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Abstract6

This paper presents a new computational strategy for kinematic upper bound limit analysis in the presence of seepage

forces with an improved mesh refinement scheme. In particular, the original adaptive refinement scheme is enhanced

with a simple but efficient error-indicator of the nodal plastic dissipation for high-order elements. Adhering to the

two-dimensional steady state seepage condition, numerical details regarding the calculation of total water head dis-

tributions for the seepage field are provided. In a similar manner as treating the unit weight of the soil, the effects of

seepage forces are incorporated as body forces in the upper bound formulation. Numerical procedure of the proposed

error indicator-based h-adaptive refinement scheme incorporating with the inclusion of seepage forces are addressed

and implemented in the in-house code. Two benchmark problems are numerically analyzed to evaluate the excellent

performance of the error indicator-based h-adaptive refinement scheme in kinematic upper-bound limit analysis with

the presence of seepage forces.
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1. Introduction8

In the field of geotechnical engineering, the finite element limit analysis (FELA), which combines the plastic limit9

theorem with the finite element method (FEM), has been proven to be a robust approach for assessing the stability of10

geotechnical structures, such as soil slopes, retaining walls, foundations, tunnels, and so on. Since originally proposed11

by Sloan (1988, 1989) and Sloan and Kleeman (1995), both upper bound finite element method (UBFEM) and lower12

bound finite element method (LBFEM) have been received significant attention in the simulation of geotechnical13

problems (Andersen et al., 1998, 2000; Lyamin and Sloan, 2002; Krabbenhoft and Damkilde, 2003; Tin-Loi and Ngo,14

2003; Krabbenhøft et al., 2007; Makrodimopoulos and Martin, 2007; Martin, 2011; Sloan, 2013; Qian et al., 2015;15

Yang et al., 2016, 2017; Lim et al., 2017; Xiao et al., 2018; Zhang et al., 2019b; Ukritchon and Keawsawasvong,16

2018, 2019, 2020a,b; Ukritchon et al., 2020; Graine et al., 2021; Keawsawasvong and Ukritchon, 2019, 2021, 2022).17
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In particular, the UBFEM has received extensive development due to its convenience in dealing with kinematically18

admissible velocity fields.19

Among the existed studies using the UBFEM, the low-order finite element is usually adopted owing to its sim-20

plicity and convenience in numerical implementation as well as computational efficiency. Unfortunately, when using21

low-order finite elements in the framework of the UBFEM, this element can somehow lead to an over-stiff behavior22

especially for the area with high plastic dissipation and further result in a reduced computational accuracy (Makrodi-23

mopoulos and Martin, 2007). To address these issues, high order elements are thus introduced in the UBFEM, which24

has been proved to provide more rigorous solutions and preferred in this study (Sloan and Kleeman, 1995; Lyamin25

and Sloan, 2002; Pastor et al., 2003; Krabbenhoft et al., 2005).26

As an alternative way to improve the computational performance of the UBFEM is through adaptive mesh refine-27

ment, which becomes quite promising due to its capacity in capturing intense plastic deformation zones and speeding28

up the numerical convergence (Makrodimopoulos and Martin, 2007; Nguyen-Xuan et al., 2016; Zhang et al., 2018).29

When performing an adaptive mesh refinement in the UBFEM, the fundamental thing is to determine which elements30

need to be refined. To control successive adaptive mesh refinement, a robust and efficient refinement indicator requires31

to be defined. However, in the limit analysis, the determination of a robust priori error estimator that governing the32

extent of mesh refinement is found to be quite challenging (Borges et al., 2001). Conversely, a posterior estimator is33

commonly used to predict discretization errors and thus control the mesh refinement. In this respect, various local and34

global indicators based on a posterior error estimate have therefore been proposed in some previous studies (Borges35

et al., 2001; Ciria et al., 2008; Munoz et al., 2009; Le, 2013; Nguyen-Xuan et al., 2016; Zhang et al., 2018). Each of36

these indicators has its unique set of advantages and limitations. Among these indicators, the most commonly used37

technique is to determine a minimal set of active element that needs to be refined through a prescribed adaptive refin-38

ing coefficient (Dörfler, 1996; Martin, 2009; Nguyen-Xuan et al., 2016; Zhang et al., 2019a; Zheng and Yang, 2022).39

Recently, Dezfooli et al. (2022) proposed a simple error indicator along with an h-refinement strategy. To achieve a40

fully automatic adaptive analysis, a novel termination criterion ensure that the mesh refinement automatically stops41

is thus proposed. Unlike previous adopted mesh refinement scheme (Nguyen-Xuan et al., 2016; Zhang et al., 2019a;42

Zheng and Yang, 2022) with a continuously significant growth in the refined elements, the later refinement criteria43

ensures that the total number of refined elements gradually increases initially and then continues to decrease with44

adaptive step. For this reason, the error indicator and refinement criteria proposed by Dezfooli et al. (2022) are also45

preferred in this study and thus incorporated into the UBFEM.46

It should be mentioned that, in water-rich area, the seepage effect of the groundwater is a prominent adverse47

factor that affects stability of geotechnical problems, and many serious engineering issuess are found to be related48

to the presence of seepage forces. Therefore, it is of great significance to take the influence of groundwater seepage49

force into consideration, as is more consistent with the actual situation (Kim et al., 1999; Chen et al., 2004; Sahoo50

and Kumar, 2019; Wang et al., 2021; Di et al., 2022, 2023). Within the framework of the kinematic upper bound51

limit analysis, in this study, a new computational strategy in the presence of seepage forces with an improved mesh52
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refinement scheme is proposed. In particular, the original adaptive refinement scheme is enhanced with a simple but53

efficient error-indicator of the nodal plastic dissipation for high-order elements. Adhering to the two-dimensional54

steady state seepage condition, numerical details regarding the calculation of total water head distributions for the55

seepage field are provided. In a similar manner as treating the unit weight of the soil, the effects of seepage forces56

are incorporated as body forces in the upper bound formulation. Numerical procedure of the proposed error indicator-57

based h-adaptive refinement scheme incorporating with the inclusion of seepage forces are addressed and implemented58

in the in-house code. Two benchmark problems are numerically analyzed to evaluate the excellent performance of59

the error indicator-based h-adaptive refinement scheme in kinematic upper-bound limit analysis with the presence of60

seepage forces.61

The content of the paper is organised as follows. After describing fundamentals of the UBFEM formulation with62

second-order cone programming (Section 2), Section 3 presents details and numerical implementation of the proposed63

error indicator-based h-adaptive refinement scheme in the UBFEM. Two verification examples and further discussions64

are finally given in Section 4.65

2. Upper bound limit analysis with second-order cone programming66

This section firstly presents some fundamentals of the upper bound finite element method (UBFEM) using six-67

node triangular elements and the governing equations for the kinematic upper bound limit analysis. Following the68

two-dimensional steady state seepage condition, numerical details regarding the calculation of total water head distri-69

butions for the seepage field and the formulation of second-order cone programming are thus discussed.70

2.1. six-node quadratic triangular elements71

For an arbitrary six-node quadratic triangular element, the horizontal and vertical velocities (u and v) within the72

element are assumed to be a quadratic function of the coordinates, which can be expressed as:73

u (x) =
6∑

i=1

Ni (x) ui, v (x) =
6∑

i=1

Ni (x) vi (1)

where ui and vi are the horizontal and vertical velocities at node i (as shown in Fig. 1a), and Ni (x) is the shape function74

at node i. Note that the shape function Ni (x) can be expressed using area coordinates of three vertices and written as:75


N1 (x) = L1 (x) (2L1 (x) − 1) ; N4 (x) = 4L1 (x) L2 (x)

N2 (x) = L2 (x) (2L2 (x) − 1) ; N5 (x) = 4L2 (x) L3 (x)

N3 (x) = L3 (x) (2L3 (x) − 1) ; N6 (x) = 4L3 (x) L1 (x)

in which Li (x) = Ai/A (i = 1, 2, and 3), and A =
3∑

i=1

Ai. The definition of Ai is given in Fig. 1b. Considering a linear76

variation in the rates of plastic strain (ε̇) and plastic multiplier (λ̇), the values of ε̇ and λ̇ within an arbitrary finite77
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Figure 1: Refinement procedure of the UBFEM with proposed error indicator-based mesh adaptive refinement scheme

element using the values at three vertices can be written as:78

ε̇ (x) =
3∑

i=1

Ni (x) ε̇i, λ̇ (x) =
3∑

i=1

Ni (x) λ̇i (2)

2.2. Fundamentals of kinematic upper bound limit analysis79

According to the upper bound theorem, the upper-bound method requires that the velocity field within the main80

failure zone satisfies the associated flow rule and compatibility conditions. Within such a velocity field, an upper81

bound solution of the ultimate collapse load is therefore obtained by equating the power expended by the external82

load to the power dissipated internally by the plastic deformation, which can be written as:83

Dp (u) =
∫

V
dp (u) dV ≤ Wext (u) (3)

where dp (u) is the function of plastic dissipation, and Dp (u) can be written as:84

Dp (u) =
Nc∑

k=1

∫
A

2c cos ϕλ̇dA = 2c cos ϕ
Nc∑

k=1

1
3

Ak

(
λ̇k,1 + λ̇k,2 + λ̇k,3

)
(4)

in which c and ϕ are the cohesion and friction angle of the soil, Nc is the total number of elements in the computational85

domain, Ak is the area of kth element, λ̇k,i is the plastic multiplier rate for ith node of kth element. In Eq. (3), Wext (u)86

is the power expended by external loads (including surcharge loading and other fixed loading) and written as:87

Wext (u) = βW∗ext (u) +W0
ext (u) (5)

where β is the load factor, and W∗ext (u) and W0
ext (u) are the power expended by the surcharge and fixed loads, respec-88

tively. It should be mentioned that the effect of water seepage force, which viewed as a source term of body force, is89
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considered in the current formulation. For a specific element, the power of the water seepage force can be written as:90

W0
ext (u) = −

∫
V
γwi cos θudV −

∫
V
γwi sin θvdV

= −

Nc∑
k=1

(
f T

k,xu + f T
k,yv

) (6)

where i is the hydraulic gradient, θ is the angle of hydraulic gradient with respect to the horizontal direction, u =91 [
u1 u2 u3

]
and v =

[
v1 v2 v3

]
are nodal velocity vectors at three vertices along x and y directions, and f k,x and92

f k,y are the seepage force vectors at three vertices of element k corresponding to the x and y directions, respectively.93

The seepage force vectors can be written as:94

f k,x = −
1
3
γwi cos θAk

[
1 1 1

]
f k,y = −

1
3
γwi cos θAk

[
1 1 1

] (7)

It should be pointed out that the definitions of variables i and θ are provided in Fig. 2, and the calculation of their95

values will be further elaborated in the subsequent section.

1h1

2 h2

3
h3

i

θ

Figure 2: Schematic diagram of nodal water head and hydraulic gradient for the six-node triangular element

96

2.3. Seepage analysis in the upper bound limit analysis97

2.3.1. Governing equations for the two-dimensional flow98

For the effective stress analysis with the framework of upper bound method, the fundamental thing is to determine99

the seepage forces. To achieve this purpose, the distribution of total head in the ground is required to be known, which100

can be obtained by solving the groundwater flow equation. Under steady state flow condition, the two-dimensional101

flow can be defined by Laplace equation as follows:102

kx
∂2h
∂x2 + ky

∂2h
∂y2 = 0 (8)

where kx and ky are the soil permeabilities along the horizontal and vertical directions, respectively. In this study, it is103

assumed that the permeability is homogeneous in both directions, namely kx = ky = k, which gives:104

∂2h
∂x2 +

∂2h
∂y2 = 0 (9)
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with h being the total water head, which is the sum of water pressure head p/γw and elevation head Y (Sahoo and105

Kumar, 2019) and can be expressed as:106

h = p/γw + Y (10)

where p and γw are the pore water pressure and unit weight of water, respectively. Similar as the fields of plastic strain107

rate ε̇ and plastic multiplier rate λ̇, the variation in the total water head throughout each element can be written as:108

h =
3∑

i=1

Nihi (11)

where Ni and hi are shape function and total water head at node i.109

2.3.2. Seepage fields in the computational domain110

Using Galerkin’s method in combination with linear approximation, Eq. (9) can be rewritten as:111 ∫∫
[N]T

(
∂2h
∂x2 +

∂2h
∂y2

)
dxdy = 0 (12)

Applying integration by parts, the above equation becomes:112 ∫∫ [
∂

∂x

(
[N]T ∂h

∂x

)
+
∂

∂y

(
[N]T ∂h

∂y

)
−
∂[N]T

∂x
∂h
∂x
−
∂[N]T

∂y
∂h
∂y

]
dxdy = 0 (13)

Following Stokes’ theorem, the first two terms of Eq. (21) can be written as:113 ∫∫
∂

∂x

(
[N]T ∂h

∂x

)
dxdy =

∮
[N]T ∂h

∂x
nxds (14)

114 ∫∫
∂

∂y

(
[N]T ∂h

∂y

)
dxdy =

∮
[N]T ∂h

∂y
nyds (15)

where nx and ny are the unit outward normal vector to any specific boundary surface ds. When substituting Eqs. (14)115

and (15) into Eq. (21), the following equation can be determined as:116 ∮
[N]T ∂h

∂x
nxds +

∮
[N]T ∂h

∂y
nyds −

∫∫
∂[N]T

∂x
∂h
∂x

dxdy −
∫∫

∂[N]T

∂y
∂h
∂y

dxdy = 0 (16)

Incorporating the variation in the total water head h throughout each element, the final discretised two-dimensional117

flow equation for a specific element within the problem domain can be defined as:118 ∮
[N]T

(
∂h
∂x

nx +
∂h
∂y

ny

)
ds −

∫∫
∂[N]T

∂x
∂[N]
∂x

dxdy {h} −
∫∫

∂[N]T

∂y
∂[N]
∂y

dxdy {h} = 0 (17)

It should be noted that the first term (underlined) in Eq. (19) becomes zero for internal elements, whereas for elements119

along the external boundary, it represents the flux of the total water head (if applicable). In matrix form, Eq. (19) can120

be rewritten as:121

kehe = Xe (18)

in which122
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ke =
1

4A


η2

1 + ξ
2
1 η1η2 + ξ1ξ2 η1η3 + ξ1ξ3

η1η2 + ξ1ξ2 η2
2 + ξ

2
2 η2η3 + ξ2ξ3

η1η3 + ξ1ξ3 η2η3 + ξ2ξ3 η2
3 + ξ

2
3

 , he =


h1

h2

h3

 , Xe =


X1

X2

X3


After assembling above elemental matrices given in Eq. (22) into a global matrix for all elements, the total water123

heads (h values) at each node of the seepage field can be obtained by imposing associated seepage boundary condi-124

tions. In this study, the distribution of total water head for the considered problem domain can be calculated through125

in-house finite element method code. Based on the solution of nodal total water heads, the hydraulic gradient (i) within126

each element and its direction can be determined using the principle of hydromechanics and geometric relationships127

and written as:128

iex =
h1 (y3 − y2) + h2 (y1 − y3) + h3 (y2 − y1)
x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2

iey = −
h1 (x3 − x2) + h2 (x1 − x3) + h3 (x2 − x1)
x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2

tan θ = −
h1 (x3 − x2) + h2 (x1 − x3) + h3 (x2 − x1)
h1 (y3 − y2) + h2 (y1 − y3) + h3 (y2 − y1)

(19)

where iex and iey are the hydraulic gradients for a specific finite element along the horizontal and vertical directions. The129

determined values of total water head (h) and hydraulic gradient (i) are thus used for calculating the seepage force,130

which has been discussed in the above section.131

2.4. Formulation of second-order cone programming132

In this study, we make an assumption that the soil follows the Mohr-Coulomb yield criterion. Under two-133

dimensional conditions, the criterion can be expressed as:134

F =
(
σx − σy

)2
+

(
2τxy

)2
−

[
2c cos ϕ −

(
σx + σy

)
sin ϕ

]2
≤ 0 (20)

where σx and σy are the stress components along x and y directions, and τxy is the shear stress component. According135

to Makrodimopoulos and Martin (2007), Eq. (20) can be rewritten as:136

Fk = Akσx + Bkσy +Ckτxy − 2c cos ϕ = 0 (21)

where Ak = cosαk + sin ϕ, Bk = sin ϕ − cosαk, Ck = sinαk, αk = 2kπ/p, and p is the total number of sides of the137

circumscribed polygon. In a similar manner, after introducing auxiliary variables ρ1 and ρ2, the second-order conic138

form of the Mohr-Coulomb yield criterion can be expressed as:139

√
ρ2

1 + ρ
2
2 ≤ λ̇ (22)

Referring to previous studies (Sloan, 1989; Sloan and Kleeman, 1995; Makrodimopoulos and Martin, 2007), a140

Second-Order Cone Programming (SOCP) model within the framework of the UB-RTME is constructed. This model141
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aims to solve the objective function, which represents the optimal difference between the power expended by the142

external load and the power dissipated internally. The SOCP model can be expressed in matrix form as follows:143

min
(∫

V
dp (ε) dV −W0

ext

)
Bs = 0

Cs = b

λ̇ ≥
√
ρ2

1 + ρ
2
2

qT u = 1

(23)

where Bs = 0 represents the linear constraint condition, s corresponds to the optimization variable matrix for global144

linear constraint, which includes nodal velocity components (ui and vi), elemental plastic multipliers λ̇, and auxiliary145

variables (ρ1 and ρ2), Cs = b defines the velocity constraint condition, and q represents the nodal load matrix. In such146

a way, the final load factor β can be determined by solving the SOCP model. For a more comprehensive understanding,147

the readers are suggested to refer to the work of Sloan (1989), Sloan and Kleeman (1995), and Makrodimopoulos and148

Martin (2007), as well as our recent work (Zheng and Yang, 2022).149

3. Adaptive refinement scheme150

When performing an adaptive mesh refinement in the UBFEM, the fundamental thing is to determine which151

elements need to be refined. This section presents an novel adaptive refinement scheme with an error indicator for152

quantitatively evaluate the error in the nodal plastic energy dissipation of each element within the framework of153

UBFEM. The criterion for adaptivity activation and termination conditions of the proposed adaptive mesh refinement154

are addressed.155

3.1. Adaptivity activation and termination conditions156

It is known that the total number of adaptive steps and finite elements required to be refined in each step are gener-157

ally controlled by the adaptive refinement scheme, which defines the remeshing criteria that governing the automatic158

adjustment of the mesh (more details can be found in Zheng and Yang (2022)). For a regular refinement scheme in the159

UBFEM, the plastic dissipation of each element is frequently adopted as an indicator for performing the refinement160

strategy (Dörfler, 1996; Martin, 2009; Nguyen-Xuan et al., 2016; Zhang et al., 2019b). In this manner, after sorting161

the values of plastic dissipation ηm for all elements in a decreasing order, the refinement criteria for determining the162

elements that need to be refined can be written as:163 ∑
Ωr⊆Ω

ηm ≥ θr

Nc∑
m=1

ηm (24)

where Ωr is the group of elements that required to be refined, Ω is the group of all elements in the computational164

domain, θr is the refinement coefficient that controls the refinement extent, and Nc is the total number of elements in165
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the computational domain. From Eq. (24), it can be concluded that the total number of refined elements continues166

to increase with an increase in the total number of elements in the problem domain, which sometimes leads to an167

excessive mesh refinement and a significant increased computational burden (Zheng and Yang, 2022).168

As stated above, the refinement scheme proposed by Dezfooli et al. (2022, 2023) ensures that the rate new elements169

are added to the current mesh gradually decreases during the refinement process. For this reason, a similar refinement170

criterion is thus proposed and incorporated into the UBFEM. Following those proposed by Dezfooli et al. (2022,171

2023), the average value of the nodal error in plastic dissipation energy is introduced and defined as Eave, which is172

written as:173

Eave =

Nc∑
i=1

Erri

Ai
/

Nc∑
i=1

1
Ai

(25)

where Erri is nodal error of plastic dissipation energy for ith element. In a similar manner, for each adaptive step,174

mesh refinement is activated when the value of Eave is larger than a prescribed threshold (ηcri), while terminated when175

the value of Eave becomes smaller than the value of ηcri. Apart from this termination condition, the adaptive procedure176

is also considered to terminate when the difference between the upper bound solution of the last refinement step and177

that from one step before becomes smaller than a predefined values δcri, which is written as:178

|βn − βn−1|

|βn−1|
≤ δcri (26)

where βn and βn−1 are the obtained upper bound solutions for the last refinement step and one step before, respectively.179

In this study, the predefined values of ηcri and δcri are chosen as 1.0 × 10−4 and 5.0 × 10−5, respectively. It should be180

mentioned that smaller values of ηcri and δcri can be beneficial for generating more accurate upper bound solutions,181

and as a result it can lead to a significant increase in the computational cost.182

3.2. Error indicator in kinematic upper bound finite element method183

In the context of the UBFEM, it has been observed that the solution error tends to be more pronounced in the184

local regions where the plastic multiplier rates are higher. This behavior is quite similar to what is observed in the185

traditional FEM. For quantitatively assessment, a simple error indicator based on the evaluation of the difference in186

nodal plastic dissipation energy is proposed within the framework of the UBFEM. To accomplish this, the difference187

in the nodal plastic multiplier rates for an arbitrary element i with three local nodes can be expressed as:188

∆λ̇(m,n)
i = λ̇(m)

i − λ̇
(n)
i ; (m, n) ∈ {(1, 2) ; (2, 3) ; (1, 3)} (27)

where λ̇(m)
i is the plastic multiplier rate for node m of element i. Referring to the definition proposed in Dezfooli et al.189

(2022, 2023), the error indicator for ith element is thus defined as:190

Erri = max

(2
3

c cos ϕAi∆λ̇
(m,n)
i

)2 ; (m, n) ∈ {(1, 2) ; (2, 3) ; (1, 3)} (28)

which defines the maximum nodal difference in the plastic dissipation energy for ith element. It should be noted that,191

for the cohesionless soil, the error indicator given in Eq. (28) is no longer applicable as the values of Erri become zero.192
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In this study, a very small value of cohesion, namely c = 0.001 kPa (solely adopted for the purpose of determining the193

error indicator), has been adopted in order to mitigate numerical issue as well as improve the computational efficiency.194

3.3. Refinement criteria and procedure195

For the adaptive refinement scheme, another significant part is to determine those elements that are most suitable196

to be refined, which must be specified in the refinement criteria. Following Dezfooli et al. (2022, 2023), the refinement197

criterion adopted in this study is expressed as:198

Erri ≥ ln (max (αcNc, 1.01)) × ln (max (αnNn, 1.01)) × Eave (29)

where αc and αn are two predefined parameters that control the level of adaptive refinement. Unlike previous adopted199

mesh refinement scheme, this refinement criteria ensures that the total number of refined elements gradually decreases200

with adaptive step. After determining those most suitable refined elements, the adaptive refinement is thus performed201

by longest edge bisection of those triangular elements. Details regarding the refinement procedure of the UBFEM202

with proposed error indicator-based mesh adaptive refinement scheme proposed in the current work are summarized203

in Fig. 3.204

4. Numerical verification and application205

4.1. Homogeneous slope subjected to pore water pressure206

For the validation of the UBFEM with the proposed error indicator-based mesh refinement scheme, the stability of207

soil slopes subjected to pore water pressure is investigated in this section, which was previously studied by Chen et al.208

(2004) and Kim et al. (1999). As shown in Fig. 4, this study addresses the stability of a two-dimensional soil slope209

subjected to pore water pressure. The slope with an inclination of α = 45◦ is assumed to rest upon an impervious and210

rigid base with a depth of H = 10.0 m and a depth ratio of D = 2.0. The effective cohesion c′, effective friction angle211

ϕ′, and permeability k of the soil are assumed to be homogeneous and isotropic across the entire slope. For validation212

purposes, the soil properties are considered to be γ = 18.0 kN/m3, c′ = 20.0 kN/m2, and ϕ′ = 15◦. To address the213

influence of the pore water pressure, six distinct locations of the water table (Hw) above toe level are considered.214

These levels span from 0 to 1.0H at intervals of 0.2H. For each defined slope configuration, a similar unstructured215

initial mesh is utilized in the analysis. The boundaries at the base are assumed to be non-slip and impermeable, while216

free-slip conditions are enforced with a constant water head (partly enforced on the right hand side of the problem217

domain based on the value of Hw/H) at two-lateral boundaries.218

To evaluate the computational efficacy of the UBFEM in conjunction with the proposed error indicator-based219

mesh refinement scheme, Table 1 compares the upper bound solution of the load factor β obtained from the present220

study and Optum G2 for slopes under varying water table locations with αc = 0.005 and αn = 0.005. For further221

comparative insight, the final total number of elements (Ne) are also included. From the results, it can be seen that222
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Figure 3: Refinement procedure of the UBFEM with proposed error indicator-based mesh adaptive refinement scheme
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Figure 4: Problem geometry for the soil slope subjected to the pore water pressure
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the proposed upper bound solutions match quite well with the upper bound solutions of Optum G2 for all considered223

cases. The maximum relative error with respective to the solution of Optum G2 is less than 1%. In addition, more224

rigorous upper bound solutions are deduced for the proposed method even with a small amount of total number of225

elements Ne (generally less than 60% of the later). This comparison confirms the exceptional efficacy of integrating226

the error indicator-based mesh refinement scheme into the UBFEM.227

Table 1: Comparison of load factors β and number of elements Ne for slopes with different values of Hw/H obtained

from present study and Optum G2.

Hw/H
Present study (UB) Optum G2 (UB)

Relative error er [%]
β Ne β Ne

0 1.330 6688 1.332 11169 0.04
0.2 1.314 5848 1.325 11161 0.82
0.4 1.265 6464 1.273 11290 0.89
0.6 1.218 4102 1.228 11422 0.90
0.8 1.203 5886 1.204 11554 0.14

As discussed in the above section, two predefined parameters, αc and αn, have been incorporated into the refine-228

ment criterion of Eq. (29) to control the level of mesh refinement in the adaptive analyses. To study the influence of229

mesh refinement control parameters, Table 2 gives the comparison of adaptive analyses for a slope with Hw/H = 0.6230

using 7 different combinations of αc and αn with an initial total number of elements Ne = 424. For comparison, the231

resulting CPU times are normalised with respect to the computational cost in the scenario where αc = 0.001 and232

αn = 0.005, while the relative errors of load factors are computed in relation to the corresponding value of β for the233

same case (analysis II). As expected, a more stringent upper bound load factor β can be deduced with increasing values234

of αc and αn. Nonetheless, this comes at the expense of substantially heightened computational time, primarily due235

to the pronounced increase in the total number of elements. In addition, it can be seen that further reducing both the236

values of αc and αn beyond the analysis II leads to a slight improvement in solution accuracy but significantly reduces237

computational efficiency. For instance, when comparing the analyses I and II, it can be concluded that the normalized238

CPU time increases by a factor of 5.79 when αn decreases from 0.005 to 0.001. This comparison emphasizes the sig-239

nificance of a proper chosen of mesh refinement control parameters in adaptive analyses to strike a balance between240

solution accuracy and computational cost.241

For further illustration, Fig. 5 presents the final adaptive meshes for a homogeneous slope in the presence of seep-242

age forces under various combinations of mesh refinement control parameters (αc and αn) obtained from the UBFEM243

with the proposed mesh refinement scheme. Notably, mesh refinement primarily concentrates in the vicinity of the244

shear band, which can readily capture the potential failure mechanisms of slopes under the influence of groundwater245

seepage flow, especially for the cases shown in Figs. 5(a) and 5(b). Moreover, it can be observed that highly localised246

refined meshes are obtained with αc = 0.001 and αn = 0.005. In contrast, the localised refined band becomes slightly247

12



Table 2: Comparison of adaptive analyses for a slope with Hw/H = 0.6 and initial Ne = 424 under varying values of

αc and αn

Analysis ID αc αn β Ne Normalised CPU time Relative error [%]

I 0.001 0.001 1.212 16906 5.790 -0.351
*II 0.001 0.005 1.216 5515 1.000 0.00
III 0.005 0.005 1.218 4102 0.869 0.164
IV 0.005 0.01 1.219 3511 0.773 0.265
V 0.01 0.01 1.220 2816 0.617 0.341
VI 0.02 0.01 1.224 2187 0.579 0.622
VII 0.1 0.1 1.256 681 0.192 3.295

* Reference for normalisations and error calculations

narrower than that of αc = 0.001 and αn = 0.001 owing to a significant increase in the total number of elements.248

For this reason, in this example, it is recommended to select mesh refinement control parameters as αc = 0.001 and249

αn = 0.005. However, it should be mentioned that the selection of αc and αn is problem dependent and will be further250

explored in the following examples.251

y/
H

[−
]

0

1.0

2.0
Ne = 16906
β = 1.212

x/H [−]
1.0 2.0 3.0 4.0

(a) αc = 0.001, αn = 0.001

Ne = 5515
β = 1.216

x/H [−]
1.0 2.0 3.0 4.0

(b) αc = 0.001, αn = 0.005

Ne = 2187
β = 1.224

x/H [−]
1.0 2.0 3.0 4.0

(c) αc = 0.02, αn = 0.01

Figure 5: Final adaptive meshes for a homogeneous slope with Hw/H = 0.6 under various combinations of αc and αn

It should be mentioned that the stability of the slope is generally assessed by calculating the factor of safety (F),

which defines the ratio of shear strength parameters (c′ and ϕ′) that need to be reduced in order to bring the slope to a

limit state of equilibrium (Chen et al., 2004). Following this definition, the reduced shear strength parameters c′e and

ϕ′e are thus written as:

c′e = c′/F (30a)

tan ϕ′e = tan ϕ′/F (30b)

Table 3 compares the factors of safety F for homogeneous slopes obtained from Kim et al. (1999), Chen et al.252

(2004), and the proposed method. Note that, for the solutions of Chen et al. (2004), only those obtained using finer253

meshes are included. From Table 3, it can be noticed that the proposed upper bound solutions locate between the254
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upper and lower bound solutions of Kim et al. (1999), and they also match quite well with the upper bound solutions255

of Chen et al. (2004) with finer meshes. With Hw/H varying from 0.2 to 0.6, the maximum difference between the256

proposed solutions and those average values of upper and lower bound solutions from Kim et al. (1999) is less than257

4.0%. These comparisons further verify the effectiveness of the proposed mesh refinement scheme in combination258

with the UBFEM.259

Table 3: Comparison of the factors of safety F for homogeneous slopes with different values of Hw/H.

Hw/H
Present study Kim et al. (1999) Chen et al. (2004)

Relative error er [%]b

Upper bound Upper bound Lower bound Upper bounda

0.2 1.169 1.230 1.101 – 0.30
0.4 1.139 1.166 1.036 1.202 3.45
0.6 1.060 1.068 0.971 1.096 3.97

a Only these solutions obtained using finer meshes are included;
b Defines the difference between the proposed solutions and those average values of upper and lower bound solutions from Kim et al. (1999).

Apart from upper bound solutions, as an example, Fig 6 shows the adaptive meshes for slopes with Hw/H = 0.6 at260

four different levels of refinement stages obtained from the UBFEM with the proposed error-based mesh refinement261

scheme. It can be seen that, mesh refinement primarily concentrates at some local area, which can vividly reproduce262

the major slip surface and the potential failure mechanism of slopes, with an increased refinement iterations. In263

addition, the upper bound solution of load factor β is found to converge to a constant value with an increased total264

number of elements. This observation can also be noticed from the solutions of Optum G2 and the UBFEM with265

regular mesh refinement schemes, which are omitted for the purpose of simplicity.266

4.2. Stability of a circular tunnel under steady state seepage condition267

In this section, the two-dimensional stability of a circular tunnel under a steady state seepage condition is stud-268

ied (Sahoo and Kumar, 2019). As shown in Fig. 7, the circular tunnel has a diameter of D and burial depth H. The269

elevation of groundwater table above the tunnel crown is assumed to be Hw, while the thickness of the dry soil layer270

above the groundwater table is defined as Hd. The dry and submerged unit weights of the soil are respective defined271

as γd and γ′, while soil friction angles below and above ground water table are considered to be ϕ and ϕ′, respectively.272

Consistent with the definitions proposed by Sahoo and Kumar (2019), it is assumed that the soil friction angles below273

and above ground water table are identical, namely ϕ = ϕ′. Similarly, the boundaries are assumed to be non-slip274

and impermeable for the base. Free-slip conditions are enforced with a constant water head (partly enforced on the275

right hand side of domain according to the value of Hw) at two-lateral boundaries, while a zero water pressure head is276

considered along the circumference of the circular tunnel. No surface surcharge loads are applied, so that the collapse277

process is exclusively driven by the gravity loading. Therefore, it is quite important to determine the ultimate support278

pressure σs that required to maintain the stability of the circular tunnel driven under the groundwater table.279
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Figure 6: Adaptive meshes for homogeneous slopes with Hw/H = 0.6 at different levels of refinements obtained by

the UBFEM in combination with the proposed error indicator-based mesh refinement scheme.
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Figure 7: Stability of a circular tunnel under steady state seepage condition: (a) definition of problem, and (b) chosen

domain and boundary condition.

In accordance with the research conducted by Sahoo and Kumar (2019), the ultimate support pressure that re-280

quired to maintain the stability of the tunnel driven under the groundwater table is defined in a dimensionless form as281

σs/ (γ′D). In this specific scenario, it is considered that the dimensionless support pressure σs/ (γ′D) mainly depends282
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on the soil friction angle ϕ, the elevation of groundwater table above the tunnel crown Hw, the thickness of dry soil283

layer Hd, and soil unit weight above and below the groundwater table. For the purpose of comparative illustration, the284

groundwater table is considered to locate at the ground surface in this study,which gives Hd = 0. Two different ratio285

between the unit weight of the water and the unit weight of the submerged soil, including γw/γ
′ = 0.8 and 1.5, are286

thus considered.287

Fig. 8 provides a comparative analysis of the ultimate support pressures σs/ (γ′D) derived from the present study288

and those from Sahoo and Kumar (2019) for circular tunnels with varying dimensionless burial depth H/D. It should289

be mentioned that for both cases the groundwater table is is precisely positioned at the ground surface. In Fig. 8,290

it can be concluded that the proposed upper bound solutions of σs/ (γ′D) match quite well with those lower bound291

solutions proved by Sahoo and Kumar (2019). As expected, a slightly lower magnitude of σs/ (γ′D) is required to292

maintain the stability of the tunnel from the upper bound method, highlighting the robustness of the proposed upper293

bound solution. In addition, the magnitude of σs/ (γ′D) is found to decrease with an increase in the soil friction angle,294

while it becomes larger with an increased burial depth H/D and a decreased ratio of γw/γ
′. These observations are in295

consistent with the conclusions drawn by Sahoo and Kumar (2019).296
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Figure 8: Comparison of σs/ (γ′D) obtained from present study and those from Sahoo and Kumar (2019) for circular

tunnels with: (a) H/D = 1 and Hw/D = 1, and (b) H/D = 3 and Hw/D = 3.

As an example, Fig. 9 displays the adaptive meshes for a circular tunnel under different adaptive iterations for297

the case of ϕ = 25◦, γw/γ
′ = 0.8, H/D = 3, and Hw/D = 3. Using the UBFEM in combination with the proposed298

error indicator-based h-adaptive refinement scheme, as shown in Figs. 9(a)-9(b), highly localised mesh refinement299

primarily concentrates in the vicinity of the shear zone and the shear bands lightly narrows with an increase in the300

adaptive iteration. This highly localised mesh refinement area can vividly capture the potential failure pattern of the301

circular tunnel with the presence of pore water pressure, which confirms the excellent performance of the proposed302
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method in reproducing the potential failure mechanism.303
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Figure 9: Adaptive meshes for a circular tunnel under steady state seepage condition for the case of ϕ = 25◦, γw/γ
′ =

0.8, H/D = 3, and Hw/D = 3.

5. Conclusions304

In the present study, a simple, yet efficient, error indicator-based h-adaptive refinement scheme in kinematic305

upper-bound limit analysis with the presence of seepage forces is presented. The proposed method is established306

using six-node quadratic triangular elements and a Second-Order Cone Programming (SOCP). An novel adaptive307

refinement scheme with an error indicator for quantitatively evaluate the error in the nodal plastic energy dissipation308

of each element within the framework of UBFEM is thus provided,and the criterion for adaptivity activation and309

termination conditions of the proposed adaptive mesh refinement are also addressed. Moreover, in a similar manner310

as treating the unit weight of the soil, the effects of seepage forces are incorporated as body forces in the upper bound311

formulation. Numerical procedure of the proposed error indicator-based h-adaptive refinement scheme incorporating312

with the inclusion of seepage forces are given and implemented in the in-house code. Two benchmark problems are313

numerically analyzed to evaluate the excellent performance of the error indicator-based h-adaptive refinement scheme314

in kinematic upper-bound limit analysis with the presence of seepage forces. Numerical solutions and comparisons315
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support the conclusion that the proposed method can provide more accurate and efficient upper bound solutions with316

a significant smaller amount of elements. Further extension of the proposed refinement scheme to 3D upper bound317

limit analysis will be carried in our future work.318
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