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A B S T R A C T

Non-intrusive load monitoring (NILM), which usually utilizes machine learning methods and is effective in
disaggregating smart meter readings from the household level into appliance-level consumption, can help
analyze the electricity consumption behaviors of users and enable practical smart energy and smart grid
applications. Recent studies have proposed many novel non-intrusive load monitoring frameworks based on
federated deep learning. However, there is a lack of comprehensive research exploring the utility optimization
schemes and the privacy-preserving schemes in different federated learning-based NILM application scenarios.
In this study, a distributed and privacy-preserving non-intrusive load monitoring (DP2-NILM) framework
was developed to make the first attempt to conduct federated learning-based NILM focusing on both utility
optimization and privacy-preserving. Specifically, two alternative federated learning strategies are examined
in the utility optimization schemes, i.e., the FedAvg and the FedProx. Moreover, different levels of privacy
guarantees, i.e., the local differential privacy federated learning and the global differential privacy federated
learning are provided in the DP2-NILM. Extensive comparison experiments are conducted on three real-world
datasets to evaluate the proposed framework.
1. Introduction

Modern urbanization, lifestyles, and technological advancements
have increased the energy demand. The energy supply generates green-
house gas emissions that accelerate climate change, which poses a
significant threat to the security and prosperity of the global commu-
nity. Legal obligations regarding climate change, such as those enacted
in the UK, are placing increased strain on traditional centralized power
grids. In response, the concept of smart grids has emerged. Smart grids
promise a more reliable and intelligent power grid network utilizing
information systems, which can significantly contribute to the decar-
bonization of the energy system and promote the use of renewable
energy sources.

As a key part of a smart grid, smart meters allow non-intrusive ap-
pliance load monitoring (NILM) [1] to help smart meter clients reduce
energy consumption by scheduling appliance usage hours and monitor-
ing abnormal electricity usage patterns. The NILM is a growing trend
in utilizing machine learning methods to monitor events (ON/OFF)
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or energy consumption of individual appliances using the aggregated
smart meter reading of the whole building [1]. NILM provides real-
time feedback on the energy consumption of smart meter clients, and
research findings indicate that the appliance-level feedback can save
from 3% to 18% annual energy consumption for the entire house [2].

Deep learning-based models have presented new opportunities for
the electrical utility industry, and are the most representative struc-
tures applied to NILM [3–6], which have been proven to be more
effective than other traditional models. However, most deep learning-
based NILM models are centralized [7], which may not be feasible in
the era of big data due to concerns about data privacy and excessive
communication overhead from smart meters.

To address these challenges, studies have used federated learning
(FL), an emerging paradigm for training models that can be tailored
to individuals without relying on centralized data [8]. FL-based NILM
models benefit from the collaboration of multiple data sources and
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Nomenclature

Abbreviations

DNN Deep Neural Network
FL Federated Learning
GDPFL Global Differential Privacy Federated Learning
IID Independent and Identically Distributed
LDPFL Local Differential Privacy Federated Learning
NILM Non-Intrusive Load Monitoring
PSPNet Pyramid Scene Parsing Network
SGD Stochastic Gradient Descent

Notations/Symbols

𝛥 Maximum 1 distance
𝛿 Privacy relaxation term
𝜖 Privacy budget/loss
𝜂 Learning rate
𝛾𝑡 Residual/unmonitored load at time 𝑡
𝑙𝑖𝑡 Predicted load of 𝑖th appliance at time 𝑡
�̂�𝑖𝑡 Predicted ON/OFF state of 𝑖th appliance at time 𝑡
𝜆𝑖 ON power threshold
 Query function
𝑔 Global model loss
𝑗 Loss of 𝑗th sample
𝑛 Loss of 𝑛th household
 Random algorithm
 Gaussian noise
𝜇 Proximal parameter
𝐿𝐿𝐿 Predicted load sequence
𝑆𝑆𝑆 Predicted ON/OFF state sequence
𝐵𝐿 Local batch size
𝑑0 Minimum OFF duration
𝑑1 Minimum ON duration
𝐹 (⋅) Approximation function
𝐼 Number of target appliances
𝐿𝑡 Aggregated load at time 𝑡
𝑙𝑖𝑡 Load of 𝑖th appliance at time 𝑡
𝑁 Number of households
𝑅 Global rounds
𝑠𝑖𝑡 ON/OFF state of 𝑖th appliance at time 𝑡
𝑇 Total monitoring period
𝑤 Model parameters

Units

𝑠 Second
𝑊 Watt

privacy guarantees, making them more efficient than models trained
solely on individual households. Even though the FL paradigm has
obvious advantages for NILM, there are still challenges in real-world
applications.

Firstly, when model parameters are exchanged between the central
server and local clients, FL has been identified as vulnerable to privacy
invasions [8,9]. The incorporation of differential privacy into deep
learning [10] has been suggested as a potential method to provide
privacy guarantees for FL-based NILM. While different clients may
2

require different levels of privacy assurance, a single privacy-preserving
scheme cannot accommodate the diverse needs of all smart meter
clients. Secondly, different households use energy in different ways,
which makes current FL-based NILM models ineffective for dealing with
the heterogeneity of smart meter clients [11]. Consequently, different
optimization schemes are necessary to deal with different types of
datasets.

Existing FL-based NILM models have limited scope, either adopt-
ing naive FL without privacy guarantees [12,13] or addressing chal-
lenges from a single perspective [14,15]. However, in practical real-
world NILM scenarios, different smart meter clients may have differ-
ent requirements, making it challenging for FL-based models to meet
all of these demands. This work innovatively presents the first DP2-

ILM framework to jointly optimize utility and preserve privacy for
aried FL-NILM scenarios. The main contributions of the study are
ummarized as follows.

• This study proposes DP2-NILM, the first framework to systemat-
ically explore both utility optimization and privacy preservation
schemes for practical FL-NILM applications.

• DP2-NILM addresses heterogeneity by examining relationships
between two utility optimization schemes - FedAvg and FedProx
- and NILM accuracy, and it achieves satisfactory performance in
both the homogeneous and heterogeneous data environments.

• DP2-NILM applies both central and local differential privacy to
ensure data privacy. This is the first work that accommodates di-
verse privacy requirements based on different levels of differential
privacy in real-world NILM.

• This study examines DP2-NILM on three real-world datasets, pro-
viding new insights to satisfy heterogeneous client requirements
and enabling broader adoption of FL for real-world NILM appli-
cations.

The remainder of this study is structured as follows. Section 2
eviews literature related to the proposed DP2-NILM framework. Sec-
ion 3 provides background knowledge and briefs the preliminaries
sed in DP2-NILM. Section 4 overviews the three-tier workflow of the
roposed DP2-NILM. The utility optimization schemes and the privacy-
reserving schemes of 𝐷𝑃 2-NILM are detailed in Sections 5 and 6,
espectively. The performance evaluations on real-world datasets are
onducted in Section 7. The conclusion and possible future extensions
re given in Section 8.

. Review of FL-based NILM with enhancing mechanisms

.1. State-of-the-art NILM

NILM was first proposed by Hart [16], which utilized heuristic
ethods based on combinatorial optimization to perform load disag-

regation. After this, diverse models have been proposed to improve
nference accuracy, which can be mainly divided into unsupervised
earning and supervised learning approaches.

Unsupervised learning methods such as notable variations of hidden
arkov model [17–19] and clustering analysis [20] have been com-
only used in NILM studies. For instance, [19] developed a new infinite

actorial hidden Markov model for NILM constrained on contextual
eatures, which utilizes the usage information on the appliance-level
o improve the disaggregation accuracy. [3] compared unsupervised
earning (combinatorial optimization, factorial hidden Markov model)
ith supervised learning (DNN) for NILM, where the DNN-based model
chieved the best performance. While hidden Markov model variations
ave shown effectiveness, they are computationally expensive and their
erformance declines as the number of appliances increases [21,22].
his scalability issue hinders their practical application in the NILM.

Alternative methods have been explored to address these limi-
ations. For example, fuzzy C-means was employed [21] to cluster
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appliance states, and dynamic time warping was utilized to extract
appliance electricity consumption. This method demonstrated lower
computational costs compared to the hidden Markov model. However,
its performance heavily depends on the initial state and the complexity
of the appliance usage patterns. Another study [22] combined the sup-
port vector machine with k-means clustering and found it outperformed
the hidden Markov model as the number of appliances increased. How-
ever, this approach introduces additional complexity in model training
and parameter tuning.

Supervised learning models, particularly deep neural network
(DNN) based models [23–25] have been widely used in NILM, which
provide new opportunities for the electrical utility industry [26]. How-
ever, DNN-based NILM models require diverse and substantial training
data, posing a challenge in real-world scenarios where datasets are
often isolated. Furthermore, integrating smart meter readings into
a centralized database is difficult due to communication bandwidth
limitations and data privacy legislation.

The emergence of federated learning [27] not only provides privacy
guarantees for smart meter data but also solves the challenge of data
isolation, which brings considerable benefits to DNN-based NILM mod-
els. Despite the potential advantages, applying FL to NILM has only
begun to be explored in recent years [13,28–30]. For instance, [28]
proposed a FederatedNILM framework to enable the NILM task in the
FL paradigm at the residential level. [13] utilized the FL paradigm
to improve the model performance for NILM in both residential and
industrial scenarios. [29] proposed a FedNILM framework utilizing
model compression to reduce the computation overhead while retain-
ing satisfying performance for NILM. [30] adopted DP into the FL for
NILM to provide stronger privacy protection, and a membership attack
was included to evaluate the privacy guarantee level of the framework.

Despite the novelty of the above discussed state-of-the-art NILM,
most NILM studies have focused only on the centralized training envi-
ronment and relatively few have focused on FL-based NILM. It should
also be noted that the majority of FL-based NILM studies focus on the
basic framework rather than the comprehensive application functions
required for practical NILM applications in a decentralized environ-
ment. To fill this research gap, this study evaluates several FL-based
NILM scenarios based on two practical enhancement schemes for FL-
based NILM to accommodate various real-world requirements from
smart meter clients.

2.2. Enhancing mechanisms of federated learning

There are two main streams of approaches for enhancing the FL
framework, i.e., the utility optimization schemes and the privacy-
preserving schemes.

In recent years, many advanced utility optimization schemes have
been proposed [31–36]. For example, [35] used FL for multi-task
network anomaly detection, which improved the training efficiency
compared with multiple single-task models. Later, [36] combined FL
with the deep neural network to solve the similar problem. Moreover,
transfer learning was adopted in this study to reconstruct the model for
improving the anomaly detection performance. Among them, the most
commonly used mechanism is the federated averaging (FedAvg) [31],
which averages the updated gradients from the client models to opti-
mize the global model. However, the FedAvg has been demonstrated
to diverge empirically in scenarios where the data is non-independent
and identically distributed (non-IID) across clients [31]. FedProx [37],
which uses proximal terms to stabilize model updating, was then
proposed as a solution to heterogeneity in federated networks.

Although many utility optimization mechanisms have been pro-
posed, FL offers limited privacy guarantees. Prior studies have pro-
posed differential private FL (DPFL) to provide clients with stronger
privacy guarantees, which has been used as the basis for many privacy-
preserving FL-based schemes [12,14,30,38]. Privacy in FL can be di-
vided into global differential privacy FL (GDPFL) [39] and local dif-
3

ferential privacy FL (LDPFL) [14] based on different noise adding
mechanisms. In GDPFL, the trusted server applies the noise during the
parameter aggregation, whereas in LDPFL, each participant adds noise
to the model parameters before uploading them to the server.

Most existing studies only provided privacy guarantees for FL-based
NILM at a fixed level. There has been limited exploration into privacy
preservation schemes for FL at varying scales, such as global and local
levels. Moreover, while the data heterogeneity in FL-based NILM sce-
narios is a practical and important characteristic due to different users
having varied lifestyles and, accordingly, different electricity usage
patterns, there is no existing research that has tackled this challenge
from the utility optimization perspective. Therefore, this study makes
the first attempt to explore FL-based NILM focusing on the utility op-
timization schemes and the privacy-preserving schemes by developing
the DP2-NILM framework and conducting extensive and comparative
experiments on practical NILM scenarios based on real-world smart
meter datasets.

3. Preliminaries

This section introduces several essential concepts related to the
proposed DP2-NILM framework.

3.1. Non-intrusive load monitoring

Given the aggregated load 𝐿𝑡 at time 𝑡:

𝐿𝑡 =
𝐼
∑

𝑖=1
𝑙𝑖𝑡 + 𝛾𝑡, (1)

the goal of NILM is to recover the status of 𝐼 target electrical appli-
ances. 𝑙𝑖𝑡 and 𝛾𝑡 denote the load consumption for the 𝑖th appliance and
he residual/unmonitored load respectively at time 𝑡, 1 ≤ 𝑡 ≤ 𝑇 . NILM
an be formulated as either a classification task or a regression task
epending on the status variables of individual electrical appliances.

For the regression task, the NILM model aims to find the approxi-
ation, denoted as 𝐹 , of the true relationship between the aggregated
ousehold-level consumption (𝐿𝑡) and the appliance-level consumption

= [𝑙1𝑡 , 𝑙
2
𝑡 ,… , 𝑙𝑖𝑡 ,… , 𝑙𝐼𝑡 ] = 𝐹 (𝐿𝑡), (2)

where 𝐿𝐿𝐿 is the predicted load consumption sequence of 𝐼 target
electrical appliances at time 𝑡.

For the classification task, thresholds need to be set for the NILM
model to determine the states (e.g., ON/OFF) of each target appliance.
A commonly used threshold method is the activation-time thresholding
proposed by [3], which could filter out false activation of the abnormal
spikes by the minimum ON/OFF duration during the OFF state to better
improve the inference accuracy [3]. For the sake of simplicity, this
study assumes that there are two typical states (ON/OFF) for the target
appliances, and the state 𝑠𝑖𝑡 for 𝑖th appliance at time 𝑡 is related to its
threshold 𝜆𝑖. The activation-time thresholding can be then described in
Algorithm 1, and the classification task for NILM can be defined as

𝑆 = [�̂�1𝑡 , �̂�
2
𝑡 ,… , �̂�𝑖𝑡,… , �̂�𝐼𝑡 ] = 𝐹𝑠(𝐿𝑡), (3)

where �̂�𝑖𝑡 is a binary variable indicating the predicted ON/OFF state of
𝑖th electrical appliance at time 𝑡.

3.2. Federated deep learning

When data owners intend to combine their local data to train a
common utility model, the traditional centralized approach is to pool
their own private data at a central server, during which the data
uploading and integration process are often restricted by data privacy
legislation. To address this challenge, FL was brought up [27], which
only requires the exchange of updated model parameters rather than
the raw data between clients and the central server, and therefore is
deemed to be the state-of-the-art approach for distributed data privacy
protection.
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Algorithm 1: Activation-time thresholding [3]
Input: ON power threshold 𝜆𝑖 of 𝑖-th appliance, minimum ON state duration 𝑑1,

minimum OFF state duration 𝑑0
Output: 𝑠𝑖𝑡: the state of 𝑖-th appliance at time 𝑡, 0: OFF, 1: ON

1 Procedure:
2 if 𝑙𝑖𝑡 < 𝜆𝑖 then
3 if 𝑡 < 𝑑0 then
4 𝑠𝑖𝑡 = 1
5 else
6 𝑠𝑖𝑡 = 0
7 end
8 else
9 if 𝑡 < 𝑑1 then
10 𝑠𝑖𝑡 = 0
11 else
12 𝑠𝑖𝑡 = 1
13 end
14 end
15 return 𝑠𝑖𝑡

Fig. 1. Training process of the federated deep learning framework.

FL is a machine learning strategy aimed at training a high-quality
global model while the raw private datasets are distributed locally in
each client without the need to transfer them to a central server. Fig. 1
shows the training process of the federated deep learning framework,
which can be described in three steps. Firstly, each client trains their
local model and updates model parameters during each training round.
Then, each client passes the updated parameters to a central server.
Then, the global model aggregates the updated parameters from all
local clients and updates its parameters accordingly in the central
server. Finally, the updated global model parameters are then broadcast
to each local client, and these three steps are iterated for multiple
rounds until the convergence is reached.

3.3. Differential privacy

DP introduces noise into the raw dataset so that it provides statisti-
cal guarantees against the information a malicious adversary may infer
from the output of a randomized algorithm [40].

Definition 1 (Differential Privacy [10]). A random algorithm  is
compliant with (𝜖, 𝛿)-DP if for any two neighboring input datasets 𝐿,𝐿′

and for any subset of outputs/events 𝑆𝑆𝑆 ⊆ 𝑅𝑎𝑛𝑔(),

Pr[(𝐿) ∈ 𝑆𝑆𝑆] ≤ 𝑒𝜖 Pr[(𝐿′) ∈ 𝑆𝑆𝑆] + 𝛿. (4)

In Eq. (4), 𝜖 is the privacy budget/loss, which is inversely propor-
tional to the privacy level. 𝛿 is the probability that the upper privacy
bound is broken, i.e., the occurrence of a bad event. It is a plain 𝜖-DP
when 𝛿 equals 0.

In practical applications, the (𝜖, 𝛿)-DP is enforced by a Laplacian or
Gaussian mechanism that relies on the 𝜖 to characterize the sensitivity
of  . For a real-valued query function  , a common exemplification
4

is to calibrate an additive zero-mean Laplacian or Gaussian noise
mechanism to the sensitivity of  , which can be denoted as

𝛥 = max
𝐿,𝐿′

‖

‖

 (𝐿) −  (𝐿′)‖
‖1 , (5)

where 𝛥 measures the maximum 1 distance between the results of
 over the neighboring datasets 𝐿 and 𝐿′.

The Gaussian mechanism adds Gaussian noises to  to satisfy (𝜖, 𝛿)-
DP: ∀𝛿 ∈ (0, 1), the noise is denoted by  (0, 𝛥2 ⋅ 𝜎2), resulting in

(𝐿) =  (𝐿) + (0, 𝛥2 ⋅ 𝜎2), (6)

where 𝛥 ⋅ 𝜎 is the standard deviation, and 𝜎 ≥
√

2 ln(1.25∕𝛿)
𝜖 .

4. DP𝟐-NILM framework

4.1. Overview of DP2-NILM

The DP2-NILM framework aims to train different federated learning
models based on utility optimization and privacy-preserving schemes
according to different real-world NILM application scenarios. It is also
important to note that the DP2-NILM framework is easily extensi-
ble to incorporate various state-of-the-art DNN models and datasets.
Fig. 2 presents the whole workflow of the DP2-NILM framework, which
contains three tiers.

• Client Model Training Tier. In this tier, smart meter read-
ings from the client side are preprocessed into standard for-
mats for the federated pipeline. The client can either specify
their privacy-preserving or the data heterogeneity optimization
requirements. After preprocessing, each client trains their data
based on a state-of-the-art DNN model, which will be introduced
in Section 4.2, and then uploads their parameters through the
DP2-NILM paradigm.

• Federated Model Training Tier. This tier is the key part of
the DP2-NILM framework. Based on the special requirement from
the client model training tier, the DP2-NILM assigns different
federated learning mechanisms to each client. For example, a
client-side requires a strict privacy-preserving mechanism to pro-
tect its sensitive data. After receiving this request, DP2-NILM
will deliver a high-level privacy-preserving paradigm, the local
differential privacy federated learning (Section 6.2), to train the
FL model based on the typical FL training steps.
During FL training, the objective for 𝑁 clients can be described
as an optimization problem:

min
𝑤𝑔

𝑔(𝑤𝑔) =
1
|𝐿|

𝑁
∑

𝑛=1
|𝐿𝑛

| ⋅ 𝑛(𝑤𝑛)

where 𝑛(𝑤𝑛) =
1

|𝐿𝑛
|

∑

𝑗∈𝐿𝑛
𝑗 (𝑤𝑗 ),

∀𝐿𝑛 ∈ 𝐿, 𝑛 ∈ {1, 2,… , 𝑁}

(7)

where 𝑔(𝑤𝑔) is the loss of the global model, 𝑛(𝑤𝑛) is the
loss of the 𝑛th local client model, and 𝑗 (𝑤𝑗 ) is the loss of a
single smart meter reading sample. |𝐿| is the sample length of
the whole training set 𝐿, and |𝐿𝑛

| is the sample length of the
smart meter readings from the local household 𝑛. Each household
𝑛 ∈ {1, 2,… , 𝑁}, and generates its private smart meter readings
𝐿𝑛 =

{

(𝐿𝑛
1, 𝑠

𝑛
1),… , (𝐿𝑛

𝑡 , 𝑠
𝑛
𝑡 ),… , (𝐿𝑛

𝑇 , 𝑠
𝑛
𝑇 )
}

, where 𝐿𝑛
𝑡 is the aggre-

gated load consumption of the target appliances for the 𝑛th local
household client at time step 𝑡, and 𝑠𝑛𝑡 is the corresponding states
(ON/OFF) set of these appliances.
The most commonly used optimization algorithm for FL is the
FedAvg [31]. Based on the FedAvg, two subsequent research
streams for enhancing the FL paradigm have been proposed,
i.e., the utility optimization schemes and the privacy-preserving
schemes. Following this development, the DP2-NILM framework
uses the FedAvg as the baseline to include the enhancing schemes.
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Fig. 2. The workflow of proposed DP2-NILM framework.
Specifically, in the practical application scenarios, datasets may
come from different types of households, and training models
need to be considered in both homogeneous and heterogeneous
environments. In [37], FedProx was proposed to solve the hetero-
geneity problem in federation learning by adding a proximal term
in the training process and providing greater robustness to the
federated learning framework. Therefore, the DP2-NILM adopts
the FedAvg and the FedProx to optimize the model utility for
FL-based NILM in both homogeneous and heterogeneous envi-
ronments. Furthermore, studies [39,41] have established robust
theoretical foundations for GDPFL and LDPFL based on the Fe-
dAvg, whereas discussing different levels of privacy-preserving
in the FL-based NILM framework has received limited atten-
tion. To fill this gap, the DP2-NILM aims to satisfy different
client-side requirements and provide privacy-preserving FL-based
NILM at different levels by developing GDPFL and LDPFL in
privacy-preserving schemes based on FedAvg.

• Performance Evaluation Tier. Different model training
paradigms are designed for different NILM application scenarios
based on three real-world smart meter datasets, and the models
of each scenario are evaluated and validated in this tier.

In summary, the DP2-NILM framework is a three-tiered approach
that integrates federated learning with utility optimization and differ-
ential privacy to provide decentralized, privacy-preserving, and effi-
cient solutions for NILM. The framework utilizes state-of-the-art DNN
models for training on client devices and leverages the FedAvg and
FedProx algorithms for optimization. Additionally, privacy preservation
enhancements considering both global and local differential privacy are
incorporated into the framework. The effectiveness of the framework is
validated through performance evaluation based on real-world client
requirements.

4.2. State-of-the-art NILM client model

This study introduces a state-of-the-art deep learning architecture,
i.e., the pyramid scene parsing network (PSPNet) [42], to enhance
the performance of DP2-NILM in both the local client model training
and the central server global model training, which was originally
used for image semantic segmentation. The selection of this particular
architecture is motivated by its potentially promising performance in
learning the inherent signatures of appliances as demonstrated in [43].
The PSPNet model was further adjusted for the NILM task, and Fig. 3
shows the training structure of the adjusted PSPNet.
5

The rest of the subsection describes the adjusted PSPNet model,
which consists of three modules: the encoder, the temporal pooling
module, and the decoder.

• Encoder. The input of the encoder is the household aggregated
load consumption of the target appliances over a 1-h interval (the
consumption datasets were resampled to 30 s). The encoder is
made up of four modules, each of which is alternated by a max
pool layer except for the last block. The encoder increases the
output features from a single aggregation value to 256, while
paying the price of decreasing the time signal resolution by 10
times.

• Temporal Pooling. The temporal pooling consists of four average
pooling modules, filter sizes of which are decreased from the
whole size of the input signal to one-sixth of it. After going
through a convolutional layer, the feature dimension of the input
is reduced to a quarter of its original size, and the acquired feature
maps are upsampled to the size of the input time signals. Then
the upsampled feature maps (shallow features) are concatenated
with the original input signal (deep features) from the temporal
pooling to get the final feature maps. The fusion of the deep and
shallow features of the temporal pool could enable this block to
get contextual information fed into the decoder.

• Decoder. The decoder receives the output from the temporal
pooling block and passes it to a convolutional layer to recover
the time signal resolution. Then the output is fed into the fi-
nal convolutional layer to produce the final appliance-level load
disaggregation.

5. Utility optimization of DP𝟐-NILM

Recall the FL optimization objective (Eq. (7)), the DP2-NILM frame-
work considers two utility optimization schemes, the FedAvg-NILM and
the FedProx-NILM, to achieve this goal.

5.1. FedAvg-NILM

Algorithm 2 depicts the steps of FedAvg-NILM. The FedAvg [31]
allows the smart meter clients to train their local DNN models itera-
tively using the same learning rate and the number of epochs before
uploading the updated model weights to the central server.

For each global round (line 4), every smart meter client receives
a copy of the global model and trains its local DNN models with its

𝑛
own private smart meter readings for multiple epochs using 𝑤 ←
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Fig. 3. The overall layout of the deep learning model for NILM.
Algorithm 2: FedAvg-NILM
1 Input: Aggregated load consumption of target appliances from all 𝑁 houses

{𝐿𝑛
|𝑛 ∈ 𝑁}, the number of global communication rounds 𝑅, the local

batch 𝐵𝐿, the number of local epochs 𝐸.
Output: The optimal global deep learning model parameters.

2 Central Server Execution:
3 Initialize the global model parameters 𝑤𝑔
4 for each global round 𝑟 ≤ 𝑅 do
5 for each client 𝑛 ∈ {1, 2,… , 𝑁} in parallel do
6 𝑤𝑛

𝑟+1 ← 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑛
𝑟 )

7 end

8 𝑤𝑟+1 ←

∑𝑁
𝑛=1 𝑤𝑛

𝑟
𝑁

9 end
10 Broadcast the global model to all clients
11 Smart Meter Client Execution:
12 procedure 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑛

𝑟 ):
13 Split 𝐿𝑛 into batches of size 𝐵𝐿;
14 for each local client epoch 𝑒 ≤ 𝐸 do
15 for each batch of 𝐿𝑛 do
16 𝑤𝑛 ← 𝑤𝑛 − 𝜂∇(𝑤𝑛)
17 end
18 end
19 Upload 𝑤𝑛 to the central server

𝑤𝑛 − 𝜂∇(𝑤𝑛) (line 14–18), where 𝜂 is the learning rate. After this, the
local clients upload their updated local model weights 𝑤𝑛 to the central
server (line 19). Then, the central server updates the global model by
averaging the uploaded weights from the smart meter clients (line 8)
and broadcasts the updated global model to all clients (line 10).

An advantage of FedAvg-NILM is that a well-trained FedAvg-NILM
model can outperform a single local NILM model while maintaining
data privacy. Moreover, FedAvg has been proven to be efficient in
reducing the communication overhead between the local clients and
the global server [31].

Nevertheless, the FedAvg only performs effectively under the
premise that all the local clients utilize a similar initialization, and it
has been shown that heterogeneity of data impedes the convergence of
FedAvg [37]. In the real-world NILM tasks, smart meter clients often
exhibit diverse appliance usage patterns, making the local client models
easily deviate from the global model, thereby reducing the overall
performance.

5.2. FedProx-NILM

It is likely that data from smart meters are heterogeneous since they
are collected under various contexts (e.g., across different countries)
and are affected by diverse client behaviors leading to heterogeneous
load usage distributions. Our DP2-NILM framework is efficient for
guaranteeing the convergence of the FL model in heterogeneity settings,
i.e., the non-IID data settings, by incorporating FedProx [37] as an
extension of the utility optimization scheme.

Algorithm 3 depicts the steps of FedProx-NILM. The central server
executes the same steps as in the FedAvg-NILM. However, a proximal
term 𝜇(𝑤𝑛 − 𝑤𝑛

𝑟 ) is added to update the local model of smart meter
clients (line 10), which keeps local updates from deviating too much
from the initial global model. When 𝜇 = 0, the FedProx-NILM will
6

produce the same results as the FedAvg-NILM.
Algorithm 3: FedProx𝑚𝑜𝑑 -NILM
1 Input: Aggregated load consumption of target appliances from all 𝑁 houses

{𝐿𝑛
|𝑛 ∈ 𝑁}, the number of global communication rounds 𝑅, the local

batch 𝐵𝐿, the number of local epochs 𝐸.
Output: The optimal global deep learning model parameters.

2 Central Server Execution:
3 (// Same central server execution steps as the FedAvg-NILM)
4 Broadcast the global model to all clients
5 Smart Meter Client Execution:
6 procedure 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑛

𝑟 ):
7 Split 𝐿𝑛 into batches of size 𝐵𝐿
8 for each local client epoch 𝑒 ≤ 𝐸 do
9 for each batch of 𝐿𝑛 do
10 ∇𝑝𝑟𝑜𝑥(𝑤𝑛) ← ∇(𝑤𝑛) + 𝜇(𝑤𝑛 −𝑤𝑛

𝑟 )
11 𝑤𝑛 ← 𝑤𝑛 − 𝜂∇𝑝𝑟𝑜𝑥(𝑤𝑛)
12 end
13 end
14 Upload 𝑤𝑛 to the central server

Specifically, in the typical FedProx training paradigm, there is an
inexact minimizer adjusting the local epoch of each client to reduce
the negative impact of the system heterogeneity, which is defined as
follows.

Definition 2 (𝛾-Inexact Solution [37]). The 𝑤∗ is a 𝛾-inexact minimizer
solution for the optimization objective in Eq. (7) if ‖

‖

𝑤∗ −𝑤𝑛
𝑟
‖

‖

≤
𝛾 ‖‖
‖

𝑤𝑛
𝑟 −𝑤𝑛

𝑟−1
‖

‖

‖

, where 𝛾 ∈ [0, 1).

The 𝛾-inexact minimizer solution considers adjusting the local com-
putation and the global communication overhead based on the number
of local model epochs performed by the clients. Our framework hy-
pothesizes that most smart meter clients are available and capable of
completing a certain number of local epochs whereas for the very few
stragglers, their destabilized training environment may produce models
that contribute little to the FL global model. Therefore, FedProx was
adjusted to be more efficient in the DP2-NILM framework by utilizing
the proximal term 𝜇(𝑤𝑛 − 𝑤𝑛

𝑟 ) with the exact minimizer solution 𝑤𝑛
𝑟

rather than the inexact one.

6. Privacy-preserving of DP𝟐-NILM

The DP2-NILM considers privacy-preserving mechanisms at two
different levels to suit various privacy requirements from smart meter
clients, i.e., the global differential privacy federated learning and the
local differential privacy federated learning. In the practical privacy-
preserving mechanisms of the DP2-NILM, recall the (𝜖, 𝛿)-DP defined
in Eqs. (4) to (6), the query function  represents the aggregated
main readings of a household, and 𝛥 denotes the maximum electricity
consumption of any household. The random algorithm  injects the
noise  (0, 𝛥2 ⋅𝜎2) into the aggregated weights of all the 𝑁 households
to provide global differential privacy to the federated learning NILM
or into the updated weights of each local household to provide local
differential privacy to the federated learning NILM.

6.1. Global differential privacy federated learning NILM

In the DP2-NILM paradigm, if a client sends out the privacy require-
ment and meanwhile trusts the central server, the GDPFL-NILM will be
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utilized for this client. The GDPFL-NILM is designed to accommodate
the needs of smart meter clients who are not concerned about their
data, but are concerned about identity leakage. Although there must
be a certain degree of trust in the central server, this presumption is
significantly less stringent than granting the server access to the data.
Algorithm 4 details the GDPFL-NILM scheme in the DP2-NILM.

Algorithm 4: GDPFL-NILM
1 Input: Aggregated load consumption of target appliances from all 𝑁 houses

{𝐿𝑛
|𝑛 ∈ 𝑁}, the number of global communication rounds 𝑅, the local

batch 𝐵𝐿, the number of local epochs 𝐸, privacy budget 𝜖, privacy
relaxation term 𝛿.

Output: The optimal global deep learning model parameters with GDP protection.
2 Central Server Execution:
3 Initialize the global model parameters 𝑤𝑔
4 for each global round 𝑟 ≤ 𝑅 do
5 Compute privacy cost: 𝜖𝑟 ← 𝑃𝑟𝑖𝑣𝑎𝑐𝑦𝐴𝑐𝑐𝑜𝑢𝑛𝑡(𝛿, 𝜎);
6 if 𝜖𝑟 > 𝜖𝑟 then
7 return 𝑤𝑟
8 end
9 else
10 for each client 𝑛 ∈ {1, 2,… , 𝑁} in parallel do
11 𝑤𝑛

𝑟+1 ← 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑛
𝑟 )

12 end

13 𝑤𝑟+1 ←

∑𝑁
𝑛=1 𝑤𝑛

𝑟
𝑁 + (0, 𝛥2 ⋅ 𝜎2)

14 end
15 end
16 Broadcast the global model to all clients
17 Smart Meter Client Execution:
18 (// Same smart meter client execution steps as the FedAvg-NILM)
19 Upload 𝑤𝑛 to the central server

In GDPFL-NILM, the smart meter client execution steps are the
ame as in FedAvg-NILM. The central server guarantees participant-
evel privacy by perturbing the model weights aggregation, i.e., adding
aussian noise  (0, 𝛥2 ⋅𝜎2) to the aggregated results (line 13). More-
ver, to ensure the (𝜖, 𝛿)-GDP, after each global round, the algorithm
𝑟𝑖𝑣𝑎𝑐𝑦𝐴𝑐𝑐𝑜𝑢𝑛𝑡() calculates the accumulated privacy budget (line 5),
nd if it exceeds the overall budget 𝜖, the global training iteration will
e stopped (line 7). In particular, the privacy cost is associated with the
aussian noise added to the updated weights, which can be calculated
y numerical integration as described in [10]. The global training
enerally involves gradients at multiple layers, and the accountant
ccumulates the privacy cost associated with each of them.

.2. Local differential privacy federated learning NILM

In the LDPFL [10], smart meter clients apply noise on the updated
ocal model weights before uploading them to the central server. The
DPFL-NILM is designed to cater to the needs of smart meter clients
ho are concerned about local data leakage. The LDPFL-NILM scheme

n DP2-NILM is presented in Algorithm 5.

The central server updating process in the LDPFL-NILM is the
ame as in FedAvg-NILM. However, the smart meter clients guarantee
heir own privacy by perturbing the updated local model weights,
.e., adding Gaussian noise  (0, 𝛥

2⋅𝜎2

𝑁 ) to the updated model weights
(line 10). The LDPFL-NILM provides better privacy protection than the
GDPFL-NILM, and therefore it is suitable for clients who require strict
data privacy-preserving discipline.

7. Performance evaluation

In this section, real-world smart meter datasets are used to evaluate
the proposed DP2-NILM framework. The datasets and the evaluation
criteria are first introduced. Then, the performance of the FL setting
in DP2-NILM is compared with the Local-NILM models trained on
individual household datasets and the Centralized-NILM model trained
7

Algorithm 5: LDPFL-NILM
1 Input: Aggregated load consumption of target appliances from all 𝑁 houses

{𝐿𝑛
|𝑛 ∈ 𝑁}, the number of global communication rounds 𝑅, the local

batch 𝐵𝐿, the number of local epochs 𝐸, privacy budget 𝜖, privacy
relaxation term 𝛿.

Output: The optimal global deep learning model parameters with LDP protection.
2 Central Server Execution:
3 (// Same central server execution steps as the FedAvg-NILM)
4 Broadcast the global model to all clients
5 Smart Meter Client Execution:
6 procedure 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑛

𝑟 ):
7 Split 𝐿𝑛 into batches of size 𝐵𝐿
8 for each local client epoch 𝑒 ≤ 𝐸 do
9 for each batch of 𝐿𝑛 do
10 ∇𝑙𝑑𝑝(𝑤𝑛) ← ∇(𝑤𝑛) + (0, 𝛥

2 ⋅𝜎2
𝑁 )

11 𝑤𝑛 ← 𝑤𝑛 − 𝜂∇𝑙𝑑𝑝(𝑤𝑛)
12 end
13 end
14 Upload 𝑤𝑛 to the central server

on aggregated household datasets. After this, the utility optimization
schemes are examined in the DP2-NILM paradigm. Finally, based on
the FedAvg, two privacy-preserving schemes, i.e., the GDPFL-NILM and
the LDPFL-NILM, are compared in terms of the trade-off between model
utility and privacy.

7.1. Experimental settings

This study used three real-world smart meter datasets to evaluate
the DP2-NILM framework, including UKDALE [44], REDD [45] and
REFIT [46].

• UKDALE: The U.K. domestic appliance level electricity (UKDALE)
dataset contains five buildings in the U.K. between 2013 and 2015
with a 1 s sampling period for mains and a 6 s sampling period
for appliances.

• REDD: The reference energy disaggregation dataset (REDD) con-
sists of six buildings in the U.S. spanning from 3 to 19 days, with
a 1 s sampling period for mains and a 6 s sampling period for
appliances.

• REFIT: The REFIT dataset contains 20 buildings in the U.K. from
2013 to 2015, sampled at 8 s for both mains and appliances.

Three appliances (fridge, dishwasher, washing machine) are se-
lected as our target appliances for comparison purposes, which are
the most common appliances possessed by most households among the
three datasets and represent both two-state and multi-state appliances.
Labeled data for all three appliances are available in UKDALE houses
1, 2, and 5, REDD houses 1, 2, and 3, and REFIT houses 2, 5, and 9,
therefore only these households were considered.

Fig. 4 gives an example distribution of the three chosen appliances
for house 1 of the REDD dataset. It can be seen from the distribution
that the multi-state appliances including the dishwasher and washing
machine have a high power consumption spike when turned on, and
the two-state appliance fridge has relatively lower power consumption
during the whole monitoring period. This may partly reflect that the
demand of the smart meter clients for the fridge is largely constant,
while both the dishwasher and washing machine are only used occa-
sionally. Moreover, there are many small power spikes for the fridge,
but relatively few for the dishwasher and washing machine. This dis-
tribution occurs primarily because the fridge undergoes more frequent
ON-OFF cycles than the dishwasher and washing machine during the
day.

As the three datasets are sourced from different data repositories,
they have data heterogeneity in terms of sample periods and data
magnitude. The original sample frequency for the appliances is 6 or 8 s,
which contains more spikes of appliance consumption, it undermines
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Table 1
Distribution of the selected datasets.
Dataset Building Total period Training (80%) Validation (10%) Testing (10%)

UKDALE

1 2013-04-12 to
2017-04-25

2013-04-12 to
2016-07-04

2016-07-05 to
2016-11-29

2016-11-29 to
2017-04-25

2 2013-05-22 to
2013-10-30

2013-05-22 to
2013-09-28

2013-09-28 to
2013-10-14

2013-10-14 to
2013-10-30

5 2014-06-29 to
2014-09-01

2014-06-29 to
2014-08-19

2014-08-19 to
2014-08-25

2014-08-25 to
2014-09-01

REDD

1 2011-04-19 to
2011-05-19

2011-04-19 to
2011-05-12

2011-05-13 to
2011-05-15

2011-05-16 to
2011-05-19

2 2011-04-18 to
2011-05-21

2011-04-18 to
2011-05-14

2011-05-14 to
2011-05-17

2011-05-17 to
2011-05-21

3 2011-04-17 to
2011-05-30

2011-04-17 to
2011-05-21

2011-05-21 to
2011-05-25

2011-05-25 to
2011-05-30

REFIT

2 2013-09-18 to
2015-05-27

2013-09-18 to
2015-01-23

2015-01-23 to
2015-03-26

2015-03-26 to
2015-05-27

5 2013-09-27 to
2015-07-05

2013-09-27 to
2015-02-25

2015-02-25 to
2015-05-01

2015-05-01 to
2015-07-05

9 2013-12-18 to
2015-07-07

2013-12-18 to
2015-03-15

2015-03-15 to
2015-05-11

2015-05-11 to
2015-07-07
Table 2
Relevant threshold information.

Fridge Dishwasher Washing Machine

Max power (W) 300 2500 2500
Power threshold 𝜆𝑖 (W) 50 20 20
Min. ON duration 𝑑1 (s) 1 60 60
Min. OFF duration 𝑑0 (s) 0 60 5

the training accuracy and makes the process more computationally
intensive.

On the other hand, sub-sampling smart meter data is a common
processing technique that has been adopted in many previous studies
for NILM [43,47–50], since it is useful for improving computational
and memory efficiency. Besides, by setting an appropriate sampling fre-
quency, the smart meter can efficiently capture essential data without
requiring extra hardware or energy-consuming devices for additional
metering [48]. This allows for optimal data collection and analysis,
enabling better energy management and insights without unnecessary
costs or complexity.

It is essential to experiment with different granularity of the smart
meter data to facilitate an informed decision. Therefore, models for
different sample frequencies, 8 s and 30 s, are considered in the
following Section 7.2 to assist the choice of the data granularity by con-
sidering the trade-off between temporal resolution and computational
efficiency.

This study splits the 8 s and 30 s resolution data points into training,
validation, and testing datasets while preserving consecutive intervals.
The dataset at 8 s intervals contains 3.75 times more data points than
the dataset at 30 s intervals, potentially leading to a substantial rise
in computational costs. The distributions of the selected buildings are
listed in Table 1. Specifically, 80% records from each smart meter
client were selected as the training set, followed by 10% for validation,
and 10% for testing. The training-testing segment setting is applied
to all the schemes in the proposed DP2-NILM. Then, to overcome the
heterogeneity of data magnitude, all the data were normalized in the
same data range before training.

Table 2 gives the relevant thresholds used in data preprocessing
based on empirical analysis of appliance behavior in [3], which are
commonly used in many studies [43,51,52]. The abnormal load con-
sumption was firstly filtered out by the max power [3], and then the
load consumption of all the nine households was down-sampled from
6 s to 30 s through averaging. After this, the resampled data were
normalized by subtracting the mean and dividing a constant load value
2000 W following [3]. Then the state series of each target appliance
was derived from activation-time thresholding described in Algorithm
1 as the input to feed into the DP2-NILM.
8

Table 3
Parameters used in the DP2-NILM framework.

Parameters Value

Batch size 32
Global rounds 10
Local epochs 8
Number of clients 9
Proximal parameter 𝜇 0.01
Privacy budget 𝜖 [4, 8, 12]
Privacy relaxation term 𝛿 10−5

Gradient clipping threshold 4
Learning rate 𝜂 10−4

Activation function ReLU
Dropout probability 0.1
Momentum 0.5
Optimizer SGD

Fig. 4. The distribution of the three appliances during the monitoring period for house
1 of the REDD dataset.

Furthermore, parameters used in the DP2-NILM framework are
listed in Table 3. TensorFlow is used to train the DP2-NILM framework
, and it is particularly challenging to reproduce exact results due to
the inherent variance of deep learning algorithms. The experiments
were repeated five times on various datasets for replicability, and the
final average scores of each model were reported. Furthermore, the
standard deviation of the evaluation scores for the model performance
from five runs is provided as a means to gain insights into the stability
and consistency of each model [53].

To keep the comparison fair, all the models in our experiment use
the same DNN architecture described in Fig. 3. Appropriate selection of

the local training epochs has been proven to be effective in accelerating
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the model convergence [31]. To simulate real-world environmental
conditions, the local epochs for each client can also be set differently
depending on the network/hardware environment, and the same local
epoch setting is used here for the convenience of comparison. For all
the FL models in DP2-NILM, each global training round consists of
eight local epochs, allowing the clients to take reasonable learning
steps before central server aggregation. For the privacy-preserving
scheme, the study varies the privacy budget 𝜖 between 4 and 12 while
keeping 𝛿 = 10−5, and report the performance and attack success risk,
i.e., the Accuracy and the ASR. The choice of 𝛿 = 10−5 satisfies the
requirement that 𝛿 should be smaller than the inverse of the training
data size [10]. To bound the sensitivity 𝛥2 of the gradients, clipping
is required, which is a computationally efficient and common practice
in deep learning. With the TensorFlow Privacy framework, the batch
clipping was implemented with a threshold of 4. Further, for the listed
parameters, it should be noted that an additional parameter tuning
step may improve the final model performance, however at the cost
of massive computational resources.

Four evaluation metrics are used to assess the model performance
of the DP2-NILM framework. Denote true positive as TP, true negative
as TN, false positive as FP, and false negative as FN, the evaluation
metrics can be defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(10)

1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(11)

where the precision represents the proportion of 𝑇𝑃 s to all the data
sequences classified to the ON state. Recall denotes the ratio of 𝑇𝑃 s to
all data sequences that are actually in the ON state. Accuracy reflects
the ratio of all correctly identified samples to all the smart meter data
sequences. 𝐹1 is defined as a weight average representation for the
precision and the recall within the range of [0, 1]. An 𝐹1 close to 1
indicates that the classification results for the target appliances are
better.

Moreover, to measure the privacy risk for the privacy-preserving
DP2-NILM models, the member inference attack metric defined in [54]
was utilized. To test the membership of an input record, this attack
mechanism evaluates the loss of the uploaded local model parameters
and then classifies it as a member if the loss is smaller than the average
training loss. The attack success risk can be calculated as

𝐴𝑆𝑅 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅, (12)

where 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 denotes the TP rate, and 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁
epresents the FP rate.

.2. Evaluation on the baseline model of DP2-NILM

This subsection evaluates the FL setting of DP2-NILM. There are
three different model settings in this subsection: (1) Local-NILM mod-
els: The Local-NILM models are trained on nine household datasets
separately. This setting eliminates the need for data sharing with the
central server, but at the expense of having to update all of the nine
models separately; (2) Centralized-NILM model: The Centralized-NILM
model is trained on aggregated datasets from all the nine households,
which requires raw data sharing from the smart meter clients; (3)
FL-setting of DP2-NILM (FedAvg-NILM): The FL-setting of DP2-NILM
utilizes FedAvg as the optimization method and trained on all the nine
households without any exchange of the raw smart meter data. The FL
model trained based on FedAvg in DP2-NILM will be used later as the
baseline for evaluating two schemes in the proposed framework. More-
over, the thorough investigation of different granularity levels within
9

the smart meter data is of utmost significance to facilitate an informed
decision in the proposed DP2-NILM. Accordingly, this subsection also
examines models designed for distinct sample frequencies—specifically,
8 s and 30 s. The aim is to support the selection of the most suitable data
granularity by assessing the compromise between temporal resolution
and computational efficiency.

For the Local-NILM models and the Centralized-NILM model, the
epochs are set to 80 to achieve the final convergence. For comparison
purposes, Table 4 lists the mean and standard deviation of performance
scores of the Local-NILM models, the Centralized-NILM model, and
the FL-setting of DP2-NILM (FedAvg-NILM) for the nine households
based on 8 s and 30 s temporal resolutions over five runs. More-
over, Centralized-NILM and FedAvg-NILM aim to train a central or
global model that captures appliance patterns from all nine clients.
The variable 𝑠𝑡𝑑 was introduced to denote the standard deviation of
scores acquired from five individual runs during the testing period,
capturing the variation of scores across these runs. Concurrently, the
Local-NILM aims to train models on individual devices, with its 𝑠𝑡𝑑 of
scores calculated from five runs based on the averaged scores across
the nine households. To quantify the variation in scores among the
different households in Local-NILM, 𝑠𝑡𝑑𝐻 was incorporated to represent
the standard deviation of scores derived from these nine households. In
𝑠𝑡𝑑𝐻 , scores are averaged across five runs within each household before
calculating the standard deviation.

A comparison of FedAvg-NILM with Local-NILM models examines
the performance of federated learning strategies in capturing diversities
among clients. Moreover, comparing FedAvg-NILM to the Centralized-
NILM model evaluates the overall performance of the common util-
ity FL model. The results showed that for each appliance, all mod-
els achieved satisfactory results on the dishwasher and washing ma-
chine, and reasonable results on the fridge. Note that the FedAvg-NILM
achieved the same accuracy score and higher F1, precision, and re-
call scores on dishwashers and washing machines compared with the
centralized-NILM model. For the fridge, as it consumes relatively low
power compared with other appliances, it is likely to be learned with
less evident signature during model training and such consumption
can easily be omitted as unidentified load noise in the FL paradigm.
Furthermore, the standard deviation 𝑠𝑡𝑑 of each score over five runs
for the three models in Table 4 is very small compared to the scale
of the mean value. Overall, it can be concluded that the FedAvg-NILM
model in the DP2-NILM framework works well, and its performance can
serve as the baseline for further evaluations.

Moreover, it is worth noting that the 𝑠𝑡𝑑𝐻 of the Local-NILM models
are relatively higher compared with the 𝑠𝑡𝑑. The reason for this may be
that the performance scores of the models are the averaged scores of
all nine households for the five runs, which may smooth the negative
impact of outliers in the individual households, thus leading to a
smaller standard deviation 𝑠𝑡𝑑 than the 𝑠𝑡𝑑𝐻 . On the other hand, the
larger value of 𝑠𝑡𝑑𝐻 implies that there is more variability in scores
among different households. In essence, the higher standard deviations
observed in the scores from nine households, where each score is the
average of five runs for models, provide evidence of variations among
different households.

It is also observed that with more global rounds, the FedAvg-NILM
may achieve more satisfying performances. For example, the study has
set 100 global rounds for the FedAvg-NILM, and the final obtained
average accuracy for the fridge, dishwasher, and washing machine
were 0.89, 0.99, and 0.99, respectively, which are even better than the
centralized NILM model. However, parameter tuning in FL remains a
challenge as a result of the distributed environment and the associated
computational overhead [8]. It is believed that fixed global and local
training rounds enable efficient, fair, and comparable evaluations in our
DP2-NILM framework.

Overall, models trained with 8 s resolution data exhibited im-
proved performance across most evaluation metrics for the fridge.

This enhancement in performance can be ascribed to the inherent
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Table 4
Performance scores (mean and standard deviation) of the Local-NILM models, the Centralized-NILM model, and the FL-setting of DP2-NILM for nine households based on
different temporal resolutions over five runs. 𝑠𝑡𝑑: standard deviation of scores across five runs on the testing period. 𝑠𝑡𝑑𝐻 : standard deviation of scores among the nine different
ouseholds.

Fridge Dishwasher Washing Machine

Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall

Mean 0.84 0.81 0.81 0.80 0.97 0.66 0.81 0.65 0.98 0.64 0.81 0.55
8 s 𝑠𝑡𝑑𝑅(×10−3) 5.45 4.44 4.59 3.21 6.11 3.76 4.63 5.90 5.98 5.73 4.43 3.44

𝑠𝑡𝑑𝐻 (×10−2) 2.60 2.62 2.83 3.38 3.09 3.95 2.49 3.40 3.99 2.60 3.39 3.10

Mean 0.83 0.79 0.82 0.74 0.98 0.88 0.86 0.83 0.99 0.78 0.89 0.70
30 s 𝑠𝑡𝑑𝑅(×10−3) 6.37 9.17 8.72 9.32 6.13 5.68 9.84 5.47 7.55 5.81 8.30 7.73

Local-NILM

𝑠𝑡𝑑𝐻 (×10−2) 2.08 2.25 2.69 2.53 2.20 2.52 4.06 3.22 2.28 4.20 2.69 3.75

Mean 0.90 0.82 0.81 0.80 0.97 0.69 0.85 0.57 0.96 0.62 0.68 0.58
8 s

𝑠𝑡𝑑𝑅(×10−3) 1.94 3.32 6.06 5.01 5.41 4.49 4.69 3.10 4.61 1.76 3.34 2.79

Mean 0.86 0.80 0.79 0.81 0.97 0.70 0.87 0.59 0.97 0.66 0.71 0.62
Centralized-NILM

30 s
𝑠𝑡𝑑𝑅(×10−3) 4.73 5.38 9.45 4.38 6.51 4.14 3.48 4.25 9.25 2.99 4.47 5.68

Mean 0.87 0.83 0.84 0.81 0.95 0.79 0.77 0.83 0.97 0.51 0.83 0.40
8 s

𝑠𝑡𝑑𝑅(×10−3) 6.05 5.22 3.74 4.72 3.75 4.53 3.26 3.20 4.36 3.73 6.20 2.97

Mean 0.65 0.63 0.50 0.85 0.97 0.75 0.92 0.64 0.98 0.71 0.83 0.62
FedAvg-NILM

30 s
𝑠𝑡𝑑𝑅(×10−3) 2.80 3.86 3.02 3.80 1.78 2.71 4.22 3.25 5.38 3.37 3.94 3.64
characteristics of fridges, which tend to exhibit a relatively stable
and consistent power consumption pattern over a short duration. By
employing higher-resolution data, the models become capable of cap-
turing more finely detailed fluctuations in the power consumption of
the fridge. Consequently, this enables the model to more effectively
differentiate the unique patterns associated with the fridge from those
of other household appliances. However, for dishwashers and washing
machines, the utilization of 8 s resolution data leads to compromised
performance compared to 30 s resolution data. This counter-intuitive
outcome may be attributed to the dynamic power consumption pat-
terns and rapid fluctuations exhibited by these appliances during their
operational cycles, which result in increased noise in the 8 s resolution
data, challenging the accurate separation of appliance-specific patterns
from noise, thus leading to inferior results.

In the context of DP2-NILM, it is important to consider the practical
rade-off between data resolution and computational efficiency. While
igher-frequency data can offer more detailed insights, it comes at
he cost of increased resource requirements for processing and model
raining. This study strikes a balance between these conflicting con-
iderations by adopting a methodology akin to that employed in prior
tudies [43,47–50]. The datasets were sub-sampled to 30 s intervals,
nsuring both feasibility across a wide range of smart meters and
onsistency with the experimental design scenarios pursued in our
nvestigation.

.3. Evaluations on utility optimization of DP2-NILM

The performance of FedAvg-NILM regarding the nine smart meter
lients is satisfactory for the dishwasher and washing machine. How-
ver, its performance on the fridge is worse compared to both the
ocal-NILM and Centralize-NILM models. The study further conjecture
hat the load consumption distribution of the fridge for the clients may
e heterogeneous because they are collected geographically, i.e., the
EDD dataset is from the U.S., whereas the other two datasets are

rom the U.K., and the size of the smart meter records from REDD are
maller than the other two datasets. Fig. 5 shows the load consumption
istribution of the fridge for all nine clients.

It can be seen that different clients have different fridge usage
atterns, with UKDALE house 1, REDD house 3, and REFIT houses 5
nd 9 having more operation spikes, while UKDALE house 5, REDD
ouse 2, and REFIT house 2 have more steady consumption patterns.

It is hypothesized that using optimization algorithms that can ac-
10

ommodate statistical heterogeneity may be useful for improving the
performance of FL models. This subsection will explore the relation-
ship between data heterogeneity and the different types of FL utility
optimization models. By comparing the FedProx-NILM to the FedAvg-
NILM, the ability of the two strategies to learn from heterogeneous
data in the DP2-NILM framework is evaluated. Table 5 lists the average
performance scores of the FedAvg-NILM and the FedProx-NILM, and
highlights the improvement in blue and the downgrade in red of the
FedProx-NILM corresponding to the FedAvg-NILM.

The standard deviation of each score over five runs in Table 5 for the
FedProx-NILM is remarkably small compared to the scale of the mean
value. It can be observed that FedProx-NILM significantly outperforms
FedAvg for most scores on fridge and dishwasher, especially on the
fridge with improved accuracy by 20% and an increased precision by
32%. The fridge has an extremely short activation cycle when compared
to the other two appliances, and it consumes less electricity than
dishwashers and washing machines, which makes the activation cycle
easily obscured by unobserved noise.

Moreover, the use of a fridge in a household does not follow a daily
routine like dishwashers and washing machines, its activation cycle
is more irregular (e.g., UKDALE house 1, REDD house 3, and REFIT
houses 5 and 9), and the usage patterns from multiple households may
contain higher levels of randomness. Therefore, training the FedAvg-
NILM model with the simple averaging algorithm may result in a
degradation of the global learning model, thus leading to relatively
worse performance scores. Besides, FedProx-NILM achieved a satisfac-
tory precision for the fridge, which means 32% fewer cases of the fridge
status being falsely identified as ON than FedAvg-NILM.

In the practical application scenarios, the precision implies that the
appliance status was falsely identified as ON, while the recall implies
that the appliance status was falsely identified as OFF before it was
actually turned off. It is worth noting that the FedProx-NILM achieved
better recall and a worse precision score for the dishwasher. This is
because the FedProx-NILM system is specifically designed to handle the
heterogeneity from different households by introducing the proximal
term, and thus to keep the model parameters updated by the local
client not deviating too much from the global model parameters, it
can be inferred that the FedProx-NILM can detect longer operation
duration with lower electricity consumption such as the draining of the
dishwasher and the typical standby state of the fridge.

There are a slightly drop (1%) on accuracy and a significant drop
(22%) on recall of the washing machine. It is inferred that, as the
signatures of the washing machines are more complex than the other
two appliances [11], the proximal term in FedProx-NILM reduces the
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Fig. 5. Example fridge usage distributions for UKDALE, REDD, and REFIT.
Table 5
Performance scores (mean and standard deviation) of FedAvg-NILM and FedProx-NILM schemes for nine households over five runs.

Fridge Dishwasher Washing Machine

Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall

FedAvg-NILM
Mean 0.65 0.63 0.50 0.85 0.97 0.75 0.92 0.64 0.98 0.71 0.83 0.62
𝑠𝑡𝑑(×10−3) 2.80 3.86 3.02 3.80 1.78 2.71 4.22 3.25 5.38 3.37 3.94 3.64

FedProx-NILM
Mean 0.85 0.81 0.82 0.81 0.98 0.80 0.78 0.82 0.97 0.54 0.83 0.40
𝑠𝑡𝑑(×10−3) 2.58 5.71 2.65 3.64 4.34 3.50 3.42 3.41 7.49 3.25 2.77 1.63

Evaluation (↑ 20%) (↑ 18%) (↑ 32%) (↓ 4%) (↑ 1%) (↑ 5%) (↓ 19%) (↑ 18%) (↓ 1%) (↓ 17%) (–) (↓ 22%)
difference in weight updates for individual models, which may un-
dermine the learning of significant features of washing machines by
the client models. Therefore, regarding the washing machine results,
FedAvg-NILM is more efficient in identifying high-energy appliances
similar to washing machines.

In terms of the F1 score, the FedProx-NILM outperformed the
FedAvg-NILM for fridges and dishwashers but had a worse F1 score
for washing machines than the FedAvg-NILM. To conclude, the results
further confirm our assumptions regarding the utility optimization
based on FedProx-NILM for handling heterogeneous smart meter ap-
pliances, and it can also be concluded that FedAvg-NILM performs
better in detecting intensive operation duration with higher electricity
consumption.

The insights gained from analyzing the performance of FedProx-
NILM and FedAvg-NILM models can provide guidance for the devel-
opment of more efficient and reliable appliance detection systems.
The observed variations in model performance for different appliances
11

underscore the importance of implementing appliance-specific policies
or standards. This, in turn, can drive the development of more tai-
lored energy efficiency strategies to optimize appliance-level energy
consumption.

7.4. Evaluations on privacy-preserving of DP2-NILM

FedAvg-NILM and FedProx-NILM presented unique advantages for
devices with different signatures and datasets with different degrees of
consistency. However, studies are suggesting that potential risks still ex-
ist in the training communication process even though the transmitted
objects are the updated parameters instead of the original data [55].
Therefore, it is necessary to provide stronger privacy guarantees to the
FL-based NILM.

This subsection evaluates two privacy-preserving schemes of DP2-
NILM, i.e., the GDPFL-NILM and the LDPFL-NILM. When clients decide
whether to participate in the DP2-NILM paradigm for smart meter
data analysis, our framework serves as a reference for quantifying the
potential privacy loss based on the privacy budget 𝜖. By comparing
the benefits of participating in the framework, clients can make an
informed decision on whether to join.
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Table 6
Performance scores (mean and standard deviation) of the GDPFL-NILM and the LDPFL-NILM schemes for nine households over five runs.

Privacy
budget
𝜖

Fridge Dish Washer Washing Machine Privacy
guarantee

Trusted
server

Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall

Mean 0.65 0.63 0.50 0.85 0.97 0.75 0.92 0.64 0.98 0.71 0.83 0.62
FedAvg-NILM ⟍

𝑠𝑡𝑑(×10−3) 2.80 3.86 3.02 3.80 1.78 2.71 4.22 3.25 5.38 3.37 3.94 3.64
Basic Yes

Mean 0.54 0.53 0.37 0.95 0.90 0.14 0.16 0.72 0.95 0.68 0.40 0.92
4

𝑠𝑡𝑑(×10−3) 3.53 2.49 2.61 4.13 3.19 0.45 1.08 3.39 3.52 1.74 2.76 6.99

Mean 0.63 0.61 0.49 0.84 0.97 0.69 0.93 0.56 0.98 0.68 0.79 0.60
8

𝑠𝑡𝑑(×10−3) 2.17 2.70 1.83 2.65 4.55 5.42 5.07 1.69 7.44 2.43 5.91 2.92

Mean 0.66 0.82 0.81 0.83 0.99 0.85 0.86 0.85 0.98 0.74 0.80 0.63

GDPFL-NILM

12
𝑠𝑡𝑑(×10−3) 2.06 2.69 4.57 2.16 3.75 4.65 7.73 5.05 5.72 2.68 6.63 1.84

Moderate Yes

Mean 0.58 0.40 0.40 0.38 0.93 0.11 0.21 0.39 0.94 0.10 0.11 0.34
4

𝑠𝑡𝑑(×10−3) 3.78 2.24 3.27 1.94 4.99 0.74 1.16 2.79 6.30 0.64 0.43 2.04

Mean 0.58 0.42 0.41 0.44 0.94 0.20 0.30 0.40 0.96 0.20 0.40 0.47
8

𝑠𝑡𝑑(×10−3) 2.51 1.57 1.34 1.81 4.51 0.76 2.01 1.82 2.01 0.62 1.71 3.04

Mean 0.65 0.42 0.36 0.50 0.94 0.13 0.26 0.48 0.96 0.43 0.40 0.50

LDPFL-NILM

12
𝑠𝑡𝑑(×10−3) 3.19 1.59 1.12 3.10 5.78 1.12 2.04 2.72 7.60 1.86 2.76 3.14
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Table 6 compares the GDPFL-NILM and the LDPFL-NILM trained
ith varied privacy budget 𝜖, in which the FedAvg-NILM is used again
s the baseline model. Intuitively, the Gaussian random noise will slow
he convergence of both the GDPFL-NILM and the LDPFL-NILM mod-
ls, while providing stronger privacy guarantees for the local clients,
eading to trade-off problems between model utility and privacy.

The standard deviation of each score from five independent runs
n Table 6, both for the LDPFL-NILM and GDPFL-NILM, exhibits an
pparently small scale compared with the mean value. Overall, the
DPFL-NILM outperforms the LDPFL-NILM over most scores, which
roves that more strict privacy-preserving schemes will undermine the
isaggregation performance in DP2-NILM. It can be observed from the
esults that the accuracy for the GDPFL-NILM and the LDPFL-NILM are
omparable to or even better than that of the FedAvg-NILM. However,
ther scores such as F1 and precision are much worse than those of the
edAvg-NILM, especially for the dishwasher and washing machine.

Typically, these two appliances, by nature, remain in an inactive
tate for extended periods, resulting in sparse activation of their ON
tates. This sparsity affects the balance of positive (ON status) and
egative (OFF status) samples in the dataset, creating an imbalance
hat impacts the reliability of accuracy measurements. Consequently,
hile the accuracy might appear high due to the correct classification
f numerous OFF states, its effectiveness in capturing the infrequent ON
tates, which are of greater significance, becomes the true challenge.

While accuracy quantifies the overall correctness of load monitor-
ng, in certain specialized scenarios, as previously mentioned, recall and
recision take precedence over accuracy. The balance between preci-
ion and recall depends on the specific objectives and consequences
f errors in the NILM application. In contexts such as NILM-based
emote health monitoring [56], where the timely detection of potential
ealth issues or emergencies through the monitoring of daily activities
e.g., the use of electrical medical devices) is crucial for individual
ell-being, recall assumes paramount importance. Ensuring that all

nstances of relevant events (e.g., abnormal heart rhythms, seizures)
re detected is crucial to providing timely medical intervention and
reventing adverse health outcomes. Prioritizing recall helps minimize
he risk of missing important events.

Surprisingly, the GDPFL-NILM achieved better recall scores than the
edAvg-NILM for fridges and washing machines with privacy budgets
f 𝜖 = 4, and dishwashers with privacy budgets of 𝜖 = 12. This

indicates that the GDPFL-NILM can detect the low energy consumption
standby mode for the appliances, possibly because the noise added to
12

the aggregated weights makes the trained model more robust. However, u
the recall scores of the LDPFL-NILM are worse in most cases, which
indicates that adding noise to updated local weights may disturb the
final aggregated weights, thereby affecting the final disaggregation
results.

While the recall is important, precision also holds significance. In
certain NILM scenarios, such as choosing appliances or customers from
a pool for automated demand response in grid balancing service, the
prioritization of precision is vital to minimize false positives. For the
fridge, the GDPFL-NILM achieved the highest precision with the privacy
budget of 𝜖 = 12, for the dishwasher it achieved the highest precision

ith the privacy budget of 𝜖 = 8, and for the washing machine, it
chieved the highest precision with the privacy budget of 𝜖 = 12.

In addition, although the GDPFL-NILM model has exhibited a de-
cline in precision as the privacy budget has decreased, the scores are
still comparable to those of the FedAvg-NILM. Moreover, the precision
of the GDPFL-NILM model for the dishwasher and washing machine
with the lowest privacy budget of 𝜖 = 4 drops dramatically compared
to the FedAvg-NILM. This is likely because they differ from the fridge
in terms of features, as dishwashers and washing machines may offer
more insight into individual behavior because they are more closely
related to the routines of smart meter clients.

This study then compares the performance of the GDPFL-NILM and
the LDPFL-NILM in terms of privacy attacks. To determine whether
a client has participated in a training session, the attack success risk
introduced in Section 7 is used as the evaluation criterion. Fig. 6
illustrates ASRs based on various epsilon budgets for FedAvg-NILM,
GDPFL-NILM, and LDPFL-NILM, respectively.

All three models with three privacy budget values (i.e., 𝜖 = 4,
𝜖 = 8, and 𝜖 = 12) with a fixed 𝛿 = 10−5 are evaluated. Fig. 6
hows that LDPFL-NILM with the setting 𝜖 = 4 mitigates the attack
uccess risk better (downgrades the risk to 0.33) with compromises
n decreasing model accuracy by 7% for fridge, 4% for dishwasher,
nd 4% for washing machine. The GDPFL-NILM with 𝜖 = 8 achieved
atisfying performance on all three appliances as well as reduced the
ttack accuracy to 0.59.

Not surprisingly, the LDPFL-NILM imposes more noise compared to
he GDPFL-NILM, which provides stronger privacy guarantees but less
tility due to a higher amount of noise. It is worth noting that with a
igher privacy budget 𝜖 = 12, the attack success risk in both the GDPFL-
ILM and the LDPFL-NILM is similar to that in FedAvg-NILM whereas

he F1, precision, and recall for the LDPFL-NILM are much worse than
he FedAvg-NILM and the GDPFL-NILM. Therefore, it may suggest that

tilizing the GDPFL-NILM or the FedAvg-NILM may achieve a better
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Fig. 6. The ASRs of FedAvg-NILM, the GDPFL-NILM, and the LDPFL-NILM in the
DP2-NILM framework.

trade-off between utility and privacy when there is a higher privacy
budget from clients.

The superior performance of GDPFL-NILM compared to LDPFL-
NILM, particularly in terms of recall, implies that industries involved in
smart appliances and energy management systems can greatly benefit
from adopting GDPFL-NILM. By implementing this model, they can
achieve better detection of appliance usage patterns, leading to im-
proved energy management and cost reductions. Moreover, the adop-
tion of GDPFL-NILM enables industries to promote energy efficiency
and user privacy, aligning with broader policy targets related to energy,
environment, and data protection.

8. Conclusion

This research presents the DP2-NILM framework, which combines
federated learning, utility optimization, and differential privacy to
provide decentralized and privacy-preserving solutions for NILM. The
framework offers two key schemes: a utility optimization scheme and
a privacy-preserving scheme.

The utility optimization scheme includes FedAvg-NILM and
FedProx-NILM, which effectively handle data heterogeneity in different
appliance types and heterogeneous environments. FedAvg-NILM excels
at detecting intensive operation duration with higher electricity con-
sumption, while FedProx-NILM is more effective at detecting longer
operational duration with lower electricity consumption. The privacy-
preserving scheme consists of LDPFL-NILM and GDPFL-NILM, which
provide different levels of privacy guarantees based on varying privacy
budgets. LDPFL-NILM offers stricter privacy rules, while GDPFL-NILM
achieves an optimal trade-off between privacy and utility.

Extensive experiments conducted on real-world smart meter
datasets demonstrate the scalability and effectiveness of the DP2-
NILM framework. The results highlight the importance of considering
different utility optimization and privacy-preserving algorithms based
on appliance types and available privacy budgets.

The relevance of this research extends to various domains. In terms
of engineering design, the DP2-NILM framework enables the devel-
pment of smart energy services at the local/residential level, con-
ributing to the decarbonization of the energy system. It also addresses
rivacy concerns, aligning with regulations and policies promoting
ata privacy and security. Moreover, the framework allows financial
nstitutions and investors to evaluate the environmental impact and
ustainability of energy consumption patterns.

Further research can explore the application of the DP2-NILM frame-
ork in other client types, such as commercial and industrial sectors.
evertheless, the training environment for such client types may be
ore complex, so it is important to further consider the system het-

rogeneity to ensure the robustness of the framework. Besides, the
13
experimental results suggest that the FL paradigm can be implemented
more time efficiently with reasonable increases in local epochs, while
local epoch ranges that are acceptable to participants must still be
verified by trial, such as questionnaires. Asynchronous schemes should
also be incorporated into the proposed framework to accommodate
stragglers and unfinished local iterations. Furthermore, as smart devices
enable real-time feedback from smart meter clients, adapting the DP2-

ILM framework to online scenarios will deliver more flexible smart
eter data analysis and improve the communication efficiency of the

L paradigm.
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