¹ Towards an error indicator-based *h*-adaptive refinement scheme in kinematic ² upper-bound limit analysis with the presence of seepage forces

Xiangcou Zheng^{a,b}, Feng Yang^{a,∗}, Shuying Wang^a, Junsheng Yang^a, Ashraf Osman^b

a ⁴ *School of Civil Engineering, Central South University, Changsha, Hunan 410075, China b* ⁵ *Department of Engineering, University of Durham, South Road, DH1 3LE, United Kingdom*

⁶ Abstract

3

This paper presents a new computational strategy for kinematic upper bound limit analysis in the presence of seepage forces with an improved mesh refinement scheme. In particular, the original adaptive refinement scheme is enhanced with a simple but efficient error-indicator of the nodal plastic dissipation for high-order elements. Adhering to the two-dimensional steady state seepage condition, numerical details regarding the calculation of total water head distributions for the seepage field are provided. In a similar manner as treating the unit weight of the soil, the effects of seepage forces are incorporated as body forces in the upper bound formulation. Numerical procedure of the proposed error indicator-based *h*-adaptive refinement scheme incorporating with the inclusion of seepage forces are addressed and implemented in the in-house code. Two benchmark problems are numerically analyzed to evaluate the excellent performance of the error indicator-based *h*-adaptive refinement scheme in kinematic upper-bound limit analysis with the presence of seepage forces.

⁷ *Keywords:* Error indicator; *h*-adaptive refinement; high order element; seepage force; upper bound limit analysis

⁸ 1. Introduction

 In the field of geotechnical engineering, the finite element limit analysis (FELA), which combines the plastic limit theorem with the finite element method (FEM), has been proven to be a robust approach for assessing the stability of geotechnical structures, such as soil slopes, retaining walls, foundations, tunnels, and so on. Since originally proposed ¹² by [Sloan](#page-19-0) [\(1988,](#page-19-0) [1989\)](#page-19-1) and [Sloan and Kleeman](#page-19-2) [\(1995\)](#page-19-2), both upper bound finite element method (UBFEM) and lower bound finite element method (LBFEM) have been received significant attention in the simulation of geotechnical problems [\(Andersen et al.,](#page-17-0) [1998,](#page-17-0) [2000;](#page-17-1) [Lyamin and Sloan,](#page-18-0) [2002;](#page-18-0) [Krabbenhoft and Damkilde,](#page-18-1) [2003;](#page-18-1) [Tin-Loi and Ngo,](#page-19-3) [2003;](#page-19-3) [Krabbenhøft et al.,](#page-18-2) [2007;](#page-18-2) [Makrodimopoulos and Martin,](#page-18-3) [2007;](#page-18-3) [Martin,](#page-18-4) [2011;](#page-18-4) [Sloan,](#page-19-4) [2013;](#page-19-4) [Qian et al.,](#page-18-5) [2015;](#page-18-5) [Yang et al.,](#page-19-5) [2016,](#page-19-5) [2017;](#page-19-6) [Lim et al.,](#page-18-6) [2017;](#page-18-6) [Xiao et al.,](#page-19-7) [2018;](#page-19-7) [Zhang et al.,](#page-19-8) [2019b;](#page-19-8) [Ukritchon and Keawsawasvong,](#page-19-9) [2018,](#page-19-9) [2019,](#page-19-10) [2020a](#page-19-11)[,b;](#page-19-12) [Ukritchon et al.,](#page-19-13) [2020;](#page-19-13) [Graine et al.,](#page-18-7) [2021;](#page-18-7) [Keawsawasvong and Ukritchon,](#page-18-8) [2019,](#page-18-8) [2021,](#page-18-9) [2022\)](#page-18-10).

[∗]Corresponding author

Email addresses: xczheng@csu.edu.cn (Xiangcou Zheng), yf5754@csu.edu.cn (Feng Yang), sywang@csu.edu.cn (Shuying Wang), jsyang@csu.edu.cn (Junsheng Yang), ashraf.osman@durham.ac.uk (Ashraf Osman)

 In particular, the UBFEM has received extensive development due to its convenience in dealing with kinematically admissible velocity fields.

₂₀ Among the existed studies using the UBFEM, the low-order finite element is usually adopted owing to its sim- $_{21}$ plicity and convenience in numerical implementation as well as computational efficiency. Unfortunately, when using low-order finite elements in the framework of the UBFEM, this element can somehow lead to an over-stiff behavior ²³ [e](#page-18-3)specially for the area with high plastic dissipation and further result in a reduced computational accuracy [\(Makrodi](#page-18-3)²⁴ [mopoulos and Martin,](#page-18-3) [2007\)](#page-18-3). To address these issues, high order elements are thus introduced in the UBFEM, which [h](#page-18-0)as been proved to provide more rigorous solutions and preferred in this study [\(Sloan and Kleeman,](#page-19-2) [1995;](#page-19-2) [Lyamin](#page-18-0) [and Sloan,](#page-18-0) [2002;](#page-18-0) [Pastor et al.,](#page-18-11) [2003;](#page-18-11) [Krabbenhoft et al.,](#page-18-12) [2005\)](#page-18-12).

27 As an alternative way to improve the computational performance of the UBFEM is through adaptive mesh refine- ment, which becomes quite promising due to its capacity in capturing intense plastic deformation zones and speeding ²⁹ up the numerical convergence [\(Makrodimopoulos and Martin,](#page-18-3) [2007;](#page-18-3) [Nguyen-Xuan et al.,](#page-18-13) [2016;](#page-18-13) [Zhang et al.,](#page-19-14) [2018\)](#page-19-14). When performing an adaptive mesh refinement in the UBFEM, the fundamental thing is to determine which elements 31 need to be refined. To control successive adaptive mesh refinement, a robust and efficient refinement indicator requires to be defined. However, in the limit analysis, the determination of a robust *priori* error estimator that governing the extent of mesh refinement is found to be quite challenging [\(Borges et al.,](#page-17-2) [2001\)](#page-17-2). Conversely, a *posterior* estimator is ³⁴ commonly used to predict discretization errors and thus control the mesh refinement. In this respect, various local and [g](#page-17-2)lobal indicators based on *a posterior* error estimate have therefore been proposed in some previous studies [\(Borges](#page-17-2) [et al.,](#page-17-2) [2001;](#page-17-2) [Ciria et al.,](#page-17-3) [2008;](#page-17-3) [Munoz et al.,](#page-18-14) [2009;](#page-18-14) [Le,](#page-18-15) [2013;](#page-18-15) [Nguyen-Xuan et al.,](#page-18-13) [2016;](#page-18-13) [Zhang et al.,](#page-19-14) [2018\)](#page-19-14). Each of these indicators has its unique set of advantages and limitations. Among these indicators, the most commonly used technique is to determine a minimal set of active element that needs to be refined through a prescribed adaptive refin-39 ing coefficient (Dörfler, [1996;](#page-18-16) [Martin,](#page-18-17) [2009;](#page-18-17) [Nguyen-Xuan et al.,](#page-18-13) [2016;](#page-18-13) [Zhang et al.,](#page-19-15) [2019a;](#page-19-15) [Zheng and Yang,](#page-19-16) [2022\)](#page-19-16). Recently, [Dezfooli et al.](#page-18-18) [\(2022\)](#page-18-18) proposed a simple error indicator along with an *h*-refinement strategy. To achieve a ⁴¹ fully automatic adaptive analysis, a novel termination criterion ensure that the mesh refinement automatically stops is thus proposed. Unlike previous adopted mesh refinement scheme [\(Nguyen-Xuan et al.,](#page-18-13) [2016;](#page-18-13) [Zhang et al.,](#page-19-15) [2019a;](#page-19-15) ⁴³ [Zheng and Yang,](#page-19-16) [2022\)](#page-19-16) with a continuously significant growth in the refined elements, the later refinement criteria ensures that the total number of refined elements gradually increases initially and then continues to decrease with 45 adaptive step. For this reason, the error indicator and refinement criteria proposed by [Dezfooli et al.](#page-18-18) [\(2022\)](#page-18-18) are also preferred in this study and thus incorporated into the UBFEM.

⁴⁷ It should be mentioned that, in water-rich area, the seepage effect of the groundwater is a prominent adverse factor that affects stability of geotechnical problems, and many serious engineering issuess are found to be related to the presence of seepage forces. Therefore, it is of great significance to take the influence of groundwater seepage [f](#page-19-17)orce into consideration, as is more consistent with the actual situation [\(Kim et al.,](#page-18-19) [1999;](#page-18-19) [Chen et al.,](#page-17-4) [2004;](#page-17-4) [Sahoo](#page-19-17) [and Kumar,](#page-19-17) [2019;](#page-19-17) [Wang et al.,](#page-19-18) [2021;](#page-19-18) [Di et al.,](#page-18-20) [2022,](#page-18-20) [2023\)](#page-18-21). Within the framework of the kinematic upper bound limit analysis, in this study, a new computational strategy in the presence of seepage forces with an improved mesh ₅₃ refinement scheme is proposed. In particular, the original adaptive refinement scheme is enhanced with a simple but ⁵⁴ efficient error-indicator of the nodal plastic dissipation for high-order elements. Adhering to the two-dimensional steady state seepage condition, numerical details regarding the calculation of total water head distributions for the seepage field are provided. In a similar manner as treating the unit weight of the soil, the effects of seepage forces are incorporated as body forces in the upper bound formulation. Numerical procedure of the proposed error indicator- based *h*-adaptive refinement scheme incorporating with the inclusion of seepage forces are addressed and implemented in the in-house code. Two benchmark problems are numerically analyzed to evaluate the excellent performance of the error indicator-based *h*-adaptive refinement scheme in kinematic upper-bound limit analysis with the presence of ⁶¹ seepage forces.

The content of the paper is organised as follows. After describing fundamentals of the UBFEM formulation with 63 second-order cone programming (Section [2\)](#page-2-0), Section [3](#page-7-0) presents details and numerical implementation of the proposed ⁶⁴ error indicator-based *h*-adaptive refinement scheme in the UBFEM. Two verification examples and further discussions ⁶⁵ are finally given in Section [4.](#page-9-0)

⁶⁶ 2. Upper bound limit analysis with second-order cone programming

 This section firstly presents some fundamentals of the upper bound finite element method (UBFEM) using six-⁶⁸ node triangular elements and the governing equations for the kinematic upper bound limit analysis. Following the two-dimensional steady state seepage condition, numerical details regarding the calculation of total water head distri-butions for the seepage field and the formulation of second-order cone programming are thus discussed.

⁷¹ *2.1. six-node quadratic triangular elements*

 72 For an arbitrary six-node quadratic triangular element, the horizontal and vertical velocities (*u* and *v*) within the ⁷³ element are assumed to be a quadratic function of the coordinates, which can be expressed as:

$$
u(\mathbf{x}) = \sum_{i=1}^{6} N_i(\mathbf{x}) u_i, \quad v(\mathbf{x}) = \sum_{i=1}^{6} N_i(\mathbf{x}) v_i
$$
 (1)

where u_i and v_i are the horizontal and vertical velocities at node *i* (as shown in Fig. [1a\)](#page-3-0), and $N_i(x)$ is the shape function τ_5 at node *i*. Note that the shape function $N_i(x)$ can be expressed using area coordinates of three vertices and written as:

$$
\begin{cases}\nN_1(\mathbf{x}) = L_1(\mathbf{x}) (2L_1(\mathbf{x}) - 1); N_4(\mathbf{x}) = 4L_1(\mathbf{x}) L_2(\mathbf{x}) \\
N_2(\mathbf{x}) = L_2(\mathbf{x}) (2L_2(\mathbf{x}) - 1); N_5(\mathbf{x}) = 4L_2(\mathbf{x}) L_3(\mathbf{x}) \\
N_3(\mathbf{x}) = L_3(\mathbf{x}) (2L_3(\mathbf{x}) - 1); N_6(\mathbf{x}) = 4L_3(\mathbf{x}) L_1(\mathbf{x})\n\end{cases}
$$

in which $L_i(x) = A_i/A$ (*i* = 1, 2, and 3), and $A = \sum_{i=1}^{3}$ *i*=1 ⁷⁶ in which $L_i(x) = A_i/A$ ($i = 1, 2,$ and 3), and $A = \sum_{i=1}^{n} A_i$. The definition of A_i is given in Fig. [1b.](#page-3-0) Considering a linear *τ* variation in the rates of plastic strain ($\dot{\epsilon}$) and plastic multiplier ($\dot{\lambda}$), the values of $\dot{\epsilon}$ and $\dot{\lambda}$ within an arbitrary finite

Figure 1: Refinement procedure of the UBFEM with proposed error indicator-based mesh adaptive refinement scheme

⁷⁸ element using the values at three vertices can be written as:

$$
\dot{\varepsilon}(\mathbf{x}) = \sum_{i=1}^{3} N_i(\mathbf{x}) \dot{\varepsilon}_i, \quad \dot{\lambda}(\mathbf{x}) = \sum_{i=1}^{3} N_i(\mathbf{x}) \dot{\lambda}_i
$$
 (2)

⁷⁹ *2.2. Fundamentals of kinematic upper bound limit analysis*

80 According to the upper bound theorem, the upper-bound method requires that the velocity field within the main 81 failure zone satisfies the associated flow rule and compatibility conditions. Within such a velocity field, an upper ⁸² bound solution of the ultimate collapse load is therefore obtained by equating the power expended by the external ⁸³ load to the power dissipated internally by the plastic deformation, which can be written as:

$$
D_p(u) = \int_V d_p(u) \, dV \le W_{ext}(u) \tag{3}
$$

⁸⁴ where $d_p(\mathbf{u})$ is the function of plastic dissipation, and $D_p(\mathbf{u})$ can be written as:

$$
D_p(u) = \sum_{k=1}^{N_c} \int_A 2c \cos \phi \lambda \, dA = 2c \cos \phi \sum_{k=1}^{N_c} \frac{1}{3} A_k \left(\lambda_{k,1} + \lambda_{k,2} + \lambda_{k,3} \right) \tag{4}
$$

⁸⁵ in which *c* and ϕ are the cohesion and friction angle of the soil, N_c is the total number of elements in the computational $\lambda_{k,i}$ is the area of *k*th element, $\lambda_{k,i}$ is the plastic multiplier rate for *i*th node of *k*th element. In Eq. [\(3\)](#page-3-1), $W_{ext}(u)$ ⁸⁷ is the power expended by external loads (including surcharge loading and other fixed loading) and written as:

$$
W_{ext}\left(\boldsymbol{u}\right) = \beta W_{ext}^*\left(\boldsymbol{u}\right) + W_{ext}^0\left(\boldsymbol{u}\right) \tag{5}
$$

⁸⁸ where *β* is the load factor, and $W_{ext}^*(u)$ and $W_{ext}^0(u)$ are the power expended by the surcharge and fixed loads, respec-

⁸⁹ tively. It should be mentioned that the effect of water seepage force, which viewed as a source term of body force, is

⁹⁰ considered in the current formulation. For a specific element, the power of the water seepage force can be written as:

T

$$
W_{ext}^{0}(\boldsymbol{u}) = -\int_{V} \gamma_{w} i \cos \theta u \, dV - \int_{V} \gamma_{w} i \sin \theta v \, dV
$$

$$
= -\sum_{k=1}^{N_{c}} \left(\boldsymbol{f}_{k,x}^{T} \boldsymbol{u} + \boldsymbol{f}_{k,y}^{T} \boldsymbol{v} \right)
$$
(6)

⁹¹ where *i* is the hydraulic gradient, θ is the angle of hydraulic gradient with respect to the horizontal direction, $\boldsymbol{u} =$ ⁹² $\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ are nodal velocity vectors at three vertices along *x* and *y* directions, and $f_{k,x}$ and $f_{k,y}$ are the seepage force vectors at three vertices of element *k* corresponding to the *x* and *y* directions, respectively. 94 The seepage force vectors can be written as:

$$
f_{k,x} = -\frac{1}{3} \gamma_w i \cos \theta A_k \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
$$

$$
f_{k,y} = -\frac{1}{3} \gamma_w i \cos \theta A_k \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
$$
 (7)

 $\frac{1}{95}$ It should be pointed out that the definitions of variables *i* and θ are provided in Fig. [2,](#page-4-0) and the calculation of their values will be further elaborated in the subsequent section.

Figure 2: Schematic diagram of nodal water head and hydraulic gradient for the six-node triangular element

96

⁹⁷ *2.3. Seepage analysis in the upper bound limit analysis*

⁹⁸ *2.3.1. Governing equations for the two-dimensional flow*

 For the effective stress analysis with the framework of upper bound method, the fundamental thing is to determine the seepage forces. To achieve this purpose, the distribution of total head in the ground is required to be known, which can be obtained by solving the groundwater flow equation. Under steady state flow condition, the two-dimensional flow can be defined by Laplace equation as follows:

$$
k_x \frac{\partial^2 h}{\partial x^2} + k_y \frac{\partial^2 h}{\partial y^2} = 0
$$
 (8)

 103 where k_x and k_y are the soil permeabilities along the horizontal and vertical directions, respectively. In this study, it is 104 assumed that the permeability is homogeneous in both directions, namely $k_x = k_y = k$, which gives:

$$
\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = 0
$$
\n(9)

¹⁰⁵ [w](#page-19-17)ith *^h* being the total water head, which is the sum of water pressure head *^p*/γ*^w* and elevation head *^Y* [\(Sahoo and](#page-19-17)

106 [Kumar,](#page-19-17) [2019\)](#page-19-17) and can be expressed as:

$$
h = p/\gamma_w + Y \tag{10}
$$

¹⁰⁷ where *p* and γ_w are the pore water pressure and unit weight of water, respectively. Similar as the fields of plastic strain 108 rate *έ* and plastic multiplier rate $λ$, the variation in the total water head throughout each element can be written as:

$$
h = \sum_{i=1}^{3} N_i h_i \tag{11}
$$

109 where N_i and h_i are shape function and total water head at node *i*.

¹¹⁰ *2.3.2. Seepage fields in the computational domain*

¹¹¹ Using Galerkin's method in combination with linear approximation, Eq. [\(9\)](#page-4-1) can be rewritten as:

$$
\int \int [N]^{\text{T}} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) dxdy = 0 \tag{12}
$$

112 Applying integration by parts, the above equation becomes:

$$
\int \int \left[\frac{\partial}{\partial x} \left([N]^{\mathrm{T}} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left([N]^{\mathrm{T}} \frac{\partial h}{\partial y} \right) - \frac{\partial [N]^{\mathrm{T}}}{\partial x} \frac{\partial h}{\partial x} - \frac{\partial [N]^{\mathrm{T}}}{\partial y} \frac{\partial h}{\partial y} \right] dxdy = 0 \tag{13}
$$

 113 Following Stokes' theorem, the first two terms of Eq. (21) can be written as:

$$
\int \int \frac{\partial}{\partial x} \left([N]^{\mathrm{T}} \frac{\partial h}{\partial x} \right) \mathrm{d}x \mathrm{d}y = \oint [N]^{\mathrm{T}} \frac{\partial h}{\partial x} n_x \mathrm{d}s \tag{14}
$$

$$
\int \int \frac{\partial}{\partial y} \left([N]^{\mathrm{T}} \frac{\partial h}{\partial y} \right) \mathrm{d}x \mathrm{d}y = \oint [N]^{\mathrm{T}} \frac{\partial h}{\partial y} n_y \mathrm{d}s \tag{15}
$$

¹¹⁵ where n_x and n_y are the unit outward normal vector to any specific boundary surface ds. When substituting Eqs. [\(14\)](#page-5-0) 116 and (15) into Eq. (21) , the following equation can be determined as:

$$
\oint [N]^{\text{T}} \frac{\partial h}{\partial x} n_x \, \mathrm{d} s + \oint [N]^{\text{T}} \frac{\partial h}{\partial y} n_y \, \mathrm{d} s - \iint \frac{\partial [N]^{\text{T}}}{\partial x} \frac{\partial h}{\partial x} \, \mathrm{d} x \, \mathrm{d} y - \iint \frac{\partial [N]^{\text{T}}}{\partial y} \frac{\partial h}{\partial y} \, \mathrm{d} x \, \mathrm{d} y = 0 \tag{16}
$$

¹¹⁷ Incorporating the variation in the total water head *h* throughout each element, the final discretised two-dimensional ¹¹⁸ flow equation for a specific element within the problem domain can be defined as:

$$
\underbrace{\oint [N]^{\text{T}} \left(\frac{\partial h}{\partial x} n_x + \frac{\partial h}{\partial y} n_y \right) \mathrm{d}s}_{ } - \iint \frac{\partial [N]^{\text{T}}}{\partial x} \frac{\partial [N]}{\partial x} \mathrm{d}x \mathrm{d}y \left\{ h \right\} - \iint \frac{\partial [N]^{\text{T}}}{\partial y} \frac{\partial [N]}{\partial y} \mathrm{d}x \mathrm{d}y \left\{ h \right\} = 0 \tag{17}
$$

¹¹⁹ It should be noted that the first term (underlined) in Eq. [\(19\)](#page-6-1) becomes zero for internal elements, whereas for elements ¹²⁰ along the external boundary, it represents the flux of the total water head (if applicable). In matrix form, Eq. [\(19\)](#page-6-1) can ¹²¹ be rewritten as:

$$
\mathbf{k}_e \mathbf{h}_e = X_e \tag{18}
$$

122 in which

$$
\mathbf{k}_{e} = \frac{1}{4A} \begin{bmatrix} \eta_{1}^{2} + \xi_{1}^{2} & \eta_{1}\eta_{2} + \xi_{1}\xi_{2} & \eta_{1}\eta_{3} + \xi_{1}\xi_{3} \\ \eta_{1}\eta_{2} + \xi_{1}\xi_{2} & \eta_{2}^{2} + \xi_{2}^{2} & \eta_{2}\eta_{3} + \xi_{2}\xi_{3} \\ \eta_{1}\eta_{3} + \xi_{1}\xi_{3} & \eta_{2}\eta_{3} + \xi_{2}\xi_{3} & \eta_{3}^{2} + \xi_{3}^{2} \end{bmatrix}, \quad \mathbf{h}_{e} = \begin{Bmatrix} h_{1} \\ h_{2} \\ h_{3} \end{Bmatrix}, \quad X_{e} = \begin{Bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{Bmatrix}
$$

123 After assembling above elemental matrices given in Eq. [\(22\)](#page-6-2) into a global matrix for all elements, the total water heads (*h* values) at each node of the seepage field can be obtained by imposing associated seepage boundary condi- tions. In this study, the distribution of total water head for the considered problem domain can be calculated through in-house finite element method code. Based on the solution of nodal total water heads, the hydraulic gradient (*i*) within each element and its direction can be determined using the principle of hydromechanics and geometric relationships and written as:

$$
i_x^e = \frac{h_1 (y_3 - y_2) + h_2 (y_1 - y_3) + h_3 (y_2 - y_1)}{x_1 y_2 + x_2 y_3 + x_3 y_1 - x_1 y_3 - x_2 y_1 - x_3 y_2}
$$

\n
$$
i_y^e = -\frac{h_1 (x_3 - x_2) + h_2 (x_1 - x_3) + h_3 (x_2 - x_1)}{x_1 y_2 + x_2 y_3 + x_3 y_1 - x_1 y_3 - x_2 y_1 - x_3 y_2}
$$

\n
$$
\tan \theta = -\frac{h_1 (x_3 - x_2) + h_2 (x_1 - x_3) + h_3 (x_2 - x_1)}{h_1 (y_3 - y_2) + h_2 (y_1 - y_3) + h_3 (y_2 - y_1)}
$$
\n(19)

where i_x^e and i_y^e are the hydraulic gradients for a specific finite element along the horizontal and vertical directions. The ¹³⁰ determined values of total water head (*h*) and hydraulic gradient (*i*) are thus used for calculating the seepage force, 131 which has been discussed in the above section.

¹³² *2.4. Formulation of second-order cone programming*

¹³³ In this study, we make an assumption that the soil follows the Mohr-Coulomb yield criterion. Under two-134 dimensional conditions, the criterion can be expressed as:

$$
F = (\sigma_x - \sigma_y)^2 + (2\tau_{xy})^2 - [2c\cos\phi - (\sigma_x + \sigma_y)\sin\phi]^2 \le 0
$$
 (20)

135 where σ_x and σ_y are the stress components along *x* and *y* directions, and τ_{xy} is the shear stress component. According ¹³⁶ to [Makrodimopoulos and Martin](#page-18-3) [\(2007\)](#page-18-3), Eq. [\(20\)](#page-6-3) can be rewritten as:

$$
F_k = A_k \sigma_x + B_k \sigma_y + C_k \tau_{xy} - 2c \cos \phi = 0
$$
\n(21)

137 where $A_k = \cos \alpha_k + \sin \phi$, $B_k = \sin \phi - \cos \alpha_k$, $C_k = \sin \alpha_k$, $\alpha_k = 2k\pi/p$, and p is the total number of sides of the 138 circumscribed polygon. In a similar manner, after introducing auxiliary variables ρ_1 and ρ_2 , the second-order conic ¹³⁹ form of the Mohr-Coulomb yield criterion can be expressed as:

$$
\sqrt{\rho_1^2 + \rho_2^2} \le \lambda \tag{22}
$$

¹⁴⁰ Referring to previous studies [\(Sloan,](#page-19-1) [1989;](#page-19-1) [Sloan and Kleeman,](#page-19-2) [1995;](#page-19-2) [Makrodimopoulos and Martin,](#page-18-3) [2007\)](#page-18-3), a ¹⁴¹ Second-Order Cone Programming (SOCP) model within the framework of the UB-RTME is constructed. This model ¹⁴² aims to solve the objective function, which represents the optimal difference between the power expended by the ¹⁴³ external load and the power dissipated internally. The SOCP model can be expressed in matrix form as follows:

$$
\min\left(\int_{V} d_{p}(\boldsymbol{\varepsilon}) dV - W_{ext}^{0}\right)
$$

\n
$$
\boldsymbol{B}\boldsymbol{s} = 0
$$

\n
$$
\lambda \geq \sqrt{\rho_{1}^{2} + \rho_{2}^{2}}
$$

\n
$$
\boldsymbol{q}^{T}\boldsymbol{u} = 1
$$
\n(23)

¹⁴⁴ where $\mathbf{B}s = 0$ represents the linear constraint condition, *s* corresponds to the optimization variable matrix for global linear constraint, which includes nodal velocity components $(u_i \text{ and } v_i)$, elemental plastic multipliers λ , and auxiliary 146 variables (ρ_1 and ρ_2), $Cs = b$ defines the velocity constraint condition, and *q* represents the nodal load matrix. In such 147 a way, the final load factor β can be determined by solving the SOCP model. For a more comprehensive understanding, ¹⁴⁸ [t](#page-18-3)he readers are suggested to refer to the work of [Sloan](#page-19-1) [\(1989\)](#page-19-1), [Sloan and Kleeman](#page-19-2) [\(1995\)](#page-19-2), and [Makrodimopoulos and](#page-18-3) 149 [Martin](#page-18-3) [\(2007\)](#page-18-3), as well as our recent work [\(Zheng and Yang,](#page-19-16) [2022\)](#page-19-16).

¹⁵⁰ 3. Adaptive refinement scheme

151 When performing an adaptive mesh refinement in the UBFEM, the fundamental thing is to determine which elements need to be refined. This section presents an novel adaptive refinement scheme with an error indicator for quantitatively evaluate the error in the nodal plastic energy dissipation of each element within the framework of UBFEM. The criterion for adaptivity activation and termination conditions of the proposed adaptive mesh refinement are addressed.

¹⁵⁶ *3.1. Adaptivity activation and termination conditions*

¹⁵⁷ It is known that the total number of adaptive steps and finite elements required to be refined in each step are gener-¹⁵⁸ ally controlled by the adaptive refinement scheme, which defines the remeshing criteria that governing the automatic 159 adjustment of the mesh (more details can be found in [Zheng and Yang](#page-19-16) [\(2022\)](#page-19-16)). For a regular refinement scheme in the ¹⁶⁰ UBFEM, the plastic dissipation of each element is frequently adopted as an indicator for performing the refinement 161 strategy (Dörfler, [1996;](#page-18-16) [Martin,](#page-18-17) [2009;](#page-18-17) [Nguyen-Xuan et al.,](#page-18-13) [2016;](#page-18-13) [Zhang et al.,](#page-19-8) [2019b\)](#page-19-8). In this manner, after sorting ¹⁶² the values of plastic dissipation η_m for all elements in a decreasing order, the refinement criteria for determining the ¹⁶³ elements that need to be refined can be written as:

$$
\sum_{\Omega_r \subseteq \Omega} \eta_m \ge \theta_r \sum_{m=1}^{N_c} \eta_m \tag{24}
$$

 164 where Ω_r is the group of elements that required to be refined, Ω is the group of all elements in the computational 165 domain, θ_r is the refinement coefficient that controls the refinement extent, and N_c is the total number of elements in 166 the computational domain. From Eq. [\(24\)](#page-7-1), it can be concluded that the total number of refined elements continues ¹⁶⁷ to increase with an increase in the total number of elements in the problem domain, which sometimes leads to an ¹⁶⁸ excessive mesh refinement and a significant increased computational burden [\(Zheng and Yang,](#page-19-16) [2022\)](#page-19-16).

169 As stated above, the refinement scheme proposed by [Dezfooli et al.](#page-18-18) [\(2022,](#page-18-18) [2023\)](#page-18-22) ensures that the rate new elements ¹⁷⁰ are added to the current mesh gradually decreases during the refinement process. For this reason, a similar refinement 171 criterion is thus proposed and incorporated into the UBFEM. Following those proposed by [Dezfooli et al.](#page-18-18) [\(2022,](#page-18-18) ¹⁷² [2023\)](#page-18-22), the average value of the nodal error in plastic dissipation energy is introduced and defined as *Eave*, which is ¹⁷³ written as:

$$
E_{ave} = \sum_{i=1}^{N_c} \frac{Err_i}{A_i} / \sum_{i=1}^{N_c} \frac{1}{A_i}
$$
 (25)

¹⁷⁴ where Err_i is nodal error of plastic dissipation energy for *i*th element. In a similar manner, for each adaptive step, 175 mesh refinement is activated when the value of E_{ave} is larger than a prescribed threshold ($\eta_{\rm cri}$), while terminated when the value of E_{ave} becomes smaller than the value of $\eta_{\rm cri}$. Apart from this termination condition, the adaptive procedure ¹⁷⁷ is also considered to terminate when the difference between the upper bound solution of the last refinement step and that from one step before becomes smaller than a predefined values $\delta_{\rm cri}$, which is written as:

$$
\frac{|\beta^n - \beta^{n-1}|}{|\beta^{n-1}|} \le \delta_{\rm cri} \tag{26}
$$

¹⁷⁹ where β_n and β_{n-1} are the obtained upper bound solutions for the last refinement step and one step before, respectively. ¹⁸⁰ In this study, the predefined values of $\eta_{\rm cri}$ and $\delta_{\rm cri}$ are chosen as 1.0×10^{-4} and 5.0×10^{-5} , respectively. It should be 181 mentioned that smaller values of $\eta_{\rm cri}$ and $\delta_{\rm cri}$ can be beneficial for generating more accurate upper bound solutions, ¹⁸² and as a result it can lead to a significant increase in the computational cost.

¹⁸³ *3.2. Error indicator in kinematic upper bound finite element method*

 In the context of the UBFEM, it has been observed that the solution error tends to be more pronounced in the local regions where the plastic multiplier rates are higher. This behavior is quite similar to what is observed in the traditional FEM. For quantitatively assessment, a simple error indicator based on the evaluation of the difference in nodal plastic dissipation energy is proposed within the framework of the UBFEM. To accomplish this, the difference in the nodal plastic multiplier rates for an arbitrary element *i* with three local nodes can be expressed as:

$$
\Delta \lambda_i^{(m,n)} = \lambda_i^{(m)} - \lambda_i^{(n)}; \quad (m,n) \in \{ (1,2) ; (2,3) ; (1,3) \}
$$
 (27)

¹⁸⁹ where $\lambda_i^{(m)}$ is the plastic multiplier rate for node *m* of element *i*. Referring to the definition proposed in [Dezfooli et al.](#page-18-18) ¹⁹⁰ [\(2022,](#page-18-18) [2023\)](#page-18-22), the error indicator for *i*th element is thus defined as:

$$
Err_i = \max\left(\left(\frac{2}{3} c \cos \phi A_i \Delta \lambda_i^{(m,n)} \right)^2 \right); \quad (m, n) \in \{ (1, 2) ; (2, 3) ; (1, 3) \}
$$
 (28)

191 which defines the maximum nodal difference in the plastic dissipation energy for *i*th element. It should be noted that, for the cohesionless soil, the error indicator given in Eq. (28) is no longer applicable as the values of Err_i become zero. 193 In this study, a very small value of cohesion, namely $c = 0.001$ kPa (solely adopted for the purpose of determining the ¹⁹⁴ error indicator), has been adopted in order to mitigate numerical issue as well as improve the computational efficiency.

¹⁹⁵ *3.3. Refinement criteria and procedure*

¹⁹⁶ For the adaptive refinement scheme, another significant part is to determine those elements that are most suitable ¹⁹⁷ to be refined, which must be specified in the refinement criteria. Following [Dezfooli et al.](#page-18-18) [\(2022,](#page-18-18) [2023\)](#page-18-22), the refinement ¹⁹⁸ criterion adopted in this study is expressed as:

$$
Err_i \ge \ln(\max(\alpha_c N_c, 1.01)) \times \ln(\max(\alpha_n N_n, 1.01)) \times E_{ave}
$$
\n(29)

199 where α_c and α_n are two predefined parameters that control the level of adaptive refinement. Unlike previous adopted mesh refinement scheme, this refinement criteria ensures that the total number of refined elements gradually decreases ²⁰¹ with adaptive step. After determining those most suitable refined elements, the adaptive refinement is thus performed by longest edge bisection of those triangular elements. Details regarding the refinement procedure of the UBFEM with proposed error indicator-based mesh adaptive refinement scheme proposed in the current work are summarized in Fig. [3.](#page-10-0)

²⁰⁵ 4. Numerical verification and application

²⁰⁶ *4.1. Homogeneous slope subjected to pore water pressure*

²⁰⁷ For the validation of the UBFEM with the proposed error indicator-based mesh refinement scheme, the stability of ²⁰⁸ soil slopes subjected to pore water pressure is investigated in this section, which was previously studied by [Chen et al.](#page-17-4) 209 [\(2004\)](#page-17-4) and [Kim et al.](#page-18-19) [\(1999\)](#page-18-19). As shown in Fig. [4,](#page-10-1) this study addresses the stability of a two-dimensional soil slope subjected to pore water pressure. The slope with an inclination of $\alpha = 45^\circ$ is assumed to rest upon an impervious and rigid base with a depth of $H = 10.0$ m and a depth ratio of $D = 2.0$. The effective cohesion *c'*, effective friction angle ϕ $212 - \phi'$, and permeability k of the soil are assumed to be homogeneous and isotropic across the entire slope. For validation ²¹³ purposes, the soil properties are considered to be $\gamma = 18.0 \text{ kN/m}^3$, $c' = 20.0 \text{ kN/m}^2$, and $\phi' = 15^\circ$. To address the ²¹⁴ influence of the pore water pressure, six distinct locations of the water table (H_w) above toe level are considered. ²¹⁵ These levels span from 0 to 1.0*^H* at intervals of 0.2*H*. For each defined slope configuration, a similar unstructured ²¹⁶ initial mesh is utilized in the analysis. The boundaries at the base are assumed to be non-slip and impermeable, while ²¹⁷ free-slip conditions are enforced with a constant water head (partly enforced on the right hand side of the problem 218 domain based on the value of H_w/H) at two-lateral boundaries.

²¹⁹ To evaluate the computational efficacy of the UBFEM in conjunction with the proposed error indicator-based 220 mesh refinement scheme, Table [1](#page-11-0) compares the upper bound solution of the load factor β obtained from the present ²²¹ study and Optum G2 for slopes under varying water table locations with $\alpha_c = 0.005$ and $\alpha_n = 0.005$. For further 222 comparative insight, the final total number of elements (N_e) are also included. From the results, it can be seen that

Figure 3: Refinement procedure of the UBFEM with proposed error indicator-based mesh adaptive refinement scheme

Figure 4: Problem geometry for the soil slope subjected to the pore water pressure

₂₂₃ the proposed upper bound solutions match quite well with the upper bound solutions of Optum G2 for all considered

 224 cases. The maximum relative error with respective to the solution of Optum G2 is less than 1% . In addition, more

²²⁵ rigorous upper bound solutions are deduced for the proposed method even with a small amount of total number of

 226 elements N_e (generally less than 60% of the later). This comparison confirms the exceptional efficacy of integrating

²²⁷ the error indicator-based mesh refinement scheme into the UBFEM.

Table 1: Comparison of load factors β and number of elements N_e for slopes with different values of H_w/H obtained from present study and Optum G2.

As discussed in the above section, two predefined parameters, α_c and α_n , have been incorporated into the refine- $_{229}$ ment criterion of Eq. [\(29\)](#page-9-1) to control the level of mesh refinement in the adaptive analyses. To study the influence of [2](#page-12-0)30 mesh refinement control parameters, Table 2 gives the comparison of adaptive analyses for a slope with $H_w/H = 0.6$ $_{231}$ using 7 different combinations of α_c and α_n with an initial total number of elements $N_e = 424$. For comparison, the 232 resulting CPU times are normalised with respect to the computational cost in the scenario where $\alpha_c = 0.001$ and $a_n = 0.005$, while the relative errors of load factors are computed in relation to the corresponding value of β for the 234 same case (analysis II). As expected, a more stringent upper bound load factor β can be deduced with increasing values 235 of α_c and α_n . Nonetheless, this comes at the expense of substantially heightened computational time, primarily due ²³⁶ to the pronounced increase in the total number of elements. In addition, it can be seen that further reducing both the 237 values of α_c and α_n beyond the analysis II leads to a slight improvement in solution accuracy but significantly reduces ²³⁸ computational efficiency. For instance, when comparing the analyses I and II, it can be concluded that the normalized 239 CPU time increases by a factor of 5.79 when α_n decreases from 0.005 to 0.001. This comparison emphasizes the sig-²⁴⁰ nificance of a proper chosen of mesh refinement control parameters in adaptive analyses to strike a balance between ²⁴¹ solution accuracy and computational cost. ²⁴² For further illustration, Fig. [5](#page-12-1) presents the final adaptive meshes for a homogeneous slope in the presence of seep-

243 age forces under various combinations of mesh refinement control parameters (α_c and α_n) obtained from the UBFEM ²⁴⁴ with the proposed mesh refinement scheme. Notably, mesh refinement primarily concentrates in the vicinity of the ²⁴⁵ shear band, which can readily capture the potential failure mechanisms of slopes under the influence of groundwater 246 seepage flow, especially for the cases shown in Figs. [5\(](#page-12-1)a) and 5(b). Moreover, it can be observed that highly localised ²⁴⁷ refined meshes are obtained with $\alpha_c = 0.001$ and $\alpha_n = 0.005$. In contrast, the localised refined band becomes slightly

Analysis ID	α_c	α_n	β	N_e	Normalised CPU time	Relative error $\lceil \% \rceil$
	0.001	0.001	1.212	16906	5.790	-0.351
'II	0.001	0.005	1.216	5515	1.000	0.00
Ш	0.005	0.005	1.218	4102	0.869	0.164
IV	0.005	0.01	1.219	3511	0.773	0.265
V	0.01	0.01	1.220	2816	0.617	0.341
VI	0.02	0.01	1.224	2187	0.579	0.622
VII	0.1	0.1	1.256	681	0.192	3.295

Table 2: Comparison of adaptive analyses for a slope with $H_w/H = 0.6$ and initial $N_e = 424$ under varying values of α_c and α_n

* Reference for normalisations and error calculations

248 narrower than that of $\alpha_c = 0.001$ and $\alpha_n = 0.001$ owing to a significant increase in the total number of elements. 249 For this reason, in this example, it is recommended to select mesh refinement control parameters as $\alpha_c = 0.001$ and $\alpha_n = 0.005$. However, it should be mentioned that the selection of α_c and α_n is problem dependent and will be further ²⁵¹ explored in the following examples.

Figure 5: Final adaptive meshes for a homogeneous slope with $H_w/H = 0.6$ under various combinations of α_c and α_n

It should be mentioned that the stability of the slope is generally assessed by calculating the factor of safety (*F*), which defines the ratio of shear strength parameters $(c'$ and ϕ') that need to be reduced in order to bring the slope to a limit state of equilibrium [\(Chen et al.,](#page-17-4) [2004\)](#page-17-4). Following this definition, the reduced shear strength parameters c'_e and \overline{a} ℓ_e are thus written as:

$$
c'_e = c'/F \tag{30a}
$$

$$
\tan \phi'_e = \tan \phi'/F \tag{30b}
$$

²⁵² Table [3](#page-13-0) compares the factors of safety *F* for homogeneous slopes obtained from [Kim et al.](#page-18-19) [\(1999\)](#page-18-19), [Chen et al.](#page-17-4) ²⁵³ [\(2004\)](#page-17-4), and the proposed method. Note that, for the solutions of [Chen et al.](#page-17-4) [\(2004\)](#page-17-4), only those obtained using finer ²⁵⁴ meshes are included. From Table [3,](#page-13-0) it can be noticed that the proposed upper bound solutions locate between the ₂₅₅ upper and lower bound solutions of [Kim et al.](#page-18-19) [\(1999\)](#page-18-19), and they also match quite well with the upper bound solutions

256 of [Chen et al.](#page-17-4) [\(2004\)](#page-17-4) with finer meshes. With H_w/H varying from 0.2 to 0.6, the maximum difference between the

 257 proposed solutions and those average values of upper and lower bound solutions from [Kim et al.](#page-18-19) [\(1999\)](#page-18-19) is less than

²⁵⁸ ⁴.0%. These comparisons further verify the effectiveness of the proposed mesh refinement scheme in combination ²⁵⁹ with the UBFEM.

Table 3: Comparison of the factors of safety *F* for homogeneous slopes with different values of H_w/H .

^a Only these solutions obtained using finer meshes are included;

 b Defines the difference between the proposed solutions and those average values of upper and lower bound solutions from [Kim et al.](#page-18-19) [\(1999\)](#page-18-19).</sup>

[6](#page-14-0)0 Apart from upper bound solutions, as an example, Fig 6 shows the adaptive meshes for slopes with $H_w/H = 0.6$ at ²⁶¹ four different levels of refinement stages obtained from the UBFEM with the proposed error-based mesh refinement ₂₆₂ scheme. It can be seen that, mesh refinement primarily concentrates at some local area, which can vividly reproduce the major slip surface and the potential failure mechanism of slopes, with an increased refinement iterations. In addition, the upper bound solution of load factor β is found to converge to a constant value with an increased total number of elements. This observation can also be noticed from the solutions of Optum G2 and the UBFEM with regular mesh refinement schemes, which are omitted for the purpose of simplicity.

²⁶⁷ *4.2. Stability of a circular tunnel under steady state seepage condition*

²⁶⁸ In this section, the two-dimensional stability of a circular tunnel under a steady state seepage condition is stud-²⁶⁹ ied [\(Sahoo and Kumar,](#page-19-17) [2019\)](#page-19-17). As shown in Fig. [7,](#page-14-1) the circular tunnel has a diameter of *D* and burial depth *H*. The 270 elevation of groundwater table above the tunnel crown is assumed to be H_w , while the thickness of the dry soil layer $_{271}$ above the groundwater table is defined as H_d . The dry and submerged unit weights of the soil are respective defined as γ_d and γ' , while soil friction angles below and above ground water table are considered to be ϕ and ϕ' , respectively. 273 Consistent with the definitions proposed by [Sahoo and Kumar](#page-19-17) [\(2019\)](#page-19-17), it is assumed that the soil friction angles below and above ground water table are identical, namely $\phi = \phi'$. Similarly, the boundaries are assumed to be non-slip ²⁷⁵ and impermeable for the base. Free-slip conditions are enforced with a constant water head (partly enforced on the $_{276}$ right hand side of domain according to the value of H_w) at two-lateral boundaries, while a zero water pressure head is 277 considered along the circumference of the circular tunnel. No surface surcharge loads are applied, so that the collapse ²⁷⁸ process is exclusively driven by the gravity loading. Therefore, it is quite important to determine the ultimate support σ_s that required to maintain the stability of the circular tunnel driven under the groundwater table.

Figure 6: Adaptive meshes for homogeneous slopes with $H_w/H = 0.6$ at different levels of refinements obtained by the UBFEM in combination with the proposed error indicator-based mesh refinement scheme.

Figure 7: Stability of a circular tunnel under steady state seepage condition: (a) definition of problem, and (b) chosen domain and boundary condition.

280 In accordance with the research conducted by [Sahoo and Kumar](#page-19-17) [\(2019\)](#page-19-17), the ultimate support pressure that re-²⁸¹ quired to maintain the stability of the tunnel driven under the groundwater table is defined in a dimensionless form as $\sigma_s/(\gamma'D)$. In this specific scenario, it is considered that the dimensionless support pressure $\sigma_s/(\gamma'D)$ mainly depends

283 on the soil friction angle ϕ , the elevation of groundwater table above the tunnel crown H_w , the thickness of dry soil $_{284}$ layer H_d , and soil unit weight above and below the groundwater table. For the purpose of comparative illustration, the 285 groundwater table is considered to locate at the ground surface in this study, which gives $H_d = 0$. Two different ratio between the unit weight of the water and the unit weight of the submerged soil, including $\gamma_w/\gamma' = 0.8$ and 1.5, are ²⁸⁷ thus considered.

Fig. [8](#page-15-0) provides a comparative analysis of the ultimate support pressures $\sigma_s/(\gamma D)$ derived from the present study ²⁸⁹ and those from [Sahoo and Kumar](#page-19-17) [\(2019\)](#page-19-17) for circular tunnels with varying dimensionless burial depth *^H*/*D*. It should ²⁹⁰ be mentioned that for both cases the groundwater table is is precisely positioned at the ground surface. In Fig. [8,](#page-15-0) σ_s it can be concluded that the proposed upper bound solutions of $\sigma_s/(\gamma' D)$ match quite well with those lower bound solutions proved by [Sahoo and Kumar](#page-19-17) [\(2019\)](#page-19-17). As expected, a slightly lower magnitude of $\sigma_s/(\gamma D)$ is required to ²⁹³ maintain the stability of the tunnel from the upper bound method, highlighting the robustness of the proposed upper bound solution. In addition, the magnitude of $\sigma_s/(\gamma' D)$ is found to decrease with an increase in the soil friction angle, while it becomes larger with an increased burial depth H/D and a decreased ratio of γ_w/γ' . These observations are in ²⁹⁶ consistent with the conclusions drawn by [Sahoo and Kumar](#page-19-17) [\(2019\)](#page-19-17).

Figure 8: Comparison of σ*^s*/ (γ ′*D*) obtained from present study and those from [Sahoo and Kumar](#page-19-17) [\(2019\)](#page-19-17) for circular tunnels with: (a) $H/D = 1$ and $H_w/D = 1$, and (b) $H/D = 3$ and $H_w/D = 3$.

²⁹⁷ As an example, Fig. [9](#page-16-0) displays the adaptive meshes for a circular tunnel under different adaptive iterations for the case of $\phi = 25^{\circ}$, $\gamma_w/\gamma' = 0.8$, $H/D = 3$, and $H_w/D = 3$. Using the UBFEM in combination with the proposed ²⁹⁹ error indicator-based *h*-adaptive refinement scheme, as shown in Figs. [9\(](#page-16-0)a)[-9\(](#page-16-0)b), highly localised mesh refinement ³⁰⁰ primarily concentrates in the vicinity of the shear zone and the shear bands lightly narrows with an increase in the 301 adaptive iteration. This highly localised mesh refinement area can vividly capture the potential failure pattern of the ₃₀₂ circular tunnel with the presence of pore water pressure, which confirms the excellent performance of the proposed

³⁰³ method in reproducing the potential failure mechanism.

Figure 9: Adaptive meshes for a circular tunnel under steady state seepage condition for the case of $\phi = 25^{\circ}$, $\gamma_w/\gamma' =$ 0.8, $H/D = 3$, and $H_w/D = 3$.

304 5. Conclusions

³⁰⁵ In the present study, a simple, yet efficient, error indicator-based *h*-adaptive refinement scheme in kinematic ³⁰⁶ upper-bound limit analysis with the presence of seepage forces is presented. The proposed method is established ³⁰⁷ using six-node quadratic triangular elements and a Second-Order Cone Programming (SOCP). An novel adaptive ³⁰⁸ refinement scheme with an error indicator for quantitatively evaluate the error in the nodal plastic energy dissipation ³⁰⁹ of each element within the framework of UBFEM is thus provided,and the criterion for adaptivity activation and 310 termination conditions of the proposed adaptive mesh refinement are also addressed. Moreover, in a similar manner 311 as treating the unit weight of the soil, the effects of seepage forces are incorporated as body forces in the upper bound 312 formulation. Numerical procedure of the proposed error indicator-based *h*-adaptive refinement scheme incorporating 313 with the inclusion of seepage forces are given and implemented in the in-house code. Two benchmark problems are ³¹⁴ numerically analyzed to evaluate the excellent performance of the error indicator-based *h*-adaptive refinement scheme 315 in kinematic upper-bound limit analysis with the presence of seepage forces. Numerical solutions and comparisons 316 support the conclusion that the proposed method can provide more accurate and efficient upper bound solutions with 317 a significant smaller amount of elements. Further extension of the proposed refinement scheme to 3D upper bound 318 limit analysis will be carried in our future work.

319 CRediT authorship contribution statement

320 Xiangcou Zheng: Conceptualization, Methodology, Software, Validation, Investigation, Funding acquisition, 321 Writing – original draft. Feng Yang: Conceptualization, Methodology, Writing – review & editing. Shuying Wang: 322 Conceptualization, Writing – review & editing. Junsheng Yang: Conceptualization, Writing – review & editing. ³²³ Ashraf Osman: Conceptualization, Methodology, Writing – review & editing.

324 Declaration of Competing Interest

³²⁵ The authors declare that they have no known competing financial interests or personal relationships that could ³²⁶ have appeared to influence the work reported in this paper.

327 Acknowledgements

³²⁸ This work was supported by the National Natural Science Foundation of China (No. 52308425), the International

³²⁹ Postdoctoral Exchange Fellowship Program-Talent-Introduction Program (No. YJ20220219), and China Postdoctoral

330 Science Foundation (No. 2023TQ0382).

331 Data availability statement

³³² The data that support the findings of this study are available from the corresponding author upon reasonable ³³³ request.

334 References

- ³³⁵ Andersen, K.D., Christiansen, E., Conn, A.R., Overton, M.L., 2000. An efficient primal-dual interior-point method for minimizing a sum of ³³⁶ euclidean norms. SIAM Journal on Scientific Computing 22, 243–262.
- ³³⁷ Andersen, K.D., Christiansen, E., Overton, M.L., 1998. Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific ³³⁸ Computing 19, 1046–1062.
- ³³⁹ Borges, L., Zouain, N., Costa, C., Feijoo, R., 2001. An adaptive approach to limit analysis. International Journal of Solids and Structures 38, ´ ³⁴⁰ 1707–1720.
- ³⁴¹ Chen, J., Yin, J.H., Lee, C., 2004. Rigid finite element method for upper bound limit analysis of soil slopes subjected to pore water pressure.
- Journal of engineering mechanics 130, 886-893.
- ³⁴³ Ciria, H., Peraire, J., Bonet, J., 2008. Mesh adaptive computation of upper and lower bounds in limit analysis. International journal for numerical
- ³⁴⁴ methods in engineering 75, 899–944.
- Dezfooli, M.S., Khoshghalb, A., Shafee, A., 2022. An automatic adaptive edge-based smoothed point interpolation method for coupled flow-deformation analysis of saturated porous media. Computers and Geotechnics 145, 104672.
- Dezfooli, M.S., Khoshghalb, A., Shafee, A., Khalili, N., 2023. An h-adaptive edge-based smoothed point interpolation method for elasto-plastic analysis of saturated porous media. Computers and Geotechnics 162, 105628.
- Di, Q., Li, P., Zhang, M., Wu, J., 2023. Influence of permeability anisotropy of seepage flow on the tunnel face stability. Underground Space 8, 1–14.
- Di, Q., Li, P., Zhang, M., Zhang, W., Wang, X., 2022. Analysis of face stability for tunnels under seepage flow in the saturated ground. Ocean Engineering 266, 112674.
- Dorfler, W., 1996. A convergent adaptive algorithm for poisson's equation. SIAM Journal on Numerical Analysis 33, 1106–1124. ¨
- Graine, N., Hjiaj, M., Krabbenhoft, K., 2021. 3d failure envelope of a rigid pile embedded in a cohesive soil using finite element limit analysis.
- International Journal for Numerical and Analytical Methods in Geomechanics 45, 265–290.
- Keawsawasvong, S., Ukritchon, B., 2019. Undrained basal stability of braced circular excavations in non-homogeneous clays with linear increase of strength with depth. Computers and Geotechnics 115, 103180.
- Keawsawasvong, S., Ukritchon, B., 2021. Undrained stability of plane strain active trapdoors in anisotropic and non-homogeneous clays. Tun-
- nelling and Underground Space Technology 107, 103628.
- Keawsawasvong, S., Ukritchon, B., 2022. Design equation for stability of a circular tunnel in anisotropic and heterogeneous clay. Underground Space 7, 76–93.
- Kim, J., Salgado, R., Yu, H., 1999. Limit analysis of soil slopes subjected to pore-water pressures. Journal of Geotechnical and Geoenvironmental Engineering 125, 49–58.
- Krabbenhoft, K., Damkilde, L., 2003. A general non-linear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering 56, 165–184.
- Krabbenhøft, K., Lyamin, A., Sloan, S., 2007. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 44, 1533–1549.
- Krabbenhoft, K., Lyamin, A.V., Hjiaj, M., Sloan, S.W., 2005. A new discontinuous upper bound limit analysis formulation. International Journal
- for Numerical Methods in Engineering 63, 1069–1088.
- Le, C.V., 2013. A stabilized discrete shear gap finite element for adaptive limit analysis of mindlin–reissner plates. International Journal for
- Numerical Methods in Engineering 96, 231–246.
- Lim, K., Li, A.J., Schmid, A., Lyamin, A., 2017. Slope-stability assessments using finite-element limit-analysis methods. International Journal of Geomechanics 17, 06016017.
- Lyamin, A.V., Sloan, S., 2002. Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 26, 181–216.
- Makrodimopoulos, A., Martin, C., 2007. Upper bound limit analysis using simplex strain elements and second-order cone programming. Interna-tional journal for numerical and analytical methods in geomechanics 31, 835–865.
- Martin, C., 2009. Undrained collapse of a shallow plane-strain trapdoor. Geotechnique 59, 855–863. ´
- 379 Martin, C., 2011. The use of adaptive finite-element limit analysis to reveal slip-line fields. Géotechnique Letters 1, 23–29.
- Munoz, J., Bonet, J., Huerta, A., Peraire, J., 2009. Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading.
- International Journal for Numerical Methods in Engineering 77, 471–501.
- Nguyen-Xuan, H., Wu, C., Liu, G., 2016. An adaptive selective es-fem for plastic collapse analysis. European Journal of Mechanics-A/Solids 58, 278–290.
- Pastor, J., Thai, T.H., Francescato, P., 2003. Interior point optimization and limit analysis: an application. Communications in Numerical Methods in Engineering 19, 779–785.
- Qian, Z., Li, A., Merifield, R., Lyamin, A., 2015. Slope stability charts for two-layered purely cohesive soils based on finite-element limit analysis
- methods. International Journal of Geomechanics 15, 06014022.
- Sahoo, J.P., Kumar, B., 2019. Support pressure for stability of circular tunnels driven in granular soil under water table. Computers and Geotechnics 109, 58–68.
- Sloan, S., 1988. Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical

Methods in Geomechanics 12, 61–77.

- Sloan, S., 1989. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical
- Methods in Geomechanics 13, 263–282.
- Sloan, S., 2013. Geotechnical stability analysis. Geotechnique 63, 531–571. ´
- Sloan, S., Kleeman, P., 1995. Upper bound limit analysis using discontinuous velocity fields. Computer methods in applied mechanics and engineering 127, 293–314.
- Tin-Loi, F., Ngo, N., 2003. Performance of the p-version finite element method for limit analysis. International Journal of Mechanical Sciences 45, 1149–1166.
- Ukritchon, B., Keawsawasvong, S., 2018. Three-dimensional lower bound finite element limit analysis of hoek-brown material using semidefinite

programming. Computers and Geotechnics 104, 248–270.

- Ukritchon, B., Keawsawasvong, S., 2019. Three-dimensional lower bound finite element limit analysis of an anisotropic undrained strength criterion using second-order cone programming. Computers and Geotechnics 106, 327–344.
- Ukritchon, B., Keawsawasvong, S., 2020a. Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogeneous
- and anisotropic clays. International Journal for Numerical and Analytical Methods in Geomechanics 44, 596–632.
- Ukritchon, B., Keawsawasvong, S., 2020b. Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength. Geotechnical and Geological Engineering 38, 897–915.
- Ukritchon, B., Yoang, S., Keawsawasvong, S., 2020. Undrained stability of unsupported rectangular excavations in non-homogeneous clays. Computers and Geotechnics 117, 103281.
- Wang, S.T., Yang, X.L., Huang, F., Pan, Q.J., 2021. Three-dimensional upper-bound analysis of rock slopes subjected to seepage forces based on hoek-brown failure criterion. Computers and Geotechnics 138, 104310.
- Xiao, Y., Zhao, M., Zhao, H., Zhang, R., 2018. Finite element limit analysis of the bearing capacity of strip footing on a rock mass with voids. International Journal of Geomechanics 18, 04018108.
- Yang, F., Zheng, X., Zhang, J., Yang, J., 2017. Upper bound analysis of stability of dual circular tunnels subjected to surcharge loading in cohesive-frictional soils. Tunnelling and Underground Space Technology 61, 150–160.
- Yang, F., Zheng, X.C., Zhao, L.H., Tan, Y.G., 2016. Ultimate bearing capacity of a strip footing placed on sand with a rigid basement. Computers and Geotechnics 77, 115–119.
- Zhang, J., Ding, L., Liang, Y., Zong, J., Li, Z., 2019a. Upper-bound finite element adaptive analysis of plane strain heading in soil with a soft upper
- layer and hard lower layer. Advances in Civil Engineering 2019.
- Zhang, R., Chen, G., Zou, J., Zhao, L., Jiang, C., 2019b. Study on roof collapse of deep circular cavities in jointed rock masses using adaptive
- finite element limit analysis. Computers and Geotechnics 111, 42–55.
- Zhang, R., Li, L., Zhao, L., Tang, G., 2018. An adaptive remeshing procedure for discontinuous finite element limit analysis. International Journal for Numerical Methods in Engineering 116, 287–307.
- Zheng, X., Yang, F., 2022. An efficient and synchronous mesh refining–coarsening strategy in kinematic upper-bound limit analysis. Computers
- and Geotechnics 148, 104843.

Citation on deposit:

Zheng, X., Qin, A., Yang, F., Wang, S., Yang, J., & Osman, A. (2024). Towards an error indicator-based h -adaptive refinement scheme in kinematic upperbound limit analysis with the presence of seepage forces. Computers and

Geotechnics, 166, Article 106005. https://doi.org/10.1016/j.compgeo.2023.106005

For final citation and metadata, visit Durham Research Online URL: [https://durham-repository.worktribe.com/output/2](https://durham-repository.worktribe.com/output/)027627

Copyright statement: This accepted manuscript is licensed under the Creative Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/