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Abstract

We present fast and simple-to-implement measures of the entanglement of protein tertiary

structures which are appropriate for highly flexible structure comparison. These are per-

formed using the SKMT algorithm, a novel method of smoothing the Cα backbone to achieve

a minimal complexity curve representation of the manner in which the protein’s secondary

structure elements fold to form its tertiary structure. Its subsequent complexity is character-

ised using measures based on the writhe and crossing number quantities heavily utilised in

DNA topology studies, and which have shown promising results when applied to proteins

recently. The SKMT smoothing is used to derive empirical bounds on a protein’s entangle-

ment relative to its number of secondary structure elements. We show that large scale heli-

cal geometries dominantly account for the maximum growth in entanglement of protein

monomers, and further that this large scale helical geometry is present in a large array of

proteins, consistent across a number of different protein structure types and sequences. We

also show how these bounds can be used to constrain the search space of protein structure

prediction from small angle x-ray scattering experiments, a method highly suited to deter-

mining the likely structure of proteins in solution where crystal structure or machine learning

based predictions often fail to match experimental data. Finally we develop a structural com-

parison metric based on the SKMT smoothing which is used in one specific case to demon-

strate significant structural similarity between Rossmann fold and TIM Barrel proteins, a link

which is potentially significant as attempts to engineer the latter have in the past produced

the former. We provide the SWRITHE interactive python notebook to calculate these

metrics.

Author summary

There is much interest in the development of quantitative methods to compare different

protein structures or identify common substructures across protein families. As our

understanding of the flexible and dynamic nature of protein structures advances it will be

necessary to develop methods for comparing protein structure which accounts for this
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flexibility. This can be achieved by assessing and comparing the underlying shape of pro-

tein structures which are not obfuscated by the small scale (primary and secondary) com-

plexity of the structure, and instead focus on their large scale (tertiary) entanglement.

Here we present such a novel set of quantitative measures by smoothing and simplifying

the amino-acid backbone into a minimal representation of its true flexibility. We demon-

strate these measures of a protein chain’s self-entanglement have a number of critical

properties which make them potentially impactful. First, by studying the distribution of

entanglement across a wide sample of proteins, we show that there exists a minimum

expected amount (a lower bound) of entanglement given the protein’s length. This bound

is shown to be useful in ensuring realistic predictions from experimental structural deter-

mination methods. Second, using fundamental properties of this entanglement measure,

we identify the presence of helical structures across various length scales in proteins,

which provide stability to the structure. Third, we show they can be used to highlight sig-

nificant structural similarity between two families of proteins currently classed as distinct,

but which have been shown to share a surprising experimental link. Finally, we provide an

interactive python notebook to compute these measures for a given protein.

Introduction

The sequence of amino acids which form a protein is its primary structure and it is always

identifiable. Researchers often visualise a protein’s global structure via its Cα backbone curve:

the discrete 3-dimensional curve whose points represent the central α-carbon atom of each

amino acid residue. Secondary structure is the term given to the shape of local segments of the

protein’s backbone curve. The two most clearly defined types of secondary structure are α-

helices and β-strands, both of which are helical and relatively uniform across proteins [1].

Other secondary structures we collectively refer to as linkers, which can have a much higher

degree of variation across proteins. The variation of these linker sections allows the protein to

form complex global entanglements, referred to as the tertiary structure, which determine the

functionality of the protein [2].

The largest known experimentally determined tertiary structure database is the Protein

Data Bank (PDB [3]) which currently contains over 200,000 entries. There has been much

work aimed towards classification of the tertiary structures within this database, for example

the CATH [4], SCOP [5], and Dali [6] classifications. The families identified in these classifica-

tions give greater insight into the correlation between tertiary structure and function. One

such example is the TIM-barrel, which is a conserved fold shown to have a consistent binding

site across its family [7].

The advent of machine learning (ML) methods such as AlphaFold [8] and RosettaFold [9]

has opened the possibility of routinely predicting tertiary structure, and expanding the collec-

tive database beyond the existing experimentally determined structures. The progress of these

methods is staggering, in the most recent data release AlphaFold2 was used to predict the

structure of over 200 million amino acid sequences deposited in UNIPROT. ML methods are

trained to identify the relationship between primary sequence and tertiary structure, using the

experimentally determined structures available in the PDB. However, when in their natural

environment (rather than in crystal structure formation) proteins often exhibit significant flex-

ibility, adopt multiple differing configurations or, in the extreme, display intrinsic disorder. As

a result, ML methods based on a static picture of protein structure can struggle with proteins

that are far more flexible and dynamic in nature. In addition, where a sequence is not well
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characterised in the existing data bank the ML prediction will be significantly uncertain, and

in many cases, meaningless. With this in mind the aim of this study is to provide metrics to

compare and characterise tertiary structures in a manner which would be less affected by small

or even medium scale motion, or the exact geometry of the local (secondary) structure ele-

ments of the protein.

An example of the similarity we are looking to characterise is shown in Fig 1A and 1B. The

trefoil curve Fig 1A is knotted in the sense that it must be cut in order to deform it into a circle.

The curve shown in Fig 1B can obtained by locally distorting Fig 1A continuously without the

curve crossing itself, i.e without any such cutting. Thus in some sense they are folded in a simi-

lar fashion, but this would not be captured by the standard distance based metrics used for

rigid structure comparison. A more pertinent example with real protein structures is shown in

Fig 1C and 1D where the smoothed Cα backbones of two proteins which have differing CATH

classifications, a TIM barrel Fig 1C and a Rossmann fold Fig 1D, can be seen to bear a striking

similarity up to such a distortion. They have clear helically coiled domains with the same num-

ber of coils in each domain and similar relative orientations of these domains. The curves

shown are smoothed using the SMKT algorithm which we introduce in this study, but for now

it suffices to say this smoothing removes the local secondary structure geometry, and in doing

so reveals the similarity of these global folds.

The specific example in Fig 1C and 1D is more than just a curiosity. The results of [10] indi-

cate a very close link between these two domains on the primary sequence, or even evolution-

ary level. In [10] the authors used directed evolution techniques in attempts to design a TIM

barrel structure, but found instead a Rossmann fold-like structure was produced. When testing

these results against the contemporary state of the art computational techniques, none were

able to predict the produced structure and most agreed that the sequence should indeed pro-

duce a TIM-barrel conformation. Both TIM barrels and Rossmann folds have a β sandwich

structure (anti-parallel strand helices), whose cross-bonds provide stability to the structure.

The helical sections of the two figures result from this β-sandwich motif. In this study we aim

Fig 1. Depictions of the notion of structural similarity we seek to quantify in this study. In both examples the

topological similarity would be missed by distanced based metrics.

https://doi.org/10.1371/journal.pcbi.1011248.g001
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to show this large scale helical conformation is highly prevalent in a wide variety of protein

structures, often of a similar scale across a variety of CATH families. We believe identifying

similar size helical structures could provide insight into de-novo design methods.

The most commonly used methods of quantitative structural comparison are based on root

mean squared comparisons [13]. Two structures are rotated such that the sum of the mini-

mum Euclidean distance between sequentially aligned points is minimised, the so-called root-

mean-squared distance (RMSD). Very often the comparison is between similar subsections,

for example one can compare hinging proteins this way. However, alignment based distance

metrics, despite their many merits, are not suited to the types of similarity we are aiming to

quantify in this study. To highlight this, we apply some of the readily available alignment

methods to the proteins in Fig 1C and 1D. The results in Table 1 show that these metrics miss

the similarity that is visually apparent. The DALI method [6] is an alignment based method

which seeks the largest common substructure between the two proteins. TM-align [11] uses an

RMSD based metric which is less sensitive to local variations than pure RMSD, called TM-

score [14]. The jFATCAT method [12] uses a more flexible approach to alignment, allowing a

certain number of twists in the backbone to align residues. That none of these methods find a

strong similarity between our example proteins is not a surprise. The relative alignment of

their β-strands differs greatly, leading to their distinct CATH classification. However, the simi-

larity of their helical subsections, including the number of helical turns, is clear to see.

Another class of shape classification metrics, topological metrics, are derived from aspects

of Knot theory [15, 16]. The main advantage of such metrics is that they are invariant to rota-

tions and translations and therefore do not require alignment. A second advantage that is cru-

cial to the aim of this study is that they classify structures up to isotopy, i.e. they measure two

structures as similar if they can be distorted into each other without having to construct the

distortion. This is exactly the notion of flexible similarity outlined above. Many topological

metrics proposed in the literature have been designed to detect knotting in proteins, e.g. [17–

19]. However, this approach loses some information about the specific arrangement of second-

ary structures, which is vital for our purposes. For example, they are not designed to detect the

similar helical structure seen in Fig 1C and 1D. The aim of this study is to develop measures

that are topological in nature, and able to easily detect helical structures. So we turn to a related

set of quantities based on the writhe, a quantity which arose from the study of DNA-like rib-

bon topology and which is commonly used as a measure of DNA supercoiling [20–23].

The writhe and its use characterising proteins

The formal mathematical definition of the writhe of a three-dimensional curve x with tangent

vector T is given by the Gauss linking integral [24]

Wr ¼
1

4p

Z

x

Z

x
TðsÞ � TðtÞ �

xðsÞ � xðtÞ
kxðsÞ � xðtÞk3

ds dt: ð1Þ

Table 1. Examples of distance alignment based metrics applied to the two proteins in Fig 1. For reference an

RMSD� 2Å and TM-score> 0.5 would be considered significantly similar.

Method RMSD (Å) TM-score

DALI [6] 5.5 -

TM-align [11] 5.14 0.35

jFATCAT [12] 8.48 0.25

https://doi.org/10.1371/journal.pcbi.1011248.t001
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In the protein context x would represent the protein’s Cα backbone. As proteins are discrete

curves whose points represent the Cα atoms, we use the discrete analogue of this double inte-

gral given in [25].

For an intuitive understanding of the writhe calculation, consider the oriented trefoil curve

seen in Fig 2A. Viewed from this direction, one can count four negative crossings, with sign

given according to Fig 2C and 2D. The signed sum of these crossings is therefore −4, repre-

senting an oriented measure of the amount the curve wraps around itself. In Fig 2B we see the

same curve from a different direction, with now only three crossings visible, again with nega-

tive sign. It can be shown [26] that Eq 1 is the average of the number of crossings taken over all

possible directions (it is approximately 3.52 for this example).

The first application of the writhe to protein structures of which we are aware is in [27],

where it is used to confirm the correct threading of the N-terminus of the bovine pancreatic

trypsin inhibitor protein in simulation. This study utilised the key property that the writhe

jumps by multiples of 2 when a curve section crosses through itself to detect valid pathways.

This makes it an excellent metric for detecting significant changes in knotting/entanglement

which would be missed by RMSD based metrics (as clearly argued in [28]). Writhe-based met-

rics have been developed further in [28, 29], where generalisations of the writhe integral are

used to effectively classify proteins in agreement with the CATH database to a high degree of

accuracy. The generalisations are the so called higher order Gauss integrals. If the integrand

density of Eq 1 is written as w(s, t), then the higher order variants are of the form:

Z

x

Z

x
� � �

Z

x
wðs1; t1Þwðs2; t2Þ . . .wðsn; tnÞds1dt1ds2dt2 . . . dsndtn: ð2Þ

Unlike the standard writhe these quantities can be somewhat difficult to interpret. Intui-

tively it can be thought of as the number of times the directions of labelled pairs of crossings,

say (s1, t1) (s2, t2), coincide (see [29] for a more detailed discussion). The authors use up to 30

of these integrals to create a distance metric for comparing structures. In [30] a comparison

metric based on the writhe value of subsets of the proteins of fixed lengths was combined with

a number of other quantities to create a comparison metric against the SCOP classification,

again with good results. In [31] a more rapid metric was created from the same Gaussian inte-

grals as in the other two studies, once again shown to compare favourably to the SCOP bench-

mark set. The measures introduced in [29] were recently developed further in [32] where the

Gaussian-integral approach was applied to subsections (fragments) of the protein, via a finger-

printing technique, using the entanglement of sub-chains to identify rare conformations in

proteins. We highlight two aspects of these works that motivate developing our own approach.

First, despite their evident success, there is an element of difficulty in interpreting these higher

order writhe integrals intuitively. Second, we want to identify structural similarities which

would be missed by standard classification methods, such as the Rossmann fold/TIM-barrel

example discussed above. Our approach is instead to apply an appropriate smoothing (SKMT

Fig 2. Intuitive interpretation of the writhe; an average of the sum of signed crossings over all projections.

https://doi.org/10.1371/journal.pcbi.1011248.g002
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method) such that the simpler first order (standard) writhe measure can yield critical informa-

tion about a protein’s tertiary fold.

The final aspect of the writhe literature we build upon in this is study is whether there are

limits on the amount of entanglement of protein backbones as measured by the writhe. A theo-

retical upper bound on the writhe of smooth thick knots is presented in [33]:

jWrðKÞj �
1

4

L
R

� �4=3

; ð3Þ

where L is the knot K’s length and R its radial thickness. The basic idea being that longer knot-

ted curves (relative to their width) can achieve more complex configurations and hence higher

entanglement (writhe), which is why the bound grows super-linearly. Given proteins have dis-

tinct end points (i.e are not mathematically knots) and are discrete (i.e not smooth) curves,

this bound will not strictly apply to such curves. In addition the notion of radius is difficult to

define for proteins (although some attempts have been made in the past [34]). That being said

we will show this bound has some clear relationship to protein structures, but that for suffi-

ciently large proteins, the extra length does not produce more complex configurations and

instead the writhe tends to grow linearly. In related work the relationship between the writhe

and length of uniform random walks was studied in [35], and then applied to proteins in [36].

However, since the local geometry of the protein’s backbone is tightly constrained by the

Ramachandran steric constraints [1], we may expect that a random walk cannot capture the

systematic entanglement of a protein’s backbone, a supposition we investigate in this study.

The novelty of our work in this field relates to a very important characteristic of proteins:

secondary structure elements are highly rigid on the global scale, which significantly constrains

the potential for creating complex global entanglement [37]. The SKMT backbone algorithm

we develop explicitly aims to capture the relative rigidity of different sections of the protein

through simplified curves. We then show writhe measures applied to these curves better char-

acterise the relationship between the protein’s secondary structure and its permissible entan-

glement than other possible choices.

Aims

To summarise, in this study we present a method for smoothing and simplifying the amino-

acid backbone into a minimal representation of its true flexibility (the SKMT method). We

then derive writhe based metrics for this smoothed backbone curve which can be used for the

following aims:

1. To class structures as similar if they can be distorted into each other without significantly

changing the topology of the fold, e.g. preserving knotting type or large scale helical

structure.

2. To pick up potentially meaningful structural similarities missed by the standard

classifications.

3. To provide clear bounds on the amount of entanglement in protein structures relative to

their secondary structure.

As discussed above, the first aim has been addressed in previous studies [28–31], however,

aims 2 and 3 provide constraints to the metrics not met in previous studies. The third aim was

partly developed with a concrete application in mind: to ensure tertiary structure searches for

relatively low-resolution experimental techniques such as small angle biological x-ray scatter-

ing can be restricted to plausible structures.

PLOS COMPUTATIONAL BIOLOGY The SKMT Algorithm: A method for assessing and comparing underlying protein entanglement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011248 November 27, 2023 6 / 27

https://doi.org/10.1371/journal.pcbi.1011248


In the methods section we discuss the two main quantities we calculate, the writhe and

absolute crossing number. We also discuss the motivation and method for our smoothing of

the Cα backbone whilst preserving its fundamental topology: the SKMT method. In the results

section we first show both quantities have highly restrictive empirical bounds across a large

(> 10000) sample of structures which differ significantly at the primary sequence level. We

then show how helical super-structures and knotting are the main ways of developing system-

atic complexity in structures. We demonstrate there is a very common super-helical scale in

tertiary structures shared across a variety of CATH domains, and that the introductory exam-

ple similarity of the TIM barrel and Rossmann fold is indicative of a consistent similarity

between these two fold types. We then show how the unsigned writhe bound can be used to

restrict expansive structural search methods for BioSAXS data. Alongside this study we pro-

vide the SWRITHE package in the form of an ipython notebook which can be found at

(https://github.com/arronelab/SWRITHE).

Methods

First we introduce the basic quantities calculated by the SWRITHE notebook.

The writhe

We consider a discrete curve C of length j, characterised by a set of three dimensional coordi-

nates xk i.e. C ¼ fxkg
j
k¼1

. We calculate the writhe of a subset of the curve Cin ¼ fxkg
n
k¼i through

the following formula:

WrðCinÞ ¼ 2
Xn

l¼iþ1

Xn

m¼lþ1

Olm

4p
; ð4Þ

where Olm is a signed spherical area representing the contribution to Eq 1 from the crossing of

edges connecting the pairs of points (l − 1, l) and (m, m − 1). There are various formulae forO,

we use method (1a) of [38]. We calculate spherical areas since crossings can be represented as

points on the unit sphere and the writhe represents a signed area covered on this sphere (it can

include multiple full coverings of the sphere), so the areas represent signed crossing densities

[38]. The function calculate_writheFP calculates WrðCinÞ for all 1� i� j − 5, i + 5� n
� j for a given curve C (we need at least 5 points for a meaningful writhe calculation).

The average crossing number

For bounds on entanglement in particular it is useful to count the number of crossings without

sign as a positive definite measure of complexity of the fold, we call this the average crossing

number (acn):

acnðCinÞ ¼ 2
Xn

l¼iþ1

Xn

m¼lþ1

jOlmj

4p
; ð5Þ

The bound in [35] relates to this quantity. The function calculate_writheFP also cal-

culates acnðCinÞ for all 1� i� j − 5, i + 5� n� j for a given curve C.

Smoothing by secondary structure: The SKMT algorithm

The rationale. We are aiming for a measure of the entanglement of protein backbones

which does not include the secondary structure’s inherent helical nature. This aim can be

achieved by smoothing or simplifying the backbone curve representation. One suggestion
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from the literature has been to sample the full Cα backbone curve of the protein evenly every n
amino acids, as in [31]. A second suggestion has been to minimise the curvature of the

smoothed backbone, as in [39]. However, we also seek a measure which has a sensible growth

in complexity with respect to length of the representative curve. We argue the way to achieve

this second aim is to represent each secondary structure element (SSE) as a minimal number

of edges of a discrete curve.

Indeed, we aim to demonstrate that it is not the number of amino acids composing the mol-

ecule which determine the potential complexity of the structure’s fold, rather the number of

distinct SSEs it has, and in particular the number of linker sections. In the case of α-helices

and β-strands, when their locally helical structure is ignored their contribution to the overall

tertiary fold is essentially that of a single inflexible edge. It is the more structurally variable

linker sections which allow the structure to fold, so the greater the number of these sections

there are, the higher the potential global complexity. In the SKMT algorithm we represent the

helical secondary structures with a single edge. We would like to argue the same for the more

structurally varied linker sections. Their main functionality is to link the other SSEs (as in β
sheets) and often the specific geometry of the linker is less important than the orientation of its

end points. However, there are occasionally linkers which coil around other SSEs leading to

knotting (or slip knotting and the other various rare but complex entanglements found in

some proteins [40]). Replacing them by a straight edge will miss this essential entanglement.

In this case, we adapt the KMT algorithm [41] to reduce the linker to its minimal representa-

tion which preserves any such knotting, as illustrated in Fig 3.

The SKMT method. We assume as input the coordinates of the Cα backbone from the

PDB file and a secondary structure assignment, usually from PSIPRED [42]. We then con-

struct a new discrete curve from the full Cα backbone as follows.

1. Take the Cα coordinates of the N-terminal amino acid.

2. For each SSE, we apply the KMT algorithm [43] locally to this section. That is, if the triangle

defined by three sequential points of the SSE is not intersected by any edge of the rest of the

curve, then we can safely remove the middle point of this triangle. See Fig 3 for an example

of such an intersection.

3. Repeating this for each SSE, we reduce the backbone to a minimal representation of its

SSEs which preserves any essential entanglement.

Fig 3. An example of the non local coiling that is preserved via the SKMT algorithm. In blue we see the backbone of

the trefoil knotted acetylornithine transcarbamylase (PDB 3KZK). In red we highlight the straight edge connecting

consecutive SSEs, which passes under the C terminus. In green, we see the edge connecting these SSEs output by the

SKMT algorithm, which preserves the non local entanglement, and therefore the knottedness of this curve.

https://doi.org/10.1371/journal.pcbi.1011248.g003
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We call this the SKMT (Secondary KMT) algorithm in what follows. It differs from the orig-

inal KMT algorithm which acts on the whole curve, trying to simplify it to as few points as pos-

sible (for example to calculate computationally expensive knot invariants [43]). By contrast the

initial separation of the curve into secondary structures to which the KMT algorithm is applied

distinctly forbids such a dramatic simplification, and will preserve non-knotting complexity

such as large-scale super-helical coiling. The SKMT algorithm can be applied to a selected

PDB file using the skmt function.

SKMT length. We shall commonly calculate distributions WrðC1nÞ and acnðC1nÞ of the

SKMT smoothed curves C as a function of n, the number of points of the subsection (1, n).

This implicitly associates a “length” of the protein with the number of points of its SKMT

curve. The variability of the section sizes in the SKMT smoothed curve means this length mea-

sure will not be the arclength of the curve. We will argue later this choice is a good measure of

length with regards to the aim of finding clear and consistent empirical bounds on the values

of both Wr and acn of protein backbones as a function of their secondary structure. With this

in mind we define the length of an SKMT smoothed backbone curve to be simply the number

of points of the smoothed curve and will aim to justify this choice.

An illustrative example. To illustrate the reasoning behind our choice of backbone

smoothing and definition length, we consider two relatively large proteins, both consisting of

over 550 residues but with significantly different numbers of distinct secondary structures,

shown in Fig 4. The protein in Fig 4A, is made up of 567 amino acids and 80 relatively short

secondary structure elements (both β-strands and α-helices). The protein in Fig 4B has more

amino acids (583), but significantly fewer secondary structure elements (57), as it comprises

some long α-helical sections. As shown in Fig 4C the value acn for the full curve of the first

structure is significantly larger than that of the second structure and its SKMT length also sig-

nificantly larger. In particular, the full curve acn value of the first structure is around 1.65

times greater than that of the second structure, which is proportional to the ratio of the num-

ber of points of their SKMT smoothed backbones (104 and 68 respectively). As noted though,

the first structure is actually slightly shorter in terms of its number of amino acids. If we were

instead to have smoothed their backbones by sampling every n amino acids (for n sufficiently

small), these long α-helical sections would be sampled multiple times and the relationship

Fig 4. An acn comparison of two proteins which have similar primary sequence length, but significantly different

number of secondary structure sections and therefore possible complexity.

https://doi.org/10.1371/journal.pcbi.1011248.g004
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between complexity and length of the smoothed curve would not be so clear. However, by

smoothing via the SKMT algorithm, we represent the global entanglement’s relationship to the

relative flexibility of the protein due to its secondary structure. This is one illustrative example

and not the sum total of our argument. We provide further justification of this scaling relation-

ship being meaningful in what follows.

Helical structures and linear writhe growth

One key property of the writhe that is useful to our study is its link to helical geometries. Heli-

ces have a uniform writhe density due to their consistent chiral-coiling, so WrðC1nÞ plotted as a

function of subsection length n is a straight line whose gradient can be given in terms of the

helix’s pitch P and radius R. The writhe per turn is given in [44]:

Wr ¼ 1 �
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ 4p2R2
p ð6Þ

In Fig 5A we see an example of an SKMT smoothed Cα backbone, which has a globally heli-

cal geometry. In Fig 5B we see a plot of WrðC1nÞ, the writhe of the smoothed curve as a func-

tion of its length. There is a clear almost linear rise due to the helical nature of the structure.

Indeed, this structure has radius 7.58 and pitch 5.98 (found by approximating the helical axis),

giving a writhe per turn of 0.88. Considering the substructure relating to the linear portion of

the graph (that is between n = 30 and n = 130) there is a rise in writhe of 12. We compare this

to the per turn result by inspecting the structure, for which we count 14 clear turns. Since

14�0.88 = 12.3, it is clear this writhe calculation is accurately quantifying the consistent helical

superstructure of the protein. We shall see later that this geometry is common to sub units of a

large number of proteins, spanning many CATH domains.

Results

Length constraints on the writhe of proteins

To study the distribution of writhe amongst proteins, we take a representative sample of pro-

teins from the PDB with the following criteria:

1. A good resolution (<2Å)

2. Consisting of between 30–300 residues.

Fig 5. An example of a protein that sees linear growth in writhe due to its globally helical structure.

https://doi.org/10.1371/journal.pcbi.1011248.g005
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3. Redundancies removed at 70% sequence identity

4. Good model quality: Rwork 2 [0, 0.2] and Rfree 2 [0, 0.25].

This yielded 10736 entries from the PDB. We take the first monomer unit from each PDB

file, and computed its SKMT smoothed backbone. The values of WrðCÞ, the writhe of the

whole SKMT curve, are presented in Fig 6 as a function of the SKMT length L. There are a

number of critical aspects of this plot we highlight:

1. 99.9% of all values lie within the curves

�
1

4

L
R

� �4=3

; ð7Þ

the theoretical knot bound from [33], with a radius R = 2.7 (coinciding with the mean

“tube” thickness of 2.7Å found in [45] for minimal Cα triplet radii).

2. For larger proteins, L> 35, the Wr values increasingly fail to get close to this limit. We find

97.9% of the structures fit within a linear bound 0.12L.

Fig 6. The distribution of writhe for a representative sample of>10000 proteins from the PDB in black. In blue

we see the theoretical writhe bound [33] with R = 2.7. In green, we see linear growth in writhe with a gradient of 0.12.

Inset: A: PDB entry 1VQ3. B: PDB entry 2OMZ. C: PDB entry 2RH3. D: PDB entry 4O4B.

https://doi.org/10.1371/journal.pcbi.1011248.g006
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3. A significant number of proteins have a low or even close to zero writhe, consistent across

all scales.

We now highlight some exemplar proteins from this distribution. In Fig 6A we see a small

protein which is one of the few whose writhe exceeds the theoretical knot bound, we will dis-

cuss this shortly after highlighting some other aspects of the distribution. The knot “bound”

assumes that the maximum complexity available to a curve as measured by the writhe increases

with length, whilst a linear trend potentially indicates a fixed maximum complexity indepen-

dent of length due to helical geometries. Indeed the helical protein shown in Fig 5, which is the

same structure as shown in Fig 6B, can be seen to be very close to this linear bound. The β-

strands of the protein seen in Fig 6B are all parallel, separated by a linker-α helix-linker pat-

tern. As a result, there is a consistent handedness of winding along the length of the protein,

leading to the linear build up of writhe. According to the CATH topology classification [4] this

protein is an example of a Leucine Rich Repeat (LRR) Right-handed Beta-Alpha superhelix. In

particular, it is a tandem repeat domain, a family of proteins that are of keen interest due to

their protein-protein interactions [46].

Fig 6C shows a relatively small protein whose writhe does exhibit super-linear growth, fall-

ing right on the knot bound. This protein builds up significant writhe due to its trefoil knotted

structure as per [47]. By contrast Fig 6D highlights that it is difficult for larger proteins to sys-

tematically build up writhe. Visually it appears to have a complex entanglement, but the total

writhe of this protein is close to 0. In Fig 7A we see that WrðC1nÞ has a peak value around 1.5

corresponding to the locally helically coiled initial substructure highlighted in Fig 7B. In Fig

7C we see two counter helical loops which contribute no net writhe due to the cancellation in

the signed sum. Finally, the long subsection passing through the rest of the structure

highlighted in Fig 7D leads to a cancellation of the accumulated writhe. The patterns of com-

plexity seen in these substructures is common across the data set, and the accompanying

SWRITHE notebook can be used to identify both helical and net zero writhe substructures in

this fashion.

Fig 7. An example of the potential domains present in a complex entangled yet net zero writhe structure.

https://doi.org/10.1371/journal.pcbi.1011248.g007
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We now discuss some additional tests we performed to verify these results are meaningful.

N-termini and tags. It is often the case that the N-terminus may be missing from a PDB

entry, or a purification tag is used during the experimental determination of the structure. To

check the possibility such occurrences are not affecting our results, we re-ran this numerical

experiment randomly deleting some of the amino acids from the N-terminus end of the origi-

nal PDB entry. In S1 Fig we find this does not affect our results.

Is this definition of length a good one. As discussed above, the length L on the x-axis is

the number of points of the SKMT smoothed curve. There are a number of other options we

could have chosen, including but not limited to:

1. The arclength of the SKMT curve.

2. The number of amino acids of the protein.

3. The length of another appropriately smoothed curve (say sampling every n atoms).

We consider the distribution of writhe against length for each of these possibilities in S2, S3

and S4 Figs. It is shown that none of these other choices lead to a consistent empirical “bound”

on the value of Wr as a function of the alternative length definition. In these cases it tends to

be that a linear bound that works for shorter length curves does not tightly constrain (most of)

the larger curves, or vice-versa. It is only with the SKMT curve length (number of points) that

we find we can draw linear bounding curves which tightly contain the vast majority of the

structures across all lengths. We cite this as justification for our choice of SKMT smoothing as

correctly capturing the growth in complexity of the protein’s tertiary structure with a minimal

representative curve.

A brief discussion of some of the outliers

All of the 0.1% of proteins which fall outside the knot bound are of length at most 17, with one

example highlighted in Fig 6A. Though this protein falls outside the theoretical knot bound,

we find that its backbone is unknotted according to the KnotProt database [47]. For this pro-

tein, its few secondary structure elements are coiled with consistent chirality leading to high

writhe. This kind of systematic entanglement is difficult to maintain for larger proteins, there-

fore there are no proteins of length greater than 17 outside the theoretical knot bound. In the

next section we discuss the existence of helical substructures, and we see that though it is possi-

ble to have small sections with high writhe, this cannot be consistently maintained for greater

lengths. This is consistent with the example in Fig 6D which had a helical substructure, but

this systematic entanglement was not maintained for the whole structure.

Helical super-secondary structures

Often when studying tertiary structure of proteins, we are interested in the folding of specific

domains. For example, the CATH database provides information on protein domains that

have a clear evolutionary link. These links are based on very specific folding motifs, with strict

criteria on the number, length, and orientation of the secondary structural elements of the

fold. One such example is the Rossmann fold [48], which consists of six β-strands, forming an

extended β sheet, where the first three strands are connected via an α helix, giving an alternat-

ing β − α − β − α − β pattern. It has been noted [49] that this initial alternating α − β segment

is the most conserved aspect of the Rossmann fold. It is also worth mentioning here that an

alternating α − β motif was key in the globally helical proteins discussed above, e.g. Fig 6B.

Crucially we have seen in our introductory example (Fig 1) that this secondary motif is present

in the helical super-secondary structure of both the Rossmann Fold and TIM-barrel. A TIM-

PLOS COMPUTATIONAL BIOLOGY The SKMT Algorithm: A method for assessing and comparing underlying protein entanglement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011248 November 27, 2023 13 / 27

https://doi.org/10.1371/journal.pcbi.1011248


barrel domain consists of 8 α-helices and 8 parallel β-strands, which alternate along the back-

bone. The arrangement of the β-strands on the inside of the barrel is a key aspect of the stabil-

ity of this structure [50]. Plots of WrðC1nÞ as a function of length for both a Rossmann Fold

and TIM Barrel are shown in Fig 8. One can see that the overall gradient of growth is the same

for both structures. We see between sections 5 and 42 the writhe in both cases grows to about

3.2, which gives a gradient of 0.0865 (to 3.s.f), not too far off the gradient of 0.12 used for the

linear bounding curve in Fig 6. It is worth noting here that the examples highlighted are what

are known as tandem repeat domains [46], perhaps indicating that large scale linear growth in

writhe could be a quick indicator of these domains. The SWRITHE function find_
helical_sections can identify these domains and highlight them on the SKMT

smoothed curve. The routine used for this identification is included in S1 Text, here it suffices

to say the code searches for significant rises in writhe for which a linear curve provides a suffi-

ciently good fit, which implies it is (roughly) super-helical.

With this method of identifying helical domains, we can investigate how close these helical

subsections are to the geometry indicative of the linear upper bound in Fig 6 (as exemplified

by the super-helical structure shown in Fig 6D). We identified the helical subsections of length

20 or more present (if any) in each of the proteins in our data set, then computed the gradient

of their writhe profile for this subsection. We excluded values less than 0.05 classing them as

insufficiently helical, and unlikely to contribute much to the overall writhe of the full back-

bone. The distribution of these gradients is shown in Fig 9, with a clear bimodal distribution

Fig 8. A comparison of the writhe profiles of two similarly helical protein structures. In blue, the TIM-Barrel

domain 1P1X, in orange, the Rossmann fold domain 3F1L.

https://doi.org/10.1371/journal.pcbi.1011248.g008

Fig 9. The distribution of gradients for linear subsections of the writhe profiles of SKMT smooth backbones from

our representative sample of the PDB.

https://doi.org/10.1371/journal.pcbi.1011248.g009
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peaking between around the value of 0.12. There are significantly more positive gradients, and

the number of gradients significantly above the 0.15 value are relatively sparse. So the helical

geometries seen in the Rossman fold and TIM barrel proteins (as well as the super-helical

structure shown in Fig 6D) are indicative of the dominant helical geometry found throughout

the data set.

Comparing structures using WrðCijÞ

The similarity between the TIM barrel and Rossmann fold examples of the previous section

opens the question as to whether we can identify other surprising tertiary structural similarities

by comparing writhe profiles. To test this we create the following similarity metric for subsec-

tions C1

ij and C2

lk of SKMT smoothed curves C1
; C2

. We ensure l − k = j − i so that the regions

compared are the same size. We measure their similarity SðC1

ij; C
2

lkÞ as follows

SðC1

ij; C
2

lkÞ ¼
1

j � i � 4

Xj� i

m¼4

1

0:24m
jWrðC1

i;iþmÞ � WrðC2

l;lþmÞj: ð8Þ

This metric measures the mean absolute difference in writhe of all subsections C1

i;iþm, C2

l;lþm

relative to the typical linear writhe growth 0.12L we have seen for (SKMT smoothed) proteins.

The factor features as 1/(2 � 0.12L) to account for the maximal observed difference of subsec-

tions of opposing sign writhe as a function of their length. We only consider m� 4 as the

value of writhe for smaller sections is not considered meaningful. This metric is applied to all

similar size (j − i) subsections of the two structures, with a minimum length of 10 (imposed to

focus on relatively large scale meaningful similarity). We then select the largest disjoint subsets

of the two molecules which have SðC1

ij; C
2

lkÞ less than some specified tolerance s0. For example, a

value of s0 = 0.05 would indicate the average difference is less than 5% of the typical empirically

observed growth in writhe difference. For context a visual depiction of what 5% and 10% simi-

larity for some example subsections is shown in Fig 10.

An example visualisation of the results obtained applying this similarity metric is provided

in Fig 11A and 11B, for the structures 1P1X (TIM Barrel) and 3F1L (Rossmann fold) with s0 =

0.1. The largest similar subsections at this cutoff are C1

12;61
, C2

0;49
, covering 74% and 100% of

1P1X and 3F1L respectively, with these mutually similar sections highlighted in green.

The value s0 for which sections satisfying SðC1

ij; C
2

lkÞ < s0 are classed as similar is an impor-

tant one and its value will depend on what the user wants to consider as similar. In Fig 11C we

chart the percentage similarity as a function of s0 for 3F1L and 1P1X up to s0 = 0.2. There is a

sharp rise between 0.02 and 0.05, then a more steady rise. By 0.1 all of 3F1L (the smaller mole-

cule) is considered the same as about 75% of 1P1X. As indicated in the introduction there

seems to be some physical link between the CATH families to which these two protein belong

so this similarity is potentially meaningful.

In the SWRITHE notebook the function compare_molecules can be used to compare

two smoothed SKMT backbone curves with the argument for s0 optional. A default value of

0.05 is suggested, and is the value used for the following results.

Investigating the Rossmann fold -TIM barrel relationship. To investigate how consis-

tent this apparent relationship between Rossmann fold and TIM barrel domains is, we applied

this routine to compare the Rossmann Fold domain 3F1L to all other proteins in our data set.

We restrict to the cases where both structures are classed as similar for>80% of their length,

so that we are looking at structures which are globally very similar to 3F1L. We find 112 such

cases. A comparison to the CATH classification of these proteins shows that 62.5% of them are
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classed as Rossmann folds (as one would expect) and 6.3% as TIM barrel domains, seemingly

strengthening the structural similarity relationship between these fold types. For context

18.3% of the full database is classed as a Rossmann fold domain, and 3.4% as TIM barrel.

Another example comparison sweep, a knotted protein. We also performed a similarity

sweep across the database for the trefoil knotted protein 2RH3 highlighted in Fig 6C. This

Fig 11. Visualisations of the similarity metric SðC1

ij; C
2

lkÞ for the example Rossmann Fold (3F1L) and TIM Barrel

(1P1X) domains.

https://doi.org/10.1371/journal.pcbi.1011248.g011

Fig 10. Examples of curve sections sharing a 5% similarity by our comparison metric in (a) and (b) and a 10%

similarity in (c) and (d). Note the single helical loop in (a) and (b) are very uniform, whereas the four helical loops in

(c) and (d) are less coherent, especially for (d).

https://doi.org/10.1371/journal.pcbi.1011248.g010
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produced just one match above 80% similarity, PDB entry 7YTT. The matched subsections

ðC1;19Þ
1
; ðC1;19Þ

2
cover 82% and 90% of 2RH3 and 7YTT respectively. The writhe profiles of

these two proteins is shown in Fig 12. One can see that these profiles are very similar, except

for the sharp (negative) jump in writhe for 2RH3 with the inclusion of its final subsections.

This sharp jump is due to the knotted nature of this backbone, with the C-terminus threading

through the rest of the structure to form the trefoil. By contrast we find, using the KnotProt

identification software [47], that the backbone of 7YTT is unknotted. In Fig 12B we see for

2RH3 the red C-terminus threads through the green section of curve (which is mutually simi-

lar for 2RH3 and 7YTT). In Fig 12C however, the C-terminus of the 7YTT backbone resides

on the outside of the structure, which prevents it from being classed as a knotted structure.

The metric has therefore identified two structures that differ only by their C-terminus thread-

ing. This similarity is missed by the standard distance based measures: jFATCAT [12] gives an

RMSD of 4.26Å and TM-align [11] a TM-score of 0.23. Also the CATH classification misses

this apparent similarity, in fact 7YTT has no classification. This highlights the potential in this

comparative metric for identifying similar protein folds which are missed by other classifica-

tion methodologies.

A lonely Rossmann Fold. To conclude this section on the similarity metric, we consider

another example Rossmann Fold domain, PDB entry: 4QFB. Performing a sweep across our

database for structures with over 80% similarity we find just one example, PDB entry 6GN5.

The matched subsections are C1

21;36
, C2

1;16
and C1

3;16
, C2

21;34
which cover 81% and 88% of 4QFB

and 6GN5 respectively. From the highlighted sections in Fig 13 we can see shared large scale

helical subsections, much more uniform in the case of 4QFB. Using the Search by Sequence

function on the CATH website, there are no domain matches for the FASTA sequence of

6GN5. That is because, on the secondary structure level, it does not meet the strict criteria to

Fig 12. The writhe profiles and mutually similar sections of the trefoil knotted 2RH3 and unknotted 7YTT.

https://doi.org/10.1371/journal.pcbi.1011248.g012
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be classified as a Rossmann fold domain. However, on the tertiary structure level, there are

some clear similarities between itself and an example Rossmann fold domain. It is out of the

scope of this paper to investigate this issue any further, i.e. whether it is a meaningful compari-

son, we note the expression system of both of these proteins is E-coli, so it is possible there is

some functional similarity also. For now we highlight again that our comparison metric can be

used to highlight potential relationships which might be missed by standard methods. Indeed,

using the alignment based methods discussed in the introduction no significant similarity was

found: jFATCAT gives an RMSD of 7.61Å and TM-align a TM-Score of 0.31.

Try it for yourself. The function compare_molecules in the SWRITHE notebook

can be used to compare two structures from the PDB, it returns a list of the mutually similar

sections and the percentage similarity in each case. The value of the cut-off s0 is set at 0.05 by

default but can be altered by the user. In the notebooks it is shown how the user can then apply

further selection criteria, such as the requirement for the mutually similar sections to cover

over 80% of both proteins, as in the previous examples. There are many other possibilities, for

example searching for 100% coverage of one protein by the similar sections, but placing no

restrictions on the coverage of the other. This would allow one to see if a particular structure is

Fig 13. The mutually similar sections of the Rossmann Fold domain 4QFB and unclassified 6GN5.

https://doi.org/10.1371/journal.pcbi.1011248.g013
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similar to a subset of another, as is the case for our introductory Rossmann Fold and TIM-Bar-

rel example.

An empirical bound on the acn of proteins

We now investigate the distribution of average crossing number acnðCÞ cross our dataset, and

show there are apparent empirical constraints on this measure of complexity for protein struc-

tures. The distribution obtained is shown in Fig 14. There are a number of critical aspects of

this plot to highlight.

1. 99.5% are bound from above by a linear growth of complexity acnðCÞ ¼ L. This is commen-

surate with the fact we saw in the previous section that a lot of complexity in protein struc-

tures arises from helical geometries.

2. 98.9% have an acn measure above the curve (L/7.5)1.6 − 3, a fit obtained by sight. This

implies a possible empirically derived lower limit on the amount of complexity with respect

to secondary structure.

Fig 14. The distribution of acn for the SKMT smoothed backbones of a representative sample of> 10, 000

proteins. In blue, an empirically determined lower bounding curve. In orange, the O(L log L) growth in acn as in [51].

In green, linear growth in acn with respect to length. Inset: A: PDB Entry 3EVP. B: PDB Entry 1DAN.

https://doi.org/10.1371/journal.pcbi.1011248.g014
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3. A curve (3/16)L log(L) also acts as a reasonable upper bound, with 91.4% of the data falling

below this curve.

On the third point, in [51] it is shown that acnðCÞ for an equilateral random walk C of

length n grows like nlog(n). This bound is further studied in the context of proteins in [36]

where the acn of a sample of proteins is shown to follow this same length scaling. The coeffi-

cient of 3/16 determined in [36] is seen to fit closely for small proteins up to length 15. How-

ever, given our specific definition of length, and the fact that the SKMT smoothed backbone is

clearly not equilateral, we can expect quite a different distribution of acn in our context. In par-

ticular, the long rigid secondary structures could act as a barrier to entanglement, unless

arranged in such a systematic way as to maximise entanglement, as is the case for many helical

structures. For example the signaling protein seen in Fig 14A (a representative of the cluster of

proteins whose acn exceeds the O(L log L) growth) forms a large β-barrel structure. It is clear

that a uniform random walk would be highly unlikely to achieve this specific helical and sym-

metric structure.

Falling below the empirical complexity. In order to use the acn in a predictive capacity,

it is important to understand how strict this empirical lower bound is. In Fig 14B we highlight

an illustrative example of the subset of proteins whose acn falls below the empirical bound dis-

played in blue. It is a single chain from a complex of active site inhibited human blood coagula-

tion factor VIIA with human recombinant soluble tissue factor. This protein forms a hetero

4-mer in its native state, with some complex entangled subunits. However, in this study we are

looking to quantify the self entanglement of monomer units, so for any multimeric protein

that was sampled from the PDB we extracted just the first chain from its PDB file for analysis.

With 63.6% of the proteins that fall below the empirical lower bound being multimers, we are

safe to use it in a predictive capacity for monomer structural predictions. The remaining

36.4% of proteins falling below the bound are due to poor secondary structure assignment.

This difficulty when working with experimentally determined structures is addressed via a sec-

ondary structure assignment cleaning step discussed in more detail in S5 Fig. This simple

cleaning step removes any obvious singleton α-helix or β-strand residues, and is applied auto-

matically in the skmt routine. Though there does remain some edge cases missed by this ini-

tial cleaning step, they represent 0.4% of the sample so we do not feel they render this

predicted lower bound for monomer protein entanglement meaningless.

Using the acn to improve BioSAXS predictions

We now highlight a concrete use of this empirical acn lower bound for structural prediction.

We consider the gene regulatory protein SMARCAL1. This protein regulates gene transcrip-

tion through the alteration of the chromatin structure around those genes [52]. There is a pre-

dicted structure from AlphaFold for this protein, seen in Fig 15A, however it has regions of

low confidence, and most importantly is a poor fit to the small angle x-ray scattering data for

this protein (obtained on the B21 Beamline at the Diamond light source). This is illustrated in

Fig 15B where the SAXS scattering model is obtained using the method described in [53] (sim-

ilar quality fits were obtained using the FOXS web server [54] as a check). For those readers

not familiar with the BioSAXS data analysis, the factor q on the x-axis measures the momen-

tum transfer and the vertical axis shows the logarithm of the observed scattering intensity I(q).

The lower q range corresponds to larger scale structural information and the resolution

increases with higher q. Fitting low q range is therefore of paramount importance as a small

discrepancy with the data there can mean the overall shape of the molecule is wrong. By con-

trast at higher q discrepancies in a fixed prediction are less meaningful. Thus, for this illustra-

tive example we stick to the q 2 [0, 0.15] range. A rough rule of thumb for these experiments is
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that globular conformations have a hill shape low q SAXS curve whilst pill-like structures have

a flatter low q (see e.g. Fig 3 of [55]). Fig 15 indicates the AlphaFold prediction is too globular

and the structure likely opens out somewhat in solution.

Using the constrained backbone algorithm [53], a new potential structure was produced to

fit the BioSAXS data. By systematically varying the geometry of individual secondary struc-

tures of the Cα backbone according to Ramachandran like constraints, a locally plausible struc-

ture is predicted. However, the original method had no constraint on the plausibility of the

overall tertiary structure. This is a potential issue as the inverse scattering problem is not well

posed [56] and multiple differing predictions for the data can be made. Though a prediction

could in theory be tested using an all atomistic physics model, this is an extremely time con-

suming and intensive process. By contrast the acn calculations are of lower complexity than

the scattering calculation itself, and can at the very least be used to rule out good fits to the scat-

tering data which are unrealistically unfolded. We ran a series of fits to the SAXS data on q 2
[0, 0.15] and calculated the acn of the final prediction.

An example fit is shown in Fig 16A to “open out” quite significantly. Visually we can see the

three key domains of the structure are too far apart. Since SMARCAL1 has 84 secondary struc-

ture elements, we would expect its acn to be at least 56.8 (to 3 s.f ) and likely a bit above this.

The original structure’s acn is 69.5 (to 3 s.f ). This opened out structure however has an acn
value of 48.3 (to 3 s.f ). We then modified the constrained-backbone algorithm of [53] with a

penalty for structures whose acn falls below the blue bounding curve (a simple step function

for this testing exercise), to produce the predicted structure seen in Fig 17A. This structure is

much more globular (although less so than the original structure as expected from the shape of

the scattering data), and its acn is 59.2 (to 3 s.f ) which is above the bound. It should be clear

Fig 15. The AlphaFold predicted structure for Human SMARCAL1 has regions of low confidence, and the fit to

the scattering data suggests it opens out in solution.

https://doi.org/10.1371/journal.pcbi.1011248.g015

Fig 16. Examples of potential backbone structures which fit the SMARCAL1 data very well but are unrealistically

unfolded according to the empirical bound on acn.

https://doi.org/10.1371/journal.pcbi.1011248.g016
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this is not sufficient to make a clear prediction that the outcome is a plausible structure for the

protein, further tests such as MD simulations and other experimental and statistical analysis

would be needed for this. This is merely an example test of the potential efficacy of the acn
measure as a means of providing a computationally efficient additional constraint on the ter-

tiary fold search space.

Discussion/conclusion

In this study, we detail a series of metrics and methods for utilising the writhe and average

crossing number as a measure of tertiary structure entanglement for protein backbone curves.

These metrics are applied to a smoothed representation of the Cα backbone, which treats α-

helices and β-strands as rigid units and simplifies linker sections whilst preserving the funda-

mental topology of the structure. This method of smoothing we call the SKMT (Secondary

KMT) algorithm, an adaptation of the KMT algorithm which is a known method for reducing

a curve to a minimal representation which preserves its tertiary entanglement. We argue that

this method of smoothing best captures the link between potential complexity of entanglement

and secondary structure of a protein.

In this study, we have shown that the writhe of these smoothed protein backbones is

bounded with respect to the number of secondary structure elements. This is done by applying

the metric to a set of>10000 sequentially unique (at the 70% level) high quality structures. In

particular, a linear bounding curve of growth in the writhe with respect to the number of sec-

ondary structures, with a gradient of 0.12, contains 97.8% of protein structures. We show that

this linear scaling is directly linked to the geometry of globally helical protein structures. This

same helical geometry is consistently found in subsections of other proteins. This helical

geometry is a method of systematically building up writhe in such a way as to produce ther-

mally stable structures with strong inter sheet bonds (TIM-barrel structures being a common

example). Conversely, many proteins exhibit zero net entanglement whilst exhibiting signifi-

cant complexity, across all length scales.

We then study the distribution of the average crossing number for proteins, again establish-

ing empirical bounds on this measure of complexity as a function of the number of secondary

sections of the protein. We show again that linear growth is a good upper bound on complex-

ity, strengthening the case that complexity of entanglement in medium to large proteins is due

to large scale tertiary helical geometries. We also provide an empirical lower bound on the acn
of proteins, which we show is effective when used as a constraint for realistic and efficient

searches of potential structure landscapes. A concrete example of how this can be applied to

structural predictions from BioSAXS data is detailed.

Fig 17. A predicted structure for SMARCAL1 which is both a good fit to the scattering data and is realistically

folded according to the empirical acn bound.

https://doi.org/10.1371/journal.pcbi.1011248.g017
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Alongside this work we provide an ipython notebook where one can

1. Apply the SKMT secondary backbone smoothing algorithm to a specified PDB structure,

using the skmt function.

2. Compute the writhe and average crossing number of the smoothed backbone of a given

protein using the calculate_writheFP function.

3. Highlight helical subsections of a given structure with the view_molecule_helical
function.

4. Identify subsections of two proteins of similar geometry through a comparison metric

which calculates the total percentage similarity of the writhe distribution of two protein

backbones (SKMT smoothed). We showed it can identify similar tertiary structures

missed by other classification methods (and indeed sometimes unclassified in the CATH

database). A protein can be tested against our database in only a few minutes using the

compareToDatabase function in the SWRITHE package.

Supporting information

S1 Fig. The potential for missing N-termini. It is often the case that the N terminus may be

missing from a PDB entry, or a purification tag is used to experimentally determine the struc-

ture. To study the potential effect of these foibles on our writhe calculations, we randomly cut

between 10 − 20 residues from the start of each PDB file before applying the SKMT smoothing.

The writhe of the SKMT backbones are calculated as before and their values are plotted against

the length (number of points) of the smoothed curve. In S1 Fig. The distribution is overlaid

with the standard distribution of writhe presented in Fig 6 in red for comparison. The overall

shape of the two distributions is the same, with the majority of points falling well within the

linear bound. Indeed, with the cut residues we find that 98.3% of the data falls within the linear

bound, compared with 97.9% in the original case. Since the cutting of 10–20 residues from the

N terminus end of each protein means removing 1 or 2 points from the SKMT curve, there is

little change to the nature of the overall entanglement.

(TIF)

S2 Fig. The distribution of writhe against arclength. In S2 Fig we plot the distribution of

writhe of the SKMT smoothed backbones against their arclength. Since this definition of

length is proportional to our choice of length, the empirically determined linear bounding

curve performs similarly well for this distribution containing 98.1% of the data. However, it

appears there is more of a gap between the bounding line and the main distribution for SKMT

curves of arclength between 150–250, compared to the equivalent section of the plot in the

main text (Fig 6). In some sense the bound appears slightly less “tight”. As a heuristic measure

of the tightness of the linear bound, we compute the distance from the linear bound for the

closest value at each length, then take the average of these distances. In the case of the arclength

distribution, this average closest distance is 3.1 whereas for the SKMT length distribution it is

just 1.2, indicating that our choice of length better captures the length scaling relationship of

entanglement we are aiming for in this study.

(TIF)

S3 Fig. The distribution of writhe against number of amino acids. In S3 Fig we plot the dis-

tribution of writhe of the SKMT smoothed backbones against the number of amino acids of

the respective protein. An empirically determined linear bounding curve fit to contain the

same proportion of the data as in Fig 6 is shown in green. The average closest distance to the
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bound for this fit is 2.9, indicating that the tightness of this fit is not optimal.

(TIF)

S4 Fig. The distribution of writhe for uniformly sampled backbones. In S4 Fig we see that

there is no clear linear relationship between writhe and length for backbones that are uni-

formly smoothed by sampling every n = 4th amino acid (a similar lack of clear relationship

was obtained for n = 3, 5, 6, 7). In the SKMT case, a linear gradient of 0.12 is sufficient to cap-

ture 97.9% of the data, with a uniform spread of outliers across all lengths. Here, a linear gra-

dient of 0.12 achieves a similarly good fit containing 98.8% of the data, however it is an

overestimation for positively entangled small proteins, and negatively entangled large pro-

teins, with an average closest distance in these regions of 4.6. In green, we see a linear bound-

ing curve with gradient of 0.08. Though the average closest distance for this fit is good at

0.19, only 89.1% of the data lies within this bound. The SKMT smoothed approach therefore

performs better at representing the relationship between potential complexity and secondary

structure.

(TIF)

S5 Fig. Secondary Structure Cleaning. During the initial study some proteins had acn well

below the empirically determined lower bound despite appearing maximally entangled. This

was due to the fact that our definition length in this study is dependent on the number of SSEs.

There were some anomalies in the secondary structure classification of these structures, in par-

ticular they contained many single amino acid long SSEs. As a result, the length assigned to

these proteins was much greater than the realistic number of SSEs. A simple routine removing

any of these single amino acid α-helices or β-strands from between linker sections allows these

proteins to be located well above the blue minimum bound curve. This cleaning routine was

applied to the full sample from the PDB before computing the distribution of acn against the

SKMT length. Its effect on the percentage of structures falling below the lower bounding curve

was significant as can be seen in S5 Fig. This initial pitfall acts as a reminder of the need to be

careful when working with PDB files and secondary structure assignment. Though our initial

use for the lower bound on entanglement is for identifying unrealistically folded structural pre-

dictions (as highlighted in the main text), it could also serve a purpose in spotting poor second-

ary structure assignment. This secondary structure cleaning is now performed as standard in

the SKMT algorithm, via the simple_ss_clean function.

(TIF)

S1 Text. Routine for identifying helical subsections. The routine used to identify linear sub-

sections of the writhe profile is as follows.

1. First perform a LOWESS (locally weighted scatterplot smoothing) on the writhe data.

2. Then, for all subsections of length greater than 20, compute the gradient of the writhe pro-

file of this subsection.

3. If this gradient is larger than 0.05 (i.e within 50% of the maximally observed linear growth),

this subsection is potentially helical.

4. For a potentially helical subsection Ci;j, we then check that there is no change in the sign of

the gradient WrðCi;iþkÞ=WrðCi;iþjÞ for all k = 1, j − i. This ensures we identify subsections

with consistent linear growth in writhe.

5. Finally, we output the largest disjoint subsections satisfying the above criteria.

(PDF)
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