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A B S T R A C T 

We introduce a no v el technique for constraining cosmological parameters and galaxy assembly bias using non-linear redshift- 
space clustering of galaxies. We scale cosmological N -body simulations and insert galaxies with the SubHalo Abundance 
Matching extended (SHAMe) empirical model to generate o v er 175 000 clustering measurements spanning all rele v ant 
cosmological and SHAMe parameter values. We then build an emulator capable of reproducing the projected galaxy correlation 

function at the monopole, quadrupole, and hexadecapole level for separations between 0 . 1 h 

−1 Mpc and 25 h 

−1 Mpc . We test this 
approach by using the emulator and Monte Carlo Markov Chain (MCMC) inference to jointly estimate cosmology and assembly 

bias parameters both for the MTNG740 hydrodynamic simulation and for a semi-analytical model (SAM) galaxy formation built 
on the MTNG740-DM dark matter-only simulation, obtaining unbiased results for all cosmological parameters. For instance, 
for MTNG740 and a galaxy number density of n ∼ 0 . 01 h 

3 Mpc −3 , we obtain σ8 = 0 . 799 

+ 0 . 039 
−0 . 044 and �M 

h 

2 = 0 . 138 

+ 0 . 025 
−0 . 018 (which 

are within 0.4 and 0.2 σ of the MTNG cosmology). For fixed Hubble parameter ( h ), the constraint becomes �M 

h 

2 = 0 . 137 

+ 0 . 011 
−0 . 012 . 

Our method performs similarly well for the SAM and for other tested sample densities. We almost al w ays reco v er the true 
amount of galaxy assembly bias within 1 σ . The best constraints are obtained when scales smaller than 2 h 

−1 Mpc are included, 
as well as when at least the projected correlation function and the monopole are incorporated. These methods offer a powerful 
way to constrain cosmological parameters using galaxy surv e ys. 

Key words: galaxies: formation – galaxies: statistics – large-scale structure of universe – cosmology: theory. 
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 I N T RO D U C T I O N  

he distribution of galaxies in the Universe reflects two different 
actors: (i) the cosmological context, which determines how dark 
atter haloes cluster, and (ii) galaxy formation physics, which 

o v erns ho w dif ferent galaxies populate dark matter haloes. It is not
asy to disentangle these two effects when analysing the clustering 
f galaxies selected by directly observable properties. Despite this, 
orward modelling can be used to constrain cosmological information 
sing galaxy clustering. 
By modelling galaxy clustering for a particular cosmology and 

omparing the results to observational data, one can ascertain a 
odel’s realism. This comparison can in turn be used to constrain 
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osmology using observed galaxy clustering. The resulting con- 
traints will vary according to the precision of the galaxy clustering
odel, and the amount of cosmological information contained in the 

bservational clustering measurements used. 
A straightforward method for constraining cosmology with galax- 

es is to examine their clustering at comparatively large scales. On
hese scales, modelling galaxies is much simpler than at small scales,
s there is no need to know the distribution of galaxies within haloes
n detail. Additionally, the available observational galaxy samples 
hat reach these large scales contain only a small fraction of satellite
alaxies, typically having only one galaxy per halo. 

While procedurally convenient, ignoring the clustering informa- 
ion from smaller scales (e.g. Donald-McCann et al. 2022 ) leads to
 weakening of the reco v erable constraints. To include these scales,
o we ver, one needs a model that can reproduce the distribution of
alaxies inside haloes. The Halo Occupation Distribution model 
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HOD; Jing, Mo & B ̈orner 1998 ; Benson et al. 2000 ; Peacock &
mith 2000 ; Berlind et al. 2003 ; Zheng et al. 2005 ; Zheng, Coil &
ehavi 2007 ; Contreras et al. 2013 ; Guo et al. 2015a ; Contreras et al.
017 ) is one of the most widely used approaches for addressing this
ssue. The HOD quantifies the average number of galaxies ( 〈 N 〉 ) that
opulate a halo as a function of its mass ( M h ). The HOD can be used
o predict galaxy clustering in two main ways: (a) by combining
t with an analytic halo clustering model such as the ‘halo model’
e.g. Guzik & Seljak 2001 ) or another similar approach; or (b) by
opulating the haloes of an N -body dark matter simulation. 
HOD models with an analytic clustering prescription for the non-

inear power spectrum are often used in the literature to constrain cos-
ological information. Tinker et al. ( 2012 ) combined the projected

orrelation function ( w p ) with the mass-to-galaxy-number ratio
how that galaxy clustering can be used to constrain cosmological
arameters such as �M 

and σ 8 . Similarly, Cacciato et al. ( 2013 ;
ee also van den Bosch et al. 2013 ; More et al. 2013 ) constrained
hese same cosmological parameters using the halo model and the
onditional luminosity function. 

Mock catalogues based on HOD modelling applied to dark matter
imulations have also been used to measure cosmological parameters.
hus, Reid et al. ( 2014 ) inferred f σ 8 from the CMASS sample of
OSS (see also Lange et al. 2019 , 2022a ) and by using a set of 40

imulations from the AEMULUS project, Zhai et al. ( 2019 ) showed
he constraining power of a seven-parameter HOD for determining
 σ 8 , �M 

, and σ 8 . More recently, Yuan et al. ( 2022b ) used the
BACUSSUMMIT suite of simulations to constrain f σ 8 , �M 

, and σ 8 .
hile successful, the HOD approach has some important limitations.
odern implementations require a large number of free parameters

up to 12 in e.g. Yuan et al. 2022a ) to produce realistic galaxy
lustering measurements. Such a large number of free parameters,
nd their possible degeneracies with cosmological parameters, may
imit the cosmological constraints these models can achieve. 

Another method for reproducing galaxy clustering is to populate
he subhaloes of an N -body simulation using a subhalo abundance

atching technique (SHAM, e.g. Vale & Ostrik er 2006 ; Conro y,
echsler & Kravtsov 2006 ). This method is based on the assumption

hat the most massive subhaloes contain the most massive and lumi-
ous galaxies. The SHAM technique requires a better resolved dark
atter simulation than needed for the HOD approach. Additionally,

t necessitates the computation of subhalo properties that involve the
ubhaloes’ merger trees, such as their peak subhalo mass ( M peak ), or
heir maximum circular velocity ( V peak ). The primary advantage of
his technique is that it can reproduce galaxy clustering realistically
oth at small and large scales, even when only one free parameter is
sed (Chaves-Montero et al. 2016 ). 
Simha & Cole ( 2013 ) used the SHAM technique to constrain the

alues of �M 

and σ 8 from the SDSS. They scaled a single high-
esolution dark matter simulation using the procedure described
n Angulo & White ( 2010 ) in order to generate corresponding
ealizations of different cosmologies. This method modifies the
esults of a given simulation in order to replicate the properties
nd mass distribution of another model with a different cosmology,
ithout having to actually simulate this different model. By fitting

he projected correlation function, the authors were able to constrain
he SDSS cosmological parameters to an uncertainty of less than
0 per cent. 
In this paper, we extend the work of Simha & Cole ( 2013 )

y using updated versions of the scaling and SHAM techniques
o constrain cosmological parameters of SDSS-like samples with
rrors ∼5 per cent . In Contreras et al. ( 2020 ) (see also Zennaro
t al. 2019 ; Angulo et al. 2021 ; Aric ̀o et al. 2021b ; Ondaro-Mallea
NRAS 524, 2489–2506 (2023) 
t al. 2022 ) we have improved the precision of the scaling technique
y including an additional correction for the matter distribution on
arge scales and for the 1-halo term. We have demonstrated that we
an scale dark matter simulations to within 3 per cent accuracy for
he the matter, halo, and subhalo power spectra. For populating the
ubhaloes, we use the SHAM extended model (SHAMe; Contreras,
ngulo & Zennaro 2021b ). The SHAMe model generalizes the basic
HAM by including orphans, tidal disruption, and a flexible amount
f galaxy assembly bias. These additions enhance the predictions of
alaxy clustering in both real- and redshift-space. Also, in this form,
he model can be run with simulations of intermediate resolution,
hereas the standard SHAM requires higher-resolution simulations

o reproduce the clustering of high number density samples. 
These impro v ed techniques enable us to scale dark matter sim-

lations across a wide range of cosmologies and to populate them
ith SHAMe mocks. We then use these mocks to build an emulator

apable of predicting galaxy clustering statistics both rapidly and
recisely (a few milliseconds per query) as a function of SHAMe
nd cosmological parameters. This in turn allows us to use standard
onte Carlo Markov Chain (MCMC) approaches to constrain the

osmological parameters of a given galaxy clustering data set, either
rom observation or from an independent simulation. 

In this work, we make use of the MillenniumTNG (MTNG) simu-
ation project to test and validate our inference pipeline. The recently
ntroduced MTNG project (see Barrera et al. 2022 ; Bose et al. 2022 ;
adzhiyska et al. 2022a , b ; Hern ́andez-Aguayo et al. 2022 ; Kannan

t al. 2022 ; Pakmor et al. 2022 ; Delgado et al. in preparation; Ferlito
t al. in preparation) combines the largest volume, high-resolution
ydrodynamic simulation of galaxy formation to date (MTNG740, a
00 h 

−1 Mpc � 740 Mpc periodic box) with a sequence of matching
ark matter-only simulations, as well as with simulations that include
assive neutrinos. Importantly, the MTNG simulations have been

un independently, in fact with different codes and with different
osmological settings, from the simulations we use to build our
mulator. Testing with an independent hydrodynamic simulation of
nown cosmology yields a powerful challenge for the accuracy and
obustness of our approach. In addition, to further test the validity of
ur method, we also us it to infer cosmological parameters from a
alaxy catalogue based on a semi-analytical model (SAM) of galaxy
ormation applied to one of the MTNG dark matter only simulations
Barrera et al. 2022 ). 

When applying the MCMC approach to these simulated cata-
ogues, we use their predictions for the galaxy clustering in real- and
edshift-space. The extent to which obtained unbiased and accurate
stimates of the true cosmological parameters of MTNG provides a
trong test of the power of our methodology. Furthermore, the flexible
evel of assembly bias allowed in the SHAMe model allows us to test
f we can measure the true level of assembly bias in MTNG when
arginalizing o v er the cosmological parameters. To the best of our

nowledge, this makes our study the first work to constrain galaxy
ssembly bias using an SHAM-like approach without assuming
he cosmology of the target sample (several groups have recently
chieved this using the HOD framework, e.g. Lange et al. 2022b ;
uan et al. 2022b ; Zhai et al. 2022 ). 
The outline of this paper is as follows: Section 2 presents the

ark matter simulations and the galaxy population models. The
omputation of the galaxy clustering and the quantification of errors
n our model are presented in Section 3 . The main results of this
aper, the constraints on the MTNG cosmological parameters from
alaxy clustering in the MTNG740 hydrodynamic simulation and in
he MTNG740-DM + SAM, are shown in Section 4 . We then turn to
iscussing our constraints on the level of galaxy assembly bias in
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Table 1. The number densities used in this work, along with the equi v alent 
cuts in M r for each galaxy formation model and the SHAMe model. Notice 
that the cuts for the SHAMe model are similar to the ones of Guo et al. ( 2015b ) 
for the SDSS. This is because the SHAMe used a luminosity function from 

the SDSS (Blanton et al. 2001 ). To facilitate further comparisons, we named 
each number density based on the cut value in the SDSS. 

Name n M 

max 
r M 

max 
r M 

max 
r M 

max 
r 

10 −3 h 3 Mpc −3 SDSS SHAMe MTNG SAM 

n 
M r −19 . 5 11 .64 −19.5 −19.39 −19.81 −20.77 

n 
M r −21 . 5 6 .37 −20.0 −19.98 −20.86 −21.53 

n 
M r −20 . 5 3 .13 −20.5 −20.48 −21.76 −22.09 

n 
M r −21 . 0 1 .16 −21.0 −20.97 −22.60 −22.64 

n 
M r −21 . 5 0 .29 −21.5 −21.49 −23.44 −23.16 
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ection 5 . Finally, we give a summary and discussion of our findings
n Section 6 . 

Unless otherwise stated, the standard units in this paper are h 

−1 M �
or masses, h 

−1 Mpc for distances, and km s −1 for the velocities. 
agnitudes are in all cases absolute magnitudes and refer to the rest

rame. All logarithm values are in base 10. 

 N U M E R I C A L  SIMULATIONS  A N D  G A L A X Y  

OPULATION  M O D E L S  

n this section, we first describe the suite of dark matter-only 
imulations we employ to create our mocks in Section 2.1 . In
ection 2.2 , we briefly introduce the scaling technique applied to our
 -body simulations. In Section 2.3 , we present the galaxy clustering
odel (SHAMe) we use to populate the (scaled) simulations with 

alaxies. Finally, we describe the MTNG hydrodynamic simulation 
Section 2.4 ) as well as the MTNG SAM (Section 2.5 ) that yield
ur target galaxy samples for testing and validating our inference 
echnique. 

.1 The Bacco simulations 

our pairs of dark matter-only simulation were used to construct the 
mulator of this study: “vilya”, “nenya”, “narya”, and “power”. The 
osmological parameters of these simulations (see Table 1 ) were 
hosen to minimize the error of the scaling technique (following 
ontreras et al. 2020 , see Section 2.2 for more details). These paired

imulations were run with opposite initial Fourier phases, using 
he procedure of Angulo & Pontzen ( 2016 ) that suppresses cosmic
ariance by up to 50 times compared to a random simulation of
he same volume. Each simulation has a volume of (512 h 

−1 Mpc ) 3 ,
imilar to the (500 h 

−1 Mpc ) 3 of the MTNG, and a resolution of 1536 3 

articles. 
These simulations, as well as all simulations specifically run for 

his work, were carried out with an updated version of L-Gadget3
Angulo et al. 2012 ), a ‘lean’ (particularly memory-efficient) version 
f GADGET (Springel et al. 2005 ). This code was also used to run
he Millennium-XXL simulation and the Bacco Simulations (Angulo 
t al. 2021 ). Using a Friend-of-Friend algorithm (Davis et al. 1985 )
ith a linking length of 0.2, and an e xtended v ersion of SUBFIND

Springel et al. 2001 ), this version of the code allows an on-the-
y identification of haloes and subhaloes. In particular, our updated 
ersion of SUBFIND can better identify substructures by considering 
he information of its past history, while also measuring properties 
hat are non-local in time, such as the peak halo mass ( M peak ), peak
aximum circular velocity ( V peak ), infall subhalo mass ( M infall ), and
ass accretion rate, among others. 
Additionally, we make use of two suites of simulations to e v aluate

he scaling technique’s performance. The first set of simulations 
onsists of 33 paired simulations of 1536 3 particles and a box length
f ∼512 h 

−1 Mpc . Except for one cosmological parameter, which 
e change to a different value for each pair of simulations, these

imulations have the ‘nenya cosmology’. These simulations are used 
o measure the dependence of the galaxy clustering on cosmology 
see Section 3.1 for more details). 

The second additional suite of simulations consists of two sets of
5 simulations that were run with volumes of (256 h 

−1 Mpc ) 3 and
68 3 particles (same resolution as the previous simulations, but lower 
olume), and were used to quantify the error of the scaling technique
see Section 3.3.3 for more details). The cosmological parameters of 
hese simulations are chosen from a Latin-Hypercube o v er the range
f parameters we co v er with the scaling technique (see Section 3.1
or the details of the hyper-parameter co v er). We changed σ 8 , �M 

,
b , h , and n s in the first set of 15 simulations, whereas we varied M ν ,
 a , and w 0 in addition to the five previous parameters for the second

et. 

.2 The scaling technique 

he scaling technique (Angulo & White 2010 ) modifies the outputs
f a dark matter simulation by displacing its particles, haloes, and
ubhaloes. Its goal is to produce a matter distribution that is compara-
le to that produced by a simulation run with a different cosmology.
umerous studies have established the method’s accuracy (e.g. Ruiz 

t al. 2011 ; Guo et al. 2013b ; Zennaro et al. 2019 ). More recently,
ontreras et al. ( 2020 ) achieved a 3 per cent precision in reproducing

he matter, halo, and subhalo power spectra o v er a wide range of
osmological parameter space. This was accomplished by scaling 
imulations centred on three distinct cosmologies. The cosmological 
arameter space co v ered by Contreras et al. ( 2020 ) is similar to the
ne of this work (equations 2–9; see Section 3.1 for more details),
hich is approximately 10 σ around Planck’s best-fitting values (see 

ection 3 of Contreras et al. 2020 for a detailed explanation on how
hese parameters were chosen). The three main cosmologies used 
n Contreras et al. ( 2020 ) are the same as the cosmologies of our
vilya’, ‘nenya’, and ‘narya’ simulations. Ho we ver, we found that
y including an additional simulation (‘power’), we can reduce the 
rror on the power spectrum to ∼2 per cent . As a point of reference,
eading and scaling one of our simulations takes approximately 15 s
hen using a single CPU. 
The scaling technique enabled us to concentrate our computational 

esources on running highly resolved N -body simulations on the 
our cosmologies mentioned previously, rather than on 10 of low- 
esolution simulations for a variety of cosmologies. High-resolution 
imulations are needed to run more realistic mock algorithms, like 
he one we describe in the next section. 

.3 The subhalo abundance matching extended model 

o constrain cosmological information from galaxy clustering, we 
equire a model capable of realistically and efficiently populating 
ark matter simulations. To accomplish this, we employ the SHAMe 
eveloped by Contreras et al. ( 2021b ). The two primary advantages
f this model are: (a) the small number of free parameters and (b)
he precision with which it reproduces galaxy clustering in real- 
nd redshift-space, particularly on small scales. The small number 
f free parameters reduces the susceptibility to de generac y with
MNRAS 524, 2489–2506 (2023) 
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osmological parameters. The high accuracy on small scales is key
o making proper use of the constraining power of galaxy clustering
n the non-linear regime. 

Just as in the standard SHAM approach (Conroy et al. 2006 ;
ale & Ostriker 2006 ; Reddick et al. 2013 ; Contreras et al. 2015 ;
haves-Montero et al. 2016 ; Lehmann et al. 2017 ; Dragomir et al.
018 ; Hadzhiyska et al. 2021a ), our model begins by matching a
ubhalo property (in this case, V peak ) to the expected luminosity
unction. We define V peak as the maximum circular velocity ( V max ≡
ax 

√ 

GM ( < r ) /r ) achiev ed o v er the evolution of a halo/subhalo.
e use the luminosity function of Blanton et al. ( 2001 ), which

acilitates further comparison with observational data. As mentioned
n Contreras et al. ( 2021b ), when galaxies are selected using number
ensity cuts, the choice of a specific luminosity function has little to
o effect on the galaxy clustering statistics. 
After constructing the basic SHAM, the model introduces orphan

alaxies; i.e. satellite structures with known progenitors that the
imulation cannot resolve but are expected to exist in the halo. We do
his by following the most bound particle of the subhalo after we can
o longer identify it. We assume that an orphan merges with its central
tructure when the time since accretion exceeds a dynamical friction
ime-scale, t infall > t d.f. , where t d.f. is the dynamical friction time
omputed at the moment the satellite subhalo become an orphan and
sing a modified version of equation (7.26) of Binney & Tremaine
 1987 ), 

 d . f. = 

1 . 17 t merger d 
2 
host V host ( M host / 10 13 h 

−1 M �) 1 / 2 

G ln ( M host /M sub + 1) M sub 
, (1) 

here t merger is a free dimensionless parameter that ef fecti vely
egulates the number of orphan galaxies; d host is the distance of
he subhalo to the centre of its host halo; V host is the virial velocity
f the host halo; M host is the virial mass of the host halo, and M sub is
he subhalo mass. 

Next, galaxies that became satellites a long time ago are remo v ed
rom the sample. After a period of time, satellite galaxies begin to
ose stellar mass, reducing their luminosity . Additionally , satellite
alaxies lose their cold gas, which reddens the galaxies and reduces
heir luminosity in certain bands (including M r ). By excluding all
alaxies that have been satellites for an extended period of time,
.e. t infall > βlum 

t dyn , with t dyn the halo’s dynamical time, defined
s 0.1/ H ( z) and β lum 

being a free parameter, we can impro v e the
alaxy clustering predictions. We also tested alternative approaches,
uch as removing substructures using their lost subhalo mass (as
n Moster, Naab & White 2018 and Contreras, Angulo & Zennaro
021a ) and other more complex approaches, but we found that our
imple approach fits the galaxy clustering the best for a luminosity-
elected galaxy sample. 

The final step in the SHAMe implementation is to include
dditional galaxy assembly bias. Galaxy assembly bias (Croton, Gao
 White 2007 ) is the change in galaxy clustering caused by the

ropagation of halo assembly bias (Gao, Springel & White 2005 ;
ao & White 2007 ) into the galaxies. This propagation occurs
ecause the occupation of galaxies depends on halo properties that
ause halo assembly bias (e.g. occupancy variations, Artale et al.
018 ; Zehavi et al. 2018 ). To this date, to our knowledge, there has
een no absolute confirmation of the (non)existence of this kind
f assembly bias for real galaxies. The level of assembly bias in a
ydrodynamic simulation is not necessarily the same as in a SHAM
Chaves-Montero et al. 2016 ) or in a SAM (Contreras et al. 2021b ;
adzhiyska et al. 2021b ). Additionally, none of these coincides
ecessarily with the level of assembly bias in the real Universe.
o account for the uncertainty surrounding the assembly bias of the
NRAS 524, 2489–2506 (2023) 
arget galaxy sample, we introduce a tuneable level of such bias in our
odel galaxy samples. While cosmology has a negligible effect on

ssembly bias, excluding it could potentially introduce a systematic
ias in our constraints on cosmological parameters (Contreras et al.
021c ). 
To introduce variable assembly bias into our samples, we follow

he procedure developed by Contreras et al. ( 2021a ), which utilizes
he individual bias-per-object of the galaxies (Paranjape, Hahn &
heth 2018 ) to choose preferentially more/less biased objects. In a
utshell, the model exchanges the luminosities of galaxies with sim-
lar values of V peak to make their luminosities correlate/anticorrelate
ith large-scale environment density (see also Hadzhiyska et al.
020 ; Xu, Zehavi & Contreras 2021a ; Xu et al. 2021b for other studies
hat look at the impact of environment on other galaxy population

odels). We preserve the satellite fraction of the original galaxy
ample by performing this step independently for central and satellite
alaxies. Thus the method uses two free parameters to control the
evel of galaxy assembly bias, f k, cen and f k, sat , for central and satellite
alaxies, respecti vely. A v alue of f k = 1 ( −1) means a maximum
minimum) galaxy assembly bias signal, while a value of 0 means the
ame assembly bias level as a standard SHAM. For simplicity, during
his work, we set f k, cen = f k, sat . We check that this approximation has
 low impact on the cosmological and assembly bias constraints. We
id this by looking at the posteriors of the cosmological parameters
n models with one and two assembly bias parameters, and found
o significant difference in the constraints. Note that this assembly
ias implementation allows us to constrain the level of assembly bias
rom the galaxy clustering of the galaxy formation models, without
ssuming any cosmology for the target sample. 

One effect that is not completely co v ered by the SHAMe model
ut is well known to affect galaxies is velocity bias (e.g. Guo et al.
015b ; Ye et al. 2017 ). It has been reported that ignoring the velocity
ias effect of central galaxies can potentially bias cosmological
onstraints (Zhai et al. 2022 ; Lange et al. 2022b ; Yuan et al. 2022b ).
he SHAMe model partially accounts for this effect by following

he positions and velocities of the subhaloes rather than the haloes.
hen fitting the galaxy clustering, we also take the SHAMe model

rror into account (see Section 3.3.2 for more details). None the less,
n the future, we will explore incorporating velocity bias into the
HAMe to impro v e the model’s accuracy even further. 

.4 The MTNG740 simulation 

o validate our inference methodology, we make use of galaxy
amples from the MTNG simulations (see Barrera et al. 2022 ; Bose
t al. 2022 ; Hadzhiyska et al. 2022a ; Hern ́andez-Aguayo et al.
022 ; Kannan et al. 2022 ; Pakmor et al. 2022 ; Delgado et al. in
reparation; Ferlito et al. in preparation, for the introductory papers
o the project). These calculations are meant to extend the two
ell-known Millennium (Springel et al. 2005 ) and IllustrisTNG

Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson et al. 2018 ;
illepich et al. 2018b ; Springel et al. 2018 ; Nelson et al. 2019a , b ;
illepich et al. 2019 ) projects in a direction that allows accurate
tudies of the galaxy-halo connection and the impact of baryonic
hysics on clustering, in particular, to much larger cosmological
olumes than previously possible. To this extent, the project includes
 new state-of-the-art hydrodynamical simulation with the galaxy
ormation model of IllustrisTNG (Weinberger et al. 2017 ; Pillepich
t al. 2018a ), but carried out in a (500 h 

−1 Mpc ) 3 volume, the size of
he original Millennium simulation, hence the name MTNG for the
roject. 
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Table 2. Cosmological parameters of the five main simulation sets used in 
this work. The vilya, nenya, narya, and power cosmologies are used in the 
construction of our inference methodology, whereas the MTNG cosmology is 
used e xclusiv ely to test the performance of our method. All these simulations 
have values of M ν = 0, w 0 = −1, and w a = 0. 

Cosmology σ 8 �M 

�b h n s 

MTNG 0 .8159 0 .3089 0 .0486 0 .6774 0 .9667 
vilya 0 .9 0 .270 0 .060 0 .65 0 .92 
nenya 0 .9 0 .315 0 .050 0 .60 1 .01 
narya 0 .9 0 .360 0 .050 0 .70 1 .01 
power 0 .9 0 .3071 0 .0483 0 .6777 0 .9611 
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A full o v erview of the simulation set of MTNG can be found
n Hern ́andez-Aguayo et al. ( 2022 ). Besides large hydrodynamical 
imulations, it also includes a series of dark matter-only simulations, 
nd runs that explicitly include massive neutrinos. We will here 
ocus on the flagship hydrodynamical model, MTNG740, which 
s based on the IllustrisTNG physics implementation but offers 
 volume nearly 15 times larger than TNG300, the biggest box 
f IllustrisTNG, at slightly poorer mass resolution. The simulated 
olume is a periodic box with 500 h 

−1 Mpc � 740 Mpc on a side;
he number of dark matter particles and gas cells is each 4320 3 ,
mplying an average gas cell mass of 2 . 00 × 10 7 h 

−1 M � and a mass
esolution of 1 . 12 × 10 8 h 

−1 M � for the dark matter. The simulation
dopted cosmological parameters identical to IllustrisTNG for ease 
f comparison, consistent with Planck Collaboration ( 2016 ). 1 The 
nitial conditions for MTNG were made by fixing initial power mode 
mplitudes to their expected rms (Angulo & Pontzen 2016 ), which 
ignificantly reduces the effect of cosmic variance on a simulation, 
t least for second-order statistics. Only one simulation has been run, 
o we ver, not a full pair, due to the very large computational cost. For
he corresponding dark matter-only simulations (see below), a pair 
ith reflected phases has been simulated, ho we ver, in order to enable

he full reduction in large-scale statistical ‘noise’. 
MTNG740 was run using the moving-mesh code AREPO (Springel 

010 ) and accounts for radiative cooling and star formation in the
as, the growth of supermassive black holes, as well as associated 
nergetic feedback processes from supernovae and black holes, 
mong other processes of galaxy formation physics. Galaxies are 
roduced as agglomerations of star particle with properties that 
an be directly measured from the simulation. (See Pakmor et al. 
 2022 ) for an analysis of how well basic properties of the galaxy
opulation of MTNG740 agree with observations and with the 
revious simulations of IllustrisTNG.) The dark matter-only version 
f MTNG740 (MTNG740-DM) was run with the Gadget-4 code 
Springel et al. 2021 ). 

To build our target galaxy sample, we select the most luminous 
alaxies in the r -band at z = 0.1. We define a galaxy’s luminosity
s the sum of the luminosities of all its stellar particles. We chose
he most luminous galaxies down to number densities of 11.64, 6.37, 
.13, 1.16, and 0 . 29 × 10 −3 h 

3 Mpc −3 , respectively. These number
ensities are the same as the ones chosen by Guo et al. ( 2015b ),
ho computed the SDSS observational galaxy clustering. Using 

hese number densities will facilitate a direct comparison with 
osmological and galaxy assembly bias constraints we plan to obtain 
or the SDSS galaxy clustering in future work. 

We show the equivalent luminosity cuts for each of our number 
ensities in Table 2 . While the magnitude cuts differ from those
sed in SDSS, galaxy clustering is more sensitive to the number 
ensity itself than to the value of individual property cuts, making 
omparisons between samples with the same number density more 
ppropriate for these types of studies (Contreras et al. 2013 ). While
TNG740 is similarly successful as IllustrisTNG in reproducing a 

arge number of observables (Pakmor et al. 2022 ), note that we do not
equire our target simulation to be completely realistic. We are here 
ore concerned with testing our methodology’s ability to reco v er 

he cosmology and galaxy formation information of any underlying 
alaxy model that is fed to it, regardless of whether the model agrees
ith observation or not. 
 �M 

= 0.3089, �b = 0.0486, σ 8 = 0.8159, n s = 0.9667, and h = 0.6774. 

p  

t

2

.5 The semi-analytical model 

o further validate our procedures and to test their constraining 
apacity, we also use them to analyse a galaxy sample derived
rom a SAM for galaxy formation (SAM, e.g. Kauffmann, White 
 Guiderdoni 1993 ; Cole et al. 1994 ; Somerville & Primack

999 ; Bower et al. 2006 ; Lagos, Cora & Padilla 2008 ; Somerville
t al. 2008 ; Benson 2010 , 2012 ; Jiang et al. 2014 ; Croton et al.
016 ; Lagos et al. 2018 ; Stevens et al. 2018 ; Henriques et al.
020 ), applied to MTNG740-DM-2-A (see table 1 of Hern ́andez-
guayo et al. 2022 , for the specifications of the simulations), one
f the dark matter-only companion runs of MTNG740. Unlike 
he hydrodynamic simulations, the baryonic matter is here not 
imulated alongside the dark matter, but rather is tracked using 
implified analytical modelling grafted on top of stored subhalo 
erger trees created from a dark matter-only simulation. This 

pproach enables easy and rapid examination of alternative galaxy 
ormation assumptions, because it allows them to be varied without 
equiring a new and computationally e xpensiv e dynamical simula- 
ion. 

We here use the new semi-analytic methodology developed by 
arrera et al. ( 2022 ) for application to MTNG, as realized in the
ost recent version of the L-GALAXIES code. This model is based

n a long history of prior development of the ‘Munich semi-analytic
odel’ (White & Frenk 1991 ; Kauffmann et al. 1993 , 1999 ; Springel

t al. 2001 , 2005 ; De Lucia, Kauffmann & White 2004 ; Croton
t al. 2006 ; De Lucia & Blaizot 2007 ; Guo et al. 2011 , 2013a ;
enriques et al. 2013 , 2020 ). The new version of Barrera et al. ( 2022 )
as substantially impro v ed tracking of subhaloes and galaxies o v er
osmic time, which, in particular, allows continuous outputing on 
he past light cone. In terms of physics modelling, ho we ver, it largely
elies on the parametrization of Henriques et al. ( 2015 ). 

Apart from using the SAM catalogue of Barrera et al. ( 2022 ),
e also produced four additional models ourselves with extreme 
alaxy formation parameter variations, in order to test the ro- 
ustness of our inference pipeline to significant modifications of 
 alaxy formation ph ysics. These models were implemented for a
ark matter-only simulation that used the same cosmology, initial 
onditions, and volume as the MTNG740-DM simulation, but has 
 lower resolution (1536 3 particles). Also, these models were run 
ith the older public version of L-GALAXIES, 2 using (mostly) 

ts default parameter set. To produce extreme model variations, 
e changed the supernova energy efficiency parameter by multi- 
lying/dividing it by a factor of 10 or 100. We opted to change
his parameter because it was the one that maximally influenced 
MNRAS 524, 2489–2506 (2023) 

 ht tps://lgalaxiespublicrelease.git hub.io 
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he clustering of M r selected galaxy samples at fixed number
ensity. 

 G A L A X Y  CLUSTERING  A S  A  F U N C T I O N  O F  

O S M O L O G Y  

e aim to constrain cosmology through galaxy clustering by com-
ining the scaling technique for generating dark matter simulations
n various cosmologies and the SHAMe technique for populating
hese simulations with galaxies. We will use r -band selected galaxies
rom the MTNG hydro simulation, and a SAM based on a MTNG
ark matter-only simulation as target samples to test our inference
apability of cosmological parameters. As previously mentioned, we
mploy the r -band to facilitate future applications to observational
ata. 
In this section, we build a Monte Carlo approach that system-

tically compares the clustering predictions of our mocks with the
lustering of our target samples, providing joint constraints on both
HAMe and cosmological parameters. In Section 3.1 , we detail the
osmological parameter space we explore. In Section 3.2 , we build
n emulator that predicts galaxy clustering as a function of our
HAMe and cosmological parameters. Finally, Section 3.3 details

he covariance matrix used to run our Monte Carlo approach. 

.1 The parameter space 

he range of cosmological parameters we can explore is limited by
he performance of the scaling technique. Contreras et al. ( 2020 )
emonstrate that we can scale to a parameter space greater than
0 σ around the Planck best fit cosmology based on simulations with
ust three parameter sets, those of our ‘vilya’, ‘nenya’, and ‘narya’
imulations. As mentioned previously, we added an additional
imulation, ‘power’, to further impro v e the accurac y of the scaling
echnique. The range of cosmologies we looked at are: 

8 ∈ [0 . 65 , 0 . 9] (2) 

M 

∈ [0 . 23 , 0 . 4] (3) 

b ∈ [0 . 04 , 0 . 06] (4) 

 s ∈ [0 . 92 , 1 . 01] (5) 

 [100 km s −1 Mpc −1 ] ∈ [0 . 6 , 0 . 8] (6) 

 ν [ eV ] ∈ [0 . 0 , 0 . 4] (7) 

 0 ∈ [ −1 . 15 , −0 . 85] (8) 

 a ∈ [ −0 . 3 , 0 . 3] (9) 

otice that the lower limit of σ 8 is 0.65, lower than the limit set by
ontreras et al. ( 2020 ) of 0.73. We recently found that increasing the

ange o v er which we scale this property has no discernible effect on
he scaling technique’s error. 

As one might expect, not all cosmological parameters have the
ame effect on galaxy clustering. To quantify this, we employ
he suite of 33 paired simulations described in Section 2.1 . Each
imulation has 1536 3 particles and a box size of ∼512 h 

−1 Mpc .
he simulations have a similar cosmology to the ‘nenya’ simulation,
xcept that one parameter is varied within the specified range given
bo v e. We populate all these simulations using the SHAMe model,
sing the same parameters in every case for the n 

M r −19 . 5 density
NRAS 524, 2489–2506 (2023) 
ample. The SHAMe parameters are those that minimize the cluster-
ng difference between MTNG740 and a SHAMe mock run o v er a

TNG dark matter-only simulation. 
We quantified the variation in the projected correlation function

 w p ), monopole ( ξ� = 0 ), quadrupole ( ξ� = 2 ), and hexadecapole
 ξ� = 4 ) of the correlation function between five consecutive simu-
ations by varying only one single cosmological parameter. For ex-
mple, for �M 

, we compute the differences between the simulations
ith �M 

= { 0.23, 0.27 } , �M 

= { 0.27, 0.315 } , �M 

= { 0.315, 0.36 } ,
nd �M 

= { 0.36, 0.4 } . The corresponding change in the statistics
 δφ) is divided by the change in each of the parameters (in this case,
�M 

) to get a deri v ati ve of the clustering statistics with respect to
he cosmological parameter. To account for the significance of this
eri v ati ve, we then normalize by the ratio between the total change
f the parameter (e.g. for �M 

this would be 0.4–0.23 = 0.17) and the
rror expected from SDSS for that statistic ( σ SDSS , see Section 3.3.1 ).
hese normalized deri v ati ves for the clustering statistics are shown

n Fig. 1 . 
The galaxy clustering pro v ed to be more sensitive to changes

n �M 

, σ 8 , and h than to any of the other parameters in our set.
 or conv enience, we thus restrict ourselv es in the following to
onstraining these three parameters. We also tested including the
eutrino mass M ν , which also displays some clustering dependence,
ut not unexpectedly, we were not able to constrain it or find any
eaningful relation worth reporting here. 
We w ould lik e to emphasize that other clustering statistics, such as

he 3PCF (Guo et al. 2016 ) or the kNN-CDF (Banerjee & Abel 2021 ),
ay be more sensitive to changes in other cosmological parameters

nd should not be ruled out as properties that can be constrained at
hese scales via galaxy clustering. A more in-depth examination of
hese dependencies will be conducted in future work. 

.2 Emulating the galaxy clustering 

s described thus far, we have developed a method capable of
fficiently creating mock galaxy catalogues at any redshift. As a
eference, for a single CPU, the time required to: (1) read a pair
f dark matter simulations; (2) scale the simulations to a target
osmology; (3) create four distinct mocks, each with a unique random
eed, and (4) compute the w p , ξ� = 0 , ξ� = 2 , and ξ� = 4 for three
ifferent lines of sight, for six different number densities (this last
art done with four CPUs), take less than 7 min. While reasonably
ast, this is still too slow for an MCMC-like approach. 

To speed up the generation of clustering predictions, we thus
eveloped an emulator based on ∼175 000 clustering measurements
f mocks with varying cosmologies and SHAMe parameters. The
mulator was constructed using a feed-forward neural network in
 manner similar to that described in Angulo et al. ( 2021 ) and
ric ̀o et al. ( 2021b ). The architecture used consists of two fully

onnected hidden layers with 200 neurons each, and a rectified linear
nit acti v ation function for the projected correlation function and
onopole of the correlation function, as well as three layers for the

uadrupole and hexadecapole, with each statistic being represented
y an independent network. We have also tested other configurations
eaching similar performances. 

The neural networks were trained using the Keras front-end of
he Tensor-flow library (Abadi et al. 2016 ). We used the Adam
ptimization algorithm, with a learning rate of 0.001, and a mean-
quared error loss function. We split our data set into disjoint groups
or training and validation. The training set contains 90 per cent
f the data and required approximately 45 min of processing per
umber density/statistic on a single Nvidia Quadro RTX 8000 GPU
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Figure 1. The relative change in galaxy clustering ( w p in black, ξ� = 0 in red, ξ� = 2 in blue, and ξ� = 4 in green) as a function of scale for different cosmological 
parameters: σ 8 , �M 

, �b , h , n s , M ν , w a , and w 0 . The change in clustering is computed as the clustering variation for galaxy samples run in simulations with 
one different cosmological parameter( δφ), normalized by the variation on that cosmological parameter ( δparam). This change in clustering is then scaled by 
the maximum change in the cosmological parameter (which is normally 10 σ around the Planck best-fitting cosmology, � param) and normalized again by the 
expected error of the SDSS on each clustering statistics ( σ SDSS ). The solid lines represent the mean of four different measurements, while the shaded regions 
co v er one standard deviation around the mean value. (See Section 3.1 for more details.). 
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ard. Evaluating the four emulators takes ∼47 milliseconds on a 
aptop, with ∼0.5 s to e v aluate 100 000 samples (it is more efficient
o e v aluate the data in larger groups). As part of this paper, we are
lso making this emulator publicly available. 3 

.3 Error quantification 

n this section, we look at the different uncertainties associated with 
ur model. To account for them, we create a covariance matrix 
hat includes all of these possible error sources. By omitting any 
ystematic error, we risk biasing our predictions. In Section 3.3.1 , we
xamine the contribution of cosmic variance to the error. We quantify 
he errors introduced by the SHAMe model, the scaling technique, 
nd the emulator in Sections 3.3.2 , 3.3.3 , and 3.3.4 , respectively.
inally, in Section 3.3.5 , we show how these errors can be combined,
nd how much they contribute to the total error. 

.3.1 SDSS errors 

ince the initial conditions of the MTNG were produced by fixing 
he initial power spectrum, and the initial conditions of the Bacco 
imulations were also run with the fixed & paired method (Angulo &
ontzen 2016 ), we do not expect a significant contribution of cosmic
ariance for the scales we are interested in ( r < 25 h 

−1 Mpc ). None
he less, in order to replicate cosmological constraints realistically, 
e assume an error in our clustering prediction comparable to that of

he SDSS. We use the covariance matrix provided by Guo et al.
 2015b ; see also Zehavi et al. 2011 ). As previously stated, the
umber densities of our samples are identical to those of SDSS, and
heir mean redshift ( z = 0.1) is comparable as well. This particular
 ht tp://www.mt ng-project .org 4
election of galaxy samples thus facilitates any future study of the
DSS clustering. 
Guo et al. ( 2015b ) computed the covariance matrix (C v , sdss ) using

00 jackknife samples (Zehavi et al. 2002 ; Norberg, Frenk & Cole
008 ) measuring the projected correlation function ( w p ) and the
ultipoles of the correlation function ( ξ� = 0 , ξ� = 2 , and ξ� = 4 ). The

esulting covariance matrix also contains the cross term between 
hese statistics. All of their clustering measurements were made under 
he assumption of a Planck cosmology. 

Because we computed the clustering of the target sample (MTNG- 
ydro and MTNG-SAM) at z = 0.1, and the distance units include
n h factor, they should be mostly unaffected by the Alcock–
aczynski effect (Alcock & Paczynski 1979 ). We demonstrate this 
y performing some extreme changes in cosmology and discovering 
hat they are mostly negligible, consistent with the findings of Guo
t al. ( 2015b ). 

.3.2 Galaxy modelling errors 

o quantify the error associated with the SHAMe model, we compare
he clustering of the MTNG740 simulation and the five SAMs run
ith different (and extreme) physical parameters to the clustering 
f a SHAMe mock run o v er a MTNG dark matter-only simulation.
e use the Particle Swarm Optimization algorithm PSOBACCO , 4 

escribed in Aric ̀o et al. ( 2021a ), to determine the SHAMe model
arameters that best fit the MTNG hydro run and the SAMs. The fits
re performed by minimizing the χ2 computed using the covariance 
atrix of the SDSS for scales greater than a given r min . We generate

ev eral co variance matrices for each of the r min values used in this
aper. 
MNRAS 524, 2489–2506 (2023) 

 https:// github.com/hantke/ pso bacco 
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M

Figure 2. The errors of the SHAMe model for the n 
M r −19 . 5 galaxy sample. The black line indicates the difference between the MTNG’s galaxy clustering and 

the best-fitting SHAMe. The coloured lines depict the same difference, but for various SAMs rather than the MTNG. The vertical line shows the minimum scale 
used in the fitting. The difference is normalized by the SDSS error, also for the n 

M r −19 . 5 galaxy sample. 

Figure 3. The error of the scaling technique. The lines depict the differences in galaxy clustering between 600 SHAMe models run o v er 30 dark matter 
simulations, and those same 600 models run o v er scaled simulations. The differences are normalized by the SDSS error estimated for a comparable galaxy 
sample. The red circles and error bars represent the distribution’s median, and 16th and 84th percentiles, respectively. 
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We compute a covariance matrix from the differences in clustering
etween mocks and galaxy formation models: 

 v , SHAMe ( V i , V j ) = 

1 

N 

N ∑ 

l= 1 

( V SHAMe − V gal . form . ) 
l 
i 

× ( V SHAMe − V gal . form . ) 
l 
j , (10) 

ith C v , SHAMe being the covariance matrix from the SHAMe mod-
lling, V SHAMe and V gal . form . representing the clustering vector
 w p , ξ� = 0 , ξ� = 2 , and ξ� = 4 ) of the mocks and the galaxy formation
odels, respectively. Fig. 2 shows the ratio between the clustering
easurements of the galaxy formation models and the SHAMe for an

 min = 0 . 6 h 

−1 Mpc . The differences considered here are between the
hick solid line and the black horizontal line (i.e. the difference in the
lustering of the galaxy formation model) and not between the mean
f the distribution of the individual lines. These differences agree
ith the ones found for stellar mass-selected galaxies (Contreras

t al. 2021b ). 

.3.3 Scaling errors 

e now look at the error introduced by using scaled N -body
imulations. For this, we use the suite of 30 paired simulations with
ifferent cosmologies described in Section 2.1 . We divide this suite
nto two groups. In the first group, we varied σ 8 , �M 

, �b , n s , and h ,
nd in the second group, we varied the neutrino mass ( M ν) and the
NRAS 524, 2489–2506 (2023) 
ark energy equation-of-state parameters w 0 and w a in addition to the
arameters varied in the first group. For each simulation, we compute
he galaxy clustering for 20 SHAMe mocks, each with different and
andomly selected parameters. 

The projected correlation function, monopole, quadrupole, and
exadecapole of the mocks run on full N -body simulations are
ompared to those run on scaled simulations for the n 

M r −19 . 5 sample
n Fig. 3 . At all scales, the scaling error is subdominant for the
rojected correlation function. For the monopole of the correlation
unction, the error due to the scaling technique only becomes rele v ant
or small scales. The errors of the quadrupole and hexadecapole are
ore significant, comparable to the ones of the SDSS at scales below
 h 

−1 Mpc . On larger scales, the scaling can successfully predict all
tatistics. Other number densities exhibit similar trends. 

Similarly to the previous section, we construct a covariance matrix
rom the differences between the scaled and real galaxy clustering
easurements, 

 v , scl ( V i , V j ) = 

1 

N 

N ∑ 

l= 1 

( V scl − V target ) 
l 
i ( V scl − V target ) 

l 
j , (11) 

ith C v , scale being the covariance matrix from the scaling, V target 

eing the clustering vector ( w p , ξ� = 0 , ξ� = 2 and ξ� = 4 ) from the two
roups of simulations, and V scl representing the clustering vector
rom the scaled simulations. 
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Figure 4. The error of the emulator. The lines depict the differences in galaxy clustering between 1000 scaled SHAMe mocks and their emulator counterparts. 
The differences are normalized by the SDSS error estimated for a comparable galaxy sample. The red circles and error bars represent the distribution’s median, 
and 16th and 84th percentiles. 

Figure 5. The contribution of all errors to galaxy clustering as a function of scale for the n 
M r −19 . 5 sample. The vertical line indicates the minimum scale at 

which the SHAMe mocks were fitted, r min = 0 . 6 h −1 Mpc . We highlight in grey 5 per cent of the value of each clustering statistic as a point of reference. If 
the errors are all independent, the total error (black line) equals the sum of all sources of errors (coloured dashed lines). The primary sources of errors are the 
assumed cosmic variance errors from the SDSS, and the errors of the scaling technique. 
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.3.4 Emulator errors 

o assess the emulator’s accuracy, we compare its clustering pre- 
ictions against a subsample of 1000 scaled simulations that were 
ot used in the emulator’s training or testing. We then construct the
ovariance matrix, C v , emulator , computed as: 

 v , emu ( V i , V j ) = 

N − 1 

N 

N ∑ 

l= 1 

( V emu − V val ) 
l 
i ( V emu − V val ) 

l 
j , (12) 

ith V emu and V val representing the combined clustering data 
 w p , ξ� = 0 , ξ� = 2 , and ξ� = 4 ) for the emulated and validation data,
espectively. 

In Fig. 4 , we compare the clustering of mocks and the emulator
or the n 

M r −19 . 5 density sample. The emulator’s o v erall performance is
ood, with the lowest source of errors shown thus far. Lower number
ensities have a slightly greater dispersion, but they are al w ays the
owest source of errors. 

.3.5 Combining all errors 

fter examining these possible sources of error, we now combine 
hem to obtain the model’s total error. Given that the errors are

ostly uncorrelated, it is reasonable to assume that the total error
an be simply described as the sum of all individual errors: 

 v , tot = C v , SDSS + C v , SHAMe + C v , scl + C v , emu . (13) 

We show in Fig. 5 the square root of the diagonal of the
ovariance matrices of all the sources of error discussed so far, for the
 

M r −19 . 5 density sample. As expected, the SDSS covariance matrix is 
he primary source of error. The scaling technique is the second-

ost significant source of error, which dominates at scales below 

2 h 

−1 Mpc for the monopole, quadrupole, and hexadecapole. In 
ection 4.4 , we will show how these two major sources of errors
ffect our cosmological constraints. 

Fig. 6 shows the emulated clustering of the best-fitting SHAMe 
ock when the cosmology is fixed to the one of MTNG740 (green

otted line) and when any cosmology is allowed (blue dashed line).
he top panel compares the emulator’s clustering predictions to 

he MTNG740 galaxies, while the bottom panel compares to three 
ifferent semi-analytic runs. The fits are made by minimizing the 
2 computed using the combined covariance matrix at scales abo v e
 . 6 h 

−1 Mpc . Utilizing the entire covariance matrix may result in the
est fit not passing through the centre of each data point. This could
ccount for some of the quadrupole and hexadecapole deviations. 
one the less, the fits perform admirably with a χ2 /d.o.f. < 1. In the

ollowing section, we will use this emulator to assess the technique’s
MNRAS 524, 2489–2506 (2023) 
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Figure 6. Top panel: The galaxy clustering for the MTNG (red circles); the emulated clustering of the best-fitting SHAMe mock fixing the cosmology to the 
one of the MTNG (green dotted line) and allowing any cosmology (blue dashed line). The error bars in the MTNG clustering represent the model’s total error 
(see Section 3.3.5 for more details). The vertical line indicates the fitting’s minimum scale. Bottom panel: Similar to the top panel, but for three SAMs with 
different physical prescriptions. 
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onstraining power when SHAMe and cosmological parameters are
aried simultaneously. 

 C O N S T R A I N I N G  C O S M O L O G Y  USING  

A L A X Y  CLUSTERING  

n this section, we use our emulator to constrain cosmological and
alaxy formation information from the galaxy clustering of the
TNG740 simulation and the fiducial SAM catalogue based on
TNG740-DM. Using a MCMC, we obtain posterior distributions

or our parameters. We use the public code EMCEE (F oreman-Macke y
t al. 2013 ) employing 1000 chains with an individual length of
NRAS 524, 2489–2506 (2023) 
0 000 values, and a burn-in phase of 1000. While perhaps atypical,
his combination of chains and steps is ideal for an emulator-based

CMC, which is extremely efficient when computing multiple
oints simultaneously. We test additional combinations of MCMC
arameters and obtain nearly identical results in all cases. The
verage computing time of each MCMC analysis was ∼20 min.
e computed the likelihood function as: 

n L = −χ2 / 2 , (14) 

ith L being the likelihood and χ2 computed as 

2 = ( V emu mock − V gal . form . ) 
T C v , tot 

−1 ( V emu mock − V gal . form . ) , (15) 
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Figur e 7. Mar ginalized 1 σ confidence regions for four SHAMe parameters and three cosmological parameters derived from the galaxy clustering ( w p , 
ξ� = 0 , ξ� = 2 , and ξ� = 4 ) of the MTNG740 simulation (black line) and different SAMs (red, cyan, and magenta lines) for a sample with a number density of 
n 

M r −19 . 5 = 11 . 64 10 −3 h 3 Mpc −3 . The probability distribution function for each parameter is displayed at the top of each column. The blue circles represent the 
simulations’ true cosmology. 
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here C v , tot is the covariance matrix, and V emu mock and V gal . form . 

epresent the clustering vector ( w p , ξ� = 0 , ξ� = 2 , and ξ� = 4 ) of the
mulator and the galaxy formation models, respectively. The maxi- 
um number of free parameters is eight (four SHAMe parameters 

nd four cosmological parameters). Due to the emulator’s efficiency, 
e can easily test different covariance matrix configurations and 
ifferent minimum scales for the galaxy clustering, and quantify the 
ffect of the different parameters on the resulting constraints. 

In Fig. 7 , we show the 1 σ confidence regions for the cosmological
nd SHAMe parameters when fitting w p , ξ� = 0 , ξ� = 2 , and ξ� = 4 for a
 

M r −19 . 5 density sample. The blue dot represents the galaxy formation 
odels’ cosmology. While the MTNG-SAM and MTNG-hydro 
odel exhibit some differences in their confidence regions, the 
orrect cosmology is reco v ered within 1 σ in both cases. We notice
hat we are unable to capture the entire distribution of the Hubble
arameter ( h ), which means that this parameter cannot be constrained
sing these clustering statistics. This is in part because there is a
e generac y between h 2 and �M 

. To account for this, we show in Fig. 8
he 1 σ and 2 σ confidence regions for σ 8 and �M 

h 2 , marginalized
 v er the other parameters, for the same galaxy samples as abo v e.
he parameters look to be constrained within the parameter space 
xplored, with the correct cosmology recovered within 1 σ . When 
he Hubble parameter is set to the correct value, the constraints for

M 

h 2 become significantly tighter (as expected), but we observe no 
MNRAS 524, 2489–2506 (2023) 
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Figur e 8. Mar ginalized 1 σ and 2 σ credibility regions for σ 8 and �M 

h 2 

for the n 
M r −19 . 5 density sample. The dashed line contours represent the 

marginalized region when fixing the Hubble parameter to its correct value 
( h = 0.6774). For visual clarity, the top histograms are only shown for the 
non-fixed h runs. 
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ignificant impro v ement in the constraints on σ 8 . For this number
ensity, we can place the following constraints, σ8 = 0 . 799 + 0 . 039 

−0 . 044 and
 . 826 + 0 . 041 

−0 . 045 , and �M 

h 

2 = 0 . 138 + 0 . 025 
−0 . 018 and 0 . 151 + 0 . 026 

−0 . 020 for the MTNG-
ydro and the MTNG-SAM galaxy catalogues, respectively. These
stimates are remarkably close, especially for �M 

h 2 , to the true
alues for the MTNG models ( σ 8 = 0.816 and �M 

h 2 = 0.142).
y fixing the value of the Hubble parameter ( h ), the constraints for
ur fiducial method become σ8 = 0 . 799 + 0 . 038 

−0 . 046 and 0 . 826 + 0 . 040 
−0 . 044 , and

M 

h 

2 = 0 . 137 + 0 . 011 
−0 . 012 and 0 . 148 + 0 . 011 

−0 . 015 , equi v alent to �M 

= 0 . 298 + 0 . 024 
−0 . 027 
NRAS 524, 2489–2506 (2023) 

igure 9. The median (filled circles), 16th and 84th percentiles (error bars) of the
he MTNG constraints are shown in black, while the SAM constraints are shown
he correct cosmology of the galaxy formation models is indicated by a dashed ho
nd 0 . 323 + 0 . 025 
−0 . 032 , respectively. The correct cosmology is thus recov-

red for the samples studied. Now, we will examine how different
cales and different clustering statistics affect these constraints. 

.1 The constraining power of different scales 

e now examine the amount of cosmological information captured
y the different scales of the correlation function. This is accom-
lished by performing several MCMCs and limiting the minimum
cale of the correlation statistics used. The scales tested are r min =
.6, 1, 2, 4, and 8 h 

−1 Mpc . In Fig. 9 , we show the median and 16th
nd 84th percentile distributions of σ 8 and �M 

h 2 for the MTNG740-
ydro and the MTNG-SAM galaxies. For both models, we find that
or scales greater than 1 − 2 h 

−1 Mpc , the constraints in σ 8 become
arger. Below this scale, the constraints are similar, except for r min 

 0. At this scale, the χ2 of the best fit is quite poor, most likely
ecause the fit or scaling in this region was insufficient to reproduce
hese very inner scales. For �M 

h 2 , the constraints are equally good
or all the values of r min , meaning that the constraining power of this
arameter has low dependence on the internal galaxy distribution of
ach halo. It is important to notice that, independent of the value
f r min , the correct cosmology is al w ays reco v ered within 1 σ . The
nly exceptions are for the highest number density sample and the
wo lo west r min v alues. There, we reco v er the correct MTNG-SAM
osmology within 1.1 σ , which are still good constraints. 

.2 The constraining power of different clustering statistics 

e now look at the dependence of the constraints on the indi-
idual clustering statistics: the projected correlation function ( w p );
he monopole of the correlation function ( ξ� = 0 ); the quadrupole
f the correlation function ( ξ� = 2 ); and the hexadecapole of the
orrelation function ( ξ� = 4 ). The likelihood function is computed
n the same manner as in the previous section (equations 14
nd 15 ). We use a minimal scale of r min = 0 . 6 h 

−1 Mpc , and the
art of the covariance matrix that only includes w p , w p + ξ� = 0 ,
 p + ξ� = 0 + ξ� = 2 , and w p + ξ� = 0 + ξ� = 2 + ξ� = 4 . In Fig. 10 , we show
 σ 8 and �M 

h 2 distributions from the MCMC chains for various r min values. 
 in red. The dif ferent ro ws represent dif ferent number densities, as labelled. 
rizontal line as a reference. 

459 by guest on 24 January 2024
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Figure 10. Similar to Fig. 9 , but for different statistics: w p , w p + ξ� = 0 , w p + ξ� = 0 + ξ� = 2 , and w p + ξ� = 0 + ξ� = 2 + ξ� = 4 . 
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he median and 16th and 84th percentile distributions of σ 8 and �M 

h 2 

or the MTNG hydro and SAM galaxies. 
For σ 8 , we find that the projected correlation function alone 

oes not perform as well as when the monopole is included. The
uadrupole and hexadecapole do not impro v e the constraints already 
chieved with the monopole. We notice that the best performance 
s already achieved with the projected correlation function for the 
owest number density, �M 

h 2 , most likely because large scales are the 
nes that better constrain this property, independent of the velocity 
rofile of the galaxies, which is consistent with the previous section. 

.3 Constraints on the SHAMe parameters 

n the previous sections, we showed how galaxy clustering can be 
sed to constrain cosmological information. The strength of these 
onstraints is determined by the model’s errors and the model’s 
exibility due to its free parameters. In this section, we examine how

hese constraints are affected by each of the SHAMe parameters, 
hile in following section, we will explore how these constraints are 

ffected by the various errors assumed for our model. 
For this section, we run a series of MCMC analyses with some

arameters fixed to the fiducial case’s best-fitting parameters. The 
odels we look at are: 

(i) SHAMe parameters fixed. We fix all SHAMe parameters, 
eaving free only the three cosmological parameters. 

(ii) Sat. SHAMe parameters fixed. We only fix the SHAMe 
arameters involved in the treatment of satellite galaxies, t merger and 
lum 

. 
(iii) σ lum fixed. We only fix the parameter that controls the scatter 

etween the luminosity and V peak in the SHAMe model, σ lum 

. 
(iv) t merger fixed. We only fix the parameter that controls the 

urvi v al rate of orphans in the SHAMe model, t merger . 
(v) f k, cen = sat fixed. We only fix the parameter that controls the 

dditional level of assembly bias in the SHAMe model, f k, cen = sat . 
(vi) β lum fixed. We only fix the parameter that controls the 

uminosity attenuation and later disruption of the satellites in the 
HAMe model, β lum 

. 
The cosmological constraints for each of these cases for the 
TNG-hydro and the MTNG-SAM galaxies are shown in red 

olours in Fig. 11 . Constraints for the n 
M r −19 . 5 and n 

M r −20 . 5 density
amples are shown in the left-hand and right-hand panels, respec- 
ively. As with previous figures, the circles denote the distribution’s 
edian, and the error bars denote the 16th to 84th percentiles. The

hadow region corresponds to the 16th to 84th percentiles of the
TNG’s fiducial case. 
We find no significant impro v ement in the constraints of σ 8 and

M 

h 2 by fixing any of the SHAMe parameters. This is consistent
ith the finding that there is no significant correlation between the

osmological parameters and the SHAMe parameters (Fig. 7 ). These 
esults indicate that none of the SHAMe free parameters reduced 
he constraining power on the cosmological parameters. This does 
ot imply, ho we ver, that a more realistic model would not aid in
nhancing the constraints. As will be shown in the following section,
he different components of the covariance matrix, including the 
omponent that accounts for the error of the SHAMe model, will
ave an impact on the overall constraint of our model. 

.4 The impact of the errors on the cosmological constraints 

inally, we measure how the constraints depend on the systematics 
f our model. In Section 3.3.5 , we showed that the largest sources
f error in the combined covariance matrix are cosmic variance 
assumed to be identical to that in the SDSS) and the scaling
echnique. We measured the impact of these systematics by running 
hree MCMC analyses with different covariance matrices: 

(i) No Scaling Error. Same as our combined covariance matrix, 
ut without the scaling component of the error. 

(ii) No SDSS Error. Same as our combined covariance matrix, but 
ithout the cosmic variance component of the error. 
(iii) Only SDSS Error. Only use the SDSS covariance matrix. 

The constraints for these three runs and for the MTNG-hydro 
nd the MTNG-SAM are depicted in blue colours in Fig. 11 . While
caling is the second-largest source of error, ignoring its error has
 negligible effect on the cosmological constraints. We would like 
o remind the reader that the scaling technique is capable of quickly
MNRAS 524, 2489–2506 (2023) 
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Figure 11. The median (filled circles), and 16th and 84th percentiles (error bars) of the σ 8 and �M 

h 2 distributions from the MCMC chains for various clustering 
statistics. Constraints for the n 

M r −19 . 5 and n 
M r −20 . 5 density samples are shown in the left-hand and right-hand panels, respectively. The darker colours represent 

the constraints for the MTNG-hydro galaxies, while the lighter colours represent the constraints for the MTNG-SAM. We show our fiducial case in black (using 
all the clustering statistics, and r min = 0 . 6 h −1 Mpc ); in red, we show the constraints when fixing some or all of the different SHAMe parameters; and in blue, 
we give the constraints when using variations of our main covariance matrix when computing the likelihood in the MCMC (see Sections 4.3 and 4.4 for more 
details). The grey shaded region denotes the percentile distribution of the MTNG’s fiducial case. 
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producing’ a dark matter simulation for a given cosmology in a
ew seconds. This technique is the cornerstone of our approach, and
emonstrating that its associated error has a negligible effect on the
osmological constraints is important to validate our approach. 

Now we focus on the assumed cosmic variance error, which
 as tak en from the SDSS. This error was included for comparison
urposes only, and is not part of our model’s intrinsic error. By
emoving this error from our covariance matrix, we find stronger
onstraints for σ 8 , but not for �M 

h 2 . These fiducial constraints
epresent the full potential of our approach in its current state. If,
ypothetically speaking, we had access to a galaxy surv e y with
erfect clustering measurements and ran our model o v er much larger
imulations, the cosmological constraints would look similar to these.
t is worth noting that the median estimate of σ 8 , which is a bit lower
or the fiducial case than the correct value, is now much larger for
oth number densities. This shift to a lo wer v alue in the fiducial case
ay be due to the SDSS covariance matrix’s larger errors at large

cales (Fig. 5 ), or it may be induced by the specific cross-correlation
etween different scales and statistics. This shift in the value of σ 8 

hould be kept in mind when interpreting constraints derived from
his covariance matrix. 

Finally, we look at the constraints when only cosmic variance
rrors are included. Here, we do not detect significant changes in the
ize of the error bars for either σ 8 or �M 

h 2 , particularly at lower
umber densities. None the less, we notice that the constraints on σ 8 

o not completely enclose the MTNG’s correct value. Interestingly,
NRAS 524, 2489–2506 (2023) 
he value predicted is lower than the real value. This highlights the
mportance of including model errors (e.g. in the galaxy population

odel, in the emulator, etc.) in these kinds of studies, specially
onsidering that some observational studies (eg. Nunes & Vagnozzi
021 ; Yuan et al. 2022b ) are finding low values for S 8 = σ8 

√ 

�M 

/ 0 . 3
nd f σ 8 , with ‘f’ representing the growth rate of structure obtained
rom linear perturbation theory. 

We conclude from these two last sections that the constraints
ound in our fiducial model could be impro v ed further by using
ore po werful observ ational data for σ 8 , and a more realistic galaxy

opulation model for �M 

h 2 . 

 T H E  C O N S T R A I N T S  O N  ASSEMBLY  BI AS  

s mentioned before, our SHAMe model has one parameter, f k ,
hich is responsible for regulating galaxy assembly bias. When
mitting this parameter, the value of χ2 / d . o . f. for the best-fitting
odel increases (not shown here). This means that including this

arameter contributes to a more accurate reproduction of galaxy
lustering. This is why the parameters associated with galaxy assem-
ly bias (occasionally referred to as bias parameters) are included in
he fitting of other galaxy occupation models such as HODs. While
everal studies have included an assembly bias parameter in galaxy
lustering models in order to constrain cosmological parameters
e.g. Yuan et al. 2022b ) or galaxy assembly bias (e.g. Salcedo
t al. 2022 ), to our knowledge, no one has examined directly the
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Figure 12. The predicted galaxy assembly bias signal of the SHAMe mocks in comparison to the actual assembly bias signal of the MTNG-hydro (top panel) 
and the MTNG-SAM (bottom panel) galaxies. In blue and red, we show the estimated assembly bias signal when fitting only the projected correlation function, 
and when fitting all the clustering statistics of the galaxy formation models, respectively. The different columns represent different number density samples, as 
labelled. For the galaxy formation models, the galaxy assembly bias signal is computed by averaging the ratio of their correlation functions across 20 different 
shuffling runs (see Section 5 for more details). For the mocks, we took 200 random points from the MCMC chains, recreated the equi v alent mocks, and computed 
the assembly bias similarly as we did for the galaxy formation models (although, with only five shufflings per mock). The solid lines and shaded regions represent 
the mean and the 16th and 84th percentiles of each distribution, respectively. 
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ffect of assembly bias uncertainties when estimating cosmological 
arameters. 
We are interested in determining whether the level of assembly bias 

stimated by our methods matches the true level in the underlying 
alaxy formation models for two reasons: (1) To know whether f k is
elping to fit galaxy clustering by correctly adding assembly bias (as
ntended), or, for example, by unrealistically changing assembly bias 
o compensate for some limitation of the basic SHAMe approach; 
2) To determine whether we can use our methods to constrain not
nly cosmological parameters but also assembly bias itself. 
To quantify how well our model constrains assembly bias, we 

andomly select 200 points from the MCMC chains (after the burn-in) 
nd compute the assembly bias of these samples, using the shuffling
echnique introduced by Croton et al. ( 2007 ). In this technique,
 ‘shuffled mock’ is created by shuffling the galaxy population 
etween haloes of similar mass. This is done in bins of 0.1 dex in
og ( h 

−1 M �). In previous works, we have checked alternati ve v alues
or this binning, finding similar results. By construction, since the 
alaxy occupation of this shuffled mock does not depend on the halo
ass, it has no galaxy assembly bias. Galaxy assembly bias is then

efined as the square of the ratio between the two-point correlation 
unctions of the original and the shuffled runs: 

/ξshuffle = b 2 . (16) 

For each of the 200 points of the MCMC, we compute four
istinct mocks, each with a unique random seed in each pair of
caled simulations (we need to rescale the simulations in the same 
ay we did to create the training points of the emulator). For each
ock, we produce five shuffled mocks and compute their correlation 

unction. We repeat this for each number density, both for the MTNG-
ydro and MTNG-SAM MCMC chains, and for runs done only with 
he projected correlation function (usually used to constrain galaxy 
ssembly bias) and also including the multipoles of the correlation 
unction. This is equi v alent to creating 800 standard mocks and 4000
huffled mocks. 

For each sample, we compute the mean and standard deviation 
f the 200 correlation function ratios, which we characterize as the 
onstrained assembly bias from our mocks. We verify that, even 
ith 50 points, we have a reasonably robust measure of the assembly
ias signal’s mean and standard deviation. We compare these ratios 
ith those of the actual MTNG-hydro and MTNG-SAM galaxies in 
ig. 12 . The assembly bias of the galaxy formation simulations was
omputed in a similar way as for the SHAMe catalogues. Due to
he fact that we only have one realization of the galaxy formation
imulations, we used 20 shuffled runs to further reduce measurement 
oise. We w ould lik e to remind the reader that the MCMCs from
hese points were used to fit the various galaxy clustering statistics
ut not this galaxy assembly bias signal. 

When doing the fitting only using the projected correlation 
unction, we can reco v er the correct galaxy assembly bias signal
ithin 1 α at all number densities. When including the multipoles 
f the correlation function, we can only reco v er the assembly bias
ignal within 1 α for the highest number densities. For the two lowest
umber densities, we find some systematic differences of up to 1.5 α.
The differences found when we include the multipoles in the 

east number density sample could be due to a number of factors,
ncluding: (a) Some limitations of the SHAMe model (e.g. the lack
f velocity bias), which may not be very necessary for cosmological
onstraints but needed for assembly bias constraints; (b) That the 
huffling of the MTNG740 galaxies and the SAM galaxies, which 
as a larger resolution than the simulation the SHAMe models and
he SAM were run on, along with the halo finder algorithm used,
enerates a different shuffling run (lead by the different classification 
f splashback galaxies, which can be responsible for part of the
alaxy assembly bias signal, Zehavi et al. in preparation), predicting 
 different galaxy assembly bias signal. For the L-GALAXIES 

AM, which was run on a dark matter simulation with the same
esolution as the one used by the SHAMe model, we can reco v er
he right level of assembly bias for all number densities (not shown 
ere). 
Even in this latter case, we confirm that the assembly bias levels

stimated by our procedures are consistent with those present in the
riginal galaxy formation models, at least for the higher number 
ensity samples. Additionally, we demonstrate that SHAMe model 
ombined with the scaling technique has the potential to estimate 
alaxy assembly bias on high number density samples. Further, we 
 ould lik e to encourage other groups to infer assembly bias from the

econstructed models of their MCMC chains, rather than constraining 
heir model’s galaxy assembly bias parameters, which are not easily 
nterpretable in terms of the actual assembly bias signal. 
MNRAS 524, 2489–2506 (2023) 
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 SUMMARY  

n this work, we have developed a new method for estimating cos-
ological parameters from the redshift-space clustering of galaxies.
he N -body scaling technique can rapidly generate a simulation
ssuming some requested cosmology based on an available simu-
ation assuming a nearby but different cosmology; the SHAMe is a
hysically moti v ated empirical model capable of reproducing galaxy
lustering in real- and redshift-space. Combining them, we generate
 v er 175 000 clustering measurements for various cosmological and
HAMe parameters. This allows us to construct an emulator capable
f reproducing galaxy clustering ( w p , ξ� = 0 , ξ� = 2 and ξ� = 4 ) in a
raction of a second. 

With this emulator, an MCMC analysis is able to estimate cosmo-
ogical parameters from galaxy clustering data while marginalizing
 v er galaxy formation uncertainties. We test this procedure using the
TNG740 hydrodynamic simulation, and various L-GALAXIES

emi-analytic models applied to one of the MTNG740-DM simula-
ions. We test how resulting constraints on cosmological parameters
epend on the scales used in the clustering analysis, on the clustering
tatistics included, and on the kind of errors accounted for. Here, we
epeat our most important findings: 

(i) The projected correlation function, monopole, quadrupole, and
exadecapole are more sensitive to changes in �M 

, σ 8 , and h than the
est of the cosmological parameters (Fig. 1 ). The next most rele v ant
arameters are the neutrino mass M ν and n s . In the future, we plan
o study how cosmology impact other statistics, such as 3PCF (Guo
t al. 2016 ), kNN-CDF (Banerjee & Abel 2021 ), lensing, etc. This
ould potentially help us impro v e the constraints of the remaining
osmological parameters. 

(ii) We measured the errors coming from the SHAMe model,
he scaling, and the emulator, finding that the error of the scaling
ominates (Figs 2 , 4 , and 3 ). These errors are still, in most cases,
ower than the statistical sampling error we would get from the
DSS (Fig. 5 ). Finally, we find that, while the error from the scaling

echnique is considerable, it does not have a strong impact on
onstraints on the cosmological parameters (Fig. 11 ). 

(iii) By running an MCMC with our emulator using a covariance
atrix which combines all our error estimates, we obtain σ8 =
 . 799 + 0 . 039 

−0 . 044 and 0 . 826 + 0 . 041 
−0 . 045 , and �M 

h 

2 = 0 . 138 + 0 . 025 
−0 . 018 and 0 . 151 + 0 . 026 

−0 . 020 

rom the clustering of a n 
M r −19 . 5 density sample of the MTNG-hydro

nd the MTNG-SAM galaxies, respectively. In each case, these are
ery close to the true values ( σ 8, MTNG = 0.8159 and �M 

h 

2 
MTNG =

.142). 
(iv) The cosmological constraints for σ 8 impro v e significantly

hen we start using scales below 2 h 

−1 Mpc for the MTNG-hydro
alaxies. For the current MTNG-SAM, and for �M 

h 2 , we do not find
 major impro v ement when using smaller scales (Fig. 9 ). 

(v) The projected correlation function is good enough to constrain
M 

h 2 , but the monopole is needed to obtain good constraints on σ 8 .
he quadrupole and hexadecapole do not significantly impro v e what

s already achieved using projected correlations and the monopole
Fig. 10 ). 

(vi) When running an MCMC with the SHAMe parameters fixed,
he constraints on �M 

h 2 and σ 8 do not vary significantly (Fig. 11 ).
his suggest that none of the SHAMe free parameters reduced the
onstraining power on the cosmological parameters. 

(vii) The constraints on σ 8 tighten when running an MCMC with a
ovariance matrix excluding the error coming from cosmic variance
taken at present from the SDSS). This means that our current method
ould yield impro v ed constraints if we applied it to larger and more
owerful galaxy surv e ys. 
NRAS 524, 2489–2506 (2023) 
(viii) While the error from cosmic variance is the largest source of
ncertainty, failing to include the rest of the errors in our procedures
auses bias in our constraints. This highlights the importance of
ccounting for all known modelling errors in studies of this kind. 

(ix) We have demonstrated that the level of assembly bias esti-
ated by our procedures is consistent with that of the underlying

alaxy formation model, suggesting that our methodology can be
sed to estimate galaxy assembly bias from observational samples
Fig. 12 ). 

We would like to emphasize that while the constraints identified
n this work are tight, its primary accomplishment is to demonstrate
hat these constraints are indeed realistic. In future work, we will use
his methodology to constrain cosmological and galaxy formation
arameters based on SDSS clustering statistics. Beyond this, in
reparation for the next generation of galaxy surv e ys, we will e xpand
he number of statistics we employ in order to constrain additional
osmological parameters and to mo v e to other types of galaxy
ample, for example, emission-line galaxies. 
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