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ABSTRACT

We present an analytical model for cosmological Lyman-limit systems (LLS) that successfully reproduces the observed evolution
of the mean free path (1) of ionizing photons. The evolution of the co-moving mean free path is predominantly a consequence
of the changing meta galactic photoionization rate and the increase with cosmic time of the minimum mass below which haloes
lose their gas due to photoheating. In the model, Lyman-limit absorption is caused by highly ionized gas in the outskirt of dark
matter haloes. We exploit the association with haloes to compute statistical properties of A.i and of the bias, b, of LLS. The
latter increases from b ~ 1.5 — 2.6 from redshifts z = 2 — 6. Combined with the rapid increase with redshift of the bias of
the haloes that host a quasar, the model predicts a rapid drop in the value of A.;r when measured in quasar spectra from z = 5
— 6, whereas the actual value of A falls more smoothly. We derive an expression for the effective optical depth due to Lyman
limit absorption as a function of wavelength and show that it depends sensitively on the poorly constrained number density of
LLS as a function of column density. The optical depth drops below unity for all wavelengths below a redshift of ~2.5 which is

therefore the epoch when the Universe first became transparent to ionizing photons.
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1 INTRODUCTION

Hydrogen in the intergalactic medium (hereafter IGM) is so highly
ionized that it does not produce a significant Gunn—Peterson trough
(Gunn & Peterson 1965) in quasar spectra below a redshift of z
~ 6 (Fan et al. 2006). At higher redshifts, several independent
observations suggest that the IGM may be significantly neutral.
These include a detection of a damping wing in the spectra of z
> 7 quasars (Mortlock et al. 2011; Davies et al. 2018) as well as
other observations (e.g. Mason et al. 2018). The measurement of the
Thompson-optical depth to the cosmic microwave background from
free electrons also suggest that the Universe transitioned from mostly
neutral to mostly ionized around z ~ 7.5 (Planck Collaboration et al.
2020). For reviews on the physics of the IGM and its connection to
reionization, see e.g. Meiksin (2009) or McQuinn (2016), and for a
more observational perspective, see e.g. Rauch (1998).

Even when the Universe is highly ionized on average, the remain-
ing neutral hydrogen is sufficiently abundant to limit the distance
that a typical ionizing photon can travel from its source before being
absorbed. This distance can be quantified either by the attenuation
length A, defined below in equation (16), or the ‘mean free path’.
The relation between these quantities is examined in more detail in
Appendix A. The attenuation length and the emissivity of ionizing
sources together determine the amplitude of the ionizing background
(e.g. Haardt & Madau 1996; Miralda-Escudé 2003; Faucher-Giguere
etal. 2009; McQuinn, Oh & Faucher-Giguere 2011; Haardt & Madau
2012).
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The absorbers of ionizing photons are usually characterised in
terms of their neutral hydrogen column density, Ny, and are labeled
as ‘Lyman « forest’ (Ny; < 10'72? cm™2), Lyman-limit systems
(LLS’s, 10'72 cm™2 < Ny, < 1023 ¢cm~2), and damped Lyman o«
absorbers (DLA’s, Ny, > 10%%3 cm™2, see e.g. Rauch 1998). The
optical depth of an ionizing photon with energy of 1 Rydberg is
unity at Ny, = 10'7? cm~2, whereas the Lyman « line shows an
obvious damping wing above a column density of Ny, = 10%** cm™2
— hence the labels. It is also common parlance to refer to absorbers
with column density just below 10'7? cm~2 as sub-LLS’s, and those
close to but below the DLA threshold as super-LLS’s or sub-DLA’s.

The column-density distribution function (hereafter CDDF), is the
number density of absorbers with a given value of Ny; (per unit co-
moving path length, to be defined below), and the normalization
and shape of this function sets A.g. Sub-LLS’s and super-LLS’s
together mostly determine the value of A, because the numerous
Lyman o forest absorbers just have too low a column density to
contribute significantly to ., whereas the strongly absorbing DLA’s
are simply too rare. Unfortunately, it is difficult to measure accurately
the column density of lines in the important range of 10'°-10%
cm™2 because the whole Lyman-series of absorption lines associated
with the absorber is partially or completely saturated. Estimates of
Aefr then require extrapolating the CDDF in the LLS range, i.e. just
that range of the CDDF that is the most important for accurately
determining A (€.g. Faucher-Giguere et al. 2009; Haardt & Madau
2012).

Prochaska, Worseck & O’Meara (2009) suggested an alternative
method for measuring A, namely stacking quasar transmission
spectra in bins of emission redshift and measuring the decrease in
transmission caused by the ionization edge of the hydrogen atom

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

20z Arenuer gz uo 1senb Aq /1 £0ZE2/689/1//2S/21oNle/seuw/woo dno olwapeose//:sdiy Woil papeojumo(]


http://orcid.org/0000-0002-3790-9520
http://orcid.org/0000-0003-2544-054X
mailto:tom.theuns@durham.ac.uk
https://creativecommons.org/licenses/by/4.0/

690 T Theuns and T. K. Chan

— i.e. the reduction in transmission' of photons with energies hv
> 13.6eV (see also Fumagalli et al. 2013; O’Meara et al. 2013;
Worseck et al. 2014; Becker et al. 2021). The measured value of
Aefr decreases rapidly with increasing z, approximately o< (1 + z)™”"
with n & 5.4, over the redshift range z = 2.3 — 5.5 (Worseck et al.
2014). This is much faster than would be the case if the absorbers
had constant co-moving density and a constant proper cross-section,
which would yield Ag o (1 4 273, demonstrating that the absorbers
evolve. Given that the (co-moving) number density of absorbers
presumably increases with cosmic time as structure grows, and that
the intrinsic sizes of the absorbers presumably also grow with time,
with both effects tending to reduce X, one might naively expect that
Aetr €volves slower than (1 4+ z)~> — which is exactly opposite from
what is observed. Prochaska, O’Meara & Worseck (2010) discuss
several possible reasons for this unexpected evolution, settling on
the suggestion that it must be that absorbers become more highly
ionized with decreasing z.

Becker et al. (2021) use the method of Prochaska, Worseck &
O’Meara (2009) to measure A in a set of z ~ 6 quasars. Accounting
for the radiation of the quasar itself — the proximity effect — they infer
a sharp drop in A¢ from z =5 — 6, much faster than an extrapolation
of the o< (1 4+ z)™" would predict. They claim that this rapid change
signals the transition from an ionized to a mostly neutral IGM, and
hence claim that their measurements are probing the tail-end of the
epoch of reionization (see also Gaikwad et al. 2023).

Numerical models to predict the evolution of A.¢ are challenging,
requiring radiative transfer (hereafter RT) at high resolution to capture
the transition from ionized to neutral gas with increasing density in
a computational volume that is large enough to sample the relatively
rare strong absorbers that set A.¢. Altay et al. (2011) and McQuinn,
Oh & Faucher-Giguere (2011) both post-processed simulations with
RT, showing that they can reproduce the observed CDDF, including
the transition from Lyman « forest to DLA’s. These papers show that
the CDDF evolves relatively slowly, in agreement with observations
(see also Rahmati et al. 2013). Altay et al. (2013) further show that
these predictions are insensitive to the uncertainties in the modelling
caused by galaxy formation (i.e. the implementation of feedback
from massive stars and quasars), which only affects the CDDF at
high column-densities, Ny, > 10?! cm~2, that have little effect on
Aesr. All modellers agree that cold gas, accreting on to haloes, is
the dominant contributor to LLS’s (e.g. Altay et al. 2011; Faucher-
Giguere & Kere$ 2011; Fumagalli etal. 2011; van de Voortetal. 2012;
Yajima, Choi & Nagamine 2012; Rahmati et al. 2013). Analytical
models for the evolution of absorbers, sometimes augmented with
observational constraints or numerical models, are also discussed
by Erkal (2015) and Muiioz et al. (2016), and we will contrast our
approach and results with theirs below.

A flurry of recent papers used simulations that include radiative
transfer performed either on the fly or in post-processing to investi-
gate the claim by Becker et al. (2021) that Ay drops sharply from
z=5— 6(e.g. D’Aloisio et al. 2020; Keating et al. 2020; Cain et al.
2021; Garaldi et al. 2022; Gaikwad et al. 2023). The authors attribute
the drop to this redshift range probing the tail-end of reionization.
We will return to this issue in Section 3.2.

In this paper, we present an analytical model for the CDDF in the
LLS and DLA range, making the assumption that (strong) absorption
lines are caused by gas in haloes. The model of absorbers and their
connection to Ay are presented in Section 2. Section 3 discusses

! After correction for the reduction in transmission caused by the Lyman series
of absorption lines, and accounting for other observational effects.
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clustering of absorbers and the impact of bias on A.gr. We also show
how the statistical properties of the attenuation relate to clustering
of haloes. Section 4 exploits the model to compute the wavelength
dependence of the optical depth, resulting in a new model for the
combined effect of many LLS on the mean transmission. Section 5
summarizes our results. We use the Planck Collaboration et al. (2016)
values of cosmological parameters (final column of their table 4),
Hubble parameter & = 0.673, baryon and matter density in units of the
critical density of 2, = 0.02230/h? and Q, = (0.1188 + 0.02230)//2,
a Helium abundance by mass of ¥ = 0.24531, and when applicable
apply the high-z approximation for the Hubble constant at redshift z,
H(z) = Hy ern/z (1 + 2)*?, with H, the Hubble constant at z = 0.

2 THE ATTENUATION LENGTH IN THE HALO
MODEL

We begin this section by briefly reviewing the relation between the
attenuation length, A¢, and the column density distribution function
(f(Ny), hereafter CDDF). We then extend the model of Theuns (2021)
of DLA’s to the lower column density LLS (Section 2.2), and use the
resulting CDDF to derive the evolution of A+ which we compare to
observations. We infer the main drivers of the evolution of A.; by
varying the parameters that determine the CDDF (Section 2.3). We
finish this section by comparing to the observed evolution of LLS’s
(Appendix B).

2.1 Relating A to the CDDF

Absorption of ionizing photons in the clumpy Universe occurs
predominantly in approximately discrete ‘absorbers’ with a range
of neutral hydrogen column densities, Ny,. Provided that these
absorbers are Poisson distributed along a sight line (i.e., provided
we neglect any spatial correlations of absorbers: we account for
clustering later on), the effective optical depth, 7., per unit proper
sight line distance, d/, at the Lyman limit, is (e.g. Paresce, McKee &
Bowyer 1980; Meiksin & Madau 1993)

" o 2
dregr =/ d°N [1 - exp(—1)] AN )
0

dl dl dNyy,

Here, N is the number of absorbers with column density Ny, per unit
proper distance d/ and T = o, Vy, is the optical depth of an absorber;
o 1s the photoionization cross section at the Lyman limit. We will
be more careful about the wavelength dependence of this relation
later on.

The attenuation length is usually expressed as a proper distance.
To expose better the underlying physics, it is useful to separate the
contributions to the evolution of Ay that result from the expansion
of the Universe and those that result from changes in the intrinsic
properties of the absorbers. To enable this, Bahcall & Peebles (1969)
defined the dimensionless co-moving path length, dX, as

_ Hy(1+27

Hy (1 3
dX = _H(+2) dl.

H(z) ‘= c

@

We note that dX is not simply the co-moving analogue of the proper
path length d/. Combining the above relations yields

dr, o
d’Xff(z) = /0 F(Nuis2) [1 = exp(—7)] N, 3)
where
2
f(NHI;Z) = WNHI(Z), 4)
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is now the number N of absorbers with a given column density per
dX, i.e. the CDDF at redshift z.

The intensity of a beam of photons with frequency? vy, travelling a
co-moving path length dX will be attenuated by a factor exp (— Tefr)
on average. Setting 7. = 1 in equation (3) defines the attenuation
length, X,

00 -1
Xefr(2) = {/0 S (Nur; 2) [1 — exp(—1)] dNHI} . (5)

Any evolution of X, is due to the evolution of the CDDF, i.e. due to the
evolution of the absorbers, rather than simply due to the expansion
of the Universe.

Finally, the proper attenuation length, A, is related to Xeg by

c
TR ©)

The quantity Aer is sometimes referred to as mean free path.
However, A.s and mean free path are different characterizations
of absorption, and are generally not numerically equal, as we
demonstrate in Appendix A

We continue by briefly reviewing the model of Theuns (2021) for
strong y, absorbers, which we extend to lower values of the column
density to compute the evolution of the CDDF and hence that of the
attenuation length.

Aeff =

2.2 A model for the CDDF and its evolution

The model for strong H1 absorbers by Theuns (2021, hereafter
TT21, see also Erkal 2015) is based on the following two main
approximations:

(i) Gas in haloes is spherically symmetrically distributed around
the halo’s centre of mass with a power-law density profile,
p(R) o< R72.

(ii) This gas is in photoionization equilibrium with the ionising
background, and the neutral fraction can be estimated using ap-
proximate radiative transfer of ionizing photons penetrating radially
inwards.

Spherical symmetry is clearly an approximation and it would
be interesting to investigate how sensitive the model’s predictions
depend on this approximation.

In more detail, we assume the gas density profile to be?

R\’
nu(R) = nyp X (*) ) 7)
R
Here, ny(R) is the hydrogen density by number at distance R from
the centre of the halo, Ry, is the virial radius of that halo, and nyj
is the density at R, (npn = 200 fy (nu) /3, with (ny) the cosmic
mean hydrogen density and f,,,, which is of order unity, the gas
fraction at R}, in units of the cosmic mean). All these variables are
in proper units. Assuming further that this halo is illuminated by
an ionizing background characterized by a photoionization rate 'y,
TT21 performs simplified radiative transfer to compute the neutral
fraction, x = ny,/ny as a function of radius, assuming the gas is

2Where hvg, = 1 Ryd is the binding energy of ;. We discuss the frequency
dependence in more detail in section 4. (From the context it should be clear
when £ is Planck’s constant and when it refers to the Hubble parameter.)
3The model neglects the ~10 per cent effect of helium. It is straightforward
to generate the model described here for a different exponent of the radial
profile, which may be a better fit to profiles measured in simulations, in
particular at higher z2, 6.
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isothermal at a temperature of T = 10* K. Calculating numerically
the optical depth t at radius R due to neutral gas between R and Ry,
yields the factor exp (— t) by which the photoionization rate at R is
suppressed compared to its value at R,. As T increases, the neutral
fraction rises rapidly once T > 1, and the gas transitions from highly
ionized to mostly neutral.

In this paper, we extend TT21’s model in two ways:

(1) we extrapolate the profile of equation (7) to values >Ry,
(2) we no longer assume that the gas is isothermal at a temperature
of T=10*K.

In practice, we extrapolate equation (6) out to R = 8 R;,. This
extrapolation allows us to compute the number of absorbers at
column densities far below that of DLA’s, and we will show that
the predicted number of such absorbers agrees fairly well with
observations. The reason to make changes to the gas temperature
as well is as follows. At lower densities where the gas is highly
ionized, the gas temperature is closer to T ~ 1.5 x 10* K (e.g.
Schaye et al. 2000) at the redshifts of interest (i.e. z = 2 — 6), and
hence we would like to use this more realistic value for 7. Choosing
this higher temperature changes the neutral fraction due to the 7-
dependence of the recombination rate, at higher density it further
changes the neutral fraction due to collisional ionization. To avoid
that our self-shielded gas is affected by collisional ionizations, we
want to keep the temperature of this gas at T = 10* K. We therefore
interpolate 7 from 1.5 x 10* Katt < 1to T =10*K at T > 1.5.
Given that these changes are relatively minor, we continue to refer
to this improved model as ‘TT21°.

We show below that the LLS’s that set A.; are mostly highly
ionized, and so even neglecting any self-shielding has little impact
on our results. Given this, we make an even more simplified
model in this paper which assumes that gas in LLS’s is optically
thin. The motivation for making this approximation is two-fold:
(1) it dramatically simplifies the equations, and (ii) the attenuation
length is nearly identical to that of the more accurate model. The
simpler analytical expressions greatly clarify the relation between
the evolution of X ¢ and that of haloes. The reason for (ii) is that
most of the absorption is due to LLS which occur in highly ionized gas
that is well described by the approximate model. The approximation
does not capture the transition from LLS’s to DLA’s. We will refer to
the more accurate model as “TT21” and to the model that makes the
optically thin approximation as ‘the optically thin” model.

The neutral fraction of the gas with the density profile of equation
(7) can be computed analytically in the optically thin model. This also
allows us to obtain an analytical expression for the column density
along a sight line at impact parameter b,

Ry,

3
Nui(b) = Nuip x <?>

20 , ©  dg
Nuih = — Ry, —
Hih Ty Min 1/0 REY L

5 13
= 10" cm™2 1+z My :
4 100Mg
ap(T)

fgas 2 ( > ( To >1
) (0-6) ap(1.5 x 10°K) 10-2¢-1) - (3)

Here, ap(7) is the case-B recombination coefficient, 7 is the temper-
ature of the gas, and Mj, is the virial mass of the halo. The value of
Nuip assumes that the 1/R? profile of the halo extends to infinity, i.e.
there is a (relatively small) contribution to Ny, from gas outside the
halo.

MNRAS 527, 689-705 (2024)
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The column-density-weighted neutral fraction of the gas along a
sight line is

Jo~ xnmdl 3y, (NH[ )2/3

(o) = S =
f() l’lHIdl 4 NH,h

where x, = agnyn/Io is the neutral fraction at Ry, and [ is the path
length. Forz=3and 'y = 1072 s~!, x, &~ 10~*, which means that (x)
< x,, provided that N, < Ny p (x,/x4)¥? or Ny, S 500 Ny j, taking
X,, = 1072, Comparing to equation (8) then shows that up to columns
of order a few times 10'® cm™2, the absorbing gas is indeed highly
ionized, x < 1072, hence making the optically thin approximation
is likely justified for LLS. We will show later that absorbers with
column densities around this value are the dominant contributors to
the attenuation length. This explains why the optically thin model
gives very similar values for X.¢ to the more detailed model of TT21.

The cross-section o for which a halo of mass M}, yields a column
density higher than a given value of Ny, is

NHI,h>2/3
Ny, ’

C)]

o(> Nuy) = nb*(> Nuy) = & R} x ( (10)
Some previous models of absorbers (e.g. Fumagalli et al. 2013; Erkal
2015) set 0 = feoy T Rﬁ, where f.,v is a dimensionless ‘covering
factor’. In our model, equation (8) shows that even in a spherically
symmetric model, f.,, depends on My, T, and I'y, and rather strongly
on redshift. We* now follow TT21 by defining the function g(M,,
Ny, z) as the number of absorbers with a given column density
per unit co-moving path length dX due to haloes of mass Mj,. TT21
shows that this function is proportional to the derivative of the cross-
section with respect to Ny, times the halo mass function, dn/dlogMy,,

&N
dNy dlog M dX
¢ dn(My,, 2) do (M}, > Nuy, 2)
- " H, dlog M, dNy,
2 dn(My,2) TR2 [ Nuan\*?
- 3Hy dlog M, Nupn ( Nu, ) .

g(My,, Ny, 2) =

(1)

The halo mass function, dn/dlogMy,, is the co-moving number density
of haloes with mass M}, per dex in halo mass. The cross-section o,
on the other hand, is defined in proper units. Therefore the function
g will only evolve if the halo mass function evolves in co-moving
units, or if the absorbers themselves evolve in proper units, or both.
Integrating the function g over halo mass yields the CDDF,

o0

FNuw2) = / ¢(Mp, Ny, 2)dlog M. (12)
log Mcyit(z)

We note that the lower limit of the integral over halo mass in equation
(12) is log Mir(z), where M(z) is the mass below which haloes
lose their gas when it is photoheated by the ionizing background.
Obviously, such haloes will not host absorbers and hence will not
contribute to the CDDF. In this paper, we use the fit by Okamoto,
Gao & Theuns (2008) to evaluate M,(z). It might also be useful
to limit the upper limit of integration in equation (12) since gas
in sufficiently massive haloes is likely to be hot and collisionally
ionized, rather than cold and neutral — and hence our model would
be a poor description of gas in such haloes. Fortunately, such massive
haloes are rare at the high redshifts z > 2 that we are mostly interested
in, and the steep fall off of the mass function at high M, implies that
such haloes contribute negligibly in any case.

4The minus sign is, unfortunately, missing in TT21.
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Table 1. Model parameters as a function of redshift, z. M is the critical
halo mass below which haloes lose their baryons, taken from Okamoto, Gao &
Theuns (2008); f. is the dimensionless variable entering equation (14).

< lOg Merit (MO) fz

0 9.82 0.94
1 9.57 0.98
2 9.35 0.87
3 8.99 0.77
4 8.71 0.65
5 8.42 0.55
6 8.19 0.46

Combining all what we found so far allows us to obtain the
following analytical expression for the CDDF:

-5/3
_ _19 2 J172(2) Nu,
S (N1, z) = 8.67 x 107 "cm F3/132(Z) (1017420m*2

fgas 473 ab,i(]‘) 2/3
: (0-6> ap(L5x 10°K) )~ (13)

where f17,(z) is the dimensionless function

@ 142\
f172(2) = 1.3 4 s
A o0 dn(My, M 8/9
@ (Z)3 E/ (M, 2) el dlogM,,  (14)
cMpc log Merit(2) dlog M, 10"Me

and I'_j, = ['y/(107'2s71); we note that the normalization fi7,(z =
3) = 1 by construction. Equation (13) brings out the scaling
of the CDDF with column density, Ny, IGM temperature, 7, and
photoionization rate, I'_;,, with any additional redshift dependence
encoded by fi7,(z). From now on we will set fy3 = 0.6 and T =
1.5 x 10* K, and drop them from the equations. If required, the
interested reader can always resurrect them by replacing fi7, —
Ffir2 X (fuas/0.6)* x [arn(T)/an(T = 1.5 x 10*K)] .

The explicit redshift dependence of the CDDF is encoded by the
function f}7,(z), which depends on f.(z). The latter dimensionless
quantity is approximately’ the mass in a volume of 1 cMpc? that is in
haloes of mass >M;(z), divided by 10'® M. This quantity depends
on z but is of order unity. The additional redshift dependence for f7,
of oc (1 + z)*3 arises from the z dependence of the relation between
halo mass and virial radius. Values of M. and f, as a function of
redshift are given in Table 1. To compute the integral over mass,
we used the COLOSSUS PYTHON package of Diemer (2018), selecting
the implementation of the fit by Reed et al. (2007) of the halo mass
function, dn/dlog Mj,.

The analytical optically thin CDDF is a power-law in column
density, f o< N};ISB (see also TT21); the value of —5/3 for the
exponent results from the assumed slope of the density profile of
gas in haloes, ny(R) o R~2. The model’s dependence on Ny, agrees
well with that of the observed CDDF which is also approximately a
power law with slope —1.66 + 0.01 at Z = 2.99 and —1.68 % 0.02
at z = 3.48 at column densities $10'® cm~2 (e.g. Kim et al. 2021).
Faucher-Giguere et al. (2009) and Haardt & Madau (2012) provide
more accurate fitting functions for the CDDF towards higher and lower
NHI-

Absorbers with column density Ny; ~ 107> cm~2 and higher are
particularly important for setting the opacity of the IGM to ionising

51t would be that fraction if the exponent of My, in the integral were 1, rather
than 8/9.
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Figure 1. Evolution of — left-hand panel: the CDDF, fiNu), central panel: attenuation length, X, plotted cumulatively as a function of column density,
right-hand panel: proper attenuation length Aesr. Solid lines are from the model by Theuns (2021), with cyan, blue, and red solid lines corresponding to z = 2, 3,
and 6, and the black solid line in the right-hand panel showing the evolution with z. Solid diamonds show the optically thin approximation at those same redshifts,
with the CDDF in the left-hand panel computed using equation (12), the attenuation length computed using equation (5) (central panel), and the corresponding
proper attenuation length computed using equation (2). In the central panel, the solid curve includes all halo masses, the dotted and dashed and dotted—dashed
curves include haloes up to 10'°, 10'!, and 10'> Mg, solar masses. In the right-hand panel, the shaded area corresponds to varying M, (equation (12) — the
critical halo mass below which haloes lose their gas due to photoevaporation — by a factor of 4 around the central value taken from Okamoto, Gao & Theuns
(2008). Both the optically thin expression (squares) and the results of the model of TT21 (solid lines) use the photoionization rate I'g(z) from Haardt & Madau
(2012), cosmological parameters from Planck Collaboration et al. (2016) and the critical mass from Okamoto, Gao & Theuns (2008). Coloured empty symbols
are observations: in the left-hand panel, blue open circles are the data at z ~ 2.5 from Noterdaeme et al. (2012), downward green triangles are the z ~ 2.5 data
from Rudie et al. (2013); the open red circles in the right-hand panel are the values taken from fig. 8 of Becker et al. (2021; see text for further details).

photons, unfortunately, the super-LLS range is also where it is very
difficult to measure the slope of the CDDF. In addition, it is difficult
to provide accurate measurements of the CDDF at higher redshifts.
Given these observational limitations, it is useful to have an analytical
model, such as the one presented here, which predicts the evolution
of the CDDF and which agrees very well with the data where they are
at their most reliable.

The model predicts that over a relatively large range in mass, haloes
contribute about equally to the CDDF per dex in halo mass. The reason
for this is at follows. At fixed Ny, the cross-section o (above which
the column density is higher than Ny,) increases with halo mass
'8 Mf/g, with equation (11) elucidating why: o oc R? NI-ZI/I?h o M,f/g.
We note, however, that the number density of haloes decreases with
halo mass, approximately o< M, %9 on the power-law part of the
Press & Schechter (1974) halo mass function. As a consequence,
all haloes with mass above the critical mass, My, > M., but below
the critical® Press—Schechter mass M,, contribute about equally to the
amplitude of the CDDF, with those more massive than M, contributing
little.

The redshift evolution of the CDDF is a consequence of the
following four effects: (i) the evolution of I"'_;,, (ii) the evolution
of the halo mass function, (iii) the evolution of M., and (iv) the
explicit factor’ (1 + z)*? of equation (14). We examine the impact
of the evolution of the CDDF on that of the attenuation length in the
next section.

2.3 The evolution of the attenuation length

We can now combine equation (5) for X in terms of the CDDF with
equation (14) for the shape and evolution of the CDDF. We convert
from column density, Ny, to optical depth, 7, using T = oy, Nuy,
where oy, is the photoionization cross section at the Lyman limit (hvg,

6Asindn/dlog My o« M, ™" exp(—M;/M.).
TThis factor results from the redshift dependence of the M—Ry, relation.

= 13.6 eV) and evaluate® the integral over optical depth between
zero and infinity, fooo 1793 (1 — exp(—1)) dr = 4.02. This yields
the following expression for the attenuation length®,

23 ()
Xerr(z) = 1.80——2""; (15)
o S172(2)
for which the corresponding proper attenuation length is
¢ Xeir(z i 4 \°
Aeir(2) = 7“()3 — 126 pMpe 22 ( ) : (16)
Hy(1+72) Si72(2) \1+z

The results of our calculations so far are summarized in Fig. 1. The
left-hand panel compares the CDDF as computed using the model
by TT21 (solid lines) to the optically thin approximation of equation
(12) at z =2 (cyan line and cyan diamonds, respectively), z = 3 (blue
line and blue diamonds) and z = 6 (red line and red diamonds). The
full model includes self-shielding which causes the transition from
F(Nip) o N in the highly ionized regime of LLS, to f(Ng;) o
Ny in the neutral DLA regime, with the characteristic ‘knee’ between
the two power laws around Nyj; = 10?° cm~2 caused by the transition
from ionized to neutral absorbers (Zheng & Miralda-Escudé 2002a;
Erkal 2015; Theuns 2021). The optically thin model has the same
slope and amplitude as the full model in the LLS regime. Errors on the
observed data are comparable or smaller than the symbols, except
for the z ~ 6 data point in the right-hand panel which we’ll return to
later.

8Clearly it is incorrect to integrate from r = 0 to t — 0o: we have not verified
whether the optically thin model reproduces the CDDF in the regime of small
7 that corresponds to the Lyman o forest, and the approximate expression for
the CDDF is only valid for highly ionized absorbers and hence not applicable
in the regime of DLA’s. Fortunately, the contribution of very low-7 absorbers
to X is negligible, and we will show that the contribution of high—7 absorbers
depends on their number density but not on 7.

9Where we remind the reader that we have dropped the dependence on Seas
and T.
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Figure 2. Similar to Fig. 1, with the left-hand panel showing the evolution of the CDDF, and the right-hand panel the evolution of the proper attenuation length,
but this time also illustrating parameter dependencies. The default choice of parameters used in Fig. 1 is shown in blue and red in panel (a) for redshift z = 3
and 6, and black in panel (b). We then computed the CDDF at z = 6 but kept one or more parameters fixed at their value at z = 3. The orange dotted line, purple
dashed line, and cyan dot-dashed line are the CDDF at z = 6, computed using the z = 3 value of Mcyit, I'g, and both Mj; and I'g, respectively. This demonstrates
that both parameters affect the evolution of the CDDF and when both are kept constant, there is hardly any remaining evolution left. Panel (b) shows the effect of
these parameters on the evolution of Acfr, Where Mrit, ['o, and both M are kept fixed at their z = 3 value for the orange dotted line, purple dashed line, and
cyan dotted—dashed line. When both parameters are kept constant, ¢ follows closely the evolution o (1 + z)~3, shown as an olive dashed line. With M, and
I'op kept constant, the remaining evolution in Aefr is mostly due to cosmological expansion, hence Aegr o< (1 + 2)73. See the main the text for further discussion.

The central panel plots the co-moving attenuation length Xg(<
Ny,) due to absorbers with columnn density less than Ny, in the
TT21 model, for z = 3 and z = 6 (solid lines). The main contribution
to Xt is from absorbers in the relatively small column-density range
of 107 ecm™2 < Ny, < 10" cm™2% at z = 6, and 10" cm™2 < Ny,
< 10" cm™2 at z = 3. The different line styles show the extent
to which haloes of a given mass contribute, with dotted, dashed,
and dotted—dashed lines showing the contribution due to haloes with
mass less than 10'°, 10", and 10'> M. Haloes with mass >10'°
Mg, contribute little to X at z = 6, but this increases to haloes with
mass >10'" Mg by z = 3. The two diamonds show the value of
X.fr(z) obtained from the optically thin model using equation (15),
with z = 3 and z = 6 shown as a blue and a red diamond. Clearly,
this approximation captures the results of the more detailed model
of TT21 very well.

The right-hand panel of Fig. 1 shows the evolution of the proper
attenuation length. The solid black line is the evolution computed
using the model of TT21. The grey shading shows the effect of
varying the value of M by factors 1/4 to 4, in order to illustrate
how sensitive A is to this parameter. The black diamonds show
the optically thin approximation, which captures the evolution of
et very well. The solid red circles are the data points plotted in
fig. 8 of Becker et al. (2021). The data are compiled from Prochaska,
Worseck & O’Meara (2009), Fumagalli et al. (2013), O’Meara et al.
(2013), Worseck et al. (2014), and Lusso et al. (2018), with the
highest z point from Becker et al. (2021).

The model reproduces the observations well over the range z =
2 — 5, and this is one of the main results of this paper. As a note
of caution, we note that the value taken for fy, affects A, yet our
choice of taking fg,s = 0.6 is not particularly well motivated. We
suspect that this parameter attempts to account for the fact that the
neutral gas distribution in real absorbers is not spherically symmetric
(see e.g. the analysis by Erkal 2015). TT21 use fg,s = 0.5 (rather than
0.6) in their model for DLA’s, and hence a value of fg,; ~ 0.6 fits the
CDDF all the way from LLS to DLA’s at z = 3, as can be seen in the
left-hand panel of the figure. Strikingly, the model does not show
the dramatic decline in A.g suggested by the data from Becker et al.
(2021) from z = 5 — 6: we will return to this in Section 3.

MNRAS 527, 689-705 (2024)

The gold-dashed line in the right-hand panel of Fig. 1 shows
the scaling oc (1 + z)73. Both data and model evolve faster than
this, implying that the absorbers either evolve in co-moving number
density or proper size, or both. We examine the cause of the enhanced
evolution in the model in more detail in Fig. 2 as follows: we redo the
calculations but we keep the value of M (z) and I'_1,(z) constant
and equal to their values at z = 3: this is the cyan curve in both
panels. The left-hand panel shows that in this case, the z = 6 CDDF is
almost identical to the z = 3 CDDF. We note that the main remaining
difference is the evolution of the halo mass function, but that clearly
has relatively little effect on the CDDF. The reason is that the halo
mass function evolves relatively little below M,, and haloes above
M, where the halo function does evolve rapidly contribute little to
Acff-

The right-hand panel of Fig. 2 shows the effect of M and I'_j»
separately. Both the evolution of M and of I'_ 5 contribute'” to the
evolution of the attenuation length, causing Xq(z) to increase with
decreasing z. When these parameters are kept constant, X.¢ evolves
much less, and A.g evolves mostly due to cosmological expansion,
At ¢ (1 4+ z)73. This can be seen by the fact that the cyan line — for
which M and of I'_}, both remain constant — falls almost on top
of the A o (1 +2)73 scaling. The right-hand panel also shows that
M and 'y, contribute about equally to the evolution of X.i. We
plot the evolution of X.(z) for the case of a constant amplitude of
the ionization rate (I'_1»(z) = 1) in Fig. 3.

Summarizing: the attenuation length X.; evolves due to the
evolution of M and I'_y,. M. is the critical mass below which
haloes lose or cannot accrete gas. The evolution in My is itself
mostly caused by the fact that haloes cannot accrete gas if their virial
temperature is lower than the temperature of the gas they attempt to
accrete — and the virial temperature of a halo of given mass depends
on z — hence the evolution. At lower z, M. is higher, and so a larger
fraction of haloes no longer host the absorbers that limit X, and
hence X.¢ increases. About equally important to the evolution of X
is that I'_,(z) increases with decreasing z (from z = 6 — 2), making

10S¢ee also Cain et al. (2023).
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Figure 3. Evolution of the co-moving attenuation length, Xefr, as given by
equation (15) for the case of a constant amplitude of the ionization rate,
I'_12(z) = 1. The fit shown by the dashed red line is log Xefr = 1.38 4
24.2/(1 + ), which fits the model to better than 20 per cent.

the gas in the absorbers more highly ionized, which again increases
X.te- Finally, we note that the co-moving number density of absorbers
is proportional to the halo mass function, which, of course, increases
with decreasing z. So, despite that the number density of absorber
hosts increases, the net absorption they produce decreases and hence
X.sr increases with cosmic time. We recall that the number density of
haloes on the power-law tail of the Press—Schechter mass function
does not actually evolve strongly.

The values of X.i and Ag in the current model are set to a large
extent by the number density of absorbers with Ny; ~ 10'8 cm=2. Itis
possible to directly count the number density of such strong absorbers
in QSO spectra. We compare these predictions to observations in
Appendix B. Because absorbers are associated with haloes in the
current model, it is straightforward to infer the clustering of absorbers
from the clustering of their host haloes. This is what we’ll do next.

3 CLUSTERING OF ABSORBERS

In this section, we compute the bias (b) of absorbers as a function
of their column density, finding that b is nearly independent of Ny;.
Somewhat surprisingly, we find that the bias of DLA’s with Ny, ~
10?3 cm~2 is actually lower than that of LLS’s and sub-LLS’s. We
use the bias-Ny; relation to investigate the impact of bias on A
in Section 3.2, showing that the bias of quasars likely impacts the
measured values of A significantly above z ~ 5. In Section 3.3, we
use these findings to compute the probability distribution of 7.

3.1 The bias of absorbers as a function of Ny,

The bias of absorbers with a given hydrogen column density at

redshift z follows from that of their host haloes as (TT21)

L(:Mcm(z) leg Mh {th (Z) X g(NHI’ Mln Z)}
f|oo )leth {g(NHh My, 2)}

0g Merit(z

by, (2) = , a7

Lyman-limit systems 695

and the bias of absorbers with Ny, > 10'72 cm—2 is

IIO;Z dlog Ny flzZMcm(z) dlog My, F1(My, Nuy, 2)

S5, dlog Ny fioo - dlog My, Fo(My,, Ny, 2)
F1(M},, Nuy, 2) = by, (2) Nu1 g(Nuy, My, 2)
Fo(My,, Nui, 2) = Nui g(Nui, My, 2). (18)

bris(z) =

Here, by, () is the bias of a halo of virial mass M,, at redshift z, and
column densities are assumed to be expressed in units of cm™2.

The bias computed from equation (17) for absorbers with a given
column density is plotted in panel (c) of Fig. 4, with colours indicating
redshift. Below column densities of ~10'83 ¢cm~2, absorber bias is
nearly independent of column density. At first somewhat surprising,
we also find that the bias then decreases with increasing column
density, until it reaches a minimum value for Nyj; ~ 1023 cm™2, after
which the bias increases rapidly with increasing column density.

These trends can be understood by examining panel (a) of Fig. 4,
where we plot the function g(M,, Ny, z) defined in equation (11) at
a representative redshift'! z = 3. Below a column density of ~10'83
cm™2, the relative contribution of haloes as a function of mass varies
little with column density because g o« Ny 15 B, independently of halo
mass. Since all haloes contribute about equally to the number density
of lines with a given Ny, it follows that the bias is independent of
NHI-

However, the nature of absorbers changes from mostly ionized to
mostly neutral at higher column densities, Nyg; ~ 10'° cm™2. This
transition imprints the ’knee’-shaped feature in g and also in the
CDDF (Zheng & Miralda-Escudé 2002b; Erkal 2015; Theuns 2021).
Lower mass haloes transition from ionized to neutral at lower values
of Ny, compared to higher mass haloes, as can be seen in panel (a) of
Fig. 4. This results in a decrease in the absorber bias because more
of these absorbers are associated with lower mass haloes — which
themselves are less biased. Once Ny, is high enough so that most
absorbers have made the transition from highly ionized to neutral,
the bias increases rapidly with increasing Ny;. This is because, in
this regime, higher column densities are increasingly associated with
more massive — and hence more highly biased — haloes — as is also
apparent from panel (a) of Fig. 4.

The numerical value of the bias and its evolution with redshift
can be understood by also examining panel (b) in Fig. 4, where we
plot the halo bias, by, (z), computed using COLOSSUS (Diemer 2018).
Panel (a) shows that haloes in the mass range 10°~10"' M, contribute
about equally to the CDDF at column densities Ny; < 10133 cm=2 at
z = 3, resulting in a weighted bias of such absorbers of ~1.8, a bit
less than that of haloes of mass 10'' M. With increasing redshift,
the contribution of lower mass haloes increases compared to that of
more massive haloes at a given value of Ny, — which would lower the
bias. However, the bias of these same lower mass haloes increases
rapidly with redshift. The net result of these opposing trends is an
increase in the bias of absorbers with increasing z, as seen in panel
(c).

Current measurements of the DLA bias yield values that range
from b = 1 — 3 (e.g. Alonso et al. 2018; Pérez-Rafols et al. 2018,
2023). Given the strong dependence of b on log Ny, and redshift
in the model, a fair comparison between model and data requires
careful modelling of the observational selection which we have not
performed yet.

Finally, panel (c) also shows the bias of LLS’s computed using
equation (18) as filled black dots. With the function g decreasing

"I'The trends with halo mass are similar at other redshifts.
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Figure 4. Bias of absorption systems in the model of Theuns (2021), as computed from equation (17). Panel (a): contribution of haloes of a given mass to the
CDDF at redshift z = 3, as given by equation (11). The somewhat artificial shape around Ny, ~ 10" ¢cm™2 is due to our interpolation of the temperature of the
gas from T'= 15000 K when optically thin to T = 10* K for > 1. Panel (b): bias of haloes as a function of their mass, by, » at different redshifts, as computed
with COLOSSUS (Diemer 2018). Panel (c): Bias for lines of a given column density, by, from equation (17), for different redshifts; black circles show the bias
for Lyman-limit systems, by 1 s from equation (18), for those same redshifts; these points are plotted at Ny; = 10'72 cm™2. The bias of LLS’s (absorbers with
Ne > 10172 em™2) is very close to that of lines with a column density of 1072 ¢cm~2. Coloured lines in panel (a) correspond to different halo masses, and in
panels (b) and (c) correspond to different redshifts, as per the legends. See text for discussion.

rapidly with increasing Ny, it is not surprising that the bias of LLS’s
is close to that of absorbers with Ny, = 1072 cm~2. In the next
section, we use the bias of absorbers to calculate the attenuation
length of photons that themselves emanate from a biased region.

3.2 The impact of bias on the attenuation length

Up to now, we calculated the attenuation length A in the general
IGM. However, in observations, Aeg is measured from QSO spectra.
Given that QsO’s may well predominantly be hosted by massive
haloes that are biased, particularly at higher redshifts, observed
values of Aeg are potentially biased. We can use the absorber bias
determined in the previous section to examine the importance of both
sources of bias (QSO and absorber) on the measured value of A.g as
follows.

Consider absorbers with column density Ny, located at a proper
distance between / and / + d/ from a source (typically a QSO). The
contribution of such absorbers to the effective optical depth at the
Lyman limit towards that source is on average

(dzer) = (N) [1 — exp(—7)]

dx

(N) = f(Nuy) deﬁdl, (19)
according to equation (3), where (V) is the average number of these
absorbers and T = o,y is the optical depth of a single absorber
at the Lyman limit; dX/d/ is given by equation (2). In the absence
of clustering, fiVy,) is independent of /, and hence so is the average
number of absorbers, (V).

With bias of both absorbers and source accounted for, (N) changes

tO]Z

dx
(N) = f(Nup) {1+ bsbu,, §D} dNu, Pt (20)

The factor {1+ bsby,, £(I)} accounts for linear bias between
absorbers and source; £(/) is the correlation function of the mass.

I2This assumes the linear halo bias model of Mo, van den Bosch & White
(2010).
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In the parlance of halo bias, we note that this accounts for the ‘two-
halo’ term, i.e. the clustering of the haloes hosting absorber and
source, rather than the fact that the host halo of the source may itself
host an ‘associated’ absorber (which would be the ‘one-halo’ term,
due to absorbers within the host galaxy of the QS0, associated with its
own circumgalactic medium, its satellite galaxies or with Magellanic
Stream-like features, say).

We now take advantage of the findings in the previous section that
the bias of an absorber, by, is approximately independent of column
density for the column densities below 10'° cm~? that dominate
the attenuation. Therefore, it is a good approximation to replace
bny, — bLis. We can now compute the attenuation length when
accounting for bias, Xy, in terms of its unbiased value, X, by
using equation (5),

X, eft
/ [1 + bsbuisE(X)]1dX = Xe. @)
0

Since byrs > 1 and bg and £ can be significantly larger than 1,
Xp.eft < Xest: since there are (possibly many) more absorbers close
to the QSO per unit dX than in the general IGM, the attenuation length
measured in the spectra of a QSO is generally shorter than its value
in the general IGM.

An easy way to account for biasing is to define the dimensionless
variable dY by

dY = [1+bsbus §(X)] dX, (22)

with boundary condition'? ¥ = 0 for X = 0. The statistical properties
of the effective optical depth out to X depends on Y, which we
dub ‘biased absorption length’. Using Y, rather than X, allows us
to include the effects of the clustering of absorbers with sources
of ionizing photons easily. The average number of absorbers that
contribute to dt.s in a narrow interval of biased absorption length
[Y, Y 4 dY] from a source is then simply

(N(Y)) = f(Nu)dNy, dY, (23)

13¢ is usually expressed as a function of co-moving distance, I(1 + z), but we
find it more convenient to express & as a function of X.
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Figure 5. Proper attenuation length A as a function of redshift, z. The
dashed black line is the unbiased model repeated from Fig. 1 (where it was
labelled ‘model’). The other curves include the effects of the absorber and
source bias from equation (21). The bias of Lyman-limit systems at redshift z
is computed as in Section 3.1; the bias of the host halo of the QSO is computed
for various halo masses My, as indicated in the legend. Red symbols repeat
the observational data from Fig. 1, with the z = 6 data point additionally
displaying the uncertainty in the measured value of Aes taken from Becker
et al. (2021).

and looks identical to the case where bias is neglected — except for
the change of variables X — Y.

We used the COLOSSUS PYTHON package of Diemer (2018) to
compute the correlation function & at several redshifts, and then
evaluated equation (21) to compute Xp, o and Ay efr, the attenuation
lengths at the Lyman limit when accounting for bias; the results
are shown in Fig. 5. As illustrative examples, we plot Ay When
the bias of the source equals that of halos of mass 102, 10'27,
and 10" Mgy (cyan, dark blue and olive line) with the bias of
the absorbers as calculated in the previous section. In contrast, the
unbiased case repeated from Fig. 1 is shown as a dashed black line.
Mver decreases with increasing source bias (increasing halo mass),
as expected. Around z ~ 3, even haloes of mass 10'>° M, are
not that strongly biased to make Ay differ significantly from Aeg.
However, by for such haloes increases rapidly with increasing z (see
e.g. the middle panel of Fig. 4), and at z = 6, Ap e <K Aegr. QSO
host halo masses of ~10'2 M, (dark blue line) bring the computed
value of the attenuation length in better agreement with the data, and
also reproduces the rapid decreases in the measured value of Ap st
towards z = 6. Values of M;, ~ 10'>° M, are expected for the host
halo masses of z ~ 6 QSO’s (see de Beer et al. 2023; Zhang et al.
2023 and references therein, see also Bower et al. 2017 for a more
general physical model for what sets the halo mass of bright AGN).

The sudden decrease in Ape from z = 5 — 6 in our model is
due to the rapid increase in bias of the host halo of the QSO in
which Ay is measured (itself a consequence of the host halo mass
being on the exponential part of halo mass function). Several recent
papers instead investigate the possibility that this drop is because
this redshift range probes the tail-end of reionization (e.g. D’ Aloisio
et al. 2020; Keating et al. 2020; Cain et al. 2021; Garaldi et al. 2022;
Gaikwad et al. 2023). If this were correct, the drop might be due
to a rapid change in the emissivity of ionizing photons and/or in
the clumping factor of the IGM. Which interpretation is correct? We

Lyman-limit systems 697

first note that the number density of QS0’s with 1450 A magnitude
brighter than —26 (i.e. comparable to those of the XQR-30 sample
presented by Bosman et al. 2022 and used by Gaikwad et al. 2023) —
is ~ 10~ cMpc*mag~! at z ~ 6 (Onoue et al. 2017). This implies
that even the largest simulation volume investigated in these papers
(of order 160 cMpc?) contains on average only ~4 x 107 Qs0’s
as luminous (and hence plausibly as biased) as those observed. This
illustrates the challenge of performing simulations that resolve the
physically small absorbers in a simulation that is large enough to
also contain the kind of background sources against which we detect
them observationally. It also means that these papers cannot test the
impact of bias discussed in this paper. Obviously, even if bias plays
an important role, it is still possible that this redshift range probes
the tail-end of reionization: the two explanations are not mutually
exclusive.

3.3 The PDF of the biased attenuation length

We calculated the mean value of the biased attenuation length in
the spectrum of a QSO in the previous section as an integral of
f(Ny,), where the CDDF is the mean number of absorbers with a
given column density Ny, per dX. However, a given sight line may
have slightly more or slightly fewer lines than that mean number. As
a consequence, the effective optical depth of a given sight line with a
given extent AX may be larger or smaller than the ensemble average.
To quantify this, we compute in this section P(zex|X) — the PDF of
the effective optical depth for a sight line with a given co-moving
path length X. Similarly, we defined and computed the co-moving
attenuation length as that value of X for which t.y = 1. Accounting
for variations in the number of absorbers along different sight lines,
we can compute P(te = 1, X) — the probability that T = 1 for
a given absorption path length. These PDF’s may be useful when
interpreting observations that are based on a relatively small number
of independent sight lines. It is straightforward to account for bias in
these calculations by using dY rather than dX, but we think that our
analysis is easier to follow when we perform the calculation in terms
of dX.

We will assume that the absorbers are Poisson-distributed, so that
the probability P(N) for finding N absorbers in a region where the
mean number is (N) is given by

N
P = Bviv) = LS, (24)
where P(n|uw) is the Poisson distribution with mean w. In terms of
the contribution of such absorbers to the effective optical depth, the
PDF of dt. follows from that of N by a change of variables,

Pdterr) = P(N{N)) (25)

1 —exp(—1)°
with mean (N) (1 — exp(—7)) and dispersion (N) (1 — exp(—1))>.
The total effective optical depth is obtained by integrating dt.s
over all column densities, but there is no simple relation between
the Poisson statistics of the lines and the PDF of t.4. This is because
a linear combination of Poisson distributed variables is not Poisson
distributed (or indeed has any other simple PDF'*). We can generate
Poisson-distributed variables for all N’s (i.e. absorbers with a given
small range in column density) and sum . in bins of dVy; and dX,
and compute the PDF of 7. numerically. It is also possible to derive

14See e.g. Bohm & Zech (2014) for a discussion of such ‘Compound Poisson
distributions’.
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Figure 6. Statistics of the effective optical depth, T, and of the co-moving attenuation length, in terms of the (biased) absorption path length Y defined in
equation (22). Solid lines are numerical results, obtained by generating Poisson-distributed absorbers numerically; dashed lines use the analytical approximation
described in the text. Left-hand panel: Probability distribution of 7 for the values Y indicated in the legend. The analytical expression is equation (C3). Central
panel: fraction of paths that reach teg > 1 within a length Y. The analytical expression is equation (C5). Right-hand panel: probability that a path with length Y
reaches 7. > 1; the mean attenuation length is Y = 1.8. See text for further discussion.

an approximate analytical expression for the PDF. The approximation
consists of assuming that absorbers with column below some value
(we use 10'72 cm~2) are sufficiently numerous that we can apply the
central limit theorem and take them to be Gaussian distributed. This
allows the calculation of the PDF for ‘low’ t absorbers. The stronger
absorbers then all have transmission exp (— t) &~ 0, and we can then
also calculate their PDF. Summing the contribution of low and high
T absorbers yields the net PDF, see Appendix C for full details.

The results are illustrated in Fig. 6, where we plot them in terms
of Y rather than X, with the change of variables accounting for the
bias of absorbers and source. For illustrative purposes we assume a
CDDF of the form of equation (13),

1017'20111_2 ) 5/3

Vo (26)

F(Nup) = 1.27 x 10 ¥cm? (
for which Y. = 1.8. We draw Poisson distributed absorption lines
from this CDDF in narrow bins of Ny, which allow us to compute 7.
for a given biased absorption distance Y. We can use this to compute
the fraction of paths that reach 7. > 1 within a given value of Y,
and the fraction of paths that reach 7. > 1 in a narrow interval
dY around Y. These are shown as solid lines in panels (a)—(c). The
corresponding analytical expressions, equations (C3), (C5), and (C6)
derived in Appendix C are plotted with dashed lines.

When Y is small — the case Y = 1.8 (which is equal to the biased
attenuation length) in panel (a) — the PDF of 7.¢ has two clear maxima,
which correspond to O or 1 strong absorbers contributing to . (there
are further oscillations visible, due to 2 or more strong absorbers).
Absorbers with T < 10'72 cm ™= are sufficiently rare when Y is small
that approximating their PDF as Gaussian is not very accurate. This
is the reason that the analytical model differs noticeably from the
numerical calculation for small values of Y. As Y increases, such
absorbers become more common and the approximation improves.

The analytical model reproduces rather well the fraction of paths
that reach 7. > 1 within a given path length Y, as shown in panel
(b). The derivative of this function with respect to Y is the probability
that a given path reaches T > 1 in a small interval dY around Y,
and is plotted in panel (c). The peak of the analytical approximation
(red dot) is a bit narrower than that of the numerical result (blue dot),
but the location of the maxima is very close. Both functions have
a long tail to large values of Y, with the analytical approximation
reproducing the numerical result well.
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Note that the attenuation length in the case shown is Y = 1.8 -
yet less than 30 per cent of sight lines with path length Y = Y reach
Teff = 1 because the distribution of P (. = 1, Y) around the mean
is quite wide. This is of course because absorption is dominated by
the rare, high column density absorbers.

4 A DIRECT MEASURE OF THE ATTENUATION
LENGTH

An intervening absorber with column Ny; > 10'72 cm~2 imprints an

absorption edge in the spectrum of a quasar at wavelengths A < Ay, &
912.1 A in the rest frame of the absorber. Because the photoionization
cross-section falls oc A3, the optical depth due to such an absorber
decreases at lower L. However, a second intervening absorber at
lower redshift may introduce another absorption edge, which will
increase the optical depth again. The total optical depth!® below Ay,
in the rest frame of the quasar is therefore a balance between the fall
in 7 of any individual LLS and the increase in 7 due to the increase
in the number of intervening LLS.

In this section, we use our expression for the evolution of the CDDF
to compute T (A, 24) — the effective optical depth as a function of
rest wavelength, A, for quasars with redshift z,. The shape of this
curve depends on A.g, and Prochaska, Worseck & O’Meara (2009)
stacked QSO spectra in bins of z, to measure A.;(z). They argued that
this method has the advantage that it determines Aeg without the need
to measure the CDDF in the regime of LLS’s where it is especially hard
to determine the column density of these saturated lines. Here, we
will show that the actual shape of t.g also depends on the CDDF, so
inferring A still requires making assumptions on the shape of the
CDDF in the regime of LLS’s.

Prochaska, Worseck & O’Meara (2009) model tegt(Arest, 24) as'®

2 (1+2.)%?% [ -3/2 A 9/2
Tefr(hrest, 2g) = ,L‘f)lz ( rest) 1— ( resl) Q@7
9 Xeir(z)Q " \ Mo A

15 Absorption may also be due to other lines of hydrogen or indeed lines from
other elements. We will ignore these in this section.

16This is equation (6) of Prochaska, Worseck & O’Meara (2009), setting their
redshift-dependent opacity K912(z') = K912(z4) = Aeff’l(zq), the proper at-
tenuation length at redshift z,, and then converting Aeft(z4) — Xeft-
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Here, Ay is the wavelength in the rest frame of the quasar, i.e.
the observed wavelength is Arq(1 + z4). To derive this expression,
Prochaska, Worseck & O’Meara (2009) assume that the effective
opacity is of the form

dfeff(z/7 )\resl) ~

' - Aresi(1 4+ 20)
k912(Z', Zgs Arest) = ——————— X Ko12(24) {‘“‘7

An(1 + Zq)

3
dl } » (28)

where they argue that the wavelength dependence is approximate,
and further assume that 91,(z’) is approximately constant over the
small wavelength range studied, so that it can be evaluated at 7 —
z4- The attenuation length at the mean redshift of the sample of QSO’s
is determined by fitting the data to this model. For wavelengths close
to A, we find

(1 +2,)? s
TeftOhrest S Ains 2g) X ————5 (1= L (29)
Xeff(Zq)Qm Ath

Our own, slightly different, derivation goes as follows. The
effective optical depth measured by an observer at redshift z, at
wavelength A, in a stack of QSO spectra with emission redshift z,, is

2q
Teit (Ao, Zo» Zq) =/ dz/'[1 4 bs brisé(Z, z4)]

zs
o dx )

></ dNHIFf(NHhZ)I:l_exp(_f)]’ (30)
0 Z

for A, < Aq(1 + z4)/(1 + z,) and zero otherwise. To see why, notice
that the inner integral sums the contribution to Ty over column
density whereas the outer integral sums over all intervening absorbers
that cause bound-free absorption at wavelength A,. For wavelengths
close to Ay, in the rest frame of the quasar, only absorbers with
redshift close to z, contribute to the integral over z, because the
photon’s wavelength will be redshifted below the Lyman limit when
z is too low. For wavelengths shorter than Ay, in the rest frame of the
observer, all absorbers with z, < z < z, contribute to the absorption.
The lower limit to the integral over 7’ is therefore

Ao
Zg =max |z, — (1 +2z,) — 1. (€29)
Ath

The quantity 7 in equation (30) is the optical depth (and not the
effective optical depth) measured by the observer (at redshift z,) at
wavelength A, due to an absorber with column density Ny, at redshift
7' (with z, < 7 < z4), T = 0 x Ny,. The photoionization cross
section, o, is a function of the ratio of the Lyman-limit wavelength
A A~ 912.1 A, over the wavelength of the photon in the rest frame of
the absorber. The latter wavelength is A, x (1 4 z,)/(1 + z’). We will
write the wavelength dependence of o as (e.g. Verner et al. 1996)

th

-3
o) = oy X (%) =op X s(%), (32)

with the function s encoding the wavelength dependence. Substitut-
ing this in the expression for t then yields

An(1 + Z’))

A’()(] + Z()) (33)

T(Aos Zo» Nu1, 2) = 0 X Ny X 8 <

We now change the integration variable in the inner integral of
equation (30) from Ny, — 7, using equation (33). This allows us to
write equation (30) in terms of X.¢ evaluated at Ay, and redshift 7’ as

( ) /zqd dX/d
T s 20y Zg) = Z
et tor e zs Xeff(zl)

/ 2/3
x [s (7’\“‘(1 + Z))} . (34)
)‘-0 (1 + Zo)

[1 + bs buisé (2, Zq)]
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We can compare this (more general) expression to the special case
considered by Prochaska, Worseck & O’Meara (2009) by setting
z, = 0 and A = A, (since we are the observer), and making the
same four approximations that resulted in equation (29): (i) replace
Xeir(2') = Xeir(zg) (i.e. assume that the absorption distance does
not change appreciably over the small redshift interval), (ii) take the
cross-section s(x) = x°, (iii) neglect clustering of absorbers (i.e. take
bs x biLs = 0), and finally (iv) obtain an expression for sufficiently
long wavelengths so that we can take zg = z,,. This yields

2 A 3/2
rff()‘-:)‘m 2o =0,z ) N ———— 7, (7)
’ T Xen(zg)ul® \an

3 172
Xel—|——— , (35
{ Lm(l +zq)} }

The limit of this expression for A — Aq(l + z,) is identical to
equation (29), that is, our alternative expression equation (34) is
identical to that of Prochaska, Worseck & O’Meara (2009) close to
the quasar (when neglecting bias). However, they differ further away
from the QSO. The reason for the difference becomes clear when
looking at equation (3) of Prochaska, Worseck & O’Meara (2009),
where it is assumed that the ‘opacity’ x o< f(Ny;) exp(—T) o A3,
whereas in our case the scaling is o 5?3 o A2 in the case of s(x) o x°.
We note that (i) the dependence on wavelength depends on the slope
of the assumed CDDF (which is 5/3 in our model), and (ii) the scaling
s(x) o< x° is only approximately valid, and it would be better to use a
more accurate expression for the photoionization cross section (e.g.
Verner et al. 1996). A final difference in our derivation compared to
that of Prochaska, Worseck & O’Meara (2009) is that we assume that
Xt 1s approximately constant, which is not the same as assuming
that Ko12(2") o (1 4+ 2')3/ X (z') is constant over the relevant redshift
interval (i.e. opacity is not a co-moving quantity).

To test our expression, we generate mock absorption spectra as
follows. Choosing a value for z, and assuming that the CDDF is of the
form f(Ny,) = fy x (10"7% cm™2/Ny,)*? for some amplitude f;), we
generate the optical depth as a function of wavelength of the form

Tz = Y Y N(Nu, Otk Nuy, 2), (36)

7=2912 Nyi=0

where 7 is the optical depth at wavelength A due to an absorber
with column density Ny, at redshift z, taken from equation (33), and
N(Nyi, z) is the Poisson distributed number of lines with CDDF f{iVy,).
The mean of this Poisson distribution is (dX/dz) f(Nu;) ANy, Az,
where ANy, and Az are the steps in the sums over column density
and redshift in equation (36). For a given realisation of t(2, z), we
can compute the transmission, exp (—7), and averaging over many
realization the effective optical depth, (exp (—7)) = exp (—7f). The
results of this exercise are summarized in Fig. 7, which shows that
within our assumed approximations, equation (35) (solid red line)
reproduces Tep(Awes) from the simulation very well, with equation
(35) (dashed yellow line) capturing correctly the gradient of this
curve close to Ay. The original expression equation (29) from
Prochaska, Worseck & O’Meara (2009) (yellow dotted line) falls
a little below the simulated results (blue line).

Finally, we note that biasing and the QSO’s proximity effect (i.e.
the fact that the QSO itself emits ionising radiation) will likely play
an increasingly important role at higher z. We could account for the
proximity effect by replacing I' — I'g + I'¢(z) in the expression
for X of equation (5), where I'y(z) is the photoionization rate at
redshift z due to the QSO itself.

MNRAS 527, 689-705 (2024)
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Figure 7. Mock spectra and effective optical depths as a function of rest-
wavelength, Arest = A/(1 + z4). Top panel: Lyman-limit optical depth for 10
mock spectra generated using Poisson-distributed absorption lines. Central
panel: corresponding transmission exp (—t) for these spectra (black thin
lines) and mean transmission for 200 realizations (blue solid line). The
wavy nature of exp (—tesr) reflects the relatively large spectrum-to-spectrum
variations, a consequence of the relatively low number density of strong
absorbers that dominate the optical depth. Lower panel: effective optical
depth for the simulated spectra (blue thin solid line), the approximation from
Prochaska, Worseck & O’Meara (2009) (yellow dotted line labelled ‘P09’),
equation (30), and the approximation in this paper (red line), equation (34)
with bg = 0. Red and green thin solid lines in panels (a) and (b) show the
simulation estimates using 100 (rather than 200) realizations. Numerically,
we set z; = 6, Xefr = 0.607 is kept constant, integrated the CDDF from
log Ny[em~2] = 14 — 22 in steps of 0.025 dex, and used integration steps
of 0.05 A in Apes:.

4.1 The transition to a transparent Universe

To interpret the general expression for 7. of equation (34) quali-
tatively, it is useful to make the following approximations, (i) use
the high-z expression for the Hubble constant, (ii) assume that the
hydrogen photoionization cross section has wavelength dependence
o o A3, (iii) take the absorption distance X.(z) in the expression to
be constant at its value for z = z,, and (iv) neglect clustering (bs x
bis — 0). This yields the following analytical expressions

2 Arest(1429) 177
Teff()\reslv Zoazq) ~ |: = : :|

Xetr(zg) Sl Ah
)\rest ) 1/2
x |1 : 37
|: ( Ath
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Figure 8. Effective optical depth, Tef, as a function of wavelength, Ares,
measured in the rest-frame of the QSO, as given by equations (37) and (38). The
red line connecting filled circles and the blue line connecting filled diamonds
correspond to QSO redshifts of z, = 2.5 and 3.5, the observer’s redshifts are
0, 1, and 2 for solid, dotted, and dotted—dashed lines. The location and value
where 7.¢ reaches a maximum, given by equation (39) are indicated by a
large filled triangle. The Lyman limit rest wavelength is indicated by a small
vertical line.

for An(1 + zo)/(1 + Zq) =< Arest < A, and

2 M1 +2) 17
Teff(}tres[, Zos Zq) o 7 |: Test q :|
Xeir(24)2m Ah
1 1 1/2
X 1— ( + Zo) ’ (38)
(U +2,)72 s

for Arest < Am(1 + 2,)/(1 + z,,), where as before, A is the photon’s
wavelength in the rest frame of the QSO. The first expression has a
maximum optical depth, Tefmax Which occurs at a rest-wavelength
Amax, given by

3 2
}“resl, max — Z Aﬂlh

2
g (42" (39)

Teff,max ~> 0.105 x Xor (o2
eff(Zg)Sém

The motivation for computing these expressions for observers at
different redshifts — and not just for z, = 0 —is that Teg(Arest, Zo» Zg)
can be used to compute the photoionization rate at redshift z, due to
a QSO at higher z.

The resulting run of optical depth with wavelength is plotted in
Fig. 8 for two QSO redshifts (z, = 2.5 and 3.5) and three observer
redshifts (z, = 0, 1 and 2). The shape of these curves can be under-
stood as follows. Photons with rest wavelength close to Ay, can only
be absorbed by absorbers close to the QSO before they redshift below
the Lyman limit of intervening neutral gas. Therefore the redshift path
where an absorber affects the photon lengthens with decreasing Aeg:
this is why . initially increases with decreasing wavelength. There
are two reasons why t.s eventually starts to decrease again with
decreasing A . First, once a photon’s wavelength becomes smaller
than )y, in the rest frame of the observer, zg — z,, the redshift
range that contains absorbers, ceases to lengthen. The optical depth
then drops because the photoionization cross section drops, and T is
given by equation (38) rather than equation (37). This sudden change
is illustrated by the dotted and dotted—dashed lines that branch away
from the solid line in the Figure. Secondly, t.s starts to decrease
once Ay < (3/4)*A, even when T is described by equation (37).

This occurs because the tension between t.¢ increasing due to the
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Figure 9. Same as Fig. 8 but for a Qso at z;, = 2.5 and an observer at z, = 0.
The solid blue line is obtained by numerically integrating equation (34). The
other line styles are successive approximations: the dotted—dashed orange
line takes the photoionization cross-section to be o« A3 rather than the more
accurate expression from Verner et al. (1996), the dotted green line in addition
takes Xefr(z) constant at its value at z = z4, and the dashed red line in addition
assumes an EdS universe, H(z) = Ho @4/ (1 + 2)¥/2. The solid black line
is the analytical expression from equations (37) and (38) which makes the
same approximations as the dashed red line; it has been off-set vertically by
a factor 1.01 to avoid complete overlap with that line.

increasing redshift path (due to the factor 1 — (Arg/Am)"?) and
Tf decreasing due to the decreasing photoionization cross-section
(the factor (Areq/A)>?) is eventually decided in favour of the latter
process. We note that the decrease in T, in this case, is not due to the
decrease in the co-moving number of absorbers at lower redshifts,
since in the approximation that leads to these equations we have kept
X constant.

Although equations (37)—(38) are useful for describing the quali-
tative behaviour of 7., they are not particularly accurate because the
approximations made in deriving them from equation (34) are not
very accurate, as we illustrate in Fig. 9. Of the various approximations
made, we see that accounting for the evolution of X.¢ has the largest
impact. Indeed, if we allow X to increase with decreasing z using
equation (15), the value of 7, is reduced by about 20 per cent for
this particular choice of z,,.

Finally, we note that Ty reaches a maximum value of ~1 for
a QSO at redshift z, ~ 2.5. This means that below a redshift of
2.5, most QSO’s contribute to ionizing neutral hydrogen atoms at all
lower z, i.e. the Universe becomes ‘transparent’ to ionizing radiation.
Indeed, unless the atoms are in a self-shielded region, intervening
absorbers typically decrease the ionizing flux by less than a factor
of 1/e. Madau, Haardt & Rees (1999) referred to this epoch as
‘breakthrough’. Their value of the breakthrough redshift of ~1.6
is lower than our value of 2.5. The reason is that they assumed that
X o (1 + z)~%/? with a normalization set by the CDDF at z = 3;
they also use a different slope for the CDDF.

5 SUMMARY AND CONCLUSIONS

We presented an analytical model for the CDDF of hydrogen absorp-
tion lines along a sight line piercing the intergalactic medium (IGM;
equation 14). The model assumes that cosmic gas in dark matter
haloes follows a power-law distribution in density, p(R) o< R~2, and
is photoionized by an evolving radiation background with amplitude
Io(z) =T _1, x 10712571, as computed by Haardt & Madau (2012).
The resulting CDDF reproduces well the observed CDDF at redshift z
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~ 3 for hydrogen column densities log Nyi[em™2] in the range [14
— 16], and [20 — 22], where the CDDF is well-measured (Fig. 1).
The analytical expression for the CDDF contains one free parameter,
Jfeas» which is of order unity, and some extra parameters such as
the temperature of the gas for which we use observed values. The
evolution of the model’s CDDF is due to (i) the evolution of I"_1,(z),
(i) the evolution of M, which is the halo mass below which haloes
lose their gas due to photoheating by the radiation background, (iii)
the dependence of the virial temperature of a halo of given mass on
z, and finally, and to a lesser extent, (iv) the evolution of the halo
mass function. Our model builds on that of Theuns (2021), as well
as earlier models by Miralda-Escudé, Haehnelt & Rees (2000) and
Muioz et al. (2016).

We then use the model to compute the evolution of the attenuation
length of ionizing photons, Ag (see equation 16). The evolution of
Aefr 1S dominated by cosmological expansion, while the co-moving
evolution is due to the evolution of the CDDF. We find that the model’s
evolution of . agrees very well with the observed evolution in the
redshiftrange z =2 — 5, but not for z > 5 where the data evolve much
faster than the model (Fig. 1). Even though the model reproduces the
value of A at z ~ 3 very well, it underestimates the number of
absorption lines with log Nyy;(cm™2) > 17.5 by about a factor of 2
(see Fig. B1).

Since absorption lines occur when a sight line intersects a halo
in our model, we can relate the clustering of haloes to that of the
corresponding absorbers. The bias of Lyman-limit systems (LLS’s)
is ~1.5 at z = 2, increasing to b ~ 2.6 at z = 6 (Fig. 4). At first
surprising, we find that the bias of damped Lyman « systems (DLA’S)
with log Ny;(cm™2) = 20.3 is lower than that of LLS. The reason is
that self-shielding — which causes the transition from highly ionized
LLS’s to mostly neutral DLA’s — sets in at lower column density in
lower mass haloes — and such haloes are less biased. At even higher
columns, the bias of DLA’s increases rapidly with increasing Ny;.

We account for clustering between absorbers and quasars, assum-
ing that quasars inhabit dark matter haloes with masses M}, ~ 10'>-13
Mg (Fig. 5), and reach the following conclusions. Bias has little
effect on the value of A inferred from quasar spectra below z ~ 4.
However, the rapid increase in quasar host bias above this redshift
leads to a corresponding rapid decrease in the value of Ay inferred
from analysing quasar spectra, and this brings the model’s evolution
of At into line with the observations, also at z ~ 6. It is important to
realize that this finding has potential implications when studying the
tail-end of reionization at z ~ 6: the value of Ay measured in quasar
spectra is generally less (by almost an order of magnitude) than the
value of A in the IGM. This makes it harder for quasars to ionize
the IGM, since they are surrounded by many more absorbers than
galaxies: I' o Aegr so that galaxies contribute more to the ionizing
background than quasars, even in the case that both population had
the same emissivity.'” We use our model to calculate the statistics
of the attenuation length for rays of a given length in Section 3.3
(see Fig. 6). We find that the distribution of mean transmissions for
rays with a given length of the order of A. has a long tail to very
large values of 7., a consequence of the fact that the absorption is
dominated by relatively strong absorbers which are rare.

In the final section, Section 4, we use the model to compute the
mean transmission, 7(Are, Z4), due to Lyman-limit absorption (where

"Note that the bias we compute is the two-halo term: the absorbers we
consider inhabit a different halo from the source. There may be an additional
effect from associated absorbers. We also note that we have not accounted
for other proximity effects.

MNRAS 527, 689-705 (2024)
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Arest is wavelength in the QSO’s rest frame and z,, the redshift of the
quasar in which 7'is measured). We relate 7'to the amplitude and slope
of the CDDF around column densities ~10'72 cm~2, and examine how
itis affected by various commonly made simplifications. Our general
expression, equation (34), reduces to that derived by Prochaska,
Worseck & O’Meara (2009) for wavelengths close to 912 A in the rest
frame of the quasar, but differs at shorter wavelengths. We find that
the minimum transmission 7 stays above e~ (i.e. the corresponding
effective optical depth remains below 1) on average when z, < 2.5,
which is, therefore, the earliest redshift below which the Universe
becomes transparent to ionizing photons.

This paper shows that a simple model for gas in haloes accurately
predicts the evolution of the CDDF and that of the associated
attenuation length. The model also allows us to account for bias
and clustering. Of course, our analytical model is not as accurate
nor as realistic as numerical simulations, but it illustrates well the
dominant properties of haloes and the IGM that give rise to the
observables. Several aspects of the model could be further improved.
These include accounting for scatter in the gas properties for haloes
of a given mass and deviations from spherical symmetry, and a more
accurate treatment of the temperature of the absorbing gas. The model
assumes that the density profile of the gas'® is p(R) oc R~2, and it
would be worthwhile examining why this assumption works so well.
In the model, the majority of strong absorbers occur in the outskirts of
dark matter haloes, with some smaller fractions occurring outside the
virial radius of the halo. This is consistent with the observation that
such absorbers also correlate strongly with the presence of nearby
galaxies (Lofthouse et al. 2023). This also implies that the sources
of the ionizing photons inhabit the same dark matter haloes as the
sinks. It would be worth exploring whether this correlation can be
accounted for (see e.g. Muifioz et al. 2016), rather than combining a
model for the absorbers with the Haardt & Madau (2012) model for
the ionizing background as we did here.
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APPENDIX A: ATTENUATION LENGTH
VERSUS MEAN FREE PATH

We relate the mean free path to the attenuation length due to a
distribution of absorbers as follows. Consider a Poisson distribution
of absorbers with mean number density per unit distance p, all of
which have the same optical depth, t;. The probability of having
more than N’ such absorbers in a distance L, is given by

v

P> N|L)=1-P(N =0,1.2,---N'|L)=1- 3 P(N'|NuL).
N=0

(A1)

where P(x|y) = y* exp(—y)/x! is the Poisson distribution. The
probability of reaching N’ absorbers after travelling a distance
between L and L + dL is the derivative of this cumulative distribution
with respect to L, which is the Gamma distribution

t exp(—uL) (uLyN' !

P = (N —1)!

(A2)

This is a well-known result in statistics.

We define the free path of a photon to be the distance it travelled
before encountering an optical depth > 1. In our case, this
corresponds to encountering more than N' = 1/t; absorbers. The
PDF of the free path is therefore given by equation (A2), provided we
set N' = 1/t;. The mean value of the free path — i.e. the mean free
path — is then

'+ DI 1
@ =Dt G

A= (L) = /Oo P(L)dL = (A3)
0
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On the other hand, the effective optical depth encountered after
travelling a distance L, is

Teff(L) = p L (1 — exp(—1)). (A4)

The attenuation length, A — the distance travelled to reach T = 1
— is therefore

1

(1 —exp(=11))’
Comparing equation (A3) to equation (AS5) shows that the attenuation
length equals the mean free path in the limit of t; <« 1, but for t; =
0.5, for example, A = 2/p but e = 2.5/14.

Consider now the case of 7; — oo. In that limit, the free path is
the distance travelled up to the first absorber, therefore the PDF of L
becomes

Aett = (AS)

1 1
P(L) = —P@O|pnL) = —exp(—p L), (A6)
w u

so that the mean free path is A = (L) = 1 ~!. The mean transmission
after a distance L is the fraction of paths that did not encounter
an absorber, exp(—teg(L)) = P(0|nL). Therefore, the attenuation
length is Acf = = ! — and hence equals the mean free path.

In conclusion: when absorption is dominated by very strong
absorbers (the case of 7; — ©0) or in the case of a uniform IGM
(the case of 7; — 0), mean free path and attenuation length have
the same numerical value. However, if a significant fraction of the
absorption is due to absorbers with optical depth of order unity, then
the attenuation length is larger than the mean free path. The latter
case applies to Lyman-limit absorption in the IGM. The attenuation
length is often and erroneously referred to as mean free path in the
literature — which is unfortunate.

APPENDIX B: THE EVOLUTION OF THE
NUMBER DENSITY OF LLS

Crighton et al. (2019) review different methods for identifying strong
H1 absorbers in QSO spectra. They then present results of a survey
for such absorbers in a homogeneous data set of 153 QSO spectra at
redshift z ~ 5 from the Giant Gemini GMOS survey (Worseck et al.
2014). Combining values from the literature with their own analysis,
they present the evolution of the number density of strong absorbers
in terms of the co-moving quantity /(X), which is the mean number
density of absorbers (with column density larger than some value)
per unit co-moving path length, X. They count absorbers with Ny,
> 10'73 cm~? because these can be identified confidently given the
limited signal-to-noise ratio of their data.

Given that /(X) is a number density of absorbers, we prefer to use
the notation dN/dX, rather than /(X), since /(X) is easily mistaken for
a length. Without further ado, we find the following relation between
dN/dX = [(X) and the CDDF, where on the second line we substitute
the approximate relation of equation (13) for the CDDF,

f172(2)
r 3/132(2)
This relation follows from either integrating the CDDF of equation
(12) from Ny; = 10'73 cm™2 — oo or directly from equation (10).
The latter route makes it clearer why dN/dX does not depend on the
shape of the CDDF for Ny, > 1073 cm~2.

Fig. Bl compares the evolution predicted by the model to the
observations plotted in fig. 9 of Crighton et al. (2019). The data are
compiled from Prochaska, O’Meara & Worseck (2010), Ribaudo,
Lehner & Howk (2011), O’Meara et al. (2013), and Fumagalli

dN o0
W= / F(Ni) N, ~ 0.2 ®B1)
dXx 1017-5em=2
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Figure B1. Evolution of the mean number density of absorbers with optical
depth T > 2. The black solid line is the evolution predicted by the model of
TT21, the grey shading corresponds to varying the value of the parameter Mt
by factors between 1/4 and 4. The black solid diamonds are the approximate
evolution of the model from equation (B1) using the power law of the CDDF
from equation (12). Red symbols with error bars are the observed data plotted
in fig. 9 of Crighton et al. (2019). Model and cosmological parameters are as
in Fig. 1.

et al. (2013), in addition to data from Crighton et al. (2019). We
first note that the optically thin approximation (black diamonds)
reproduces almost exactly TT21’s model that includes self-shielding
(black curve). Both underestimate the observed number density (red
diamonds) by a factor ~2 yet reproduce the observed evolution
very well. It is somewhat surprising that the model described so
far reproduces A well for z < 5 as seen in Fig. 1 (right-hand panel)
yet it underestimates the number of LLS’s with Nyj; > 10'7° cm~2 by
a factor 2. The middle panel of Fig. 1 shows why this is: these higher
column density LLS actually contribute little to Aeg.

We venture that scatter in the density distribution around haloes
may be the main culprit for the underestimate in dV/dX in the model.
Indeed, these higher column density systems have by construction
an optical depth to ionizing photons of around unity. Consequently,
a small increase in total column density may result in an exponential
increase in neutral column density due to the onset of self-shielding.
The impact of such scatter on the CDDF is substantial: a 0.2 dex
Gaussian scatter in log Ny, results in a factor of 2 increase in dV/dX
— enough to bring the model in good agreement with the data.
Importantly, this exponential dependence on column density mostly
affects absorbers around the knee of the CDDF, where the absorbers
transition from optically thin to optically thick.

APPENDIX C: STATISTICS OF tgpr

In this Appendix, we derive an approximate analytical expression
for the PDF of 7, as discussed in Section 3.3. Our derivation goes
as follows. At sufficiently low Ny, the mean number of lines that
contribute to T may be large enough that the central limit theorem
is applicable. In that case, the lines are approximately Gaussian
distributed (with mean (N) and dispersion (N)). Integrating over
dNy,, and integrating over dX then corresponds to summing over
independently distributed Gaussian variables. Therefore, the sum is

MNRAS 527, 689-705 (2024)

also Gaussian distributed, with mean the sum of the means, and
dispersion the sum of the dispersions. We will denote the value of
Tefr due to these low column-density lines by e, 10w, and its PDF is
therefore

1 (Te Jow T PL)2
Po(Ttionlits 0) = ¢ exp(——tk )

2mwo?)l/2 202

NH 1,low
w(X) = X/ JS(Nu)( — exp(—1))dNu,
0

NHI,low
o*(X) =X / F(Nu)(1 — exp(—1))*dNy,.  (C1)
0

We added a subscript ‘G’ as a reminder that we assume Gaussian
statistics.

We can account for the higher column density absorbers as follows.
Let’s take Ny jow = 102 cm™2. In that case, the weighting factor
(1 — exp(— 1)) = 1 for those lines with Ny, > Ny jow. The
PDF due to these higher column density lines is now a sum of
independently distributed Poisson variables, hence also a Poisson
distributed variable.!® Denoting the value of T due to these high
column-density lines by Tefpign, We find that its PDF is given by

Pp(Teti ign) = P(N|Np)

Na(X) = X / dNu, ©2)

MNH1low

with subscript ‘P’ as a reminder that we assume Poisson statistics.
The total effective optical depth is Tcftjow + Tefinigh, With PDF

oo
Prer(X) = Y P(N|Np)Pg(Tet — Nl o), (C3)
N=0
with u, o, and Np all proportional to X. The mean of this distribution
is the sum of the means of T fjow and Tegt high,

1
(Terr(X32)) = X/O S(Nuy) [1 = exp(=7)] dNu,

+X/ f(NHI)dNHI
1

~ 4.2Xf17'2(2), 4
Oth
where we used the power-law approximation to the CDDF of equation
(13). The numerical value also shows the limitation of setting 1 —
exp (— ) — 1 for the high column density absorbers. If we had not
made that approximation, then (t.(X;z)) = 4.02 X f172(z)/0w-
We can now compute the PDF of the co-moving attenuation length
— i.e. the PDF of X where 7 = 1 — as follows. The fraction of sight
lines that reach 7. > 1 for a given value of X is

P(resr > 11X) = / P(Terr| X)dess
|

1 o0
3 > P(NINp) {1 £ Erf(x))
N=0
1—-N—pu
Here, Erf denotes the error function, and the upper and lower signs
applies to the case where x is negative or positive. The fraction of

19The reason this works in this approximation is that the weights of each
individual Poisson variable are now equal, | —exp(— 7) — 1, sonow itisa
sum rather than a more general linear combination of Poisson variables.
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paths that reach 7.y between X and X + dX follows by taking the
derivative with respect to X,

dP(Tegr > 11X)

off = 1’ X =
P(Test ) ax
> N N
=y { (7 - 1) P(N|Np) {1 + Erf(Fx)} —
Np X
N=0
exp(—x?) [ x Ke
+ [P(N|NP)7]TI/2 x T 202x ) |-
(C6)
© The Author(s) 2023.
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This is the approximate analytical expression for the probability
distribution of the attenuation length that we set out to obtain.
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