B.2) and let

(4.1) c∗ :=
1

E[R1]
=

1

E[R2 −R1]
.

2If one has Xn−E[Xn]
n1/s ⇒Wλ, then any functional limit X = (X (t))t≥0 for the rescaled path of the walk would have the property that X (t)

Law
=

t1/sWλ . If X (t) were a Lévy process, one would have E[eiuX (t)] =E[eiuX (1)]t , but here we have E[eiuX (t)] =E[eiut
1/sWλ ] 6=E[eiuWλ ]t =

E[eiuX (1)]t where the inequality in the middle can be verified from the explicit form of the characteristic function ofWλ in (2.16).
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Then, using the inequality |a+ b+ c|p ≤ 3p−1(|a|p + |b|p + |c|p) we obtain that

E [|Zn − nvµ|p]≤ 3p−1

{
E
[∣∣Zn −ZRk(n)

− (n−Rk(n))vµ
∣∣p](4.2)

+E
[∣∣ZRk(n)

−ZRbc∗nc − (Rk(n) −Rbc∗nc)vµ
∣∣p](4.3)

+E
[∣∣ZRbc∗nc −Rbc∗ncvµ∣∣p]}.(4.4)

To complete the proof, in the following paragraphs we prove that the term in (4.4) is of order O(np/s) and that each of
the remaining terms is of order o(np/s).
Bound on the term in (4.4). We remark that

ZRbc∗nc −Rbc∗ncvµ =

bc∗nc∑
k=1

(
ZRk −ZRk−1

− (Rk −Rk−1)vµ
)

is the sum of independent random variables, all of which are i.i.d. except the first. In view of Lemma B.3 the first term
ZR1 − R1vµ is negligible for this sum. It follows from (B.6), (B.7), and (B.8) that for k ≥ 2 the random variables
ZRk −ZRk−1

− (Rk −Rk−1)vµ are zero mean random variables with exponential tails to the right and left tails that are
regularly varying of index −s. Thus we can apply Corollary A.2 to conclude that the expectation in (4.4) is O(np/s).
Bound on the term in (4.2). For the expectation in (4.2), note that by the definition of k(n) and the fact that the walk is
a nearest neighbor walk, we have that

E
[∣∣Zn −ZRk(n)

− (n−Rk(n))vµ
∣∣p]≤ (vµ + 1)pE[(Rk(n)+1 −Rk(n))

p].

To control the expectation above, we partition the total probability on the possible values that k(n) and Rk(n) may attain
and then use the i.i.d. structure of regeneration times. Explicitly

E[(Rk(n)+1 −Rk(n))
p] = E[Rp11{R1>n}] +

n∑
k=1

n−k∑
m=0

E[(Rk+1 −Rk)p1{Rk=n−m,Rk+1−Rk>m}]

= E[Rp11{R1>n}] +

n∑
k=1

n−k∑
m=0

P(Rk = n−m)E[Rp11{R1>m}]

= E[Rp11{R1>n}] +

n−1∑
m=0

(
n−m∑
k=1

P(Rk = n−m)

)
E[Rp11{R1>m}]

= E[Rp11{R1>n}] +

n−1∑
m=0

P(∃k : Rk = n−m)E[Rp11{R1>m}]

≤ E[Rp11{R1>n}] +

n−1∑
m=0

E[Rp11{R1>m}].

The first term in the right hand side is asymptotically vanishing thanks to Lemma B.3. Because (B.8) implies that
E[Rp11{R1>m}] ∼ C ′m−s+p, the sum on the right is O(n1−s+p). Since 1− s+ p < p

s when p < s, it follows that the
expectation in (4.2) is o(np/s).
Bound on the term in (4.3). To ease notation we let Wk := ZRk −Rkvµ for k ≥ 1, so that

(4.3) = E
[
|Wk(n) −Wbc∗nc|

p
]
≤ 2pE

[
max
k≤n
|Wk|p

]
≤ 22p−1

(
E[|W1|p] + E

[
max
k≤n
|Wk −W1|p

])
.

It follows from Lemma B.3 that E[|W1|p] <∞ for p ∈ (0, s), while for the last expectation in the line above since
Wk−W1 is the sum of i.i.d. zero mean random variables (see the bound of (4.4) above) the Lp-maximal inequality implies

that E [maxk≤n |Wk −W1|p]≤
(

p
p−1

)p
E[|Wn −W1|p] for any p ∈ (1, s). Finally, since it follows from Corollary B.2

and (B.6) that P(|W2 −W1| > t) = P(|ZR1
− vµR1| > t) =O(t−s), we can conclude from Lemma A.2 that E[|Wn −

W1|p] =O(np/s) for any p ∈ (0, s). This completes the proof that (4.3) =O(np/s).
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4.2. RWRE mean estimate

In this section we prove (3.13). Consider the regeneration times sequence and as in the previous section let k(n) denote
the number of regeneration times by time n. For any c∗ > 0 and n ∈N we can write

E[Zn] =nvµ +E[ZRbc∗nc −Rbc∗ncvµ] + E
[
Zn −ZRk(n)

− (n−Rk(n))vµ
]

+E
[
ZRk(n)

−ZRbc∗nc − (Rk(n) −Rbc∗nc)vµ
]
.

(4.5)

Letting c∗ = 1
E[R1]

as in (4.1) and using (B.6) together with (B.4) and (B.5), we then have that the second term in the
right hand side above stays bounded, that is

E[ZRbc∗nc −Rbc∗ncvµ] =O(1).

For the second to last term in (4.5), it follows from the bound of (4.2) above with p= 1 that∣∣E [Zn −ZRk(n)
− (n−Rk(n))vµ

]∣∣≤ E
[∣∣Zn −ZRk(n)

− (n−Rk(n))vµ
∣∣]= o(n1/s).

It remains to bound the last in (4.5). Recalling the notation introduced in the bound of (4.3) above, we need to show that

(4.6) E[Wk(n) −Wbc∗nc] = o(n1/s).

To this end, we fix a β ∈ (1/s,1) and write

(4.7) E
[
Wk(n) −Wbc∗nc

]
= E

[(
Wk(n) −Wbc∗nc

)
1{|k(n)−c∗n|≤nβ}

]
+E

[(
Wk(n) −Wbc∗nc

)
1{|k(n)−c∗n|>nβ}

]
.

For the first term on the right in (4.7), using the fact that the random variables {Wj −Wj−1}j≥2 are i.i.d. with the same
distribution as W1 under the measue P we conclude that∣∣E [(Wk(n) −Wbc∗nc

)
1{|k(n)−c∗n|≤nβ}

]∣∣≤ E
[

max
k:|k−c∗n|≤nβ

|Wk −Wbc∗nc|
]
≤ 2E

[
max
k≤nβ

|Wk|
]
.

Fixing p ∈ (1, s) and using the Lp-maximal inequality as in the bound on (4.3) above, we conclude that

E
[

max
k≤nβ

|Wk|
]
≤ E

[
max
k≤nβ

|Wk|p
]1/p

≤ p

p− 1
E
[
|Wbnβc|p

]1/p
=O(nβ/s) = o(n1/s).

For the second term on the right in (4.7), fixing p ∈ (1, s), using Hölder’s inequality and applying the bound on (4.3)
above we obtain that∣∣E [(Wk(n) −Wbc∗nc

)
1{|k(n)−c∗n|>nβ}

]∣∣=O(n1/s)P(|k(n)− c∗n|> nβ)1− 1
p .

Thus, it remains only to show that

(4.8) lim
n→∞

P(|k(n)− c∗n|> nβ) = 0.

However, since k(n) is a (delayed) renewal process with increments Rj −Rj−1 in the domain of attraction of an s-stable
law (by (B.8)) and with mean E[R1] = 1/c∗, it follows that k(n)−c∗n

n1/s converges in distribution to a s-stable law (see
[17, p. 373]). Since, β > 1/s this then implies (4.8) holds, which finishes the proof of (4.7) and thus also the proof of
(3.13).

4.3. RWRE tail estimates

The main results in this section are right and left tail estimates for the RWRE which range from the limiting distribution
scale all the way to the large deviation scale. We begin with estimates on the right tail.

Lemma 4.1 (Right tail estimate).
There exist constants a, c,C > 0 such that for all n large enough and 0< t < an1− 1

s

(4.9) P(Zn − nvµ > tn1/s)≤Ce−ct
s/(s−1)

.
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Proof. Note that it is enough to prove (4.9) for δ ≤ t < an1− 1
s since we may extend the bound to 0 < t < δ if we

take the constant C in front of the exponential large enough. Thus, for the remainder of the proof we will assume that
δ ≤ t < an1− 1

s .
First of all, note that for any choice of m ∈N

(4.10)

P(Zn > nvµ + tn1/s)≤ P(ZRm > nvµ + tn1/s) + P(Rm < n)

≤ P
(
ZR1

>
(1− vµ)tn1/s

2

)
+ P

(
ZRm−1 > nvµ +

(1 + vµ)tn1/s

2

)
+ P(Rm−1 < n).

Since ZR1
has an exponential tail due to (B.11), the first probability on the right is bounded by C1e

−c1tn1/s

for some
constants C1, c1 > 0.

For the analysis of the last two terms in (4.10) we let m=m(n, t) = 1+bc∗(n+ tn1/s)c, where c∗ = 1
E[R1]

as in (4.1).

Using that E[ZR1 ] = vµE[R1] = vµ/c∗ we have

P
(
ZRm−1

> nvµ +
(1 + vµ)tn1/s

2

)
≤ P

(
m−1∑
k=1

(
ZRk −ZRk−1

−E[ZR1
]
)
>

1− vµ
2

tn1/s

)
.

Since the random variables in the sum inside the last probability are i.i.d. with exponential tails (Corollary B.2), it follows
from the large deviation estimates in [30, Thm. III.15], that there exist constants a, c2 > 0 so that this probability is

bounded above by e−c2t
2n

2
s
−1

for all t≤ an1− 1
s .

For the third probability in (4.10), since E[R1] = 1/c∗, for n large enough we have that

(4.11) P(Rm(n,t)−1 < n)≤ P

bc∗(n+tn1/s)c∑
k=1

(
Rk −Rk−1 −E[R1]

)
<
−tn1/s

2c∗

 .

It follows from the tail decay of regeneration times in (B.8) and the large deviation bound in Lemma A.3 that there is a

constant c3 > 0 such that this last probability is bounded above by e−c3t
s
s−1 for all t≤ an1− 1

s .
Combining the above upper bounds for the three terms in (4.10), we have that for n large enough

(4.12) P(Zn − nvµ > tn1/s)≤C1e
−c1tn1/s

+ e−c2t
2n

2
s
−1

+ e−c3t
s
s−1 ≤Ce−ct

s
s−1

,

where again in the last equality we used that t≤ an1− 1
s .

Corollary 4.2 (Asymptotics on positive part of the variance).
For any s ∈ (1,2), the following asymptotics in n is valid:

E[((Zn −E[Zn])+)2] =O(n2/s).

Proof. By (3.13) it is enough to prove that E[((Zn − nvµ)+)2] =O(n2/s). By Lemma 4.1 and the fact that Zn ≤ n we
have that

(4.13)

E[((Zn − nvµ)+)2]≤
∫ an

0

xP(Zn − nvµ > x)dx+ n2P(Zn − nvµ ≥ an)

= n2/s

∫ an1− 1
s

0

tP(Zn − nvµ > tn1/s)dt+ n2P(Zn − nvµ ≥ an)

≤ n2/s

∫ ∞
0

tCe−ct
s
s−1

dt+Cn2e−ca
s
s−1 n =O(n2/s).

We next turn our attention to left tail estimates for the RWRE. Note that (2.11) gives very precise left tail asymptotics,
but over a region that doesn’t quite cover all of the moderate devations we are interested in. The following Lemma gives
a weaker bound but over a scale that covers the entire moderate deviation regime.
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Lemma 4.3 (General left tail estimates).
There exist constant C,C ′ <∞ such that for large enough n

P(Zn − nvµ ≤−tn1/s)≤Ct−s, ∀t≤ 3vµ
4
n1− 1

s ,(4.14)

and P(Zn −E[Zn]≤−tn1/s)≤C ′t−s, ∀t≤ vµ
2
n1− 1

s .(4.15)

Proof of Lemma 4.3. First of all, since E[Zn] = nvµ+o(n1/s), we only need to prove (4.14). Moreover, we take C ≥ 1,
so it suffices to prove (4.14) for 1≤ t≤ 3vµ

4 n1− 1
s .

As with the proof of Lemma 4.1 we will once again use regeneration times. For any m ≥ 1, since Rm ≤ n implies
ZRm ≤ Zn we have that

P(Zn − nvµ ≤−tn1/s)≤ P(Rm > n) + P(ZRm ≤ nvµ − tn1/s)

≤ P
(
R1 >

t

2
n1/s

)
+ P(Rm−1 > n− t

2
n1/s) + P(ZRm−1

≤ nvµ − tn1/s)(4.16)

For the first term in (4.16), note that Lemma B.3 implies that E[Rs−1
1 ]<∞ and therefore

(4.17) P
(
R1 >

t

2
n1/s

)
≤Ct−s+1n−1+ 1

s ≤C ′t−s, ∀t≤ 3vµ
4
n1− 1

s

To bound the last two terms in (4.16), we will let m= 1 + bc∗(n− tn1/s)c where again c∗ = 1
E[R1]

so that for t≥ 1 and
n sufficiently large we have

P(Rm−1 > n− t

2
n1/s) + P(ZRm−1 ≤ nvµ − tn1/s)

≤ P

bc∗(n−tn1/s)c∑
k=1

(
Rk −Rk−1 −E[R1]

)
>
t

2
n1/s

(4.18)

+ P

bc∗(n−tn1/s)c∑
k=1

(
ZRk −ZRk−1

−E[ZR1
]
)
<−

(
1− vµ

2

)
tn1/s

 .(4.19)

Thanks to (B.8), we may apply Lemma A.1 to obtain that the probability in (4.18) is bounded by Ct−s for n large, while
since (B.7) implies the random variables inside the sum in (4.19) have exponential tails we can again use [30, Thm. III.15]

to bound this last probability by e−ct
2n

2
s
−1

≤ e−c′t
s
s−1 , where the last inequality holds since t≤ 3vµ

4 n1− 1
s . Finally, since

e−c
′t

s
s−1 ≤Ct−s for some C > 1 and all t≥ 1 this completes the proof of the lemma.

The following corollary gives a simple extension of the precise left tail asymptotics from (2.11) when we center
Zn with the mean rather than by nvµ. Combined with the more general left tail bound in Lemma 4.3 this then gives a
truncated second moment bound (4.21) that is instrumental for the proofs to come.

Corollary 4.4 (Moderate slow-down deviations centering with mean).
Set In := [n1/s(logn)4, nvµ − n1/s logn] and assume the same conditions of Proposition 2.3, then

(4.20) lim
n→∞

sup
t∈In

∣∣∣∣P(Zn −E[Zn]<−t)
(nvµ − t)t−s

−K0

∣∣∣∣= 0.

Furthermore, there exists a constant C <∞ such that for n sufficiently large

(4.21) E[(Zn −E[Zn])21{Zn−E[Zn]∈(−t,0)}]≤Cnt2−s, ∀t≤ nvµ − n1/s(logn).

Proof. First of all, note that

(4.22) P(Zn −E[Zn]<−t) = P (Zn − nvµ <−(t−E[Zn] + nvµ)) .
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If n1/s(logn)4 ≤ t≤ nvµ − (logn)n1/s, then for n sufficiently large from (3.13) it follows that

(4.23) (logn)3n1/s ≤ t−E[Zn] + nvµ ≤ nvµ −
1

2
(logn)n1/s < nvµ − logn.

Therefore, In ⊂ Ĩn and we can apply the tail asymptotics (2.11) with t−E[Zn] +nvµ in place of t. That is, we may write
P(Zn −E[Zn]<−t)/[(nvµ − t)t−s] as

(4.24)
P (Zn − nvµ <−(t−E[Zn] + nvµ))

(E[Zn]− t)(t−E[Zn] + nvµ)−s

(
E[Zn]− t
nvµ − t

)(
t

t−E[Zn] + nvµ

)s
.

To complete the proof of (4.20), note that as n→∞ the first term on (4.24) converges to K0 and the last two terms
converge to 1 uniformly in t ∈ In. Note that for the convergence of the last two terms to 1 we again use (3.13).

We next show (4.21). By the tail estimate in equation (4.20) and Lemma 4.3, we see that P(Zn − E[Zn] < −x) ≤
Cnx−s for n large enough and 0 < x ≤ nvµ − n1/s(logn). Therefore, if t ≤ nvµ − n1/s(logn) and n is large enough
we have

(4.25)

E[(Zn −E[Zn])21{Zn−E[Zn]∈(−t,0)}] =

∫ t

0

2xP (−t < Zn −E[Zn]≤−x) dx

≤
∫ t

0

2xP (Zn −E[Zn]≤−x) dx≤ 2Cn

∫ t

0

x1−s dx= 2Cnt2−s.

4.4. RWRE variance asymptotics

In this section we prove (3.14). By (3.13) and then (4.13) we have that

Var(Zn) = E[(Zn − nvµ)2] + o(n2/s)

= E[((Zn − nvµ)−)
2
] +O(n2/s) = 2

∫ ∞
0

tP(Zn − nvµ <−t)dt+ o(n3−s),

where the last equality follows from the fact that 3− s > 2
s when s ∈ (1,2). It remains to show that the integral term,

when multiplied by ns−3 converges to σ2
0 =

2K0v
3−s
µ

(2−s)(3−s) as n→∞. To this end, fixing a δ ∈ (0, vµ/2), we have that ns−3

times this integral term can be decomposed as

(4.26)

2ns−3

∫ nδ

0

tP(Zn − nvµ <−t)dt+ 2ns−3

∫ n(vµ−δ)

nδ

tP(Zn − nvµ <−t)dt

+ 2ns−3

∫ n(vµ+1)

n(vµ−δ)
tP(Zn − nvµ <−t)dt

=: I + II + III.

The truncation of the integrals up to t ≤ n(vµ + 1) is due to the fact that |Zn| ≤ n. We will show below that the main
contribution to the sum in (4.26) will come from II while I and III will be vanishingly small as δ→ 0. For II , we see
that for large enough n the interval [nδ,n(vµ − δ)] is contained in Ĩn from (2.11). Therefore by (2.11) we obtain that

(4.27)

II = 2ns−3

∫ n(vµ−δ)

nδ

t(K0 + o(1))(nvµ − t)t−s dt

= 2K0

[
vµ

(vµ − δ)2−s − δ2−s

2− s
− (vµ − δ)3−s − δ3−s

3− s

]
+ o(1).

Therefore, II goes to
2K0v

3−s
µ

(2−s)(3−s) as first n→∞ and then δ→ 0.
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We now show the negligibility of the other terms in (4.26) as n→∞ and then δ→ 0. For the first term I , using a
substitution z = tn−1/s and then applying (4.14) we obtain for large enough n the bound

I = 2ns−3+ 2
s

∫ δn1− 1
s

0

zP(Zn − nvµ ≤−zn1/s)dz ≤Cns−3+ 2
s

∫ δn1− 1
s

0

z1−s dz =
Cδ2−s

2− s
.

For the term III in (4.26), since the probabilities in the integral are decreasing in t we have for n large enough that (2.11)
implies

III ≤ 2ns−3P(Zn − nvµ <−n(vµ − δ))
∫ n(vµ+1)

n(vµ−δ)
t dt

≤ 4ns−3K0(nδ)(nvµ − nδ)−s
n2 (vµ + 1)

2

2
=

2K0δ(vµ + 1)2

(vµ − δ)s
.

Since the bounds of I and III above hold for n sufficiently large and vanish as δ→ 0, this completes the proof of the
asymptotics of Var(Zn).

5. Proofs: pure Gaussian limits

We first prove Theorem 3.2 and then treat the Gaussian limits in Theorem 3.1 as a subcase.

5.1. Gaussianity for well-behaving cooling maps

In this section we prove Theorem 3.2. We will first prove the limiting distribution along the subsequence of times τ(n)

(5.1)
Xτ(n) −E[Xτ(n)]√

Var(Xτ(n))
=⇒N , as n→∞,

and then extend the result to all times.
Gaussian limits for Xτ(n). For ease of notation, let

(5.2) Zkn :=
Z

(k)
Tk
−E[Z

(k)
Tk

]√
Var(Xτ(n))

,

so that (5.1) becomes
∑n
k=1Zkn =⇒N . Now we note that {Zkn}k≤n is a triangular array composed of independent mean

0 random variables such that
∑n
k=1 Var(Zkn) = 1 for all n ∈N. To prove (5.1) we will check the Lindeberg condition [14,

Thm 3.4.10]

(5.3) lim
n→∞

n∑
k=1

E
[(
Zkn
)2

1{|Zkn|>ε}

]
= 0, ∀ ε > 0.

Since the walk is nearest neighbor and since (3.14) implies Var(Xτ(n))≥ c
∑n
k=1 T

3−s
k for some c > 0, it follows that

∣∣Zkn∣∣=
∣∣∣∣∣Z

(k)
Tk
−E[Z

(k)
Tk

]√
Var(Xτ(n))

∣∣∣∣∣≤ 2Tk√
c
∑n
k=1 T

3−s
k

, 1≤ k ≤ n.

The assumption (3.5) implies that the right side vanishes uniformly in k ≤ n as n→∞. In particular, this implies that for
any fixed ε > 0 and n sufficiently large we have with probability 1 that |Zkn| ≤ ε for all k ≤ n. Thus, (5.3) follows.
Irrelevance of boundary term. To extend the limiting distribution from the subsequence τ(n) to all times, we use the
decomposition (2.14) to write

(5.4)
Xn −E[Xn]√

Var(Xn)
=
Xτ(`n) −E[Xτ(`n)]√

Var(Xτ(`n))

√
Var(Xτ(`n))

Var(Xn)
+
Z

(`n+1)

T̄n
−E[Z

(`n+1)

T̄n
]√

Var(Xn)
.



RWCRE in the stable regime 17

It follows from (5.1) that the first term on the right converges in distribution to N as n→∞. Thus, it is enough to show
that

(5.5) lim
n→∞

Var(Xτ(`n))

Var(Xn)
= 1, and

Z
(`n+1)

T̄n
−E[Z

(`n+1)

T̄n
]√

Var(Xn)
=⇒
n→∞

0.

For the first claim in (5.5), since Var(Xτ(`n)) ≤ Var(Xn) ≤ Var(Xτ(`n)) + Var(ZT`n+1
) we will show that

lim`→∞
Var(ZT`+1

)

Var(Xτ(`))
= 0. To this end, by (3.14) there is a C <∞ such that

(5.6)
Var(ZT`+1

)

Var(Xτ(`))
≤C

T 3−s
`+1∑`

k=1 T
3−s
k

≤C max
k≤`+1

T 2
k∑`+1

k=1 T
3−s
k

,

where the last inequality follows because s > 1. Since (3.5) implies the right side vanishes as `→∞, this completes the
proof of the first claim in (5.5).

For the second claim in (5.5), since (2.9) implies that {ZT̄n−E[ZT̄n ]

T̄
1/s
n

}n≥1 is tight, it is enough to show that

(5.7) lim
n→∞

T̄
1/s
n√

Var(Xn)
= 0.

To obtain an upper bound on T̄ 1/s
n√

Var(Xn)
, it follows from (3.14) that Var(Xn) ≥ Var(ZT̄n) ≥ cT̄ 3−s

n for some c > 0, so

that

T̄
1/s
n√

Var(Xn)
≤ T̄

1/s
n

√
cT̄

3−s
2

n

=
1√
c
T̄

1
s−

3−s
2

n .

Since 1
s −

3−s
2 = −(2−s)(s−1)

2s < 0 for s ∈ (1,2), this upper bound becomes vanishingly small as T̄n becomes large.
Therefore, since Var(Xn) → ∞, we obtain (5.7) by using this upper bound when T̄n ≥ Var(Xn)s/4 and using

T̄ 1/s
n√

Var(Xn)
≤Var(Xn)−1/4 when T̄n ≤Var(Xn)s/4. This completes the proof of Theorem 3.2.

5.2. CLT for polynomial increments

In this section we prove (3.2). We consider a polynomially growing cooling increments Tk ∼Aka as in (3.1). In this case,
it follows that supk≤n

Tk√∑n
k=0 T

(3−s)
k

= Θ
(
na−

a(3−s)+1
2

)
, from which we see that condition (3.5) is satisfied only when

a− a(3−s)+1
2 < 0, i.e. for a < 1/(s− 1). Thus, if a < 1/(s− 1) applying Theorem 3.2 implies that Xn−E[Xn]√

Var(Xn)
=⇒N .

To finish the proof of (3.2) it remains only to show that Var(Xn) ∼ B2n2β with the constants B and β as given in the
statement of Theorem 3.1.

It follows from (3.14) that
∑`n
k=1 Var(ZTk) ∼

∑`n
k=1 σ

2
0A

3−ska(3−s) ∼ σ2
0A

3−s

a(3−s)+1`
a(3−s)+1
n , and since τ(n) ∼

A
a+1n

a+1 implies that `n ∼ (a+1
A )1/(a+1)n1/(a+1) it follows that

(5.8)
`n∑
k=1

Var(ZTk)∼ σ2
0A

2−s
a+1 (a+ 1)

a(3−s)+1
a+1

a(3− s) + 1
n
a(3−s)+1
a+1 .

Another application of (3.14) implies that Var(ZT̄n) =O(T̄ 3−s
n ) =O(na(3−s)), and since a < 1

s−1 and 1< s < 2 imply

that a(3− s)< a(3−s)+1
a+1 , it then follows that Var(Xn) =

∑`n
k=1 Var(ZTk) + Var(ZT̄n)∼

∑`n
k=1 Var(ZTk). Comparing

with (5.8) and recalling the formula for σ2
0 in Theorem 3.8, this completes the proof of Var(Xn) ∼ B2n2β with with

β = a(3−s)+1
2(a+1) and B2 :=

2K0v
3−s
µ A

2−s
a+1 (a+1)

a(3−s)+1
a+1

(2−s)(3−s)(a(3−s)+1) .

6. Proofs: generalized tempered and stable limits

In this section we will prove the general Theorem 3.3 and then deduce (3.3) and (3.4) from it.
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The chapter is organized as follows. We split the proof of the general theorem in two main parts corresponding to the
two different statements, (3.8) and (3.9), respectively, which in particular will require two different proof strategies.

The first part is presented in Section 6.1 where we show (3.8) under assumption (S1). Typical examples that satisfy the
first requirement in (S1) are cooling sequences that grow very rapidly (e.g. exponentially fast)3. Together with the second
requirement, (S1) allows one to make a replacement argument and approximate each term in the decomposition of Xn

in (2.14), after centering and rescaling, by an independent copy of the stable law Ss.
We then move in Section 6.2 to the second part in which we show (3.9). Under (S2) increments grow slowly, so that

a growing number of the terms in the decomposition (2.14) contribute to the distribution of Xn, and the replacement
argument used under assumption (S1) no longer works. In this case we show that the joint distribution of the terms
in (2.14) converge, after proper centering and scaling, to that of the atoms of a certain non-homogeneous Poisson process.
This proof is similar to standard proofs of stable limit laws for sums of i.i.d. random variables. Indeed, in the case where
g(∞) = 0 (where the limiting distribution is Ss) this non-homogeneous Poisson process is exactly the same as what one
would get if one were considering i.i.d. sums of random variables in the domain of attraction of Ss. When g(∞)> 0 the
Poisson process is slightly different and leads to the presence of a tempered stable component in the limiting distribution.

This completes the proof of the general Theorem 3.3, and we conclude in Section 6.3 by showing how to use this to
derive the stable and tempered stable limits in (3.3)-(3.4) for polynomial cooling maps.

6.1. Fast enough cooling maps: proof of stable limits under (S1)

In this Section we prove (3.8) under (S1). We start with two preliminary observations: first, we note that (S1) implies in
particular that (3.7) is satisfied with g(x)≡ 0, and second, as expressed in Lemma 6.1 below, we show that while proving
the claim the boundary term can be neglected.

For the first observation, if the first condition in (S1) holds, then there is c > 0 such that τ(n)≥ cns. Furthermore, it
can also be shown that for all x > 0, θ > 0:

(6.1) lim
n→∞

∑n
k=1 Tk1{τ(n)θ<Tk<xτ(n)1/s}

τ(n)
= 0.

This two conditions imply that we may choose θ small enough so that s(1− θ)> 1 and so

lim sup
n→∞

∑n
k=1 Tk1{Tk<xτ(n)1/s}

τ(n)
≤ lim sup

n→∞

∑n
k=1 Tk1{Tk<τ(n)θ}

τ(n)

≤ nτ(n)θ

τ(n)
= lim

n

n

τ(n)1−θ ≤ lim
n→∞

n

ns(1−θ)
= 0.

Yet, as this is not required in the proof4, we leave to the interested reader to check (6.1).5

The second preliminary observation is captured in the next lemma. The idea behind it is that as soon as the last term
in the decomposition (2.14) is large enough to make a non-negligible contribution to the distribution of Xn, then the
distribution of this last term can be combined with the other terms to give the limit stable law in (2.9).

Lemma 6.1 (Negligible boundary for pure stable limit). Let Ss be the stable random variable which arises as the
limiting distribution of RWRE in (2.9). If the cooling sequence {Tk}k≥1 is such that

(6.2)
Xτ(n) −E[Xτ(n)]

τ(n)1/s
=⇒Ss,

then it follows that (3.4) holds also.

3However, the case r > 2s in Example 2 in Section 8 shows that there are cooling maps that satisfy (S1) but for which τ(n) grows only polynomially
fast.

4Our proof of (3.8) uses only (S1) and doesn’t use (3.7). We include the observation that (S1) implies (3.7) with g ≡ 0 only for the purpose of
showing the consistency of the two parts of Theorem 3.3

5Hint: The first condition in (S1) implies that for any θ ≥ 0 there are at most Cτ(n)(1−θ)/s terms k ≤ n with Tk ≥ τ(n)θ . This implies that for

any 0≤ θ < θ′ we have 1
τ(n)

∑n
k=1 Tk1{τ(n)θ<Tk<τ(n)θ

′} ≤Cτ(n)
1−θ
s

+θ′−1 which vanishes as n→∞ if θ > θ′s− s+1. Finally, show that

since s ∈ (1,2) there exists a finite sequence 1
s
= θ0 > θ1 > · · ·> θm−1 > θm = 0 such that θi > θi−1s− s+ 1 for i≥ 1.
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Proof. Denote by χ(u) :=E
[
eiuSs

]
the characteristic function of the stable random variable Ss in (2.9), and let

(6.3) φn(u) = E
[
exp

{
iu
Zn −E[Zn]

n1/s

}]
and ψn(u) = E

[
exp

{
iu
Xτ(n) −E[Xτ(n)]

(τ(n))1/s

}]
be the characteristic functions of Zn and Xτ(n) after appropriate centering and scaling. Also let qn := T̄n

n . With this
notation and using the decomposition in (2.14), the characteristic function of Xn−E[Xn]

n1/s can be expressed as

E
[
exp

{
iu
Xn −E[Xn]

n1/s

}]
= ψ`n

(
(1− qn)

1/s
u
)
φT̄n

(
(qn)

1/s
u
)

= χ
(

(1− qn)
1/s

u
)
χ
(

(qn)
1/s

u
)

+
{
ψ`n

(
(1− qn)

1/s
u
)
− χ

(
(1− qn)

1/s
u
)}

φT̄n

(
(qn)

1/s
u
)

(6.4)

+ χ
(

(1− qn)
1/s

u
){

φT̄n

(
(qn)

1/s
u
)
− χ

(
(qn)

1/s
u
)}

.(6.5)

It follows from the explicit formula for χ(u) in (2.10) that

(6.6) χ
(

(1− t)1/s
u
)
χ
(
t1/su

)
= χ(u), ∀t ∈ [0,1].

To finish the proof, we show that for any fixed u ∈ R (6.4) and (6.5) vanish as n→∞. This follows from the fact that
convergence in distribution implies uniform convergence of characteristic functions on compact sets (see for instance
Theorem 15 in Chapter 14 of [18]). Indeed, since `n→∞ as n→∞, (6.2) implies that (6.4) vanishes as n→∞. To
control (6.5), note that for any fixed m<∞∣∣∣φT̄n ((qn)

1/s
u
)
− χ

(
(qn)

1/s
u
)∣∣∣

≤max
k≤m

∣∣∣φk (( kn)1/s u)− χ(( kn)1/s u)∣∣∣+ max
k>m

sup
|v|≤|u|

|φk(v)− χ(v)| .

The first term on the right vanishes as n→∞ for any fixed m since all characteristic functions are continuous and equal
to one at the origin, while the second term can be made arbitrarily small by choosing m sufficiently large. This completes
the proof of the lemma.

Proof of stable limits under condition (S1). In view of the previous lemma, it remains to show (6.2). We may and
do consider the space (Ω,F ,P) to be rich enough to contain an extra infinite sequence of uniform random variables
Ū := {U (k), k ∈N} with respect to which we will define auxiliary random variables.

Given a random variable X , let F−1
X (a) := inf{x : P(X < x)≥ a} represent its generalized inverse function. Let

(6.7) S(k)
s := F−1

Ss (U (k)) and let Ψ(k)
m := F−1

Zm−E[Zm]

m1/s

(U (k)).

The limiting distribution in (2.9) together with (3.13) implies limm→∞Ψ
(k)
m = S(k)

s , almost surely, for any k. Then, the
uniform moment bounds in (3.12) imply that this convergence holds in Lp for any p ∈ (0, s) (see [14, Theorem 4.6.3]).
That is, if for each m ∈N we define the error term E

(k)
m := Ψ

(k)
m −S(k)

s , then

(6.8) lim
m→∞

sup
k

E
[
|E(k)

m |p
]

= 0, ∀p ∈ (0, s).

In particular, for p= 1 we have that for any ε > 0 there is an m0 =m0(ε) such that

(6.9) m>m0⇒ sup
k

E
[
|E(k)

m |
]
< ε.

Now, by the definition of (6.7), if we set αk,n :=
(
Tk
τ(n)

)1/s

, then it follows that

(6.10)
Xτ(n) −E[Xτ(n)]

τ(n)1/s
=

n∑
k=1

Z
(k)
Tk
−E[Z

(k)
Tk

]

τ(n)1/s

Law
=

n∑
k=1

αk,nS(k)
s +

n∑
k=1

αk,nE
(k)
Tk
.
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Since the law of Ss satisifes (2.10), we obtain that
∑n
k=1αk,nS

(k)
s

Law
=
(∑n

k=1α
s
k,n

)1/s

Ss = Ss. To complete the proof,

we show that
∑n
k=1αk,nE

(k)
Tk

converges to zero in L1 (and therefore also in distribution). For any ε > 0 fixed and m0 as
in (6.9) there is C > 0 for which

(6.11)

n∑
k=1

αk,nE
[∣∣∣E(k)

Tk

∣∣∣]≤ n∑
k=1

αk,nE
[∣∣∣E(k)

Tk

∣∣∣]1{Tk≤m0} +

n∑
k=1

αk,nε

≤C

(
n∑
k=1

αk,n1{Tk≤m0}

)
+Cε,

where the last inequality follows from the first condition in (S1) and the fact that (6.8) implies supm,k E
[∣∣∣E(k)

m

∣∣∣]<∞.

Furthermore, the second condition of (S1) implies that limn→∞E
[∑n

k=1αk,n1{Tk≤m0}
]

= 0. Since ε > 0 was arbitrary,
this completes the proof (6.2) and thus of the stable limit in (3.8) under condition (S1).

6.2. Poisson processes: tempered stable and stable limits under (S2)

Analogously to Lemma 6.1, we start with a lemma which allows us to ignore boundary terms.

Lemma 6.2 (Negligible boundary for n1/s scaling). Suppose that the cooling sequence is such that

(6.12) lim
n→∞

Tn
τ(n)

= 0.

If there exists a random variable Z such that Xτ(n)−E[Xτ(n)]

τ(n)1/s =⇒ Z , then it is also true that Xn−E[Xn]
n1/s =⇒ Z .

Proof. Using the decomposition in (2.14) we can write

Xn −E[Xn]

n1/s
=

(
1− T̄n

n

)1/s
Xτ(`n) −E[Xτ(`n)]

τ(`n)1/s
+

(
T̄n
n

)1/s Z
(`n+1)

T̄n
−E[ZT̄n ]

T̄
1/s
n

.

To conclude the proof, it suffices to show that limn→0
T̄n
n = 0. Indeed, since (2.9) and (3.13) together imply that

Zn−E[Zn]
n1/s =⇒ Ss, the sequence

Z
(`n+1)

T̄n
−E[ZT̄n ]

T̄
1/s
n

is tight. This implies that the second term on the right converges to 0
in probability, while the assumptions of the lemma imply that the first term on the right converges in distribution to Z .

Since τ(`n)≤ n < τ(`n + 1) and T̄n = n− τ(`n)< T`n+1, we have that T̄nn ≤
T`n+1

τ(`n) . Thus it is enough to show that

lim`→∞
T`+1

τ(`) = 0. For any ε > 0, (6.12) implies that for ` sufficiently large T`+1 < ετ(`+ 1) = ετ(`) + εT`+1, and thus

lim sup`→∞
T`+1

τ(`) ≤
ε

1−ε . Since ε > 0 was arbitrary, this completes the proof of the lemma.

We can now restrict the analysis to the subsequence τ(n). For convenience of notation, let

(6.13) ξk,n =
Z

(k)
Tk
−E[ZTk ]

τ(n)1/s
,

so that Xτ(n)−E[Xτ(n)]

τ(n)1/s =
∑n
k=1 ξk,n. By Lemma 6.2, to prove (3.9) we need to show that

∑n
k=1 ξk,n =⇒Wλg + (1−

g(∞))1/sSs, where in a slight abuse of notation here and below we interpret Wλg ≡ 0 when g ≡ 0. The proof is di-
vided in four steps. First we show that for any t > 0, the truncated point process constructed from δξk,n1{ξk,n≤−t}

converges in distribution to a certain Poisson point process N (g)
t . By the continuous mapping theorem, this implies that∑n

k=1 ξk,n1{ξk,n≤−t} converges in distribution to a functional Ψ
(
N

(g)
t

)
of the point process N (g)

t , and in step 2 we
prove that the corresponding means also converge as n→∞. Step 3 controls the error introduced by omitting the terms
ξk,n in the sum with ξk,n > −t. Finally, in step 4 we combine the previous results to show first of all that the limit-

ing distribution of the RWCRE is limt→0 Ψ
(
N

(g)
t

)
− E

[
Ψ
(
N

(g)
t

)]
and that this limit has the same distribution as

Wλg + (1− g(∞))1/sSs.
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Step 1. Convergence of t-truncated processes. For any t > 0 and n≥ 1, let Nn,t be the point process defined by

(6.14) Nn,t :=

n∑
k=1

δξk,n1{ξk,n≤−t}.

We will show in this step that

(6.15) Nn,t =⇒N
(g)
t , ∀t > 0,

i.e., that Nn,t converges in distribution, as n→∞, (on the space of Radon point measures on [−∞,0) equipped with
the vague topology6) to a non-homogeneous Poisson point process N (g)

t with intensity λ̂g(x)1{x≤−t}, where λ̂g(x) =
λg(x) + (1− g(∞))λ0(x) with λg(x) is defined as in (3.10) and λ0(x) =K0vµs|x|−s−1.

By [13, Theorem 11.2.V], since for each n the random variables {ξk,n}k≤n are independent, to prove (6.15) it is
enough to check that

1. limn→∞maxk≤n P(ξk,n ≤−t) = 0, ∀t > 0,
2. and if µn is the measure on (−∞,0) defined by µn(A) = E

[∑n
k=1 1{ξk,n∈A}

]
, then µn(dx) converges weakly to

the measure λ̂g(x)dx.

(Note that Theorem 11.2.V in [13] also has another condition (11.2.7), but that this condition is trivially satisfied for

Nn,t.) Since ξk,n =
(
Tk
τ(n)

)1/s Z
(k)
Tk
−E[ZTk ]

T
1/s
k

, condition 1 above follows from the assumption in (S2) and the fact that the

family {(Z(k)
Tk
−E[ZTk ])/T

1/s
k }k≥1 is tight.

To prove the weak convergence of µn(dx) to λ̂g(x)dx it is enough to prove convergence of µn(A) for Borel sets of
the form A= (−∞,−t]; i.e., we prove for all t > 0 that

(6.16) lim
n→∞

µn((−∞,−t]) =

∫ −t
−∞

λ̂g(x)dx=

∫ −t
−∞

λg(x)dx+ (1− g(∞))K0vµt
−s,

where the last equality follows from the definition of λ̂g(x). We first notice that for any t > 0

(6.17) µn((−∞,−t]) =

n∑
k=1

P(ξk,n ≤−t) =

n∑
k=1

P
(
ZTk −E[ZTk ]≤−tτ(n)1/s

)
.

In order to control the sum in the right-hand side of (6.17), we rely on the estimates in Corollary 4.4. However, these
estimates will only apply if

(6.18) T
1/s
k (logTk)4 ≤ tτ(n)1/s ≤ Tkvµ − T 1/s

k (logTk).

Since condition (S2) implies that the first of these inequalities holds for all k ≤ n when n is large enough, it will be
important to consider when the second inequality holds also. Therefore, it is natural to define the set

(6.19) An,t =
{
k ≤ n : tτ(n)1/s ≤ Tkvµ − T 1/s

k (logTk)
}
.

We collect in the next technical lemma some properties of this set which will be used in the sequel. In particular, as
expressed in (6.20) below, it turns out that the non-vanishing contribution in the limit of the sum in (6.17) comes precisely
from the terms in this set An,t.

Lemma 6.3 (An,t and non-vanishing contribution of negative points ).
Let An,t be as in (6.19). If conditions (3.7) and (S2) hold, then for every t > 0

(6.20) lim
n→∞

∑
k≤n,k/∈An,t

P(ξk,n ≤−t) = 0,

6It is shown in [31, Theorem 3.17] that there is a metric consistent with the vague topology that makes this a complete, separable metric space.
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and

(6.21) lim
n→∞

∑
k≤n,k/∈An,t

E
[
ξk,n1{ξk,n≤−t}

]
= 0.

Further, for any continuous function f(x) on [0,∞) with limx→∞
f(x)
x = L<∞,

(6.22) lim
n→∞

1

τ(n)1− 1
s

∑
k∈An,t

f

(
Tk

τ(n)1/s

)
=

∫ ∞
t/v

f(x)

x
g(dx) +L(1− g(∞)), ∀t > 0.

The proof of this lemma is postponed to Appendix C. We now conclude step 1. By (6.17) and (6.20), to prove (6.16)
it suffices to consider the sum over k’s in An,t. For the latter, we can use Corollary 4.4 which implies that

(6.23) lim
n→∞

∑
k∈An,t

P(ξk,n ≤−t) = lim
n→∞

K0

∑
k∈An,t

Tkvµ − tτ(n)1/s

τ(n)ts
,

as long as we can prove the limit on the right exists. To this end, we re-write the sum and then apply (6.22) to conclude
that ∑

k∈An,t

K0
Tkvµ − tτ(n)1/s

τ(n)ts
=K0

t−s

τ(n)1− 1
s

∑
k∈An,t

(
Tkvµ
τ(n)1/s

− t
)

=K0t
−s
∫ ∞
t/vµ

(
vµ −

t

x

)
g(dx) + (1− g(∞))K0vµt

−s.(6.24)

In view of (6.20) and (6.24), it remains only to check that the integrals in the right-hand side of (6.16) and (6.24) are
equal. This follows by the definition of λg(x) in (3.10) from which we have∫ −t

−∞
λg(x)dx=

∫ ∞
t

λg(−z)dz =

∫ ∞
t

K0z
−s
∫ ∞
z/vµ

(
vµs

z
− s− 1

x

)
g(dx)dz

=K0

∫ ∞
t/vµ

∫ xvµ

t

(
vµsz

−s−1 − s− 1

x
z−s
)
dz g(dx)

=K0

∫ ∞
t/vµ

(
vµt
−s − t−s+1

x

)
g(dx),

and this last expression is equal to the integral in the right side of (6.24). This completes the proof of (6.17) and therefore
of Step 1.
Step 2. Convergence of t-truncated means. We first notice that the weak convergence in (6.15) shown in Step 1, implies
in particular that for any t > 0,

(6.25)
n∑
k=1

ξk,n1{ξk,n≤−t} = Ψ(Nn,t) =⇒
n→∞

Ψ(N
(g)
t ), where Ψ(ν) =

∫
xν(dx),

since the functional Ψ is continuous with respect to the vague topology on the set of Radon point measures ν on [−∞,0)

with ν([−t,0)] = 0, and the Poisson process N (g)
t almost surely belongs to this set. In this step we show that the means

in (6.25) also converge. That is, we show that

(6.26) lim
n→∞

E

[
n∑
k=1

ξk,n1{ξk,n≤−t}

]
=E[Ψ(N

(g)
t )].

Once again, thanks to (6.21) in Lemma 6.3, we will restrict the sum in the right-hand side of (6.26) only to the indexes
in An,t. For the latter, we first re-write

E

 ∑
k∈An,t

ξk,n1{ξk,n≤−t}

=−t
∑

k∈An,t

P(ZTk −E[ZTk ]≤−tτ(n)1/s)(6.27)
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−
∑

k∈An,t

∫ ∞
t

P(ZTk −E[ZTk ]≤−uτ(n)1/s)du.(6.28)

The asymptotics of (6.27) follow from the same analysis leading to (6.24) above. That is,

(6.29) lim
n→∞

(6.27) =−K0t
1−s

∫ ∞
t/vµ

(
vµ −

t

x

)
g(dx)− (1− g(∞))K0vµt

1−s.

For the sum in (6.28), let γk,n :=
Tkvµ−T 1/s

k (logTk)

τ(n)1/s . For n large enough, due to (S2) the probabilities inside the integrals
can be approximated by Corollary 4.4 for u ∈ [t, γk,n]. That is, assuming we can show the limit on the right exists, we
have

lim
n→∞

∑
k∈An,t

∫ γk,n

t

P(ZTk −E[ZTk ]≤−uτ(n)1/s)du

= lim
n→∞

∑
k∈An,t

∫ γk,n

t

K0(Tkvµ − uτ(n)1/s)u−sτ(n)−1 du

= lim
n→∞

∑
k∈An,t

{
K0vµTk
τ(n)

∫ γk,n

t

u−s du− K0

τ(n)1− 1
s

∫ γk,n

t

u1−s du

}

= lim
n→∞

∑
k∈An,t

{
K0vµTk
τ(n)

(
t1−s − γ1−s

k,n

s− 1

)
− K0

τ(n)1− 1
s

(
γ2−s
k,n − t2−s

2− s

)}

= lim
n→∞

K0

τ(n)1− 1
s

∑
k∈An,t

{
Tk

τ(n)1/s

vµt
1−s

s− 1
+
t2−s

2− s
− Tk
τ(n)1/s

vµ
s− 1

γ1−s
k,n −

1

2− s
γ2−s
k,n

}
.

By (S2), we can replace γk,n with Tkvµ
τ(n)1/s , and apply (6.22) to conclude that

lim
n→∞

∑
k∈An,t

∫ γk,n

t

P(ZTk −E[ZTk ]≤−uτ(n)1/s)du

=K0

∫ ∞
t/vµ

(
vµt

1−s

s− 1
+

t2−s

(2− s)x
−

v2−s
µ x1−s

(s− 1)(2− s)

)
g(dx) + (1− g(∞))K0

vµt
1−s

s− 1
.(6.30)

This computes the main asymptotic value of the terms in (6.28), but we still need to control the sum over the integrals
in (6.28) for t≥ γk,n. To this end, first note that the probabilities inside the integrals in (6.28) are decreasing in u and are
zero for u≥ 2Tk/τ(n)1/s. Thus, we obtain the simple upper bound∫ ∞

γk,n

P(ZTk −E[ZTk ]≤−uτ(n)1/s)du≤ 2Tk
τ(n)1/s

P
(
ZTk −E[ZTk ]≤−γk,nτ(n)1/s

)
.

By Corollary 4.4, for any ν ∈ ( 1
s ,1) there exists a constant C <∞ so that the probability on the right above is bounded

above by CT−s+νk . Therefore,

lim sup
n→∞

∑
k∈An,t

∫ ∞
γk,n

P
(
ZTk −E[ZTk ]≤−uτ(n)1/s

)
du

≤ lim
n→∞

2C

τ(n)1− νs

∑
k∈An,t

(
Tk

τ(n)1/s

)1−s+ν

= 0,(6.31)

where the last limit is zero by (6.22) and the fact that we chose ν < 1.
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Applying (6.29), (6.30), and (6.31) to (6.27)-(6.28), we obtain that

lim
n→∞

E

 ∑
k∈An,t

ξk,n1{ξk,n≤−t}


=−K0

∫ ∞
t/vµ

(
vµst

1−s

s− 1
+

(s− 1)t2−s

(2− s)x
−

v2−s
µ x1−s

(s− 1)(2− s)

)
g(dx)− (1− g(∞))

K0vµst
1−s

s− 1
.(6.32)

It remains to show that this right-hand side in (6.32) equals E[Ψ(N
(g)
t )]. To this end, Campbell’s Theorem [27, Section

3.2] implies that E[Ψ(N
(g)
t )] =

∫ −t
−∞ xλ̂g(x)dx=

∫ −t
−∞ xλg(x)dx+(1−g(∞))

∫ −t
−∞ xλ0(x)dx. Recalling that λ0(x) =

K0vµs|x|−s−1, a simple calculation yields that the second term on the right equals the second term in (6.32). On the other
hand, the formula for λg in (3.10) yields that

∫ −t
−∞ xλg(x)dx equals

−
∫ ∞
t

uλg(−u)du=−K0

∫ ∞
t

u1−s
∫ ∞
u/vµ

(
vµs

u
− s− 1

x

)
g(dx)du

=−K0

∫ ∞
t/vµ

∫ xvµ

t

(
vµsu

−s − s− 1

x
u1−s

)
dug(dx)

=−K0

∫ ∞
t/vµ

(
vµst

1−s

s− 1
+

(s− 1)t2−s

(2− s)x
−

v2−s
µ x1−s

(s− 1)(2− s)

)
g(dx),

which matches the first term on the right-hand side of (6.32). This completes the proof of (6.26) and thus finishes Step 2.
Step 3. Negligible contribution from small points. Next, we will show that the contribution of the sum of the ξk,n with
ξk,n >−t is essentially negligible if n is large and t is small. That is, we will show that

(6.33) lim
t→0

lim sup
n→∞

P

(∣∣∣∣∣
n∑
k=1

(
ξk,n1{ξk,n>−t} −E[ξk,n1{ξk,n>−t}]

)∣∣∣∣∣> δ

)
= 0, ∀δ > 0.

Since the random variables inside the sum are independent, to prove the above it is enough to show that

lim
t→0

lim sup
n→∞

n∑
k=1

Var
(
ξk,n1{ξk,n>−t}

)
= 0.

For this, note first of all that

(6.34) Var
(
ξk,n1{ξk,n>−t}

)
≤ E[ξ2

k,n1{ξk,n>−t}] = E[ξ2
k,n1{ξk,n∈(−t,0)}] + E[ξ2

k,n1{ξk,n>0}].

We can bound the first expectation above with (3.14) if k /∈ An,t or (4.21) if k ∈ An,t, and we can bound the second
expectation with Corollary 4.2. Therefore, there is a C > 0, for which

(6.35)
n∑
k=1

Var
(
ξk,n1{ξk,n>−t}

)
≤
∑

k/∈An,t

CT 3−s
k

τ(n)2/s
+
∑

k∈An,t

CTkt
2−s

τ(n)
+

n∑
k=1

CT
2/s
k

τ(n)2/s
.

Since s < 2 and
∑
k∈An,t Tk ≤

∑n
k=1 Tk = τ(n) the second term on the right-hand side above can be made arbitrarily

small if we take t→ 0 and the third term can be bounded by Cmaxk≤n (Tk/τ(n))
2
s−1 which vanishes as n→∞ by

(S2). Finally for the first term, if Tk > 2t
vµ
τ(n)1/s then for n sufficiently large Tkvµ − T 1/s

k (logTk) > tτ(n)1/s and so
k ∈An,t. Thus

(6.36) lim sup
n→∞

∑
k/∈An,t

T 3−s
k

τ(n)2/s
= lim sup

n→∞

∑
k/∈An,t

Tk
τ(n)

(
Tk

τ(n)1/s

)2−s

≤ (2t/vµ)2−s.

Now we take t→ 0 and complete the proof of Step 3.
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Step 4. Convergence of the process. Finally, we will show how the above three steps imply that
∑n
k=1 ξk,n =⇒Wλg .

First of all, for any t > 0 we can write
∑n
k=1 ξk,n =Wn,t +En,t, where

Wn,t =

n∑
k=1

(
ξk,n1{ξk,n≤−t} −E[ξk,n1{ξk,n≤−t}]

)
and En,t =

n∑
k=1

(
ξk,n1{ξk,n>−t} −E[ξk,n1{ξk,n>−t}]

)
,

(6.37)

note here that we are using that we have centered the walk by the mean rather than the limiting velocity so that
E[ξk,n1{ξk,n≤−t}] + E[ξk,n1{ξk,n>−t}] = E[ξk,n] = 0.

We have already shown that

• Wn,t =⇒
n→∞

Ψ(N
(g)
t )−E[Ψ(N

(g)
t )] (by Steps 1 and 2),

• and limt→0 lim supn→∞ P(|En,t|> δ) = 0, for all δ > 0 (by Step 3).

Therefore, by [7, Theorem 3.2] the proof is complete if we show that Ψ(N
(g)
t )−E[Ψ(N

(g)
t )] converges in distribution

toWλg + (1− g(∞))1/sSs as t→ 0. This can be seen with the help of Campbell’s theorem [27, Section 3.2] if we note
that for any fixed u ∈R

lim
t→0

E

[
e
iu
(

Ψ(N
(g)
t )−E[Ψ(N

(g)
t )]

)]
= lim
t→0

exp

{∫ −t
−∞

(
eiux − 1− iux

)
λ̂g(x)dx

}

= exp

{∫ 0

−∞

(
eiux − 1− iux

)
λg(x)dx

}
(6.38)

× exp

{
(1− g(∞))

∫ 0

−∞

(
eiux − 1− iux

)
λ0(x)dx

}
.(6.39)

(The finiteness of the integral in (6.38) is justified by the fact, to be shown below, that ts+1λg(−t) is non-increasing.) For
the term in (6.39), standard computations in complex analysis yield that∫ 0

−∞
(eiux − 1− iux)|x|−s−1 dx=

−Γ(1− s) cos(πs2 )|u|s

s

(
1 + i

u

|u|
tan(

πs

2
)

)
,

from which (recalling the definition of λ0(x) above, the relation between the constants b andK0 in (2.12), and the formula
for the characteristic function of Ss in (2.10)) we have that

(6.39) = exp

{
−(1− g(∞))b|u|s

(
1 + i

u

|u|
tan(

πs

2
)

)}
=E

[
eiu(1−g(∞))1/sSs

]
.

The term in (6.38) clearly equals the characteristic function ofWλg as defined in (2.16), but we still need to justify that
the function λg(x) satisfies the properties required of generalized tempered stable laws in Definition 2.5. For this, it is
enough to check that t 7→ ts+1λg(−t) is a non-increasing, continuous function on (0,∞) which vanishes at∞ and has a
finite limit as t→ 0+. These can be checked from (3.10) by re-writing

ts+1λg(−t) =K0

∫ ∞
t/vµ

(
vµs−

(s− 1)t

x

)
g(dx)

=K0vµs (g(∞)− g(t/vµ))−K0(s− 1)

∫ ∞
t/vµ

t

x
g(dx)(6.40)

=K0vµsg(∞)−K0vµg(t/vµ)−K0(s− 1)t

∫ ∞
t/vµ

g(x)

x2
dx,(6.41)

where the last equality follows from integration by parts. Re-writing the integral in (6.40) as
∫∞

0
t
x1{x≥t/vµ} g(dx), it

follows from the dominated convergence theorem that

lim
t→∞

ts+1λg(−t) = 0 and lim
t→0+

ts+1λg(−t) =K0vµsg(∞)<∞.
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Finally, using the representation (6.41) one can see that ts+1λg(−t) is continuous and non-increasing as a function of t.
The only difficulty here is in showing that the last term in (6.41) is non-increasing, but this follows from the fundamental
theorem of calculus and then integration by parts:

d

dt

{
−t
∫ ∞
t/vµ

g(x)

x2
dx

}
=−

∫ ∞
t/vµ

g(x)

x2
dx+

g(t/vµ)

t/vµ
=−

∫ ∞
t/vµ

1

x
g(dx)≤ 0.

6.3. Polynomial cooling: proofs of critical and stable limits in Theorem 3.1

We show here how (3.3) and (3.4) follow as a corollary of the general Theorem 3.3.

Proof of (3.3) – critical case. If Tk ∼ Ak1/(s−1), then τ(n) ∼ A(s−1)
s ns/(s−1). This implies (S2). Moreover, if x >

KA,s :=A
s−1
s

(
s
s−1

)1/s

then for n large enough one has Tk ≤ xτ(n)1/s for all k ≤ n, whereas if 0< x≤KA,s then for
any ε > 0 and n large enough{

k : k ≤ (1− ε)
(

x

KA,s

)s−1

n

}
⊂ {k ≤ n : Tk ≤ xτ(n)1/s} ⊂

{
k : k ≤ (1 + ε)

(
x

KA,s

)s−1

n

}
.

This implies that

lim
n→∞

∑n
k=1 Tk1{Tk<xτ(n)1/s}

τ(n)
=

{(
x

KA,s

)s
if x≤KA,s

1 if x >KA,s.

That is, condition (3.7) holds with g(x) = 1 ∧
(

x
KA,s

)s
. Hence, (3.9) in Theorem 3.3 implies convergence to the gen-

eralized stable variable Wλg . Moreover, with this choice of g the function λg defined in (3.10) can be calculated to

be λg(x) = K0vµs|x|−s−1
(

1 + x
KA,svµ

)
+

. By (2.17), it follows that λg = λc,r with c = K0vµs and r = vµKA,s =

vµA
s−1
s

(
s
s−1

)1/s

.

Proof of (3.4) – supercritical case. Tk ∼ Aka implies that τ(n) ∼ A
a+1n

a+1 and so (S2) holds. This also implies that

for any fixed x ∈ (0,∞) and n sufficiently large we have that Tk ≤ xτ(n)1/s implies that k ≤
(

2x
A1−1/s(a+1)1/s

)1/a

n
a+1
as .

Since the exponent a+1
as < 1 when a > 1

s−1 , it follows that
∑n
k=1 Tk1{Tk≤xτ(n)1/s} = o(na+1), and since τ(n) ∼

A
a+1n

a+1 it follows that (3.7) holds with g(x) = 0 for all x ∈ (0,∞).

7. Proofs: mixed limiting distributions

We show here Theorem 3.7. The basic idea is that one can combine the polynomial cooling maps in Theorem 3.1 into
a new polynomial map so as to obtain a mixture of their limiting laws. We first show how to obtain mixture of two
polynomial cooling maps in Proposition 7.1. We then use the latter to obtain a large class of generalized stable laws, see
Example 1. At this point we prove in Lemma 7.2 and Corollary 7.3 via a limiting closure argument on the class identified
in Example 1 that indeed it is possible to obtain any generalized tempered stable Wλ with λ ∈ Λconv,s. Theorem 3.7 is
then readily obtained by Corollary 7.3 and Proposition 7.1.

Let I be an index set. For each i ∈ I let the cooling maps τ (i) : N→ N be associated with the increment sequences
(T

(i)
k , k ∈N) by τ (i)(n) =

∑n
k=1 T

(i)
k , and let X(i) = (X

(i)
n )n≥ 0 be a RWCRE corresponding to the cooling map τ (i).

Given a function σ : N→ I we define the σ-interweaving of the cooling maps to be the map τσ that corresponds to the
increment sequence (Tσk , k ∈N) defined by

(7.1) Tσk = T
(σ(k))
Mk,σ(k)

, where Mk,i := #{j ≤ k : σ(j) = i}.

That is, Mk,i counts the number of times the increment sequence i has been selected in the first k cooling increments. We
refer to σ as a selection function and we assume that it selects each increment sequence infinitely many times, i.e., we
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assume that limk→∞Mk,i =∞ for all i ∈ I. For our first result in this section we will need to assume a few conditions
on the cooling maps τ (i). For each i ∈ I we will assume that there are constants bi,Ci > 0, αi ≥ 1, βi ∈ [1/2,1/s], and a
random variable Xi such that

(7.2) max
k≤n

T
(i)
k = o(nαiβis), τ (i)(n)∼Cinαi , and

X
(i)
n −E[X

(i)
n ]

binβi
=⇒Xi.

We are now ready to state the first result.

Proposition 7.1 (Interweaving two polynomial maps). Let τ (1) and τ (2) be cooling maps satisfying the condi-
tions in (7.2). Given any constants a1, a2 > 0, there exists a cooling map τ such that for some constants b,C > 0,
α= (α1β1)∧(α2β2)

β1∧β2
, and β = β1 ∧ β2, we have that

max
k≤n

Tk = o(nαβs), τ(n)∼Cnα,(7.3)

and
Xn −E[Xn]

bnβ
=⇒ a1X1 + a2X2.(7.4)

Proof. First of all, we claim that it is enough to construct a cooling map τ that satisfies (7.3) and also

(7.5)
Xτ(n) −E[Xτ(n)]

bτ(n)β
=⇒ a1X1 + a2X2.

Indeed, since

Xn −E[Xn]

bnβ
=
Xτ(`n) −E[Xτ(`n)]

bτ(`n)β

(
τ(`n)

n

)β
+
Z

(`n+1)

T̄n
−E[ZT̄n ]

T̄
1/s
n

T̄
1/s
n

bnβ
,

then arguing as in the proof of Lemma 6.2 condition (7.4) will follow from (7.5) if we can show that conditions in
(7.3) imply that τ(`n)

n → 1 and T̄ 1/s
n

bnβ
→ 0 as n→∞. For the first of these note that (7.3) implies that 1 ≥ τ(`n)

n =

1− T̄n
n ≥ 1− T`n+1

τ(`n) = 1− o
(
`
−α(1−βs)
n

)
= 1− o(1) since β ≤ 1/s. The second follows similarly since (7.3) implies

T̄ 1/s
n

bnβ
≤ (T̄`n+1)1/s

τ(`n)β
= o(1).

We still need to construct a cooling map τ satisfying (7.3) and (7.5). To this end, given a selection function σ : N→
{1,2}, let τ = τσ and consider the following decomposition

Xτ(n) −E[Xτ(n)]

bτ(n)β
Law
=

b1
b

(
τ (1)(Mn,1)β1

τ(n)β

) X(1)
τ1(Mn,1) −E[X

(1)
τ1(Mn,1)]

b1τ (1)(Mn,1)β1

+
b2
b

(
τ (2)(Mn,2)β2

τ(n)β

) X(2)
τ2(Mn,2) −E[X

(2)
τ2(Mn,2)]

b2τ (2)(Mn,2)β2
.

(7.6)

By the third condition in (7.2) and the assumption that Mn,i →∞ for i = 1,2, the last fractions on each of the two
terms on the right converge in distribution to X1 and X2, respectively. We need to choose the selection function σ and the
exponent β so that the middle fractions for the terms on the right side converge to constants. How we do this depends on
the relative values of β1, β2, α1β1 and α2β2. Without loss of generality we can assume that β1 ≤ β2. We will describe
the selection function σ only in terms of the asymptotics of Mn,1 (or Mn,2). It is not hard to then give explicit selection
functions which have these asymptotics.
Case I: α1 = α2 and β1 = β2. In this case let Mn,1 ∼ θn for a value of θ ∈ (0,1) to be chosen later (so that necessarily
Mn,2 ∼ (1 − θ)n). Let α = α1 = α2 and β = β1 = β2. Then, maxk≤n Tk = maxk≤Mn,1

T
(1)
k ∨ maxk≤Mn,2

T
(2)
k =

o(Mα1β1s
n,1 )∨ o(Mα2β2s

n,2 ) = o(nαβs), and also

τ (1)(Mn,1)∼C1M
α1
n,1 ∼C1θ

α1nα1 =C1θ
αnα,

τ (2)(Mn,2)∼C2M
α2
n,2 ∼C2(1− θ)α2nα2 =C2(1− θ)αnα

and τ(n) = τ (1)(Mn,1) + τ (2)(Mn,2)∼ (C1θ
α +C2(1− θ)α)nα.
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Thus, it follows from (7.6) that

Xτ(n) −E[Xτ(n)]

bτ(n)β
=⇒ b1

b

(
C1θ

α

C1θα +C2(1− θ)α

)β [
X1 +

b2
b1

(
C2(1− θ)α

C1θα

)β
X2

]
.

Finally, we choose θ ∈ (0,1) and b > 0 so that the right side is equal to a1X1 + a2X2. More explicitly, let

θ =

(
1 +

(
a2b1
a1b2

)1/(αβ)(
C1

C2

)1/α
)−1

, and b=
b1
a1

(
1 +

(
a2b1
a1b2

)1/β
)−β

.

For the remaining four cases we will give fewer details and leave it to the reader to check that in each case the
parameters can be chosen so that the limiting distribution is equal to a1X1 + a2X2.
Case II: β1 = β2 and α1β1 6= α2β2. Without loss of generality we can assume that α1β1 > α2β2 (or equivalently
α1 > α2). In this case we will let α= α2, β = β1 = β2, and Mn,1 ∼ θn

α2
α1 for some θ > 0 to be chosen later (since the

exponent α2

α1
< 1 this implies that Mn,2 = n−Mn,1 ∼ n). Then one can check that maxk≤n Tk = o(nα2β1s) = o(nαβs),

τ(n)∼ (C1θ
α1 +C2)nα, and

Xτ(n) −E[Xτ(n)]

bτ(n)β
=⇒ b1

b

(
C1θ

α1

C1θα1 +C2

)β [
X1 +

b2
b1

(
C2

C1θα1

)β
X2

]
.

Case III: β1 < β2 and α1β1 = α2β2. Note that in this case we necessarily have α1 >α2. In this case we will let α= α1,
β = β1, and Mn,1 ∼ θn for a value of θ ∈ (0,1) to be chosen later (so that necessarily Mn,2 ∼ (1− θ)n). Then one can
check that maxk≤n Tk = o(n((α1β1)∨(α2β2))s) = o(nαβs), τ(n)∼C1θ

αnα, and

Xτ(n) −E[Xτ(n)]

bτ(n)β
=⇒ b1

b

[
X1 +

b2
b1

Cβ2

2 (1− θ)α2β2

Cβ1 θ
αβ

X2

]
.

Case IV: β1 < β2 and α1β1 > α2β2. In this case we will let α = α2β2

β1
, β = β1, and Mn,1 ∼ θn

α2β2
α1β1 for some θ > 0

to be chosen later (since the exponent α2β2

α1β1
< 1 this implies that Mn,2 = n −Mn,1 ∼ n). Then one can check that

maxk≤n Tk = o(nα2β2s) = o(nαβs), τ(n)∼C1θ
α1nα, and

Xτ(n) −E[Xτ(n)]

bτ(n)β
=⇒ b1

b

[
X1 +

b2
b1

Cβ2

2

Cβ1 θ
α1β
X2

]
.

Case V: β1 < β2 and α1β1 < α2β2. In this case we will let α = α1, β = β1, and Mn,2 ∼ θn
α1β1
α2β2 for some θ > 0

to be chosen later (since the exponent α1β1

α2β2
< 1 this implies that Mn,1 = n −Mn,2 ∼ n). Then one can check that

maxk≤n Tk = o(nα1β1s) = o(nαβs), τ(n)∼C1n
α, and

Xτ(n) −E[Xτ(n)]

bτ(n)β
=⇒ b1

b

[
X1 +

b2
b1

Cβ2

2 θα2β2

Cβ1
X2

]
.

Since the polynomial cooling maps from Theorem 3.1 satisfy the conditions in (7.2), it follows from Lemma 7.1 that
by interweaving a finite number of these polynomial cooling maps we can obtain a cooling map whose corresponding
RWCRE converges (after proper centering and scaling) to any finite linear combination of the limit laws captured in
Theorem 3.1. In particular, by intertweaving a finite number of critical polynomial cooling maps we can obtain any
limiting distributions of the form

∑`
i=1 aiWλc,ri

where c=K0vµs, and ai, ri > 0 for i= 1,2, . . . , `. To give a simpler
characterization of this type of limiting distribution, we use the following properties of the generalized tempered stable
laws which are easy to check from the definition: (1) aWλc,r

Law
= Wλasc,ar , and (2) ifWλ andWλ′ are independent, then

Wλ +Wλ′
Law
= Wλ+λ′ . From this, it follows that

∑`
i=1 aiWλc,ri

Law
= Wλ, where

λ(x) =
∑̀
i=1

λasi c,airi(x) = |x|−s−1
∑̀
i=1

casi

(
1 +

x

airi

)
+

.
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From this we see that we can characterize the limiting distributions of this type as generalized tempered stable random
variables Wλ where λ(x) = c|x|−s−1a(x) and a(x) is a convex and piecewise linear function. In fact, as the following
example shows, by choosing the interweaving carefully we can attain a limiting distribution of this form for any such
convex piecewise linear function a(x).
Example 1. Let

(7.7) a(x) =
∑̀
i=1

(gix+ hi)+

with gi, hi > 0 for i≤ ` and
∑`
i=1 hi = 1 be a generic piecewise linear convex funciton on (−∞,0] that vanishes at −∞

and has a(0) = 1. Now, for each i≤ ` let τ (i) be a critical polynomial cooling map with T (i)
k ∼Aik1/(s−1), and let τ = τσ

be an interweaving of these cooling maps where the selection function σ is chosen so that limk→∞
Mk,i

k = θi ∈ (0,1) for
each i≤ ` with

∑`
i=1 θi = 1. If we choose the parameters θi and Ai for constructing this cooling map so that

θi =
gi∑`
j=1 gj

, and Ai =

(
s−1
s

)1/(s−1)
hi

v
s/(s−1)
µ g

s/(s−1)
i

, i≤ `,

then by repeating the sort of computation in the proof of Lemma 7.1 the reader can check that the corresponding RWCRE
X has limiting distribution Xn−E[Xn]

n1/s =⇒Wλ with λ(x) =K0vµs|x|−s−1a(x) with a(x) as in (7.7). Moreover, one can

also check that the growth rate of this cooling map is τ(n)∼
(

(s−1)

svµ
∑`
i=1 gi

)s/(s−1)

ns/(s−1), and since
∑`
i=1 gi = a′(0)

this gives a relation between the growth rate of τ(n) and a′(0) for this particular type of cooling map that we will use in
the proof of Corollary 7.3 below.

Lemma 7.2 (Closure for critical maps). Suppose that for each j ≥ 1, τ (j) is a cooling map such that the corresponding
RWCRE X(j) has limiting distribution

(7.8)
X

(j)
n −E[X

(j)
n ]

n1/s
=⇒Wλj ,

and the cooling map has asymptotic growth rate τ (j)(n) ∼ Kjn
s/(s−1) as n→∞ for some Kj ∈ (0,∞). If we also

assume that

(7.9) Wλj =⇒
j→∞

Wλ and lim
j→∞

Kj+1

Kj
= 1,

then there exists a cooling map τ such that the corresponding RWCRE X has a limiting distribution Xn−E[Xn]
n1/s =⇒Wλ.

Proof. The new cooling map τ will be constructed from the cooling maps τ (j) as follows. We will choose an increasing
sequence of integers 0 =m0 <m1 <m2 <m3 < · · · with properties given below and then construct the cooling map τ
by choosing the k-th cooling interval from the cooling map τ (j) if mj−1 < k ≤mj . That is,

Tk = T
(j)
k , if mj−1 < k ≤mj .

We will choose the sequence of integers mj in the following manner. Assuming that mj−1 has already been determined,
we choose mj large enough so that∣∣∣∣τ (j+1)(mj)

τ(mj)
− 1

∣∣∣∣≤ 2

∣∣∣∣Kj+1

Kj
− 1

∣∣∣∣=: ηj(7.10)

sup
n≥τ(j+1)(mj)

sup
x∈R

∣∣∣∣∣P
(
X

(j+1)
n −E[X

(j+1)
n ]

n1/s
≤ x

)
− P

(
Wλj+1

≤ x
)∣∣∣∣∣< 1

j
(7.11)

and sup
x∈R

∣∣∣∣P(Xτ(mj) −E[Xτ(mj)]

τ(mj)1/s
≤ x
)
− P

(
Wλj ≤ x

)∣∣∣∣< 1

j
.(7.12)
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Condition (7.11) follows easily from the assumption in (7.8) by taking mj sufficiently large. For condition (7.10), first

note that τ
(j+1)(mj)
τ(mj)

=
τ(j+1)(mj)

τ(j)(mj)−τ(j)(mj−1)+τ(mj−1)
. The assumptions on the growth rate of τ (j) and τ (j+1) imply that

by taking mj sufficiently large, we can make this fraction arbitrarily close to Kj+1

Kj
so that (7.10) is satisfied. Finally, for

(7.12) we note that we can expand our probability space to include all of the walks X(j) and so that we can construct the
walk X· by letting

{Xτ(mj−1)+k −Xτ(mj−1)}k≤τ(mj)−τ(mj−1) = {X(j)

τ(j)(mj−1)+k
−X(j)

τ(j)(mj−1)
}k≤τ(j)(mj)−τ(j)(mj−1).

(Note that we are using here that τ(mj)− τ(mj−1) = τ (j)(mj)− τ (j)(mj−1), so that both sequences above have the
same number of terms.) Using this construction we then have that

Xτ(mj) −E[Xτ(mj)]

τ(mj)1/s
=
X

(j)

τ(j)(mj)
−E[X

(j)

τ(j)(mj)
]

τ (j)(mj)1/s

(
τ (j)(mj)

τ(mj)

)1/s

+
Xτ(mj−1) −E[Xτ(mj−1)]

τ(mj)1/s
−
X

(j)

τ(j)(mj−1)
−E[X

(j)

τ(j)(mj−1)
]

τ(mj)1/s
.

If mj−1 has already been fixed, then (7.8) implies that as mj→∞ the right side above converges in distribution toWλj .
Thus, we can take mj large enough so that (7.12) holds.

Suppose now that τ(mj)< n≤ τ(mj+1). Since Xτ(mj) and Xn −Xτ(mj) are independent, we can write

P
(
Xn −E[Xn]

n1/s
≤ x
)

=

∫
R
P
(
Xτ(mj) −E[Xτ(mj)]

n1/s
≤ x− y

)
P
(
Xn −Xτ(mj) −E[Xn −Xτ(mj)]

n1/s
∈ dy

)
(7.13)

For the first probability inside the integral, it follows from (7.11) and (7.12) that

P
(
Xτ(mj) −E[Xτ(mj)]

n1/s
≤ x− y

)
= P

((
τ(mj)

n

)1/s Xτ(mj) −E[Xτ(mj)]

τ(mj)1/s
≤ x− y

)

≤ P

(τ(mj)

n

)1/s X
(j+1)

τ(j+1)(mj)
−E[X

(j+1)

τ(j+1)(mj)
]

τ (j+1)(mj)1/s
≤ x− y

+
2

j
+ δj ,(7.14)

where δj := supx∈R
∣∣P (Wλj ≤ x)− P (Wλj+1 ≤ x)

∣∣ (note that (7.9) implies that δj → 0 as j →∞). For the second
probability in (7.13), note that we can replace Xn −Xτ(mj) with X(j+1)

τ(j+1)(mj)+n−τ(mj)
−X(j+1)

τ(j+1)(mj)
, so that applying

(7.14) to (7.13) we can conclude that

P
(
Xn −E[Xn]

n1/s
≤ x
)

≤ P

X(j+1)

τ(j+1)(mj)+n−τ(mj)
−X(j+1)

τ(j+1)(mj)
−E[X

(j+1)

τ(j+1)(mj)+n−τ(mj)
−X(j+1)

τ(j+1)(mj)
]

n1/s

+

(
τ(mj)

n

)1/s X
(j+1)

τ(j+1)(mj)
−E[X

(j+1)

τ(j+1)(mj)
]

τ (j+1)(mj)1/s
≤ x

+
2

j
+ δj

= P

X(j+1)

τ(j+1)(mj)+n−τ(mj)
−E[X

(j+1)

τ(j+1)(mj)+n−τ(mj)
]

n1/s

+

((
τ(mj)

n

)1/s

−
(
τ (j+1)(mj)

n

)1/s
)
X

(j+1)

τ(j+1)(mj)
−E[X

(j+1)

τ(j+1)(mj)
]

τ (j+1)(mj)1/s
≤ x

+
2

j
+ δj .
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Note that the above inequality holds for all x ∈ R and n ∈ (τ(mj), τ(mj+1)]. Since n > τ(mj) it follows from (7.10)
that ∣∣∣∣∣

(
τ(mj)

n

)1/s

−
(
τ (j+1)(mj)

n

)1/s
∣∣∣∣∣<
∣∣∣∣∣1−

(
τ (j+1)(mj)

τ(mj)

)1/s
∣∣∣∣∣≤
∣∣∣∣1− τ (j+1)(mj)

τ(mj)

∣∣∣∣1/s ≤ η1/s
j ,

Therefore, for any ε > 0, x ∈R, and n ∈ (τ(mj), τ(mj+1)] we have

P
(
Xn −E[Xn]

n1/s
≤ x
)
≤ P

X(j+1)

τ(j+1)(mj)+n−τ(mj)
−E[X

(j+1)

τ(j+1)(mj)+n−τ(mj)
]

n1/s
≤ x+ ε


+ P

∣∣∣∣∣∣
X

(j+1)

τ(j+1)(mj)
−E[X

(j+1)

τ(j+1)(mj)
]

τ (j+1)(mj)1/s

∣∣∣∣∣∣≥ η−1/s
j ε

+
2

j
+ δj

≤ P

((
τ (j+1)(mj) + n− τ(mj)

n

)1/s

Wλj+1 ≤ x+ ε

)

+ P
(
|Wλj+1

| ≥ η−1/s
j ε

)
+

4

j
+ δj

≤ P

(
Wλj+1

≤ x+ ε

(1− ηj)1/s

)
+ P

(
|Wλj+1

| ≥ η−1/s
j ε

)
+

4

j
+ δj ,

where the second inequality follows from two applications of (7.11) and the last inequality follows from (7.10) and the
fact that n > τ(mj). Letting ε = η

1/(2s)
j and then taking j large enough the right side can be made arbitrarily close to

P (Wλ ≤ x) (note that we are using here that (7.9) and the definition of ηj in (7.10) imply that ηj → 0 as j →∞).
Therefore, we can conclude that

lim sup
n→∞

P
(
Xn −E[Xn]

n1/s
≤ x
)
≤ P (Wλ ≤ x) , ∀x ∈R.

A matching lower bound is proved similarly.

Corollary 7.3 (Achievable generalized stable laws via interweaving). For any λ ∈ Λconv,s there exists a cooling map
τ and a constant b > 0 such that Xn−E[Xn]

bn1/s =⇒Wλ.

Proof. First of all, note that if λ(x) = c|x|−s−1a(x) then 1
bWλ

Law
= Wλ̃, where λ̃(x) = b−sc|x|−s−1a(bx). Thus, it is

enough to prove the statement of the corollary only for λ ∈ Λconv,s with leading constant c=K0vµs. To this end, we fix
a convex, non-decreasing function a(x) on (−∞,0] that is vanishing at −∞ and equals 1 at x= 0. Then it is easy to see
that there exists a sequence of functions aj(x) converging pointwise to a(x) where for each j ≥ 1, the function aj(x)
is a convex, non-decreasing function on (−∞,0] with compact support and whose graph consists of finitely many linear
pieces. Moreover, the derivatives a′j(0) can be chosen so that

• if a′(0)<∞ then a′j(0) = a′(0) for all j ≥ 1,
• while if a′(0) =∞ then the functions a′j(0) = j for all j ≥ 1.

As shown in Example 1 above, for each j ≥ 1 there exists a cooling map τ (j) such that the corresponding RWCRE
X(j) has limiting distribution X(j)

n −E[X(j)
n ]

n1/s =⇒Wλj where λj(x) = K0vµs|x|−s−1aj(x), and the asymptotics of the

cooling maps are given by τ (j)(n) ∼Kjn
s/(s−1) where Kj =

(
s−1

vµsa′j(0)

)s/(s−1)

. Since the functions aj(x) converge

pointwise to a(x) and |aj(x)| ≤ 1, it follows from the explicit form of the characteristic functions in (2.16) and the
dominated convergence theorem thatWλj =⇒Wλ as j→∞. Also, the condition on the derivatives of a′j(0) implies that
limj→∞

Kj+1

Kj
= 1. Therefore, the sequence of cooling maps τ (j) satisfy all of the assumptions of Proposition 7.2, and

thus there exists a cooling map τ such that the corresponding RWCRE has limiting distribution Xn−E[Xn]
n1/s =⇒Wλ.

Proof of Theorem 3.7. By the proof of Corollary 7.3 it is possible to construct a polynomial cooling map τ for which
the corresponding RWCRE X converges weakly after centering and scaling by n1/s to a random variable Wλ with
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λ ∈ Λconv,s. By applying twice Proposition 7.1, we can then interweave this cooling map τ with two other polynomial
cooling maps such that (3.11) is satisfied.

8. Examples of irregular cooling maps

Theorem 3.7 characterizes a large class of limiting distributions that can be obtained for RWCRE X associated to an
s-canonical law µ on environments, and Theorems 3.2 and 3.3 give sufficient conditions which imply the walk has a
specified limiting distribution. These results, however, are not as complete as the results obtained in the case where the
law µ on environments is such that the RWRE is recurrent. In that case, a general limiting distribution result was obtained
which identified all possible limiting distributions and also identified necessary and sufficient conditions on the cooling
map τ for each of these distributions to arise as a (subsequential) limiting distribution of the RWCRE [3, Theorem 2].

One reason for the weaker results in the present paper is that while in [3] the limiting distributions in all cases could
be obtained by centering by the mean and scaling by the standard deviation of the walk, in the present paper the scaling
one should use differs depending on the limiting distribution. For instance, in Theorem 3.2 one obtains Gaussian limits
after scaling by the deviation whereas in Theorem 3.3 one obtains stable or generalized tempered stable laws after scaling
by n1/s (and in general

√
Var(Xn) doesn’t grow like n1/s). In light of the results for the interweaving of cooling maps

in Section 7, a natural idea to handle general cooling maps is to divide a cooling map into “small” cooling intervals
which will give rise to a Gaussian component in the limit and “large” cooling intervals which will give rise to a stable
or generalized tempered stable component in the limit. However, it is not a priori clear how to properly characterize the
“small” and “large” cooling intervals to make this approach work.

The following example gives a cooling map where it is immediately clear how to divide the “small” and “large” cooling
intervals. This example is quite simple to analyze (given the earlier results in the paper) and shows that even in the cases
where a limiting distribution is a pure Gaussian or pure stable one might still have to use this dividing approach to obtain
the correct limiting distribution rather than simply applying a general result like Theorem 3.2 or 3.3.
Example 2 (Parametric cooling map for Gaussian & Stable mixtures).
Let X be a RWCRE associated to an s-canonical law µ, as in Def. 2.2 and cooling increment sequence defined as follows.
Fix a parameter r > 1 and consider the following sequence:

(8.1) T2j = brjc, for j ∈N, and Tk = 1, otherwise (that is, if log2(k) /∈N).

In this case the cooling intervals with Tk = 1 are considered “small” and all others are considered “large”. With this in
mind we can decompose Xn −E[Xn] as

`n∑
k=1

(
Z

(k)
1 −E[Z1]

)
1{Tk=1} +

`n∑
k=1

(
Z

(k)
Tk
−E[ZTk ]

)
1{Tk>1} +

(
Z

(`n+1)

T̄n
−E[ZT̄n ]

)
.

Letting a2
α = Var(Z1), it follows from the classical CLT that the first term scaled by Ar,n = aα(

∑`n
k=1 1{Tk=1})

1/2

converges in distribution to N , and Theorem 3.3 (using condition (S1)) implies that the last two terms scaled by

Br,n =
(∑`n

k=1 Tk1{Tk>1} + T̄n

)1/s

converges in distribution to Ss. By computing the asymptotics of Ar,n and Br,n
and comparing their relative sizes as n→∞, one can then obtain the following limiting distributions.

• (Normal) if 1< r < 2s/2, then

(8.2)
Xn −E[Xn]

aα
√
n

=⇒N .

Note that in this case it can be shown that Var(Xn) ∼ a2
αn if and only if r < 21/(3−s). Thus, it is evident that

for r ∈
[
21/(3−s),2s/2

)
one cannot derive the Gaussian limiting distribution using the approach of Theorem 3.2.

Indeed, it can be checked that this is because the Lindeberg condition (5.3) fails when r ≥ 21/(3−s). On the other
hand, when r <

√
2 one can derive (8.2) by directly applying Theorem 3.2 since (3.5) holds in this case, whereas

if r ∈ [
√

2,21/(3−s)) then even though (3.5) doesn’t hold the same proof idea works since the Lindeberg condition
(5.3) can be verified when r < 21/(3−s).

• (Mixture) if r = 2s/2, then the sequence Xn−E[Xn]√
n

is tight and admits multiple limit points of the form aN + bSs
where N and Ss are independent and a, b > 0.
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• (Stable) If r > 2s/2 then the scaling limits are always stable, but the scaling is different when r ≤ 2. If 2s/2 < r ≤ 2
then there exists a sequence of numbers dn which are bounded away from 0 and∞ (and which do not converge to
a constant as n→∞) such that

Xn −E[Xn]

dnnβ
=⇒Ss, where the scaling exponent β =

log2(r)

s
∈
(

1

2
,
1

s

]
.

On the other hand, if r > 2 then Xn−E[Xn]
n1/s =⇒ Ss. The above stable limiting distributions can be obtained by

directly applying Theorem 3.3 only when r > 2s. Indeed, it can be shown that condition (S1) holds if and only
if r > 2s. Condition (S2) holds only when r < 2 but in this case the limit in (3.7) is g(x) ≡ 1 which violates the
assumption that g(0) = 0 in Theorem 3.3.

Another natural question regarding the characterization of limiting distributions for general cooling maps is whether
or not Theorem 3.7 identifies all possible limiting distributions for RWCRE associated to s-canonical laws µ on envi-
ronments. In particular, can one obtain generalized tempered stable laws Wλ with λ /∈ Λconv,s? Theorem 3.3 provides
a strategy for how one might do this: find function g ∈ G for which λg /∈ Λconv,s, and then construct a cooling map τ
which satisfies (3.7) for this choice of g (and such that τ also satisfies condition (S2)), but we have been able to find
such examples only along subsequences. That is, if we allow for subsequential weak limits, then an easy modification of
the proof of Theorem 3.3 shows that if there is a subsequence nj and a function g ∈ G such that the limits in (3.7) and

condition (S2) hold along the subsequence nj , then
Xτ(nj)−E[Xτ(nj)]

τ(nj)1/s =⇒
j→∞

Wλg . The following gives an explicit example

of how this can be applied to get a subsequential limiting distribution which is not of the type included in Theorem 3.7.

Example 3 (“Exotic” cooling map). Let nj = 22j , and let

Tk =

⌈
kn

2−s
s−1

j

⌉
, for nj−1 < k ≤ nj .

The interested reader can check that for this example one has τ(nj)∼ 1
2n

s/(s−1)
j and

lim
j→∞

nj∑
k=1

Tk
τ(nj)

1{Tk≤xτ(nj)1/s} =
( x

21/s

)2

∧ 1 =: g(x).

Therefore, it follows that
Xτ(nj)−E[Xτ(nj)]

τ(nj)1/s =⇒
j→∞

Wλg with

λg(x) =K0vµs|x|−s−1

(
1 +

(s− 1)2(s−1)/s

vµs
x− 2− s

s22/sv2
µ

x2

)
+

.

Note that λg /∈ Λconv,s in this case since |x|s+1λg(x) is not convex.

Appendix A: Sums of heavy tailed random variables

This section contains some needed results regarding moment bounds and tail decay for sums of i.i.d. heavy tailed random
variables. The results below seem to be part of the folklore known to experts in heavy-tailed random variables though we
could not find a convenient reference, but we have included the proofs here both for completeness.

Throughout this section we will assume that {ξi}i≥1 are i.i.d. random variables and that Sn =
∑n
i=1 ξi.

Lemma A.1. Assume that E[ξ1] = 0 and that P (|ξ1|> x) =O(x−s) for some s ∈ (1,2). Then, there exists a constant
C > 0 such that P (|Sn|> tn1/s)≤Ct−s for all t > 0 and n large enough.

Proof. It is enough to prove a bound P (|Sn| > tn1/s) ≤ C1t
−s for some C1 > 0 and all t ≥ t1 > 0 since we can then

choose C large enough so that Ct−s ≥ 1 for t ∈ (0, t1). Now, first note that

P (|Sn|> tn1/s)≤ nP
(
|ξ1|>

t

2
n1/s

)
+ P

(∣∣∣∣∣
n∑
k=1

ξk1{|ξk|≤ t2n1/s}

∣∣∣∣∣> tn1/s

)
,
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and for some C ′ > 0 and n sufficiently large the first term can be bounded by C ′t−s for all t≥ 1. For the second term,
first of all note that

(A.1)
∣∣E[ξk1{|ξk|≤x}]

∣∣= ∣∣E[ξk1{|ξk|>x}]
∣∣≤E[|ξk|1{|ξk|>x}] =O(x1−s),

where the first equality follows from the assumption that E[ξ1] = 0 and the last equality follows from the assumed tail
asymptotics of |ξ1|. Therefore, there exists a constant b > 0 such that

∣∣∣E [∑n
k=1 ξk1{|ξk|≤ t2n1/s}

]∣∣∣ ≤ bt1−sn 1
s for n

sufficiently large and t≥ 1. Therefore,

P

(∣∣∣∣∣
n∑
k=1

ξk1{|ξk|≤ t2n1/s}

∣∣∣∣∣> tn1/s

)

≤ P

(∣∣∣∣∣
n∑
k=1

{
ξk1{|ξk|≤ t2n1/s} −E[ξk1{|ξk|≤ t2n1/s}]

}∣∣∣∣∣> (1− bt−s) tn1/s

)

≤ P

(∣∣∣∣∣
n∑
k=1

{
ξk1{|ξk|≤ t2n1/s} −E[ξk1{|ξk|≤ t2n1/s}]

}∣∣∣∣∣> t

2
n1/s

)
, for t≥ t0 = (2b)

1/s
.

Since the tail decay of ξ1 implies that Var(ξ11{|ξ1|≤x})≤E
[
ξ2
11{|ξ1|≤x}

]
=O(x2−s) as x→∞, then applying Cheby-

chev’s inequality to the above bound implies that there exists a constant C ′′ > 0 such that for t≥ t0 and n large enough

(A.2) P

(∣∣∣∣∣
n∑
k=1

ξk1{|ξk|≤ t2n1/s}

∣∣∣∣∣> tn1/s

)
≤

4nVar(ξ11{|ξ1|≤ t2n1/s})

t2n2/s
≤C ′′t−s.

Letting t1 = max{1, t0} and C1 = max{C ′,C ′′} we have that P (|Sn|> tn1/s)≤C1t
−s for all t≥ t1 > 0 .

Since Lemma A.1 gives the same tail decay bound for Sn/n1/s for n sufficiently large, we immediately obtain the
following corollary.

Corollary A.2. Assume that E[ξ1] = 0 and that P (|ξ1|> x) =O(x−s) for some s ∈ (1,2). If p ∈ (0, s), then E[|Sn|p] =
O(np/s).

Our final result in this section gives left tail asymptotics for Sn when the random variables ξ1 are bounded to the left
and heavy tailed to the right.

Lemma A.3. Assume that ξ1 has mean zero, is bounded from below (i.e. P (ξ1 ≥ −L) = 1 for some L <∞), and has
right tail decay P (ξ1 ≥ x) =O(x−s) for some s ∈ (1,2). Then, there exists a constant C > 0 such that

(A.3) P
(
Sn <−tn1/s

)
≤ e−Ct

s
s−1

, for all t > 0.

Proof. We begin by claiming that there is a constant c′ > 0 such that

(A.4) E
[
e−λξ1

]
≤ ec

′λs , for all λ > 0.

For ease of notation let ξ̂ = ξ1 +L so that our assumptions on ξ1 imply that ξ̂ is a non-negative random variable and that
P (ξ̂ ≥ x)≤Kx−s for some K > 0 and s ∈ (1,2). Then,

e−λLE
[
e−λξ1

]
=E

[
e−λξ̂

]
= 1−

∫ ∞
0

λe−λxP (ξ̂ ≥ x)dx

≤ 1−
∫ ∞

0

λ (1−min{λx,1})P (ξ̂ ≥ x)dx

= 1− λL+

∫ λ−1

0

λ2xP (ξ̂ ≥ x)dx+

∫ ∞
λ−1

λP (ξ̂ ≥ x)dx

≤ 1− λL+Kλ2

∫ λ−1

0

x1−sdx+Kλ

∫ ∞
λ−1

x−s dx
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= 1− λL+
K

(2− s)(s− 1)
λs

≤ e−λL+ K
(2−s)(s−1)

λs .

(Note that in the third line above we used that E[ξ̂] =E[ξ1]+L= L and in the second to last line we used that s ∈ (1,2).)
This proves (A.4) with c′ = K

(2−s)(s−1) .
The proof of (A.3) from (A.4) follows standard large deviation techniques. First of all, it follows from Chebychev’s

inequality and then (A.4) that

(A.5) P (Sn ≤−tn1/s)≤ e−λtn
1/s

E
[
e−λSn

]
≤ e−λtn

1/s+c′λsn, for any λ > 0.

Choosing λ=
(

t

c′sn1− 1
s

)1/(s−1)

, this gives the bound

(A.6) P (Sn ≤−tn1/s)≤ exp

{
−(c′)

−1
s−1

(
1

s
1
s−1

− 1

s
s
s−1

)
t
s
s−1

}
.

Since s > 1 implies that 1

s
1
s−1
− 1

s
s
s−1

> 0, this finishes the proof of (A.3).

Appendix B: RWRE: regeneration times for s > 0

We recall and collect some useful facts about regeneration times associated to RWRE. For more details we refer the reader
to [36] and the references specified below.

The sequence of regeneration times (Rk)k∈N is defined as follows.

(B.1) R1 := inf{n > 0 : max
`<n

Z` <Zn ≤ min
m≥n

Zm},

and

(B.2) Rk := inf{n >Rk−1 : max
`<n

Z` <Zn ≤ min
m≥n

Zm}, k ≥ 2.

The important facts we will use about regeneration times is that they give an independence structure under the annealed
measure P.

• The sequence of joint random variables

(B.3) (ZR1 ,R1), (ZR2 −ZR1 ,R2 −R1), (ZR3 −ZR2 ,R3 −R2), . . .

is independent under the measure P, and all but the first term are identically distributed.
• The joint sequence {(ZRk −ZRk−1

,Rk −Rk−1)}k≥2 has the same distribution as that of (B.3) under the measure
P(·) = P( · | Zn ≥ 0, ∀n≥ 0).

As a consequence, the following identities in mean are valid for any n ∈N:

E[Rn] = E[R1] + (n− 1)E[R1] = nE[R1] +O(1),(B.4)

and E[ZRn ] = E[ZR1
] + (n− 1)E[ZR1

] = nE[ZR1
] +O(1).(B.5)

Furthermore, it is worth noticing that the limiting speed vµ of RWRE defined in (2.8) can be expressed in terms of
regenerations as

(B.6) vµ =
E[ZR2

−ZR1
]

E[R2 −R1]
=

E[ZR1
]

E[R1]
.

Kesten, Kozlov, and Spitzer [26] studied transient one-dimensional RWRE via a related Markov chain {Vi}i≥0 which
can be interpreted as a branching process with immigration where each generation has an offspring distribution which is
a random Geometric distribution. However, while they did not state their results this way, their analysis of the Markov
chain V gives information on the regeneration structure of the RWRE.
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Lemma B.1 (Characterization in terms of branching processes [29]). Let the Markov chain V start at V0 = 0 and
let ν = inf{i > 0 : Vi = 0}. Then the joint distribution of (ZR2

− ZR1
,R2 −R1) is the same as the joint distribution of

(ν, ν + 2
∑ν−1
i=0 Vi).

Proof. This was proved in [29, Lemma 12] for transient, one-dimensional excited random walks. However, the proof
carries over without any change to RWRE in i.i.d. environments.

Corollary B.2 (Tail control on regenerations and increments). There exist constants C1,C2 > 0 such that

(B.7) P(ZR2
−ZR1

> n)≤C1e
−C2n.

Moreover, if s ∈ (0,2] then there exists a constant C3 > 0 such that

(B.8) P(R2 −R1 > n)∼C3n
−s, as n→∞.

Proof. It was shown in [26, Lemmas 2 and 6] that

(B.9) P (ν > n)≤C1e
−C2n and P

(
ν−1∑
i=0

Vi > n

)
∼Kn−s, as n→∞,

for some constants C1,C2,K > 0. Then, (B.7) follows from Lemma B.1 and the above tail decay for ν. Regarding (B.8),
it follows from Lemma B.1 that

(B.10) P

(
ν−1∑
i=0

Vi >
n

2

)
≤ P(R2 −R1 > n)≤ P

(
ν−1∑
i=0

Vi >
n−
√
n

2
+
√
n

)
+ P (ν >

√
n).

Letting C3 = K2s, (B.9) implies that both the lower bound and upper bound above are asymptotic to C3n
−s as n→

∞.

The following lemma gives a control on the 1st “special’ regeneration.

Lemma B.3 (First regeneration: p-moment and tail of displacement [21, 35]). If s > 0, then E[Rp1]<∞ if and only
if p ∈ (0, s). Furthermore, there exists a constant c > 0 such that

(B.11) E
[
ecZR1

]
<∞.

We refer the reader to [21, Prop. 3.5] for the boundedness of the p-moments of the first regeneration time stated above.
A proof of (B.11) can be found in [35], see Lemma 2.5 and Eq. (97) therein. For the latter, we stress that even though
this reference deals with high-dimensional setups assuming directional transience along a given direction, see Eq. (80)
in [35], these statements remain still valid in dimension one under our assumption (2.4).

Appendix C: Proof of Lemma 6.3

We start by proving (6.22) and then move to (6.20) and (6.21).

Proof of (6.22). First of all, from the definition of An,t, in (6.19), we see that the condition in (S2) implies for any fixed
t, δ > 0 that

(C.1)
{

Tk
τ(n)1/s

≥ t

vµ
+ δ

}
⊂
{
k ∈An,t

}
⊂
{

Tk
τ(n)1/s

≥ t

vµ

}
, for all n large.

To obtain (6.22) it is enough to prove the following statement:

lim
n→∞

1

τ(n)1− 1
s

n∑
k=1

f

(
Tk

τ(n)1/s

)
1{Tk/τ(n)1/s≥a} =

∫ ∞
a

f(x)

x
g(dx) +L(1− g(∞)), ∀a > 0.
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A technical difficulty arises with the integral on the right being over an unbounded interval, so will prove the following
two statements which together imply the above limit:

(C.2) lim
n→∞

1

τ(n)1− 1
s

n∑
k=1

f

(
Tk

τ(n)1/s

)
1{Tk/τ(n)1/s∈[a,b)} =

∫ b

a

f(x)

x
g(dx), ∀0< a< b <∞.

(C.3) lim
b→∞

lim sup
n→∞

∣∣∣∣∣ 1

τ(n)1− 1
s

n∑
k=1

f

(
Tk

τ(n)1/s

)
1{Tk≥bτ(n)1/s} −L(1− g(∞))

∣∣∣∣∣= 0.

To prove (C.2), we fix 0 < a < b and a large integer N and partition the interval [a, b] into N equally spaced sub-
intervals [xj−1,N , xj,N ] where xj,N = a + j(b−a)

N for j = 0,1,2, . . .N . For j = 1,2, . . . ,N let x∗j,N be a point in the
interval [xj−1,N , xj,N ] where the function f(x)/x achieves its maximum. With this notation we can get the following
upper bound on the sum

lim sup
n→∞

1

τ(n)1− 1
s

n∑
k=1

f

(
Tk

τ(n)1/s

)
1{Tk/τ(nj)1/s∈[a,b)}

= lim sup
n→∞

N∑
j=1

n∑
k=1

f
(

Tk
τ(n)1/s

)
Tk

τ(n)1/s

Tk
τ(n)

1{Tk/τ(n)1/s∈[xj−1,N ,xj,N )}

≤
N∑
j=1

f
(
x∗j,N

)
x∗j,N

(
lim
n→∞

n∑
k=1

Tk
τ(n)

1{Tk/τ(n)1/s∈[xj−1,N ,xj,N )}

)

=

N∑
j=1

f
(
x∗j,N

)
x∗j,N

(g(xj,N )− g(xj−1,N )) ,

where in the last step we used again assumption (3.7). Finally, by taking N →∞, the upper bound above becomes
arbitrarily close to the Riemann-Stieltjes integral

∫ b
a
f(x)
x g(dx). The proof of the matching lower bound is obtained

similarly.
To prove (C.3), fix ε > 0 and choose b large enough so that supx≥b |

f(x)
x −L| ≤ ε. Then,∣∣∣∣∣ 1

τ(n)1− 1
s

n∑
k=1

f

(
Tk

τ(n)1/s

)
1{Tk≥bτ(n)1/s} −L(1− g(∞))

∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑
k=1

(f ( Tk
τ(n)1/s

)
Tk

τ(n)1/s

−L
)
Tk
τ(n)

1{Tk≥bτ(n)1/s}

∣∣∣∣∣∣
+L

∣∣∣∣∣
n∑
k=1

Tk
τ(n)

1{Tk≥bτ(n)1/s} − (1− g(b))

∣∣∣∣∣+L(g(∞)− g(b))

≤ ε+L

∣∣∣∣∣
n∑
k=1

Tk
τ(n)

1{Tk≥bτ(n)1/s} − (1− g(b))

∣∣∣∣∣+L(g(∞)− g(b)).

It follows from (3.7) that the second term in the last line above vanishes as n→∞. Then taking b→∞ followed by
ε→ 0 finishes the proof of (C.3).

Proof of (6.20). Let us first fix a sequence a(n)→∞ with the properties that

(C.4) max
k≤n

T
1/s
k ≤ a(n) and a(n) = o(τ(n)1/s),

where we note that such a sequence is guaranteed by (S2). Next, we claim that (3.7) and the first condition in (C.4)
together imply that there is a δ > 0 such that for n large enough

(C.5) a(n)≥ δτ(n)1/s2 .
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To see this, note that if a(n)s < xτ(n)1/s then the first condition in (C.4) implies that
∑n
k=1

Tk
τ(n)1{Tk<xτ(n)1/s} =∑n

k=1
Tk
τ(n) = 1. Therefore, if we choose δ > 0 so that g(δs)> 0 (which is possible since g is continuous and g(0) = 0)

we can conclude that it must be the case that a(n)s ≥ δsτ(n)1/s holds for n large enough, and this is equivalent to the
claim (C.5).

Next, partition the integers from 1 to n as the disjoint union B1
n,t ∪B2

n,t ∪An,t, with An,t as in (6.19),

B1
n,t := {k ≤ n : Tkvµ − tτ(n)1/s ≤−a(n)},

and B2
n,t := {k ≤ n : −a(n)< Tkvµ − tτ(n)1/s < (logTk)T

1/s
k }.

With this decomposition, the claim (6.20) is equivalent to

(C.6) lim
n→∞

∑
k∈Bjn,t

P(ξk,n ≤−t) = 0, for j ∈ {1,2},

which we next show first for j = 1 and then for j = 2.
Sum over B1

n,t: First of all, note that if k ∈B1
n,t then

P(ξk,n ≤−t) = P(ZTk ≤ E[ZTk ]− tτ(n)1/s)

≤ P(ZTk ≤−a(n) + E[ZTk ]− Tkvµ).

The asymptotic behavior of E[ZTk ] from (3.13) and our choice of a(n) in (C.4) imply that for n sufficiently large we
have E[ZTk ]− Tkvµ ≤ a(n)/2 for k ≤ n. Thus, for n sufficiently large we may bound

(C.7) max
k∈B1

n,t

P(ξk,n ≤−t)≤ P
(

inf
k≥0

Zk ≤−
a(n)

2

)
≤Ce−ca(n),

where the last inequality follows from [19, Lemma 3.3].7 Since there are at most n terms in B1
n,t, each bounded by

Ce−a(n) ≤Ce−δτ(n)1/s2 ≤Ce−δn1/s2

, this proves (C.6) for j = 1.

Sum over B2
n,t: Eq. (3.14) implies that P(ξk,n ≤−t)≤ 1

t2τ(n)2/s Var(ZTk)≤ CT 3−s
k

t2τ(n)2/s , from which we have that

(C.8)
∑

k∈B2
n,t

P(ξk,n ≤−t)≤
C

t2τ(n)2/s

∑
k∈B2

n,t

T 3−s
k =

C

t2τ(n)1− 1
s

∑
k∈B2

n,t

(
Tk

τ(n)1/s

)3−s

.

Since we have chosen a(n) = o(τ(n)1/s) and we are assuming (S2), then it follows for any fixed δ > 0, that for all n
large enough, k ∈B2

n,t implies that | Tk
τ(n)1/s − t

vµ
|< δ. Therefore, we have that for n large enough

(C.9)
∑

k∈B2
n,t

P(ξk,n ≤−t)≤
C

t2τ(n)1− 1
s

∑
k≤n

(
Tk

τ(n)1/s

)3−s

1{| Tk

τ(n)1/s
− t
vµ
|<δ}.

It follows from (C.2) that we can compute the limit of this upper bound so that

(C.10) lim sup
n→∞

∑
k∈B2

n,t

P(ξk,n ≤−t)≤
C

t2

∫ t
vµ

+δ

t
vµ
−δ

x2−s g(dx).

Since the right-hand side vanishes as δ→ 0 (recall that g is continuous), then it follows that (C.6) holds for j = 2 as
well.

Proof of (6.21). As in the proof of (6.20) above, we proceed by showing

(C.11) lim
n→∞

∑
k∈Bjn,t

E
[
ξk,n1{ξk,n≤−t}

]
= 0, for j = 1,2.

7In [19] it is assumed that 〈logρ0〉 ∈ (−∞,0) rather than our assumption (2.4). However, that assumption is not used in the proof of Lemma 3.3
in [19] and all that is needed is that the environment is i.i.d., non-deterministic, and (2.5) holds for some s > 0.
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Sum over B1
n,t: It follows from the Cauchy-Schwartz inequality, (3.14), and (C.7) that∣∣∣∣∣∣
∑

k∈B1
n,t

E
[
ξk,n1{ξk,n≤−t}

]∣∣∣∣∣∣≤
∑

k∈B1
n,t

E
[
ξ2
k,n

]1/2 P(ξk,n ≤−t)1/2 ≤ Ce−ca(n)

τ(n)1/s

∑
k∈B1

n,t

T
3−s

2

k .

Since the definition of B1
n,t implies that Tk ≤ t

v τ(n)1/s for all k ∈B1
n,t, and since |B1

n,t| ≤ n, we have that

∣∣∣∣∣∣
∑

k∈B1
n,t

E
[
ξk,n1{ξk,n≤−t}

]∣∣∣∣∣∣≤ Ce−ca(n)/2

τ(n)1/s
n

(
t

vµ
τ(n)1/s

) 3−s
2

=
C
(
t
vµ

) 3−s
2

ne−ca(n)/2

τ(n)
s−1
2s

.

It follows from (C.5) that this upper bound vanishes as n→∞, and this proves (C.11) for j = 1.
Sum over B2

n,t: It follows from the Cauchy-Schwartz inequality, Chebychev’s inequality, and (3.14) that

∣∣E [ξk,n1{ξk,n≤−t}]∣∣≤ E
[
ξ2
k,n

]1/2 P(|ξk,n| ≥ t)1/2 ≤
E[ξ2

k,n]

t
≤ C

t

T 3−s
k

τ(n)2/s
,

by arguing as in (C.8) and right after it, we see that the sum of this upper bound over B2
n,t vanishes as n increases. This

proves (C.11) for j = 2.
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