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A B S T R A C T 

We present an analytical model for cosmological Lyman-limit systems ( LLS ) that successfully reproduces the observed evolution 

of the mean free path ( λeff ) of ionizing photons. The evolution of the co-moving mean free path is predominantly a consequence 
of the changing meta galactic photoionization rate and the increase with cosmic time of the minimum mass below which haloes 
lose their gas due to photoheating. In the model, Lyman-limit absorption is caused by highly ionized gas in the outskirt of dark 

matter haloes. We exploit the association with haloes to compute statistical properties of λeff and of the bias, b , of LLS . The 
latter increases from b ∼ 1.5 → 2.6 from redshifts z = 2 → 6. Combined with the rapid increase with redshift of the bias of 
the haloes that host a quasar, the model predicts a rapid drop in the value of λeff when measured in quasar spectra from z = 5 

→ 6, whereas the actual value of λeff falls more smoothly. We derive an expression for the ef fecti ve optical depth due to Lyman 

limit absorption as a function of wavelength and show that it depends sensitively on the poorly constrained number density of 
LLS as a function of column density. The optical depth drops below unity for all wavelengths below a redshift of ∼2.5 which is 
therefore the epoch when the Universe first became transparent to ionizing photons. 

K ey words: radiati ve transfer – intergalactic medium – quasars: absorption lines – diffuse radiation. 
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 I N T RO D U C T I O N  

ydrogen in the intergalactic medium (hereafter IGM) is so highly 
onized that it does not produce a significant Gunn–Peterson trough 
Gunn & Peterson 1965 ) in quasar spectra below a redshift of z 

6 (Fan et al. 2006 ). At higher redshifts, several independent 
bservations suggest that the IGM may be significantly neutral. 
hese include a detection of a damping wing in the spectra of z 
 7 quasars (Mortlock et al. 2011 ; Davies et al. 2018 ) as well as

ther observations (e.g. Mason et al. 2018 ). The measurement of the
hompson-optical depth to the cosmic microwave background from 

ree electrons also suggest that the Universe transitioned from mostly 
eutral to mostly ionized around z ∼ 7.5 (Planck Collaboration et al. 
020 ). For re vie ws on the physics of the IGM and its connection to
eionization, see e.g. Meiksin ( 2009 ) or McQuinn ( 2016 ), and for a
ore observational perspective, see e.g. Rauch ( 1998 ). 
Even when the Universe is highly ionized on average, the remain- 

ng neutral hydrogen is sufficiently abundant to limit the distance 
hat a typical ionizing photon can travel from its source before being
bsorbed. This distance can be quantified either by the attenuation 
ength λeff , defined below in equation ( 16 ), or the ‘mean free path’.
he relation between these quantities is examined in more detail in 
ppendix A . The attenuation length and the emissivity of ionizing 

ources together determine the amplitude of the ionizing background 
e.g. Haardt & Madau 1996 ; Miralda-Escud ́e 2003 ; Faucher-Gigu ̀ere
t al. 2009 ; McQuinn, Oh & Faucher-Gigu ̀ere 2011 ; Haardt & Madau
012 ). 
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The absorbers of ionizing photons are usually characterised in 
erms of their neutral hydrogen column density, N H I , and are labeled
s ‘Lyman α forest’ ( N H I < 10 17.2 cm 

−2 ), Lyman-limit systems
 LLS ’s, 10 17.2 cm 

−2 ≤ N H I < 10 20.3 cm 

−2 ), and damped Lyman α
bsorbers ( DLA ’s, N H I ≥ 10 20.3 cm 

−2 , see e.g. Rauch 1998 ). The
ptical depth of an ionizing photon with energy of 1 Rydberg is
nity at N H I = 10 17.2 cm 

−2 , whereas the Lyman α line shows an
bvious damping wing above a column density of N H I = 10 20.3 cm 

−2 

hence the labels. It is also common parlance to refer to absorbers
ith column density just below 10 17.2 cm 

−2 as sub- LLS ’s, and those
lose to but below the DLA threshold as super- LLS ’s or sub- DLA ’s. 

The column-density distribution function (hereafter CDDF ), is the 
umber density of absorbers with a gi ven v alue of N H I (per unit co-
oving path length, to be defined below), and the normalization 

nd shape of this function sets λeff . Sub- LLS ’s and super- LLS ’s
ogether mostly determine the value of λeff , because the numerous 
yman α forest absorbers just have too low a column density to
ontribute significantly to λeff , whereas the strongly absorbing DLA ’s 
re simply too rare. Unfortunately, it is difficult to measure accurately
he column density of lines in the important range of 10 16 –10 20 

m 

−2 because the whole Lyman-series of absorption lines associated 
ith the absorber is partially or completely saturated. Estimates of 

eff then require extrapolating the CDDF in the LLS range, i.e. just
hat range of the CDDF that is the most important for accurately
etermining λeff (e.g. Faucher-Gigu ̀ere et al. 2009 ; Haardt & Madau
012 ). 
Prochaska, Worseck & O’Meara ( 2009 ) suggested an alternative 
ethod for measuring λeff , namely stacking quasar transmission 

pectra in bins of emission redshift and measuring the decrease in
ransmission caused by the ionization edge of the hydrogen atom 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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i.e. the reduction in transmission 1 of photons with energies h ν
13.6eV (see also Fumagalli et al. 2013 ; O’Meara et al. 2013 ;

orseck et al. 2014 ; Becker et al. 2021 ). The measured value of
eff decreases rapidly with increasing z, approximately ∝ (1 + z) −η

ith η ≈ 5.4, o v er the redshift range z = 2.3 → 5.5 (Worseck et al.
014 ). This is much faster than would be the case if the absorbers
ad constant co-moving density and a constant proper cross-section,
hich would yield λeff ∝ (1 + z) −3 , demonstrating that the absorbers
 volve. Gi ven that the (co-moving) number density of absorbers
resumably increases with cosmic time as structure grows, and that
he intrinsic sizes of the absorbers presumably also grow with time,
ith both effects tending to reduce λeff , one might naiv ely e xpect that

eff evolves slower than (1 + z) −3 – which is exactly opposite from
hat is observed. Prochaska, O’Meara & Worseck ( 2010 ) discuss

everal possible reasons for this unexpected evolution, settling on
he suggestion that it must be that absorbers become more highly
onized with decreasing z. 

Becker et al. ( 2021 ) use the method of Prochaska, Worseck &
’Meara ( 2009 ) to measure λeff in a set of z ∼ 6 quasars. Accounting

or the radiation of the quasar itself – the proximity effect – they infer
 sharp drop in λeff from z = 5 → 6, much faster than an extrapolation
f the ∝ (1 + z) −η would predict. They claim that this rapid change
ignals the transition from an ionized to a mostly neutral IGM , and
ence claim that their measurements are probing the tail-end of the
poch of reionization (see also Gaikwad et al. 2023 ). 

Numerical models to predict the evolution of λeff are challenging,
equiring radiative transfer (hereafter RT ) at high resolution to capture
he transition from ionized to neutral gas with increasing density in
 computational volume that is large enough to sample the relatively
are strong absorbers that set λeff . Altay et al. ( 2011 ) and McQuinn,
h & Faucher-Gigu ̀ere ( 2011 ) both post-processed simulations with

T , showing that they can reproduce the observed CDDF , including
he transition from Lyman α forest to DLA ’s. These papers show that
he CDDF evolves relatively slowly, in agreement with observations
see also Rahmati et al. 2013 ). Altay et al. ( 2013 ) further show that
hese predictions are insensitive to the uncertainties in the modelling
aused by galaxy formation ( i.e. the implementation of feedback
rom massive stars and quasars), which only affects the CDDF at
igh column-densities, N H I ≥ 10 21 cm 

−2 , that have little effect on
eff . All modellers agree that cold gas, accreting on to haloes, is

he dominant contributor to LLS ’s (e.g. Altay et al. 2011 ; Faucher-
igu ̀ere & Kere ̌s 2011 ; Fumagalli et al. 2011 ; van de Voort et al. 2012 ;
ajima, Choi & Nagamine 2012 ; Rahmati et al. 2013 ). Analytical
odels for the evolution of absorbers, sometimes augmented with

bservational constraints or numerical models, are also discussed
y Erkal ( 2015 ) and Mu ̃ noz et al. ( 2016 ), and we will contrast our
pproach and results with theirs below. 

A flurry of recent papers used simulations that include radiative
ransfer performed either on the fly or in post-processing to investi-
ate the claim by Becker et al. ( 2021 ) that λeff drops sharply from
 = 5 → 6 (e.g. D’Aloisio et al. 2020 ; Keating et al. 2020 ; Cain et al.
021 ; Garaldi et al. 2022 ; Gaikwad et al. 2023 ). The authors attribute
he drop to this redshift range probing the tail-end of reionization.

e will return to this issue in Section 3.2 . 
In this paper, we present an analytical model for the CDDF in the

LS and DLA range, making the assumption that (strong) absorption
ines are caused by gas in haloes. The model of absorbers and their
onnection to λeff are presented in Section 2 . Section 3 discusses
NRAS 527, 689–705 (2024) 

 After correction for the reduction in transmission caused by the Lyman series 
f absorption lines, and accounting for other observational effects. 

w

f

lustering of absorbers and the impact of bias on λeff . We also show
ow the statistical properties of the attenuation relate to clustering
f haloes. Section 4 exploits the model to compute the wavelength
ependence of the optical depth, resulting in a new model for the
ombined effect of many LLS on the mean transmission. Section 5
ummarizes our results. We use the Planck Collaboration et al. ( 2016 )
alues of cosmological parameters (final column of their table 4),
ubble parameter h = 0.673, baryon and matter density in units of the

ritical density of �b = 0.02230/ h 2 and �m 

= (0.1188 + 0.02230)/ h 2 ,
 Helium abundance by mass of Y = 0.24531, and when applicable
pply the high- z approximation for the Hubble constant at redshift z,
 ( z) = H 0 �

1 / 2 
m 

(1 + z) 3 / 2 , with H 0 the Hubble constant at z = 0. 

 T H E  A  TTENUA  T I O N  L E N G T H  IN  T H E  H A L O  

O D E L  

e begin this section by briefly re vie wing the relation between the
ttenuation length, λeff , and the column density distribution function
 f ( N H ), hereafter CDDF ). We then extend the model of Theuns ( 2021 )
f DLA ’s to the lower column density LLS (Section 2.2 ), and use the
esulting CDDF to derive the evolution of λeff which we compare to
bservations. We infer the main drivers of the evolution of λeff by
arying the parameters that determine the CDDF (Section 2.3 ). We
nish this section by comparing to the observed evolution of LLS ’s
Appendix B ). 

.1 Relating λeff to the CDDF 

bsorption of ionizing photons in the clumpy Universe occurs
redominantly in approximately discrete ‘absorbers’ with a range
f neutral hydrogen column densities, N H I . Provided that these
bsorbers are Poisson distributed along a sight line ( i.e . , pro vided
e ne glect an y spatial correlations of absorbers: we account for

lustering later on), the ef fecti ve optical depth, τ eff , per unit proper
ight line distance, d l , at the Lyman limit, is (e.g. Paresce, McKee &
owyer 1980 ; Meiksin & Madau 1993 ) 

d τeff 

d l 
= 

∫ ∞ 

0 

d 2 N 

d l d N H I 

[
1 − exp ( −τ ) 

]
d N H I . (1) 

ere, N is the number of absorbers with column density N H I per unit
roper distance d l and τ = σ th N H I is the optical depth of an absorber;
th is the photoionization cross section at the Lyman limit. We will
e more careful about the wavelength dependence of this relation
ater on. 

The attenuation length is usually expressed as a proper distance.
o expose better the underlying physics, it is useful to separate the
ontributions to the evolution of λeff that result from the expansion
f the Universe and those that result from changes in the intrinsic
roperties of the absorbers. To enable this, Bahcall & Peebles ( 1969 )
efined the dimensionless co-moving path length, d X , as 

 X ≡ H 0 (1 + z) 2 

H ( z) 
d z ≡ H 0 (1 + z) 3 

c 
d l. (2) 

e note that d X is not simply the co-moving analogue of the proper
ath length d l . Combining the abo v e relations yields 

d τeff 

d X 

( z) = 

∫ ∞ 

0 
f ( N H I ; z) 

[
1 − exp ( −τ ) 

]
d N H I , (3) 

here 

 ( N H I ; z ) ≡ d 2 N 

d X d N 

( z ) , (4) 

H I 
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s now the number N of absorbers with a given column density per
 X , i.e. the CDDF at redshift z. 
The intensity of a beam of photons with frequency 2 ν th travelling a 

o-moving path length d X will be attenuated by a factor exp ( − τ eff )
n average. Setting τ eff = 1 in equation ( 3 ) defines the attenuation
ength , X eff , 

 eff ( z) = 

{∫ ∞ 

0 
f ( N H I ; z) [1 − exp ( −τ )] d N H I 

}−1 

. (5) 

ny evolution of X eff is due to the evolution of the CDDF , i.e. due to the
volution of the absorbers, rather than simply due to the expansion 
f the Universe. 
Finally, the proper attenuation length, λeff , is related to X eff by 

eff = 

c 

H 0 (1 + z) 3 
X eff . (6) 

The quantity λeff is sometimes referred to as mean free path. 
o we ver, λeff and mean free path are different characterizations 
f absorption, and are generally not numerically equal, as we 
emonstrate in Appendix A 

We continue by briefly re vie wing the model of Theuns ( 2021 ) for
trong H I absorbers, which we extend to lower values of the column 
ensity to compute the evolution of the CDDF and hence that of the
ttenuation length. 

.2 A model for the CDDF and its evolution 

he model for strong H I absorbers by Theuns ( 2021 , hereafter
T21, see also Erkal 2015 ) is based on the following two main
pproximations: 

(i) Gas in haloes is spherically symmetrically distributed around 
he halo’s centre of mass with a power-law density profile, 
( R ) ∝ R 

−2 . 
(ii) This gas is in photoionization equilibrium with the ionising 

ackground, and the neutral fraction can be estimated using ap- 
roximate radiative transfer of ionizing photons penetrating radially 
nwards. 

Spherical symmetry is clearly an approximation and it would 
e interesting to investigate how sensitive the model’s predictions 
epend on this approximation. 
In more detail, we assume the gas density profile to be 3 

 H ( R) = n H , h ×
(

R h 

R 

)2 

, (7) 

ere, n H ( R ) is the hydrogen density by number at distance R from
he centre of the halo, R h is the virial radius of that halo, and n H,h 

s the density at R h ( n H , h = 200 f gas 〈 n H 〉 / 3, with 〈 n H 〉 the cosmic
ean hydrogen density and f gas , which is of order unity, the gas

raction at R h in units of the cosmic mean). All these variables are
n proper units. Assuming further that this halo is illuminated by 
n ionizing background characterized by a photoionization rate � 0 , 
T21 performs simplified radiative transfer to compute the neutral 

raction, x ≡ n H I / n H as a function of radius, assuming the gas is
 Where h νth = 1 Ryd is the binding energy of H I . We discuss the frequency 
ependence in more detail in section 4. (From the context it should be clear 
hen h is Planck’s constant and when it refers to the Hubble parameter.) 
 The model neglects the ∼10 per cent effect of helium. It is straightforward 
o generate the model described here for a different exponent of the radial 
rofile, which may be a better fit to profiles measured in simulations, in 
articular at higher z� 6. 

H  

a  

N  

t  

h

sothermal at a temperature of T = 10 4 K. Calculating numerically
he optical depth τ at radius R due to neutral gas between R and R h 

ields the factor exp ( − τ ) by which the photoionization rate at R is
uppressed compared to its value at R h . As τ increases, the neutral
raction rises rapidly once τ ≥ 1, and the gas transitions from highly
onized to mostly neutral. 

In this paper, we extend TT21’s model in two ways: 

(1) we extrapolate the profile of equation ( 7 ) to values > R h , 
(2) we no longer assume that the gas is isothermal at a temperature

f T = 10 4 K. 

In practice, we extrapolate equation ( 6 ) out to R = 8 R h . This
xtrapolation allows us to compute the number of absorbers at 
olumn densities far below that of DLA ’s, and we will show that
he predicted number of such absorbers agrees fairly well with 
bservations. The reason to make changes to the gas temperature 
s well is as follows. At lower densities where the gas is highly
onized, the gas temperature is closer to T ∼ 1.5 × 10 4 K (e.g.
chaye et al. 2000 ) at the redshifts of interest ( i.e. z = 2 → 6), and
ence we would like to use this more realistic value for T . Choosing
his higher temperature changes the neutral fraction due to the T -
ependence of the recombination rate, at higher density it further 
hanges the neutral fraction due to collisional ionization. To a v oid
hat our self-shielded gas is affected by collisional ionizations, we 
ant to keep the temperature of this gas at T = 10 4 K. We therefore

nterpolate T from 1.5 × 10 4 K at τ < 1 to T = 10 4 K at τ ≥ 1.5.
iven that these changes are relatively minor, we continue to refer

o this impro v ed model as ‘TT21’. 
We sho w belo w that the LLS ’s that set λeff are mostly highly

onized, and so ev en ne glecting an y self-shielding has little impact
n our results. Given this, we make an even more simplified
odel in this paper which assumes that gas in LLS ’s is optically

hin. The moti v ation for making this approximation is two-fold:
i) it dramatically simplifies the equations, and ( i i) the attenuation
ength is nearly identical to that of the more accurate model. The
impler analytical expressions greatly clarify the relation between 
he evolution of X eff and that of haloes. The reason for (ii) is that

ost of the absorption is due to LLS which occur in highly ionized gas
hat is well described by the approximate model. The approximation 
oes not capture the transition from LLS ’s to DLA ’s. We will refer to
he more accurate model as ‘TT21’ and to the model that makes the
ptically thin approximation as ‘the optically thin’ model. 
The neutral fraction of the gas with the density profile of equation

 7 ) can be computed analytically in the optically thin model. This also
llows us to obtain an analytical expression for the column density
long a sight line at impact parameter b , 

 H I ( b) = N H I , h ×
(

R h 

b 

)3 

N H I , h ≡ 2 αB 

� 0 
n 2 H , h R h 

∫ ∞ 

0 

dq 

(1 + q 2 ) 2 

= 10 15 . 5 cm 

−2 

(
1 + z 

4 

)5 (
M h 

10 10 M �

)1 / 3 

×
(

f gas 

0 . 6 

)2 (
αB ( T ) 

αB (1 . 5 × 10 4 K) 

) (
� 0 

10 −12 s −1 

)−1 

. (8) 

ere, αB ( T ) is the case-B recombination coefficient, T is the temper-
ture of the gas, and M h is the virial mass of the halo. The value of
 H I ,h assumes that the 1/ R 

2 profile of the halo extends to infinity, i.e.
here is a (relatively small) contribution to N H I from gas outside the
alo. 
MNRAS 527, 689–705 (2024) 
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Table 1. Model parameters as a function of redshift, z. M crit is the critical 
halo mass below which haloes lose their baryons, taken from Okamoto, Gao & 

Theuns ( 2008 ); f c is the dimensionless variable entering equation ( 14 ). 

z log M crit (M �) f c 

0 9.82 0.94 
1 9.57 0.98 
2 9.35 0.87 
3 8.99 0.77 
4 8.71 0.65 
5 8.42 0.55 
6 8.19 0.46 
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The column-density-weighted neutral fraction of the gas along a
ight line is 

 x〉 = 

∫ ∞ 

0 x n H I d l ∫ ∞ 

0 n H I d l 
= 

3 x h 
4 

(
N H I 

N H , h 

)2 / 3 

, (9) 

here x h = αB n H,h / � 0 is the neutral fraction at R h , and l is the path
ength. For z = 3 and � 0 = 10 −12 s −1 , x h ≈ 10 −4 , which means that 〈 x 〉
 x m provided that N H I < N H , h ( x m 

/x h ) 3 / 2 or N H I � 500 N H , h taking
 m = 10 −2 . Comparing to equation ( 8 ) then shows that up to columns
f order a few times 10 18 cm 

−2 , the absorbing gas is indeed highly
onized, x < 10 −2 , hence making the optically thin approximation
s likely justified for LLS . We will show later that absorbers with
olumn densities around this value are the dominant contributors to
he attenuation length. This explains why the optically thin model
iv es v ery similar values for X eff to the more detailed model of TT21.
The cross-section σ for which a halo of mass M h yields a column

ensity higher than a given value of N H I is 

( > N H I ) = πb 2 ( > N H I ) = π R 

2 
h ×

(
N H I , h 

N H I 

)2 / 3 

. (10) 

ome previous models of absorbers (e.g. Fumagalli et al. 2013 ; Erkal
015 ) set σ = f cov π R 

2 
h , where f cov is a dimensionless ‘co v ering

actor’. In our model, equation ( 8 ) shows that even in a spherically
ymmetric model , f cov depends on M h , T , and � 0 , and rather strongly
n redshift. We 4 now follow TT21 by defining the function g ( M h ,
 H I , z) as the number of absorbers with a given column density
er unit co-moving path length d X due to haloes of mass M h . TT21
hows that this function is proportional to the deri v ati ve of the cross-
ection with respect to N H I times the halo mass function, d n /dlog M h , 

( M h , N H I , z) ≡ d 3 N 

d N H I d log M h d X 

= − c 

H 0 

d n ( M h , z) 

d log M h 

d σ ( M h , > N H I , z) 

d N H I 

= 

2 c 

3 H 0 

d n ( M h , z) 

d log M h 

πR 

2 
h 

N H I , h 

(
N H I , h 

N H I 

)5 / 3 

. (11) 

he halo mass function, d n /dlog M h , is the co-moving number density
f haloes with mass M h per dex in halo mass. The cross-section σ ,
n the other hand, is defined in proper units. Therefore the function
 will only evolve if the halo mass function evolves in co-moving
nits, or if the absorbers themselves evolve in proper units, or both. 
Integrating the function g over halo mass yields the CDDF , 

 ( N H I , z) = 

∫ ∞ 

log M crit ( z) 
g( M h , N H I , z) d log M h . (12) 

e note that the lower limit of the integral over halo mass in equation
 12 ) is log M crit ( z), where M crit ( z) is the mass below which haloes
ose their gas when it is photoheated by the ionizing background.
bviously, such haloes will not host absorbers and hence will not

ontribute to the CDDF . In this paper, we use the fit by Okamoto,
ao & Theuns ( 2008 ) to e v aluate M crit ( z). It might also be useful

o limit the upper limit of integration in equation ( 12 ) since gas
n suf ficiently massi ve haloes is likely to be hot and collisionally
onized, rather than cold and neutral – and hence our model would
e a poor description of gas in such haloes. Fortunately, such massive
aloes are rare at the high redshifts z ≥ 2 that we are mostly interested
n, and the steep fall off of the mass function at high M h implies that
uch haloes contribute negligibly in any case. 
NRAS 527, 689–705 (2024) 

 The minus sign is, unfortunately, missing in TT21. 

5

t

Combining all what we found so far allows us to obtain the
ollowing analytical expression for the CDDF : 

 ( N H I , z) = 8 . 67 × 10 −19 cm 

2 f 17 . 2 ( z) 

� 

2 / 3 
−12 ( z) 

(
N H I 

10 17 . 2 cm 

−2 

)−5 / 3 

×
(

f gas 

0 . 6 

)4 / 3 (
αB ( T ) 

αB (1 . 5 × 10 4 K) 

)2 / 3 

, (13) 

here f 17.2 ( z) is the dimensionless function 

 17 . 2 ( z) ≡ f c ( z) 

f c (3) 

(
1 + z 

4 

)4 / 3 

, 

f c ( z) 

cMpc 3 
≡

∫ ∞ 

log M crit ( z) 

d n ( M h , z) 

d log M h 

(
M h 

10 10 M �

)8 / 9 

d log M h , (14) 

nd � −12 ≡ � 0 /(10 −12 s −1 ); we note that the normalization f 17.2 ( z =
) = 1 by construction. Equation ( 13 ) brings out the scaling
f the CDDF with column density, N H I , IGM temperature, T , and
hotoionization rate, � −12 , with any additional redshift dependence
ncoded by f 17.2 ( z). From now on we will set f gas = 0.6 and T =
.5 × 10 4 K, and drop them from the equations. If required, the
nterested reader can al w ays resurrect them by replacing f 17 . 2 →
 17 . 2 × ( f gas / 0 . 6) 4 / 3 × [

αB ( T ) /αB ( T = 1 . 5 × 10 4 K) 
]2 / 3 

. 
The explicit redshift dependence of the CDDF is encoded by the

unction f 17.2 ( z), which depends on f c ( z). The latter dimensionless
uantity is approximately 5 the mass in a volume of 1 cMpc 3 that is in
aloes of mass > M crit ( z), divided by 10 10 M �. This quantity depends
n z but is of order unity. The additional redshift dependence for f 17.2 

f ∝ (1 + z) 4/3 arises from the z dependence of the relation between
alo mass and virial radius. Values of M crit and f c as a function of
edshift are given in Table 1 . To compute the integral over mass,
e used the COLOSSUS PYTHON package of Diemer ( 2018 ), selecting

he implementation of the fit by Reed et al. ( 2007 ) of the halo mass
unction, d n /dlog M h . 

The analytical optically thin CDDF is a power-law in column
ensity, f ∝ N 

−5 / 3 
H I (see also TT21); the value of −5/3 for the

xponent results from the assumed slope of the density profile of
as in haloes, n H ( R ) ∝ R 

−2 . The model’s dependence on N H I agrees
ell with that of the observed CDDF which is also approximately a
ower law with slope −1.66 ± 0.01 at z̄ = 2 . 99 and −1.68 ± 0.02
t z̄ = 3 . 48 at column densities � 10 16 cm 

−2 (e.g. Kim et al. 2021 ).
aucher-Gigu ̀ere et al. ( 2009 ) and Haardt & Madau ( 2012 ) provide
ore accurate fitting functions for the CDDF towards higher and lower
 HI . 
Absorbers with column density N H I ∼ 10 17.2 cm 

−2 and higher are
articularly important for setting the opacity of the IGM to ionising
 It would be that fraction if the exponent of M h in the integral were 1, rather 
han 8/9. 
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Figure 1. Evolution of – left-hand panel : the CDDF , f ( N H I ), central panel: attenuation length, X eff , plotted cumulatively as a function of column density, 
right-hand panel: proper attenuation length λeff . Solid lines are from the model by Theuns ( 2021 ), with cyan , blue , and red solid lines corresponding to z = 2, 3, 
and 6, and the black solid line in the right-hand panel showing the evolution with z. Solid diamonds show the optically thin approximation at those same redshifts, 
with the CDDF in the left-hand panel computed using equation ( 12 ), the attenuation length computed using equation ( 5 ) (central panel), and the corresponding 
proper attenuation length computed using equation ( 2 ). In the central panel, the solid curve includes all halo masses, the dotted and dashed and dotted–dashed 
curves include haloes up to 10 10 , 10 11 , and 10 12 M � solar masses. In the right-hand panel, the shaded area corresponds to varying M crit (equation ( 12 ) – the 
critical halo mass below which haloes lose their gas due to photoe v aporation – by a factor of 4 around the central value taken from Okamoto, Gao & Theuns 
( 2008 ). Both the optically thin expression (squares) and the results of the model of TT21 (solid lines) use the photoionization rate � 0 ( z) from Haardt & Madau 
( 2012 ), cosmological parameters from Planck Collaboration et al. ( 2016 ) and the critical mass from Okamoto, Gao & Theuns ( 2008 ). Coloured empty symbols 
are observations: in the left-hand panel , blue open circles are the data at z ∼ 2.5 from Noterdaeme et al. ( 2012 ), downward green triangles are the z ≈ 2.5 data 
from Rudie et al. ( 2013 ); the open red circles in the right-hand panel are the values taken from fig. 8 of Becker et al. ( 2021 ; see text for further details). 
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8 Clearly it is incorrect to integrate from τ = 0 to τ → ∞ : we have not verified 
whether the optically thin model reproduces the CDDF in the regime of small 
τ that corresponds to the Lyman α forest, and the approximate expression for 
the CDDF is only valid for highly ionized absorbers and hence not applicable 
in the regime of DLA ’s. Fortunately, the contribution of very low- τ absorbers 
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hotons, unfortunately, the super- LLS range is also where it is very
ifficult to measure the slope of the CDDF . In addition, it is difficult
o provide accurate measurements of the CDDF at higher redshifts. 
i ven these observ ational limitations, it is useful to have an analytical 
odel, such as the one presented here, which predicts the evolution 

f the CDDF and which agrees very well with the data where they are
t their most reliable. 

The model predicts that o v er a relativ ely large range in mass, haloes
ontribute about equally to the CDDF per dex in halo mass. The reason
or this is at follows. At fixed N H I , the cross-section σ (abo v e which
he column density is higher than N H I ) increases with halo mass
 M 

8 / 9 
h , with equation ( 11 ) elucidating why: σ ∝ R 

2 
h N 

2 / 3 
H I , h ∝ M 

8 / 9 
h .

e note, ho we ver, that the number density of haloes decreases with
alo mass, approximately ∝ M 

−0 . 9 
h on the power-law part of the 

ress & Schechter ( 1974 ) halo mass function. As a consequence,
ll haloes with mass abo v e the critical mass, M h > M crit , but below
he critical 6 Press–Schechter mass M ∗ contribute about equally to the 
mplitude of the CDDF , with those more massive than M ∗ contributing
ittle. 

The redshift evolution of the CDDF is a consequence of the 
ollowing four effects: (i) the evolution of � −12 , (ii) the evolution
f the halo mass function, (iii) the evolution of M crit , and (iv) the
xplicit factor 7 (1 + z) 4/3 of equation ( 14 ). We examine the impact
f the evolution of the CDDF on that of the attenuation length in the
ext section. 

.3 The evolution of the attenuation length 

e can now combine equation ( 5 ) for X eff in terms of the CDDF with
quation ( 14 ) for the shape and evolution of the CDDF . We convert
rom column density, N H I , to optical depth, τ , using τ = σth N H I ,
here σ th is the photoionization cross section at the Lyman limit ( h ν th 
 As in d n/ d log M h ∝ M 

−αh 
h exp ( −M h /M ∗). 

 This factor results from the redshift dependence of the M h –R h relation. 

t
d
9

a

 13.6 eV) and e v aluate 8 the integral over optical depth between
ero and infinity, 

∫ ∞ 

0 τ−5 / 3 ( 1 − exp ( −τ ) ) d τ = 4 . 02. This yields 
he following expression for the attenuation length 9 , 

 eff ( z) = 1 . 80 
� 

2 / 3 
−12 ( z) 

f 17 . 2 ( z) 
; (15) 

or which the corresponding proper attenuation length is 

eff ( z) = 

c X eff ( z) 

H 0 (1 + z) 3 
= 126 pMpc 

� 

2 / 3 
−12 ( z) 

f 17 . 2 ( z) 

(
4 

1 + z 

)3 

. (16) 

he results of our calculations so far are summarized in Fig. 1 . The
eft-hand panel compares the CDDF as computed using the model 
y TT21 (solid lines) to the optically thin approximation of equation
 12 ) at z = 2 (cyan line and cyan diamonds, respectively), z = 3 (blue
ine and blue diamonds) and z = 6 (red line and red diamonds). The
ull model includes self-shielding which causes the transition from 

 ( N H I ) ∝ N 

−5 / 3 
H I in the highly ionized regime of LLS , to f ( N H I ) ∝

 

−3 
H I in the neutral DLA regime, with the characteristic ‘knee’ between

he two power laws around N H I = 10 20 cm 

−2 caused by the transition
rom ionized to neutral absorbers (Zheng & Miralda-Escud ́e 2002a ;
rkal 2015 ; Theuns 2021 ). The optically thin model has the same
lope and amplitude as the full model in the LLS regime. Errors on the
bserved data are comparable or smaller than the symbols, except 
or the z ∼ 6 data point in the right-hand panel which we’ll return to
ater. 
MNRAS 527, 689–705 (2024) 

o X is negligible, and we will show that the contribution of high −τ absorbers 
epends on their number density but not on τ . 
 Where we remind the reader that we have dropped the dependence on f gas 

nd T . 
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Figure 2. Similar to Fig. 1 , with the left-hand panel showing the evolution of the CDDF , and the right-hand panel the evolution of the proper attenuation length, 
but this time also illustrating parameter dependencies. The default choice of parameters used in Fig. 1 is shown in blue and red in panel (a) for redshift z = 3 
and 6, and black in panel (b). We then computed the CDDF at z = 6 but kept one or more parameters fixed at their value at z = 3. The orange dotted line , purple 
dashed line , and cyan dot-dashed line are the CDDF at z = 6, computed using the z = 3 value of M crit , � 0 , and both M crit and � 0 , respectively. This demonstrates 
that both parameters affect the evolution of the CDDF and when both are kept constant, there is hardly any remaining evolution left. Panel (b) shows the effect of 
these parameters on the evolution of λeff , where M crit , � 0 , and both M crit are kept fixed at their z = 3 value for the orange dotted line , purple dashed line , and 
cyan dotted–dashed line . When both parameters are kept constant, λeff follows closely the evolution ∝ (1 + z) −3 , shown as an olive dashed line . With M crit and 
� 0 kept constant, the remaining evolution in λeff is mostly due to cosmological expansion, hence λeff ∝ (1 + z) −3 . See the main the text for further discussion. 
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The central panel plots the co-moving attenuation length X eff ( <
 H I ) due to absorbers with columnn density less than N H I in the
T21 model, for z = 3 and z = 6 (solid lines). The main contribution

o X eff is from absorbers in the relatively small column-density range
f 10 17 cm 

−2 ≤ N H I ≤ 10 18 cm 

−2 at z = 6, and 10 18 cm 

−2 ≤ N H I 

10 19 cm 

−2 at z = 3. The different line styles show the extent
o which haloes of a given mass contribute, with dotted, dashed,
nd dotted–dashed lines showing the contribution due to haloes with
ass less than 10 10 , 10 11 , and 10 12 M �. Haloes with mass > 10 10 

 � contribute little to X eff at z = 6, but this increases to haloes with
ass > 10 11.5 M � by z = 3. The two diamonds sho w the v alue of
 eff ( z) obtained from the optically thin model using equation ( 15 ),
ith z = 3 and z = 6 shown as a blue and a red diamond. Clearly,

his approximation captures the results of the more detailed model
f TT21 very well. 
The right-hand panel of Fig. 1 shows the evolution of the proper

ttenuation length. The solid black line is the evolution computed
sing the model of TT21. The grey shading shows the effect of
 arying the v alue of M crit by factors 1/4 to 4, in order to illustrate
o w sensiti ve λeff is to this parameter. The black diamonds show
he optically thin approximation, which captures the evolution of
eff very well. The solid red circles are the data points plotted in
g. 8 of Becker et al. ( 2021 ). The data are compiled from Prochaska,
orseck & O’Meara ( 2009 ), Fumagalli et al. ( 2013 ), O’Meara et al.

 2013 ), Worseck et al. ( 2014 ), and Lusso et al. ( 2018 ), with the
ighest z point from Becker et al. ( 2021 ). 
The model reproduces the observations well o v er the range z =

 → 5, and this is one of the main results of this paper. As a note
f caution, we note that the value taken for f gas affects λeff , yet our
hoice of taking f gas = 0.6 is not particularly well moti v ated. We
uspect that this parameter attempts to account for the fact that the
eutral gas distribution in real absorbers is not spherically symmetric
see e.g. the analysis by Erkal 2015 ). TT21 use f gas = 0.5 (rather than
.6) in their model for DLA ’s, and hence a value of f gas ∼ 0.6 fits the
DDF all the way from LLS to DLA ’s at z = 3, as can be seen in the

eft-hand panel of the figure. Strikingly, the model does not show
he dramatic decline in λeff suggested by the data from Becker et al.
 2021 ) from z = 5 → 6: we will return to this in Section 3 . 
NRAS 527, 689–705 (2024) 
The gold-dashed line in the right-hand panel of Fig. 1 shows
he scaling ∝ (1 + z) −3 . Both data and model evolve faster than
his, implying that the absorbers either evolve in co-moving number
ensity or proper size, or both. We examine the cause of the enhanced
volution in the model in more detail in Fig. 2 as follows: we redo the
alculations but we keep the value of M crit ( z) and � −12 ( z) constant
nd equal to their values at z = 3: this is the cyan curve in both
anels. The left-hand panel shows that in this case, the z = 6 CDDF is
lmost identical to the z = 3 CDDF . We note that the main remaining
ifference is the evolution of the halo mass function, but that clearly
as relatively little effect on the CDDF . The reason is that the halo
ass function evolves relatively little below M ∗, and haloes abo v e
 ∗ where the halo function does evolve rapidly contribute little to

eff . 
The right-hand panel of Fig. 2 shows the effect of M crit and � −12 

eparately. Both the evolution of M crit and of � −12 contribute 10 to the
volution of the attenuation length, causing X eff ( z) to increase with
ecreasing z. When these parameters are kept constant, X eff evolves
uch less, and λeff evolves mostly due to cosmological expansion,

eff ∝ (1 + z) −3 . This can be seen by the fact that the cyan line – for
hich M crit and of � −12 both remain constant – falls almost on top
f the λeff ∝ (1 + z) −3 scaling. The right-hand panel also shows that
 crit and � −12 contribute about equally to the evolution of X eff . We

lot the evolution of X eff ( z) for the case of a constant amplitude of
he ionization rate ( � −12 ( z) = 1) in Fig. 3 . 

Summarizing: the attenuation length X eff evolves due to the
volution of M crit and � −12 . M crit is the critical mass below which
aloes lose or cannot accrete gas. The evolution in M crit is itself
ostly caused by the fact that haloes cannot accrete gas if their virial

emperature is lower than the temperature of the gas they attempt to
ccrete – and the virial temperature of a halo of given mass depends
n z – hence the evolution. At lower z, M crit is higher, and so a larger
raction of haloes no longer host the absorbers that limit X eff , and
ence X eff increases. About equally important to the evolution of X eff 

s that � −12 ( z) increases with decreasing z (from z = 6 → 2), making
See also Cain et al. ( 2023 ). 
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Figure 3. Evolution of the co-moving attenuation length, X eff , as given by 
equation ( 15 ) for the case of a constant amplitude of the ionization rate, 
� −12 ( z) = 1. The fit shown by the dashed red line is log X eff = 1 . 38 + 

24 . 2 / (1 + z) 3 , which fits the model to better than 20 per cent. 
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11 The trends with halo mass are similar at other redshifts. 
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he gas in the absorbers more highly ionized, which again increases 
 eff . Finally, we note that the co-moving number density of absorbers

s proportional to the halo mass function, which, of course, increases 
ith decreasing z. So, despite that the number density of absorber 
osts increases, the net absorption they produce decreases and hence 
 eff increases with cosmic time. We recall that the number density of
aloes on the power-law tail of the Press–Schechter mass function 
oes not actually evolve strongly. 
The values of X eff and λeff in the current model are set to a large

xtent by the number density of absorbers with N H I ∼ 10 18 cm 

−2 . It is
ossible to directly count the number density of such strong absorbers
n QSO spectra. We compare these predictions to observations in 
ppendix B . Because absorbers are associated with haloes in the 

urrent model, it is straightforward to infer the clustering of absorbers
rom the clustering of their host haloes. This is what we’ll do next. 

 CLUSTERING  O F  ABSORBERS  

n this section, we compute the bias ( b ) of absorbers as a function
f their column density, finding that b is nearly independent of N H I .
omewhat surprisingly, we find that the bias of DLA ’s with N H I ∼
0 20.3 cm 

−2 is actually lower than that of LLS ’s and sub- LLS ’s. We
se the bias- N H I relation to investigate the impact of bias on λeff 

n Section 3.2 , showing that the bias of quasars likely impacts the
easured values of λeff significantly abo v e z ∼ 5. In Section 3.3 , we

se these findings to compute the probability distribution of τ eff . 

.1 The bias of absorbers as a function of N H I 

he bias of absorbers with a given hydrogen column density at 
edshift z follows from that of their host haloes as (TT21) 

 N H I ( z ) = 

∫ ∞ 

log M crit ( z) d log M h 

{
b M h 

( z ) × g( N H I , M h , z) 
}

∫ ∞ 

log M crit ( z) d log M h { g( N H I , M h , z) } , (17) 
nd the bias of absorbers with N H I ≥ 10 17.2 cm 

−2 is 

 LLs ( z) = 

∫ ∞ 

17 . 2 d log N H I 

∫ ∞ 

log M crit ( z) d log M h F 1 ( M h , N H I , z) ∫ ∞ 

17 . 2 d log N H I 

∫ ∞ 

log M crit ( z) d log M h F 2 ( M h , N H I , z) 

F 1 ( M h , N H I , z) = b M h 
( z) N H I g( N H I , M h , z) 

F 2 ( M h , N H I , z) = N H I g( N H I , M h , z) . (18) 

ere, b M h 
( z) is the bias of a halo of virial mass M h at redshift z, and

olumn densities are assumed to be expressed in units of cm 

−2 . 
The bias computed from equation ( 17 ) for absorbers with a given

olumn density is plotted in panel (c) of Fig. 4 , with colours indicating
edshift. Below column densities of ∼10 18.5 cm 

−2 , absorber bias is
early independent of column density. At first somewhat surprising, 
e also find that the bias then decreases with increasing column
ensity, until it reaches a minimum value for N H I ∼ 10 20.3 cm 

−2 , after
hich the bias increases rapidly with increasing column density. 
These trends can be understood by examining panel (a) of Fig. 4 ,

here we plot the function g ( M h , N H I , z) defined in equation ( 11 ) at
 representative redshift 11 z = 3. Below a column density of ∼10 18.5 

m 

−2 , the relative contribution of haloes as a function of mass varies
ittle with column density because g ∝ N 

−5 / 3 
H I , independently of halo

ass. Since all haloes contribute about equally to the number density
f lines with a given N H I , it follows that the bias is independent of
 H I . 
Ho we ver, the nature of absorbers changes from mostly ionized to
ostly neutral at higher column densities, N H I ∼ 10 19 cm 

−2 . This
ransition imprints the ’knee’-shaped feature in g and also in the
DDF (Zheng & Miralda-Escud ́e 2002b ; Erkal 2015 ; Theuns 2021 ).
ower mass haloes transition from ionized to neutral at lower values
f N H I compared to higher mass haloes, as can be seen in panel (a) of
ig. 4 . This results in a decrease in the absorber bias because more
f these absorbers are associated with lower mass haloes – which 
hemselves are less biased. Once N H I is high enough so that most
bsorbers have made the transition from highly ionized to neutral, 
he bias increases rapidly with increasing N H I . This is because, in
his regime, higher column densities are increasingly associated with 

ore massive – and hence more highly biased – haloes – as is also
pparent from panel (a) of Fig. 4 . 

The numerical value of the bias and its evolution with redshift
an be understood by also examining panel (b) in Fig. 4 , where we
lot the halo bias, b M h 

( z), computed using COLOSSUS (Diemer 2018 ).
anel (a) shows that haloes in the mass range 10 9 –10 11 M � contribute
bout equally to the CDDF at column densities N H I ≤ 10 18.5 cm 

−2 at
 = 3, resulting in a weighted bias of such absorbers of ∼1.8, a bit
ess than that of haloes of mass 10 11 M �. With increasing redshift,
he contribution of lower mass haloes increases compared to that of

ore massive haloes at a gi ven v alue of N H I – which would lower the
ias. Ho we ver, the bias of these same lower mass haloes increases
apidly with redshift. The net result of these opposing trends is an
ncrease in the bias of absorbers with increasing z, as seen in panel
c). 

Current measurements of the DLA bias yield values that range 
rom b = 1 → 3 (e.g. Alonso et al. 2018 ; P ́erez-R ̀afols et al. 2018 ,
023 ). Given the strong dependence of b on log N H I and redshift
n the model, a fair comparison between model and data requires
areful modelling of the observational selection which we have not 
erformed yet. 
Finally, panel (c) also shows the bias of LLS ’s computed using

quation ( 18 ) as filled black dots. With the function g decreasing
MNRAS 527, 689–705 (2024) 
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Figure 4. Bias of absorption systems in the model of Theuns ( 2021 ), as computed from equation ( 17 ). Panel (a): contribution of haloes of a given mass to the 
CDDF at redshift z = 3, as given by equation ( 11 ). The somewhat artificial shape around N H I ∼ 10 19 cm 

−2 is due to our interpolation of the temperature of the 
gas from T = 15 000 K when optically thin to T = 10 4 K for τ ≥ 1. Panel (b): bias of haloes as a function of their mass, b M h , at different redshifts, as computed 
with COLOSSUS (Diemer 2018 ). Panel (c): Bias for lines of a given column density, b N H I from equation ( 17 ), for different redshifts; black circles show the bias 
for Lyman-limit systems, b LLs from equation ( 18 ), for those same redshifts; these points are plotted at N H I = 10 17.2 cm 

−2 . The bias of LLS ’s (absorbers with 
N H I ≥ 10 17.2 cm 

−2 ) is very close to that of lines with a column density of 10 17.2 cm 

−2 . Coloured lines in panel (a) correspond to different halo masses, and in 
panels (b) and (c) correspond to different redshifts, as per the legends. See text for discussion. 
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apidly with increasing N H I , it is not surprising that the bias of LLS ’s
s close to that of absorbers with N H I = 10 17.2 cm 

−2 . In the next
ection, we use the bias of absorbers to calculate the attenuation
ength of photons that themselves emanate from a biased region. 

.2 The impact of bias on the attenuation length 

p to now, we calculated the attenuation length λeff in the general
GM . Ho we ver, in observ ations, λeff is measured from QSO spectra.
iven that QSO ’s may well predominantly be hosted by massive
aloes that are biased, particularly at higher redshifts, observed
alues of λeff are potentially biased. We can use the absorber bias
etermined in the previous section to examine the importance of both
ources of bias ( QSO and absorber) on the measured value of λeff as
ollows. 

Consider absorbers with column density N H I , located at a proper
istance between l and l + d l from a source (typically a QSO ). The
ontribution of such absorbers to the ef fecti ve optical depth at the
yman limit towards that source is on average 

 d τeff 〉 = 〈 N〉 [1 − exp ( −τ )] 

〈 N〉 = f ( N H I ) d N H I 
d X 

d l 
d l , (19) 

ccording to equation ( 3 ), where 〈 N 〉 is the average number of these
bsorbers and τ = σ th N H I is the optical depth of a single absorber
t the Lyman limit; d X /d l is given by equation ( 2 ). In the absence
f clustering, f ( N H I ) is independent of l , and hence so is the average
umber of absorbers, 〈 N 〉 . 
With bias of both absorbers and source accounted for, 〈 N 〉 changes

o 12 

 N〉 = f ( N H I ) 
{

1 + b S b N H I ξ ( l) 
}

d N H I 
d X 

d l 
d l. (20) 

he factor 
{

1 + b S b N H I ξ ( l) 
}

accounts for linear bias between
bsorbers and source; ξ ( l ) is the correlation function of the mass.
NRAS 527, 689–705 (2024) 

2 This assumes the linear halo bias model of Mo, van den Bosch & White 
 2010 ). 

1

fi

n the parlance of halo bias, we note that this accounts for the ‘two-
alo’ term, i.e. the clustering of the haloes hosting absorber and
ource, rather than the fact that the host halo of the source may itself
ost an ‘associated’ absorber (which would be the ‘one-halo’ term,
ue to absorbers within the host galaxy of the QSO , associated with its
wn circumgalactic medium, its satellite galaxies or with Magellanic
tream-like features, say). 
We now take advantage of the findings in the previous section that

he bias of an absorber, b N H I , is approximately independent of column
ensity for the column densities below 10 19 cm 

−2 that dominate
he attenuation. Therefore, it is a good approximation to replace
 N H I → b LLS . We can now compute the attenuation length when
ccounting for bias, X b,eff , in terms of its unbiased value, X eff , by
sing equation ( 5 ), ∫ X b , eff 

0 
[ 1 + b S b LLS ξ ( X) ] d X = X eff . (21) 

Since b LLS > 1 and b S and ξ can be significantly larger than 1,
 b , eff < X eff : since there are (possibly many) more absorbers close

o the QSO per unit d X than in the general IGM , the attenuation length
easured in the spectra of a QSO is generally shorter than its value

n the general IGM . 
An easy way to account for biasing is to define the dimensionless

ariable d Y by 

 Y ≡ [ 1 + b S b LLS ξ ( X) ] d X, (22) 

ith boundary condition 13 Y = 0 for X = 0. The statistical properties
f the ef fecti ve optical depth out to X depends on Y , which we
ub ‘biased absorption length’. Using Y , rather than X , allows us
o include the effects of the clustering of absorbers with sources
f ionizing photons easily. The average number of absorbers that
ontribute to d τ eff in a narrow interval of biased absorption length
 Y , Y + d Y ] from a source is then simply 

 N ( Y ) 〉 = f ( N H I )d N H I d Y , (23) 
3 ξ is usually expressed as a function of co-moving distance, l (1 + z), but we 
nd it more convenient to express ξ as a function of X . 
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Figure 5. Proper attenuation length λeff as a function of redshift, z. The 
dashed black line is the unbiased model repeated from Fig. 1 (where it was 
labelled ‘model’). The other curves include the effects of the absorber and 
source bias from equation ( 21 ). The bias of Lyman-limit systems at redshift z 
is computed as in Section 3.1 ; the bias of the host halo of the QSO is computed 
for various halo masses M h as indicated in the legend. Red symbols repeat 
the observational data from Fig. 1 , with the z = 6 data point additionally 
displaying the uncertainty in the measured value of λeff taken from Becker 
et al. ( 2021 ). 
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nd looks identical to the case where bias is neglected – except for
he change of variables X → Y . 

We used the COLOSSUS PYTHON package of Diemer ( 2018 ) to
ompute the correlation function ξ at several redshifts, and then 
 v aluated equation ( 21 ) to compute X b,eff and λb,eff , the attenuation
engths at the Lyman limit when accounting for bias; the results
re shown in Fig. 5 . As illustrative examples, we plot λb,eff when
he bias of the source equals that of halos of mass 10 12 , 10 12.5 ,
nd 10 13 M � (cyan, dark blue and olive line) with the bias of
he absorbers as calculated in the previous section. In contrast, the 
nbiased case repeated from Fig. 1 is shown as a dashed black line.
b,eff decreases with increasing source bias (increasing halo mass), 
s expected. Around z ∼ 3, even haloes of mass 10 12.5 M � are
ot that strongly biased to make λb,eff differ significantly from λeff . 
o we ver, b S for such haloes increases rapidly with increasing z (see

.g. the middle panel of Fig. 4 ), and at z = 6, λb , eff � λeff . QSO

ost halo masses of ∼10 12.5 M � (dark blue line) bring the computed
alue of the attenuation length in better agreement with the data, and
lso reproduces the rapid decreases in the measured value of λb,eff 

owards z = 6. Values of M h ∼ 10 12.5 M � are expected for the host
alo masses of z ∼ 6 QSO ’s (see de Beer et al. 2023 ; Zhang et al.
023 and references therein, see also Bower et al. 2017 for a more
eneral physical model for what sets the halo mass of bright AGN ). 
The sudden decrease in λb,eff from z = 5 → 6 in our model is

ue to the rapid increase in bias of the host halo of the QSO in
hich λb,eff is measured (itself a consequence of the host halo mass
eing on the exponential part of halo mass function). Several recent 
apers instead investigate the possibility that this drop is because 
his redshift range probes the tail-end of reionization (e.g. D’Aloisio 
t al. 2020 ; Keating et al. 2020 ; Cain et al. 2021 ; Garaldi et al. 2022 ;
aikwad et al. 2023 ). If this were correct, the drop might be due

o a rapid change in the emissivity of ionizing photons and/or in
he clumping factor of the IGM . Which interpretation is correct? We
rst note that the number density of QSO ’s with 1450 Å magnitude
righter than −26 ( i.e. comparable to those of the XQR-30 sample
resented by Bosman et al. 2022 and used by Gaikwad et al. 2023 ) –
s ∼ 10 −9 cMpc −3 mag −1 at z ∼ 6 (Onoue et al. 2017 ). This implies
hat even the largest simulation volume investigated in these papers 
of order 160 cMpc 3 ) contains on average only ∼4 × 10 −3 QSO ’s
s luminous (and hence plausibly as biased) as those observed. This
llustrates the challenge of performing simulations that resolve the 
hysically small absorbers in a simulation that is large enough to
lso contain the kind of background sources against which we detect
hem observationally. It also means that these papers cannot test the
mpact of bias discussed in this paper. Ob viously, ev en if bias plays
n important role, it is still possible that this redshift range probes
he tail-end of reionization: the two explanations are not mutually 
 xclusiv e. 

.3 The PDF of the biased attenuation length 

e calculated the mean value of the biased attenuation length in
he spectrum of a QSO in the previous section as an integral of
 ( N H I ), where the CDDF is the mean number of absorbers with a
iven column density N H I per d X . Howev er, a giv en sight line may
ave slightly more or slightly fewer lines than that mean number. As
 consequence, the ef fecti ve optical depth of a given sight line with a
iv en e xtent � X may be larger or smaller than the ensemble av erage.
o quantify this, we compute in this section P( τeff | X) – the PDF of

he ef fecti ve optical depth for a sight line with a giv en co-mo ving
ath length X . Similarly, we defined and computed the co-moving
ttenuation length as that value of X for which τ eff = 1. Accounting
or variations in the number of absorbers along different sight lines,
e can compute P( τeff = 1 , X) – the probability that τ eff = 1 for
 given absorption path length. These PDF ’s may be useful when
nterpreting observations that are based on a relatively small number 
f independent sight lines. It is straightforward to account for bias in
hese calculations by using dY rather than d X , but we think that our
nalysis is easier to follow when we perform the calculation in terms
f d X . 
We will assume that the absorbers are Poisson-distributed , so that

he probability P( N ) for finding N absorbers in a region where the
ean number is 〈 N 〉 is given by 

( N ) = P ( N |〈 N 〉 ) ≡ 〈 N 〉 N exp ( −〈 N 〉 ) 
N ! 

, (24) 

here P ( n | μ) is the Poisson distribution with mean μ. In terms of
he contribution of such absorbers to the ef fecti ve optical depth, the
DF of d τ eff follows from that of N by a change of variables, 

(d τeff ) = P ( N |〈 N 〉 ) 1 

1 − exp ( −τ ) 
, (25) 

ith mean 〈 N〉 (1 − exp ( −τ )) and dispersion 〈 N〉 (1 − exp ( −τ )) 2 . 
The total ef fecti ve optical depth is obtained by integrating d τ eff 

 v er all column densities, but there is no simple relation between
he Poisson statistics of the lines and the PDF of τ eff . This is because
 linear combination of Poisson distributed variables is not Poisson 
istributed (or indeed has any other simple PDF 14 ). We can generate
oisson-distributed variables for all N ’s ( i.e. absorbers with a given
mall range in column density) and sum τ eff in bins of d N H I and d X ,
nd compute the PDF of τ eff numerically. It is also possible to derive
MNRAS 527, 689–705 (2024) 
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Figure 6. Statistics of the ef fecti ve optical depth, τ eff , and of the co-moving attenuation length, in terms of the (biased) absorption path length Y defined in 
equation ( 22 ). Solid lines are numerical results, obtained by generating Poisson-distributed absorbers numerically; dashed lines use the analytical approximation 
described in the text. Left-hand panel: Probability distribution of τ eff for the values Y indicated in the legend. The analytical expression is equation ( C3 ). Central 
panel: fraction of paths that reach τ eff > 1 within a length Y . The analytical expression is equation ( C5 ). Right-hand panel: probability that a path with length Y 
reaches τ eff > 1; the mean attenuation length is Y eff = 1.8. See text for further discussion. 
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15 Absorption may also be due to other lines of hydrogen or indeed lines from 

other elements. We will ignore these in this section. 
16 This is equation (6) of Prochaska, Worseck & O’Meara ( 2009 ), setting their 
redshift-dependent opacity ˜ κ912 ( z ′ ) → ˜ κ912 ( z q ) = λeff 

−1 ( z q ), the proper at- 
tenuation length at redshift z q , and then converting λeff ( z q ) → X eff . 
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n approximate analytical expression for the PDF . The approximation
onsists of assuming that absorbers with column below some value
we use 10 17.2 cm 

−2 ) are sufficiently numerous that we can apply the
entral limit theorem and take them to be Gaussian distributed. This
llows the calculation of the PDF for ‘low’ τ absorbers. The stronger
bsorbers then all have transmission exp ( − τ ) ≈ 0, and we can then
lso calculate their PDF . Summing the contribution of low and high
absorbers yields the net PDF , see Appendix C for full details. 
The results are illustrated in Fig. 6 , where we plot them in terms

f Y rather than X , with the change of variables accounting for the
ias of absorbers and source. For illustrative purposes we assume a
DDF of the form of equation ( 13 ), 

 ( N H I ) = 1 . 27 × 10 −18 cm 

2 

(
10 17 . 2 cm 

−2 

N H I 

)5 / 3 

, (26) 

or which Y eff = 1.8. We draw Poisson distributed absorption lines
rom this CDDF in narrow bins of N H I , which allow us to compute τ eff 

or a given biased absorption distance Y . We can use this to compute
he fraction of paths that reach τ eff > 1 within a gi ven v alue of Y ,
nd the fraction of paths that reach τ eff > 1 in a narrow interval
Y around Y . These are shown as solid lines in panels (a) → (c). The
orresponding analytical expressions, equations ( C3 ), ( C5 ), and ( C6 )
erived in Appendix C are plotted with dashed lines. 
When Y is small – the case Y = 1.8 (which is equal to the biased

ttenuation length) in panel (a) – the PDF of τ eff has two clear maxima,
hich correspond to 0 or 1 strong absorbers contributing to τ eff (there

re further oscillations visible, due to 2 or more strong absorbers).
bsorbers with τ � 10 17.2 cm 

−2 are sufficiently rare when Y is small
hat approximating their PDF as Gaussian is not very accurate. This
s the reason that the analytical model differs noticeably from the
umerical calculation for small values of Y . As Y increases, such
bsorbers become more common and the approximation impro v es. 

The analytical model reproduces rather well the fraction of paths
hat reach τ eff > 1 within a given path length Y , as shown in panel
b). The deri v ati ve of this function with respect to Y is the probability
hat a given path reaches τ eff > 1 in a small interval d Y around Y ,
nd is plotted in panel (c). The peak of the analytical approximation
red dot) is a bit narrower than that of the numerical result (blue dot),
ut the location of the maxima is very close. Both functions have
 long tail to large values of Y , with the analytical approximation
eproducing the numerical result well. 
NRAS 527, 689–705 (2024) 
Note that the attenuation length in the case shown is Y eff = 1.8 -
et less than 30 per cent of sight lines with path length Y = Y eff reach
eff = 1 because the distribution of P( τeff = 1 , Y ) around the mean

s quite wide. This is of course because absorption is dominated by
he rare, high column density absorbers. 

 A  D I R E C T  MEASURE  O F  T H E  A  TTENUA  T I O N
ENGTH  

n intervening absorber with column N H I ≥ 10 17.2 cm 

−2 imprints an
bsorption edge in the spectrum of a quasar at wavelengths λ ≤ λth ≈
12.1 Å in the rest frame of the absorber. Because the photoionization
ross-section falls ∝ λ3 , the optical depth due to such an absorber
ecreases at lo wer λ. Ho we v er, a second interv ening absorber at
ower redshift may introduce another absorption edge, which will
ncrease the optical depth again. The total optical depth 15 below λth 

n the rest frame of the quasar is therefore a balance between the fall
n τ of any individual LLS and the increase in τ due to the increase
n the number of intervening LLS . 

In this section, we use our expression for the evolution of the CDDF

o compute τ eff ( λrest , z q ) – the ef fecti ve optical depth as a function of
est wavelength, λrest , for quasars with redshift z q . The shape of this
urve depends on λeff , and Prochaska, Worseck & O’Meara ( 2009 )
tacked QSO spectra in bins of z q to measure λeff ( z). They argued that
his method has the advantage that it determines λeff without the need
o measure the CDDF in the regime of LLS ’s where it is especially hard
o determine the column density of these saturated lines. Here, we
ill show that the actual shape of τ eff also depends on the CDDF , so

nferring λeff still requires making assumptions on the shape of the
DDF in the regime of LLS ’s. 
Prochaska, Worseck & O’Meara ( 2009 ) model τ eff ( λrest , z q ) as 16 

eff ( λrest , z q ) = 

2 

9 

(1 + z q ) 3 / 2 

X eff ( z q ) �
1 / 2 
m 

(
λrest 

λth 

)−3 / 2 
[ 

1 −
(

λrest 

λth 

)9 / 2 
] 

. (27) 
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ere, λrest is the wavelength in the rest frame of the quasar , i.e.
he observ ed wav elength is λrest (1 + z q ). To derive this expression,
rochaska, Worseck & O’Meara ( 2009 ) assume that the ef fecti ve
pacity is of the form 

912 ( z 
′ , z q , λrest ) ≡ d τeff ( z ′ , λrest ) 

d l 
≈ ˜ κ912 ( z q ) 

[
λrest (1 + z ′ ) 
λth (1 + z q ) 

]3 

, (28) 

here they argue that the wavelength dependence is approximate, 
nd further assume that ˜ κ912 ( z ′ ) is approximately constant o v er the
mall wavelength range studied, so that it can be e v aluated at z ′ →
 q . The attenuation length at the mean redshift of the sample of QSO ’s
s determined by fitting the data to this model. F or wav elengths close
o λth we find 

eff ( λrest � λth , z q ) ≈ (1 + z q ) 3 / 2 

X eff ( z q ) �
1 / 2 
m 

(
1 − λrest 

λth 

)
. (29) 

Our own, slightly different, derivation goes as follows. The 
f fecti ve optical depth measured by an observer at redshift z o at
avelength λo in a stack of QSO spectra with emission redshift z q , is 

eff ( λo , z o , z q ) = 

∫ z q 

z S 

d z ′ [1 + b S b LLS ξ ( z ′ , z q )] 

×
∫ ∞ 

0 
d N H I 

d X 

d z ′ 
f ( N H I , z 

′ ) 
[
1 − exp ( −τ ) 

]
, (30) 

or λo ≤ λth (1 + z q )/(1 + z o ) and zero otherwise. To see why, notice
hat the inner integral sums the contribution to τ eff o v er column
ensity whereas the outer integral sums o v er all interv ening absorbers
hat cause bound-free absorption at wavelength λo . For wavelengths 
lose to λth in the rest frame of the quasar, only absorbers with
edshift close to z q contribute to the integral over z, because the
hoton’s wavelength will be redshifted below the Lyman limit when 
 is too low. For wavelengths shorter than λth in the rest frame of the
bserver, all absorbers with z o � z � z q contribute to the absorption.
he lower limit to the integral over z ′ is therefore 

 S = max 

[
z o , 

λo 

λth 
(1 + z o ) − 1 

]
. (31) 

The quantity τ in equation ( 30 ) is the optical depth (and not the
f fecti ve optical depth) measured by the observer (at redshift z o ) at
avelength λo due to an absorber with column density N H I at redshift
 

′ (with z o ≤ z ′ ≤ z q ), τ = σ × N H I . The photoionization cross
ection, σ , is a function of the ratio of the Lyman-limit wavelength
th ≈ 912.1 Å, o v er the wav elength of the photon in the rest frame of

he absorber. The latter wavelength is λo × (1 + z o )/(1 + z ′ ). We will
rite the wavelength dependence of σ as (e.g. Verner et al. 1996 ) 

( λ) = σth ×
(

λth 

λ

)−3 

≡ σth × s( 
λth 

λ
) , (32) 

ith the function s encoding the wavelength dependence. Substitut- 
ng this in the expression for τ then yields 

( λo , z o , N H I , z 
′ ) = σth × N H I × s 

(
λth (1 + z ′ ) 
λo (1 + z o ) 

)
. (33) 

We now change the integration variable in the inner integral of
quation ( 30 ) from N H I → τ , using equation ( 33 ). This allows us to
rite equation ( 30 ) in terms of X eff e v aluated at λth and redshift z ′ as 

eff ( λo , z o , z q ) = 

∫ z q 

z S 

d z ′ 
d X/ d z ′ 

X eff ( z ′ ) 

[
1 + b S b LLS ξ ( z ′ , z q ) 

]

×
[
s 

(
λth (1 + z ′ ) 
λo (1 + z o ) 

)]2 / 3 

. (34) 
We can compare this (more general) expression to the special case
onsidered by Prochaska, Worseck & O’Meara ( 2009 ) by setting
 o = 0 and λ = λo (since we are the observer), and making the
ame four approximations that resulted in equation ( 29 ): (i) replace
 eff ( z ′ ) → X eff ( z q ) (i.e. assume that the absorption distance does

ot change appreciably o v er the small redshift interval), (ii) take the
ross-section s ( x ) = x 3 , (iii) neglect clustering of absorbers ( i.e. take
 S × b LLS = 0), and finally (iv) obtain an expression for sufficiently
ong wavelengths so that we can take z S = z o . This yields 

eff ( λ = λo , z o = 0 , z q ) ≈ 2 

X eff ( z q ) �
1 / 2 
m 

(
λ

λth 

)3 / 2 

×
{ 

1 −
[

λ

λth (1 + z q ) 

]1 / 2 
} 

, (35) 

he limit of this expression for λ → λth (1 + z q ) is identical to
quation ( 29 ), that is, our alternativ e e xpression equation ( 34 ) is
dentical to that of Prochaska, Worseck & O’Meara ( 2009 ) close to
he quasar (when neglecting bias). Ho we ver, they dif fer further away
rom the QSO . The reason for the difference becomes clear when
ooking at equation (3) of Prochaska, Worseck & O’Meara ( 2009 ),
here it is assumed that the ‘opacity’ κ ∝ f ( N H I ) exp ( −τ ) ∝ λ3 ,
hereas in our case the scaling is ∝ s 2/3 ∝ λ2 in the case of s ( x ) ∝ x 3 .
e note that (i) the dependence on wavelength depends on the slope

f the assumed CDDF (which is 5/3 in our model), and (ii) the scaling
 ( x ) ∝ x 3 is only approximately valid, and it would be better to use a
ore accurate expression for the photoionization cross section (e.g. 
erner et al. 1996 ). A final difference in our derivation compared to

hat of Prochaska, Worseck & O’Meara ( 2009 ) is that we assume that
 eff is approximately constant, which is not the same as assuming

hat ̃  κ912 ( z ′ ) ∝ (1 + z ′ ) 3 /X eff ( z ′ ) is constant o v er the rele v ant redshift
nterval ( i.e. opacity is not a co-moving quantity). 

To test our expression, we generate mock absorption spectra as 
ollows. Choosing a value for z q and assuming that the CDDF is of the
orm f ( N H I ) = f 0 × (10 17.2 cm 

−2 / N H I ) 5/3 for some amplitude f 0 , we
enerate the optical depth as a function of wavelength of the form 

( λ, z q ) = 

z q ∑ 

z= z 912 

∞ ∑ 

N H I = 0 

N ( N H I , z) τ ( λ, N H I , z) , (36) 

here τ is the optical depth at wavelength λ due to an absorber
ith column density N H I at redshift z, taken from equation ( 33 ), and
 ( N H I , z) is the Poisson distributed number of lines with CDDF f ( N H I ).
he mean of this Poisson distribution is ( d X/ d z ) f ( N H I ) �N H I �z,
here � N H I and �z are the steps in the sums o v er column density

nd redshift in equation ( 36 ). For a given realisation of τ ( λ, z), we
an compute the transmission, exp ( −τ ), and averaging over many
ealization the ef fecti v e optical depth, 〈 e xp ( −τ ) 〉 ≡ e xp ( −τ eff ). The
esults of this e x ercise are summarized in Fig. 7 , which shows that
ithin our assumed approximations, equation ( 35 ) (solid red line)

eproduces τ eff ( λrest ) from the simulation very well, with equation 
 35 ) (dashed yellow line) capturing correctly the gradient of this
urve close to λth . The original expression equation ( 29 ) from
rochaska, Worseck & O’Meara ( 2009 ) (yellow dotted line) falls
 little below the simulated results (blue line). 

Finally, we note that biasing and the QSO ’s proximity effect ( i.e.
he fact that the QSO itself emits ionising radiation) will likely play
n increasingly important role at higher z. We could account for the
roximity effect by replacing � → � 0 + � q ( z) in the expression
or X eff of equation ( 5 ), where � q ( z) is the photoionization rate at
edshift z due to the QSO itself. 
MNRAS 527, 689–705 (2024) 
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Figure 7. Mock spectra and ef fecti ve optical depths as a function of rest- 
wavelength, λrest ≡ λ/(1 + z q ). Top panel: Lyman-limit optical depth for 10 
mock spectra generated using Poisson-distributed absorption lines. Central 
panel: corresponding transmission exp ( −τ ) for these spectra ( black thin 
lines ) and mean transmission for 200 realizations ( blue solid line ). The 
wavy nature of exp ( −τ eff ) reflects the relatively large spectrum-to-spectrum 

variations, a consequence of the relatively low number density of strong 
absorbers that dominate the optical depth. Lower panel: ef fecti ve optical 
depth for the simulated spectra ( blue thin solid line ), the approximation from 

Prochaska, Worseck & O’Meara ( 2009 ) ( yellow dotted line labelled ‘P09’), 
equation ( 30 ), and the approximation in this paper ( red line ), equation ( 34 ) 
with b S = 0. Red and green thin solid lines in panels (a) and (b) show the 
simulation estimates using 100 (rather than 200) realizations. Numerically, 
we set z q = 6, X eff = 0 . 607 is kept constant, integrated the CDDF from 

log N H I [cm 

−2 ] = 14 → 22 in steps of 0.025 dex, and used integration steps 
of 0.05 Å in λrest . 

4

T  

t  

t  

h  

σ  

b
b

τ

Figure 8. Ef fecti ve optical depth, τ eff , as a function of wavelength, λrest , 
measured in the rest-frame of the QSO , as given by equations ( 37 ) and ( 38 ). The 
red line connecting filled circles and the blue line connecting filled diamonds 
correspond to QSO redshifts of z q = 2.5 and 3.5, the observer’s redshifts are 
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where τ eff reaches a maximum, given by equation ( 39 ) are indicated by a 
large filled triangle. The Lyman limit rest wavelength is indicated by a small 
vertical line. 
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.1 The transition to a transparent Uni v erse 

o interpret the general expression for τ eff of equation ( 34 ) quali-
atively, it is useful to make the following approximations, (i) use
he high- z expression for the Hubble constant, (ii) assume that the
ydrogen photoionization cross section has wavelength dependence
∝ λ3 , (iii) take the absorption distance X eff ( z ′ ) in the expression to

e constant at its value for z = z q , and (iv) neglect clustering ( b S ×
 LLS → 0). This yields the following analytical expressions 

eff ( λrest , z o , z q ) ≈ 2 

X eff ( z q ) �
1 / 2 
m 

[
λrest (1 + z q ) 

λth 

]3 / 2 

×
[ 

1 −
(

λrest 

λth 

)1 / 2 
] 

, (37) 
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or λth (1 + z o )/(1 + z q ) ≤ λrest ≤ λth , and 

eff ( λrest , z o , z q ) ≈ 2 

X eff ( z q ) �
1 / 2 
m 

[
λrest (1 + z q ) 

λth 

]2 

× 1 

(1 + z o ) 1 / 2 

[ 

1 −
(

1 + z o 

1 + z q 

)1 / 2 
] 

, (38) 

or λrest ≤ λth (1 + z o )/(1 + z q ), where as before, λrest is the photon’s
avelength in the rest frame of the QSO . The first expression has a
aximum optical depth, τ eff,max which occurs at a rest-wavelength

max , given by 

rest, max = 

(
3 

4 

)2 

λth 

τeff, max ≈ 0 . 105 × 2 

X eff ( z q ) �
1 / 2 
m 

(1 + z q ) 
3 / 2 . (39) 

he moti v ation for computing these expressions for observers at
ifferent redshifts – and not just for z o = 0 – is that τ eff ( λrest , z o , z q )
an be used to compute the photoionization rate at redshift z o due to
 QSO at higher z. 

The resulting run of optical depth with wavelength is plotted in
ig. 8 for two QSO redshifts ( z q = 2.5 and 3.5) and three observer
edshifts ( z o = 0, 1 and 2). The shape of these curves can be under-
tood as follows. Photons with rest wavelength close to λth can only
e absorbed by absorbers close to the QSO before they redshift below
he Lyman limit of intervening neutral gas. Therefore the redshift path
here an absorber affects the photon lengthens with decreasing λrest :

his is why τ eff initially increases with decreasing wavelength. There
re two reasons why τ eff eventually starts to decrease again with
ecreasing λrest . First, once a photon’s wavelength becomes smaller
han λth in the rest frame of the observer, z S → z o , the redshift
ange that contains absorbers, ceases to lengthen. The optical depth
hen drops because the photoionization cross section drops, and τ eff is
iven by equation ( 38 ) rather than equation ( 37 ). This sudden change
s illustrated by the dotted and dotted–dashed lines that branch away
rom the solid line in the Figure. Secondly, τ eff starts to decrease
nce λrest ≤ (3/4) 2 λth , even when τ eff is described by equation ( 37 ).
his occurs because the tension between τ eff increasing due to the
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Figure 9. Same as Fig. 8 but for a QSO at z q = 2.5 and an observer at z o = 0. 
The solid blue line is obtained by numerically integrating equation ( 34 ). The 
other line styles are successive approximations: the dotted–dashed orange 
line takes the photoionization cross-section to be ∝ λ−3 rather than the more 
accurate expression from Verner et al. ( 1996 ), the dotted green line in addition 
takes X eff ( z) constant at its value at z = z q , and the dashed red line in addition 

assumes an EdS universe, H ( z) = H 0 �
1 / 2 
m (1 + z) 3 / 2 . The solid black line 

is the analytical expression from equations ( 37 ) and ( 38 ) which makes the 
same approximations as the dashed red line ; it has been off-set vertically by 
a factor 1.01 to a v oid complete o v erlap with that line. 

i  

τ

(  

p  

d
s  

X
 

t
a  

v
m  

i  

e  

t
 

a  

2  

l
I  

a
o  

‘
i  

X  

t

5

W  

t  

e  

h  

i
�  

T

∼  

→  

T
f  

t  

e  

(  

l  

t  

z  

m  

a  

M
 

l  

λ

e  

e  

r  

f  

v  

a  

(
 

i  

c
i  

s  

w  

t
L  

l  

c

i
M  

e  

H  

l  

f
o  

r
t  

s  

v  

t  

g  

b  

t  

o  

(  

r  

l  

d
 

m  

17 Note that the bias we compute is the two-halo term: the absorbers we 
consider inhabit a different halo from the source. There may be an additional 
effect from associated absorbers. We also note that we have not accounted 
for other proximity effects. 
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ncreasing redshift path (due to the factor 1 − ( λrest / λth ) 1/2 ) and
eff decreasing due to the decreasing photoionization cross-section 
the factor ( λrest / λth ) 3/2 ) is eventually decided in fa v our of the latter
rocess. We note that the decrease in τ eff , in this case, is not due to the
ecrease in the co-moving number of absorbers at lower redshifts, 
ince in the approximation that leads to these equations we have kept
 eff constant . 
Although equations ( 37 )–( 38 ) are useful for describing the quali-

ative behaviour of τ eff , they are not particularly accurate because the 
pproximations made in deriving them from equation ( 34 ) are not
ery accurate, as we illustrate in Fig. 9 . Of the various approximations 
ade, we see that accounting for the evolution of X eff has the largest

mpact. Indeed, if we allow X eff to increase with decreasing z using
quation ( 15 ), the value of τmax is reduced by about 20 per cent for
his particular choice of z q . 

Finally, we note that τ eff reaches a maximum value of ∼1 for
 QSO at redshift z q ∼ 2.5. This means that below a redshift of
.5, most QSO ’s contribute to ionizing neutral hydrogen atoms at all
ower z, i.e. the Universe becomes ‘transparent’ to ionizing radiation. 
ndeed, unless the atoms are in a self-shielded re gion, interv ening
bsorbers typically decrease the ionizing flux by less than a factor 
f 1/ e . Madau, Haardt & Rees ( 1999 ) referred to this epoch as
breakthrough’. Their value of the breakthrough redshift of ∼1.6 
s lower than our value of 2.5. The reason is that they assumed that
 eff ∝ (1 + z) −3 / 2 with a normalization set by the CDDF at z = 3;

hey also use a different slope for the CDDF . 

 SUMMARY  A N D  C O N C L U S I O N S  

e presented an analytical model for the CDDF of hydrogen absorp-
ion lines along a sight line piercing the intergalactic medium ( IGM ;
quation 14 ). The model assumes that cosmic gas in dark matter
aloes follows a power-law distribution in density, ρ( R ) ∝ R 

−2 , and
s photoionized by an evolving radiation background with amplitude 
 0 ( z) ≡ � −12 × 10 −12 s −1 , as computed by Haardt & Madau ( 2012 ).
he resulting CDDF reproduces well the observed CDDF at redshift z 
3 for hydrogen column densities log N H I [cm 

−2 ] in the range [14
 16], and [20 → 22], where the CDDF is well-measured (Fig. 1 ).

he analytical expression for the CDDF contains one free parameter, 
 gas , which is of order unity, and some extra parameters such as
he temperature of the gas for which we use observed values. The
volution of the model’s CDDF is due to (i) the evolution of � −12 ( z),
ii) the evolution of M crit , which is the halo mass below which haloes
ose their gas due to photoheating by the radiation background, (iii)
he dependence of the virial temperature of a halo of given mass on
, and finally, and to a lesser extent, (iv) the evolution of the halo
ass function. Our model builds on that of Theuns ( 2021 ), as well

s earlier models by Miralda-Escud ́e, Haehnelt & Rees ( 2000 ) and
u ̃ noz et al. ( 2016 ). 
We then use the model to compute the evolution of the attenuation

ength of ionizing photons, λeff (see equation 16 ). The evolution of
eff is dominated by cosmological expansion, while the co-moving 
volution is due to the evolution of the CDDF . We find that the model’s
volution of λeff agrees very well with the observed evolution in the
edshift range z = 2 → 5, but not for z > 5 where the data evolve much
aster than the model (Fig. 1 ). Even though the model reproduces the
alue of λeff at z ∼ 3 very well, it underestimates the number of
bsorption lines with log N H I (cm 

−2 ) > 17.5 by about a factor of 2
see Fig. B1 ). 

Since absorption lines occur when a sight line intersects a halo
n our model, we can relate the clustering of haloes to that of the
orresponding absorbers. The bias of Lyman-limit systems ( LLS ’s) 
s ∼1.5 at z = 2, increasing to b ∼ 2.6 at z = 6 (Fig. 4 ). At first
urprising, we find that the bias of damped Lyman α systems ( DLA ’s)
ith log N H I (cm 

−2 ) = 20.3 is lower than that of LLS . The reason is
hat self-shielding – which causes the transition from highly ionized 
LS ’s to mostly neutral DLA ’s – sets in at lower column density in
ower mass haloes – and such haloes are less biased. At even higher
olumns, the bias of DLA ’s increases rapidly with increasing N H I . 

We account for clustering between absorbers and quasars, assum- 
ng that quasars inhabit dark matter haloes with masses M h ≈ 10 12–13 

 � (Fig. 5 ), and reach the following conclusions. Bias has little
ffect on the value of λeff inferred from quasar spectra below z ∼ 4.
o we ver, the rapid increase in quasar host bias above this redshift

eads to a corresponding rapid decrease in the value of λeff inferred
rom analysing quasar spectra, and this brings the model’s evolution 
f λeff into line with the observations, also at z ∼ 6. It is important to
ealize that this finding has potential implications when studying the 
ail-end of reionization at z ∼ 6: the value of λeff measured in quasar
pectra is generally less (by almost an order of magnitude) than the
alue of λeff in the IGM . This makes it harder for quasars to ionize
he IGM , since they are surrounded by many more absorbers than
 alaxies: � ∝ λeff so that g alaxies contribute more to the ionizing
ackground than quasars, even in the case that both population had
he same emissivity. 17 We use our model to calculate the statistics
f the attenuation length for rays of a given length in Section 3.3
see Fig. 6 ). We find that the distribution of mean transmissions for
ays with a given length of the order of λeff has a long tail to very
arge values of τ eff , a consequence of the fact that the absorption is
ominated by relatively strong absorbers which are rare. 
In the final section, Section 4 , we use the model to compute the
ean transmission, T ( λrest , z q ), due to Lyman-limit absorption (where
MNRAS 527, 689–705 (2024) 
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rest is wavelength in the QSO ’s rest frame and z q the redshift of the
uasar in which T is measured). We relate T to the amplitude and slope
f the CDDF around column densities ∼10 17.2 cm 

−2 , and examine how
t is affected by various commonly made simplifications. Our general
xpression, equation ( 34 ), reduces to that derived by Prochaska,
orseck & O’Meara ( 2009 ) for wavelengths close to 912 Å in the rest

rame of the quasar, but differs at shorter wavelengths. We find that
he minimum transmission T stays abo v e e −1 (i.e. the corresponding
f fecti ve optical depth remains below 1) on average when z q � 2.5,
hich is, therefore, the earliest redshift below which the Universe
ecomes transparent to ionizing photons. 
This paper shows that a simple model for gas in haloes accurately

redicts the evolution of the CDDF and that of the associated
ttenuation length. The model also allows us to account for bias
nd clustering. Of course, our analytical model is not as accurate
or as realistic as numerical simulations, but it illustrates well the
ominant properties of haloes and the IGM that give rise to the
bserv ables. Se veral aspects of the model could be further impro v ed.
hese include accounting for scatter in the gas properties for haloes
f a given mass and deviations from spherical symmetry, and a more
ccurate treatment of the temperature of the absorbing gas. The model
ssumes that the density profile of the gas 18 is ρ( R ) ∝ R 

−2 , and it
ould be worthwhile examining why this assumption works so well.

n the model, the majority of strong absorbers occur in the outskirts of
ark matter haloes, with some smaller fractions occurring outside the
irial radius of the halo. This is consistent with the observation that
uch absorbers also correlate strongly with the presence of nearby
alaxies (Lofthouse et al. 2023 ). This also implies that the sources
f the ionizing photons inhabit the same dark matter haloes as the
inks. It would be worth exploring whether this correlation can be
ccounted for (see e.g. Mu ̃ noz et al. 2016 ), rather than combining a
odel for the absorbers with the Haardt & Madau ( 2012 ) model for

he ionizing background as we did here. 
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8 It would be easy to redo the calculations for another assumed power-law. 
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PPENDIX  A :  A  TTENUA  T I O N  L E N G T H  

ERSUS  M E A N  FREE  PATH  

e relate the mean free path to the attenuation length due to a
istribution of absorbers as follows. Consider a Poisson distribution 
f absorbers with mean number density per unit distance μ, all of
hich have the same optical depth, τ i . The probability of having 
ore than N 

′ such absorbers in a distance L , is given by 

( > N 

′ | L ) = 1 − P( N = 0 , 1 , 2 , · · · N 

′ | L ) = 1 −
N ′ ∑ 

N= 0 

P ( N 

′ | NμL )

(A1

here P ( x | y ) ≡ y x exp ( −y ) /x ! is the Poisson distribution. The
robability of reaching N 

′ absorbers after travelling a distance 
etween L and L + d L is the deri v ati ve of this cumulative distribution
ith respect to L , which is the Gamma distribution 

( L ) = 

μ exp ( −μL ) ( μL ) N 
′ −1 

( N 

′ − 1)! 
. (A2) 

his is a well-known result in statistics. 
We define the free path of a photon to be the distance it travelled

efore encountering an optical depth τ > 1. In our case, this
orresponds to encountering more than N 

′ = 1/ τ i absorbers. The 
DF of the free path is therefore given by equation ( A2 ), provided we
et N 

′ = 1/ τ i . The mean value of the free path – i.e. the mean free
ath – is then 

= 〈 L 〉 = 

∫ ∞ 

0 
P( L ) d L = 

( τ−1 
i + 1) �( τ−1 

i ) 

μ ( τ−1 
i − 1)! 

≈ 1 

τi μ
. (A3) 
On the other hand, the ef fecti ve optical depth encountered after
ravelling a distance L , is 

eff ( L ) = μ L (1 − exp ( −τi )) . (A4) 

he attenuation length, λeff – the distance travelled to reach τ eff = 1 
is therefore 

eff = 

1 

μ ( 1 − exp ( −τi ) ) 
. (A5) 

omparing equation ( A3 ) to equation ( A5 ) shows that the attenuation
ength equals the mean free path in the limit of τ i � 1, but for τ i =
.5, for example, λ = 2/ μ but λeff = 2.5/ μ. 
Consider now the case of τ i → ∞ . In that limit, the free path is

he distance travelled up to the first absorber, therefore the PDF of L
ecomes 

( L ) = 

1 

μ
P (0 | μL ) = 

1 

μ
exp ( −μL ) , (A6) 

o that the mean free path is λ = 〈 L 〉 = μ−1 . The mean transmission
fter a distance L is the fraction of paths that did not encounter
n absorber, exp ( −τeff ( L )) = P (0 | μL ). Therefore, the attenuation
ength is λeff = μ−1 – and hence equals the mean free path. 

In conclusion: when absorption is dominated by very strong 
bsorbers (the case of τ i → ∞ ) or in the case of a uniform IGM

the case of τ i → 0), mean free path and attenuation length have
he same numerical v alue. Ho we ver, if a significant fraction of the
bsorption is due to absorbers with optical depth of order unity, then
he attenuation length is larger than the mean free path. The latter
ase applies to Lyman-limit absorption in the IGM . The attenuation
ength is often and erroneously referred to as mean free path in the
iterature – which is unfortunate. 

PPENDI X  B:  T H E  E VO L U T I O N  O F  T H E  

UMBER  DENSI TY  O F  LLS  

righton et al. ( 2019 ) re vie w dif ferent methods for identifying strong
 I absorbers in QSO spectra. They then present results of a surv e y

or such absorbers in a homogeneous data set of 153 QSO spectra at
edshift z ∼ 5 from the Giant Gemini GMOS surv e y (Worseck et al.
014 ). Combining values from the literature with their own analysis,
hey present the evolution of the number density of strong absorbers
n terms of the co-moving quantity l ( X ), which is the mean number
ensity of absorbers (with column density larger than some value) 
er unit co-moving path length, X . They count absorbers with N H I 

 10 17.5 cm 

−2 because these can be identified confidently given the
imited signal-to-noise ratio of their data. 

Given that l ( X ) is a number density of absorbers, we prefer to use
he notation d N /d X , rather than l ( X ), since l ( X ) is easily mistaken for
 length. Without further ado, we find the following relation between
 N /d X ≡ l ( X ) and the CDDF , where on the second line we substitute
he approximate relation of equation ( 13 ) for the CDDF , 

d N 

d X 

( z) = 

∫ ∞ 

10 17 . 5 cm 

−2 
f ( N H I ) d N H I ≈ 0 . 2 

f 17 . 2 ( z) 

� 

2 / 3 
−12 ( z) 

. (B1) 

his relation follows from either integrating the CDDF of equation 
 12 ) from N H I = 10 17.5 cm 

−2 → ∞ or directly from equation ( 10 ).
he latter route makes it clearer why d N /d X does not depend on the
hape of the CDDF for N H I > 10 17.5 cm 

−2 . 
Fig. B1 compares the evolution predicted by the model to the

bservations plotted in fig. 9 of Crighton et al. ( 2019 ). The data are
ompiled from Prochaska, O’Meara & Worseck ( 2010 ), Ribaudo, 
ehner & Howk ( 2011 ), O’Meara et al. ( 2013 ), and Fumagalli
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M

Figure B1. Evolution of the mean number density of absorbers with optical 
depth τ > 2. The black solid line is the evolution predicted by the model of 
TT21, the grey shading corresponds to varying the value of the parameter M crit 

by factors between 1/4 and 4. The black solid diamonds are the approximate 
evolution of the model from equation ( B1 ) using the power law of the CDDF 

from equation ( 12 ). Red symbols with error bars are the observed data plotted 
in fig. 9 of Crighton et al. ( 2019 ). Model and cosmological parameters are as 
in Fig. 1 . 
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19 The reason this works in this approximation is that the weights of each 
individual Poisson variable are now equal, 1 − exp ( − τ ) → 1, so now it is a 
sum rather than a more general linear combination of Poisson variables. 
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t al. ( 2013 ), in addition to data from Crighton et al. ( 2019 ). We
rst note that the optically thin approximation (black diamonds)
eproduces almost exactly TT21’s model that includes self-shielding
black curve). Both underestimate the observed number density (red
iamonds) by a factor ∼2 yet reproduce the observed evolution
ery well. It is somewhat surprising that the model described so
ar reproduces λeff well for z ≤ 5 as seen in Fig. 1 (right-hand panel)
et it underestimates the number of LLS ’s with N H I ≥ 10 17.5 cm 

−2 by
 factor 2. The middle panel of Fig. 1 shows why this is: these higher
olumn density LLS actually contribute little to λeff . 

We venture that scatter in the density distribution around haloes
ay be the main culprit for the underestimate in d N /d X in the model.

ndeed, these higher column density systems have by construction
n optical depth to ionizing photons of around unity . Consequently ,
 small increase in total column density may result in an exponential
ncrease in neutral column density due to the onset of self-shielding.
he impact of such scatter on the CDDF is substantial: a 0.2 dex
aussian scatter in log N H I results in a factor of 2 increase in d N /d X
enough to bring the model in good agreement with the data.

mportantly, this exponential dependence on column density mostly
ffects absorbers around the knee of the CDDF , where the absorbers
ransition from optically thin to optically thick. 

PPENDIX  C :  STATISTICS  O F  τEFF 

n this Appendix, we derive an approximate analytical expression
or the PDF of τ eff , as discussed in Section 3.3 . Our deri v ation goes
s follows. At sufficiently low N H I , the mean number of lines that
ontribute to τ eff may be large enough that the central limit theorem
s applicable. In that case, the lines are approximately Gaussian
istributed (with mean 〈 N 〉 and dispersion 〈 N 〉 ). Integrating over
 N H I , and inte grating o v er d X then corresponds to summing o v er
ndependently distributed Gaussian variables. Therefore, the sum is
NRAS 527, 689–705 (2024) 
lso Gaussian distributed, with mean the sum of the means, and
ispersion the sum of the dispersions. We will denote the value of
eff due to these low column-density lines by τ ef f, lo w , and its PDF is

herefore 

 G 

( τef f, lo w | μ, σ ) = 

1 

(2 πσ 2 ) 1 / 2 
exp ( − ( τef f, lo w − μ) 2 

2 σ 2 
) 

μ( X) = X 

∫ N H I , low 

0 
f ( N H I )(1 − exp ( −τ ))d N H I 

σ 2 ( X) = X 

∫ N H I , low 

0 
f ( N H I )(1 − exp ( −τ )) 2 d N H I . (C1) 

e added a subscript ‘ G ’ as a reminder that we assume Gaussian
tatistics. 

We can account for the higher column density absorbers as follows.
et’s take N H I , low = 10 17 . 2 cm 

−2 . In that case, the weighting factor
1 − exp ( − τ )) ≈ 1 for those lines with N H I ≥ N H I , low . The
DF due to these higher column density lines is now a sum of
ndependently distributed Poisson variables, hence also a Poisson
istributed variable. 19 Denoting the value of τ eff due to these high
olumn-density lines by τ eff,high , we find that its PDF is given by 

 P ( τeff, H I gh ) = P ( N | N P ) 

N P ( X) = X 

∫ ∞ 

N N H I , low 

d N H I , (C2) 

ith subscript ‘ P ’ as a reminder that we assume Poisson statistics. 
The total ef fecti ve optical depth is τ ef f,lo w + τ eff,high , with PDF 

( τeff ( X)) = 

∞ ∑ 

N= 0 

P ( N | N P ) P G 

( τeff − N | μ, σ ) , (C3) 

ith μ, σ , and N P all proportional to X . The mean of this distribution
s the sum of the means of τ ef f,lo w and τ eff,high , 

 τeff ( X; z) 〉 = X 

∫ 1 

0 
f ( N H I ) 

[
1 − exp ( −τ ) 

]
d N H I 

+ X 

∫ ∞ 

1 
f ( N H I )d N H I 

≈ 4 . 2 X 

f 17 . 2 ( z) 

σth 
, (C4) 

here we used the power-law approximation to the CDDF of equation
 13 ). The numerical value also shows the limitation of setting 1 −
xp ( − τ ) → 1 for the high column density absorbers. If we had not
ade that approximation, then 〈 τeff ( X; z) 〉 = 4 . 02 X f 17 . 2 ( z) / σth . 
We can now compute the PDF of the co-moving attenuation length
i.e. the PDF of X where τ eff = 1 – as follows. The fraction of sight

ines that reach τ eff > 1 for a given value of X is 

( τeff > 1 | X) = 

∫ ∞ 

1 
P( τeff | X)d τeff 

= 

1 

2 

∞ ∑ 

N= 0 

P ( N | N P ) { 1 ± Erf ( x) } 

x ≡ 1 − N − μ

(2 σ 2 ) 1 / 2 
. (C5) 

ere, Erf denotes the error function, and the upper and lower signs
pplies to the case where x is ne gativ e or positive. The fraction of
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P

T
d

T

©
P
(

aths that reach τ eff between X and X + d X follows by taking the
eri v ati ve with respect to X , 

( τeff = 1 , X) = 

d P( τeff > 1 | X) 

d X 

= 

∞ ∑ 

N= 0 

{(
N 

N P 

− 1 

)
P ( N | N P ) { 1 ± Erf ( ∓x) } N P 

X 

+ P ( N | N P ) 
exp ( −x 2 ) 

π1 / 2 

(
x 

2 X 

+ 

μG 

(2 σ 2 ) 1 / 2 X 

)}
. 

(C6) 
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his is the approximate analytical expression for the probability 
istribution of the attenuation length that we set out to obtain. 
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