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The ability to represent perturbative expansions of interacting quantum field theories in terms of simple 
diagrammatic rules has revolutionized calculations in particle physics (and elsewhere). Moreover, these rules 
are readily automated, a process that has catalyzed the rise of symbolic algebra packages. However, in the case 
of extended theories of gravity, such as scalar-tensor theories, it is necessary to precondition the Lagrangian 
to apply this automation or, at the very least, to take advantage of existing software pipelines. We present a
Mathematica code FeynMG, which works in conjunction with the well-known package FeynRules, to do 
just that: FeynMG takes as inputs the FeynRules model file for a non-gravitational theory and a user-supplied 
gravitational Lagrangian. FeynMG provides functionality that inserts the minimal gravitational couplings of the 
degrees of freedom specified in the model file, determines the couplings of the additional tensor and scalar 
degrees of freedom (the metric and the scalar field from the gravitational sector), and preconditions the resulting 
Lagrangian so that it can be passed to FeynRules, either directly or by outputting an updated FeynRules

model file. The Feynman rules can then be determined and output through FeynRules, using existing universal 
output formats and interfaces to other analysis packages.

Program summary

Program title: FeynMG

CPC Library link to program files: https://doi .org /10 .17632 /bjpfmtt55k .1
Developer’s repository link: https://gitlab .com /feynmg /FeynMG

Licensing provisions: MIT license

Programming language: Mathematica 13.2
Nature of problem: Determining the additional interactions that scalar-tensor theories of gravity induce between 
the fields of the Standard Model of particle physics and its extensions is a tedious and time-consuming task that 
is ripe for automation. FeynMG is a package that provides this automation. It can expand the spacetime metric 
around a flat background and perform the necessary field redefinitions for a given theory in order to provide a 
Lagrangian that is in a form that can be processed by FeynRules [1]. The Feynman rules for the theory can 
then be determined using the existing functionality of FeynRules and output in formats that can be read into 
other particle-physics analysis packages.

Solution method: (1) Load both FeynRules and FeynMG into Mathematica. (2) Load a model file describing a 
given matter sector and Lagrangian. (3) Use the FeynMG implementation to: (3a) append the gravitational sector 
and incorporate curvature-dependent objects, such as the metric, curvature scalars and tensors, and covariant 
derivatives; (3b) effect a Weyl transformation or expand the spacetime metric up to second order in graviton 
interactions with the matter fields; and (3c) diagonalize mass and kinetic mixings, and canonically normalize 
dynamical fields. (4) Pass the output directly to FeynRules or output a new model file from FeynMG.
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1. Introduction

The increasing complementarity of high-precision data from cosmological observations and high energy physics experiments makes it necessary 
to consider non-minimal gravitational couplings or the impact of additional degrees of freedom that are coupled through the gravitational sector with 
strengths that need not be Planck-suppressed. Examples include scalar-tensor theories of gravity [2], such as the Brans–Dicke theory [3] or, more 
generally, the Horndeski theories [4,5] (including beyond Horndeski [6,7] and DHOST [8,9] theories), in which the gravitational sector includes 
both the metric and an additional scalar degree of freedom. Other relevant examples include those in which the Higgs is non-minimally coupled to 
gravity, as is required in Higgs inflation [10–17] or so-called Higgs-Dilaton models [18–21]. Indeed, such non-minimal couplings of the Higgs field 
to the scalar curvature are readily motivated by considering the renormalization-group evolution of the operators of the Standard Model of particle 
physics plus gravity [22–24]. Moreover, the ability to make Weyl rescalings of the metric and so-called disformal transformations [25–27] allows us 
to make connections between scalar-tensor theories of gravity and gauge-singlet, scalar extensions of the Standard Model of particle physics, such 
as Higgs- or neutrino-portal theories [28–35].

The challenge, however, is the proliferation of operators that non-minimal gravitational couplings provide, alongside degeneracies with operators 
that directly couple new degrees of freedom to the Standard Model. Dealing with this requires linearization of the extended gravitational sector, 
transformations of the metric, expansion around non-trivial vacuum configurations, the diagonalization of kinetic and mass mixings, and the 
truncation of infinite series of operators [36,37]. This is usually done on a model-by-model basis, and it is a tedious and time-consuming process, 
which is ripe for automating, and doing so is the focus of this article.

We present a Mathematica package FeynMG, which is designed to work alongside the well-known FeynRules package [1]. FeynRules is 
an extensive Mathematica package that enables the user to output the Feynman rules for a given Lagrangian in formats that can be read in 
by a range of high energy physics analysis software, including CalcHep/CompHEP [38,39], FeynArts [40], FeynCalc [41], FormCalc [42],

MadGraph [43], Sherpa [44], Whizard/Omega [45] and ASperge [46].

Symbolic algebra packages have also been developed to deal with the complex tensor algebra that arises in General Relativity. A recent example 
is FeynGrav [47], a package that introduces gravity in its canonical form (the Einstein–Hilbert action) to FeynRules. xAct [48] is perhaps the 
most well-known package, having already been followed by multiple compatible packages that allow the study of gravity in different cosmological 
scenarios. In particular, the package xIST/COPPER [49] extends xAct for general scalar-tensor theories, and it was used in Ref. [50] to calculate 
the effect of modified gravity on cosmological perturbations. In this sense, FeynMG extends FeynRules as xIST/COPPER extends xAct.

FeynMG is intended as a ‘preconditioner’. It takes as inputs a FeynRules model file and the Lagrangian of an extended gravitational sector.

FeynMG then provides the functionality to implement the minimal gravitational couplings to the Lagrangian from the original model file and cast 
the complete theory in a form that can be further processed using the existing FeynRules package and its interfaces. However, we emphasize that

FeynMG contains functionality that may be useful for theories that are being analyzed independent of the couplings to gravitational sectors, and this 
will be highlighted throughout this article.

The remainder of this article is structured as follows. In Section 2, we describe the general form of the problem of coupling the Standard Model 
to extended gravitational sectors. We then present the package FeynMG, summarizing the implementation in Section 3 and describing its usage in 
Section 4. Finally, our conclusions are presented in Section 5, and additional technical details are provided in the Appendices.

Throughout this work, while it is a convention that is uncommon in the gravitation and cosmology literature, we use the “mostly minus” metric 
signature convention (+, −, −, −), in which timelike four-momenta 𝑝𝜇 have 𝑝2 > 0, and the positive Clifford relation given by {𝛾𝑎, 𝛾𝑏} = 2𝜂𝑎𝑏, since 
this is the convention commonly used by existing particle physics software packages. We use lower-case Greek characters for the Lorentz indices of 
the curved spacetime and lower-case Roman characters for the Lorentz indices of the flat, tangent space necessary for writing the Dirac Lagrangian 
in a generally covariant form. 𝐷 denotes gauge covariant derivatives, general (i.e., gravitational) and gauge covariant derivatives are denoted by 
∇, and an update to the general and gauge covariant derivative that is useful for scalar-tensor theories of Brans–Dicke type is represented by . We 
work in natural units, but do not set Newton’s gravitational constant to unity.

2. Method

We begin by reviewing how a Minkowski quantum field theory is minimally coupled to gravity and how additional scalar fields that are non-

minimally coupled to the scalar curvature of the gravity sector can give rise to new interactions in that quantum field theory.

For simplicity, we work with a toy model of QED plus a real scalar prototype of the Higgs sector. Generalizing to a complex scalar field that 
is charged under 𝑈 (1) would be a technical complication that does not add to the main points that we wish to illustrate below. The action of this 
model in Minkowski spacetime is given by

𝑆m =∫ d4𝑥
[
−1
4
𝐹𝜇𝜈𝐹𝜇𝜈 +

1
2
𝜕𝜇𝜙𝜕

𝜇𝜙

+ 𝑖�̄�𝛾𝜇𝐷𝜇𝜓 − 𝑦�̄�𝜙𝜓 + 1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆

]
, (1)

where we have introduced a would-be Higgs field 𝜙, a Dirac fermion 𝜓 , which will later be chosen as a proxy for the electron, and the 𝑈 (1) gauge 
field 𝐴𝜇 , which corresponds to the photon, with its usual field-strength tensor 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . Note that the Dirac fermion is charged under 
𝑈 (1), and it is minimally coupled to the photon field via the gauge covariant derivative

𝐷𝜇𝜓 = 𝜕𝜇𝜓 + 𝑖𝑞𝐴𝜇𝜓, (2)

where 𝑞 is the electromagnetic coupling.

Before analysing the interactions induced by extending the gravitational sector beyond the usual Einstein–Hilbert action, we first need to insert 
all the minimal gravitational couplings that have so far been ignored by working in Minkowski spacetime. This means that, for every pair of 
contracted Lorentz indices, we must include a factor of the metric 𝑔𝜇𝜈 . Additionally, for every 𝛾 matrix appearing in the Dirac Lagrangian, we must 
include a vierbein 𝑒𝜇𝑎 , which satisfies 𝜂𝑎𝑏𝑒𝜇𝑎 𝑒𝜈𝑏 = 𝑔

𝜇𝜈 , where 𝜂𝑎𝑏 is the flat spacetime metric. (We remind the reader that the flat-space indices of the 
2

vierbein are raised and lowered with the flat-space metric.) The latter is necessary since the algebra of the 𝛾 matrices is defined with respect to the 
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Minkowski metric, i.e., {𝛾𝑎, 𝛾𝑏} = 2𝜂𝑎𝑏; the vierbeins relate the curved and flat, tangent spaces. By this means, we obtain the minimally coupled 
action

𝑆m[𝑔𝜇𝜈] =∫ d4𝑥
√
−𝑔

[
−1
4
𝑔𝛼𝜇𝑔𝛽𝜈𝐹𝛼𝛽𝐹𝜇𝜈 +

1
2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙

+ 𝑖�̄�𝑒𝜇
𝑎
𝛾𝑎∇𝜇𝜓 − 𝑦�̄�𝜙𝜓 + 1

2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆

]
, (3)

where we have also included a factor of 
√
−𝑔 in the spacetime volume element. Herein, the Minkowski gauge covariant derivative has been 

promoted to the general covariant derivative. We note that the Dirac-conjugate spinor is defined with respect to the flat-spacetime gamma matrix 
𝛾0, i.e., �̄� ≡ 𝜓†𝛾0 (see, e.g., Ref. [51]).

For scalar fields, the gravitational covariant derivative just trivially reduces to a partial derivative, such that ∇𝜇𝜙 → 𝜕𝜇𝜙. However, when acting 
on a covector 𝑌𝜌, the covariant derivative takes the form

∇𝜇𝑌𝜈 = 𝜕𝜇𝑌𝜈−Γ𝜌𝜇𝜈𝑌𝜌, (4)

where Γ𝜌𝜇𝜈 =
1
2𝑔
𝜌𝜆(𝜕𝜇𝑔𝜆𝜈 +𝜕𝜈𝑔𝜇𝜆−𝜕𝜆𝑔𝜇𝜈) are the usual Christoffel symbols. This definition for the covariant derivative is chosen such that ∇𝜌𝑔𝜇𝜈 = 0, 

but it can take many other forms. For instance, we will later define and work with a different choice that will be more convenient for the specific case 
of Brans–Dicke theories [37]. However, as expected, it does not matter which definition one uses in this action, given that the following property 
will always hold in QED:

𝐹𝜇𝜈 =∇𝜇𝐴𝜈 −∇𝜈𝐴𝜇 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, (5)

since the curvature-dependent terms are symmetric under the permutation of 𝜇 and 𝜈. Finally, the covariant derivative acting on a fermion field, 
with its dependence on the gauge field from QED, is given by

∇𝜇𝜓 = 𝜕𝜇𝜓 + 𝑖𝑞𝐴𝜇𝜓 − 𝑖

2
Ω𝜇𝜓, (6)

where

Ω𝜇 = (Γ𝑎𝑏)𝜇𝑆𝑎𝑏 (7)

is the spin connection. The latter is defined by

(Γ𝑎𝑏)𝜇 = −𝑒𝑎𝛼𝑒
𝛽

𝑏
Γ𝛼
𝜇𝛽

+ 𝑒𝑎𝛼𝜕𝜇𝑒𝛼𝑏 , where 𝑆𝑎𝑏 = 𝑖

4
[𝛾𝑎, 𝛾𝑏]. (8)

With these minimal couplings now included, the action takes the form1

𝑆m[𝑔𝜇𝜈] = ∫ d4𝑥
√
−𝑔

[
−1
4
𝑔𝛼𝜇𝑔𝛽𝜈𝐹𝛼𝛽𝐹𝜇𝜈 +

1
2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙

+ 𝑖�̄�𝑒𝜇
𝑎
𝛾𝑎𝜕𝜇𝜓 + 1

2
�̄�𝑒𝜇

𝑎
𝛾𝑎Ω𝜇𝜓 − 𝑞�̄�𝑒𝜇

𝑎
𝛾𝑎𝐴𝜇𝜓

− 𝑦�̄�𝜙𝜓 + 1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆

]
. (9)

We can now proceed to append the gravitational sector.

The minimal choice for the gravitational sector is the Einstein–Hilbert action, giving the full action

𝑆 = ∫ d4𝑥
√
−𝑔

[
−
𝑀2

Pl
2
𝑅

]
+ 𝑆m[𝑔𝜇𝜈], (10)

where 𝑅 is the Ricci scalar, and 𝑀Pl is the Planck mass, which determines the strength of the gravitational force. We can, however, also consider 
extended gravitational sectors, and one of the simplest examples is the Brans–Dicke scalar-tensor theory [3], in which a dynamical scalar field 
replaces the Planck mass. Such theories are described by an action with the following generic form:

𝑆 = ∫ d4𝑥
√
−𝑔

[
−𝐹 (𝑋)

2
𝑅+ 1

2
𝑍(𝑋)𝜕𝜇𝑋𝜕𝜇𝑋 −𝑈 (𝑋)

]
+𝑆m[𝑔𝜇𝜈]. (11)

Herein, 𝑋 is a real scalar field, subject to the self-interaction potential 𝑈 (𝑋) and coupled non-minimally to the Ricci scalar 𝑅 through the function 
𝐹 (𝑋). From a phenomenological perspective, there are tight constraints on the late-time evolution of Newton’s gravitational “constant”, e.g., from 
observations of the Moon’s orbit [52]. We must therefore choose the functions 𝐹 (𝑋), 𝑍(𝑋) and 𝑈 (𝑋), such that ⟨𝐹 (𝑋)⟩ =𝑀2

Pl is approximately 
constant, e.g., by 𝑋 obtaining an approximately constant vacuum expectation value (vev). Notice that the field 𝑋 is not or, at least, does not appear 
to be canonically normalized, by virtue of the function 𝑍(𝑋) included in its kinetic term. In fact, additional contributions to the kinetic energy 
of the field 𝑋 arise through the coupling to the scalar curvature. Moreover, while the matter sector does not contain any direct couplings to the 
field 𝑋, these couplings may be hidden in the mixing between the tensor and scalar degrees of freedom of the extended gravitational sector. The 
interactions between the field 𝑋 and the would-be Standard Model fields become manifest once we have dealt with these mixings, and doing so is 
the main purpose of the package FeynMG.

1 Faddeev–Popov ghosts have been omitted, since they decouple in Abelian gauge theories in Minkowski spacetime. Note, however, that the ghost fields do not 
decouple from gravity, even in the Abelian case [51]. A full treatment of these terms in the context of non-Abelian gauge symmetries is provided in Appendix B, 
3

wherein we describe the necessary inclusion of minimal gravitational couplings in the ghost Lagrangian.
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For the Brans–Dicke example above, there are two ways that we can proceed, as will be described in the next subsections:

1. We can make a Weyl rescaling of the metric to remove the non-minimal gravitational coupling of the field 𝑋 to the Ricci scalar, taking us to 
the so-called Einstein frame.

2. We can continue in the Jordan frame (where the curvature couplings are manifest), by analysing how the metric degrees of freedom mediate 
interactions between the field 𝑋 and our would-be Standard Model fields.

Before describing these two cases, however, it is important to note that the presence of additional non-minimal gravitational couplings, e.g., 
𝑅𝜇𝜈∇𝜇∇𝜈𝑋 (as arises in the Horndeski class of scalar-tensor theories, where 𝑅𝜇𝜈 is the Ricci tensor), the Weyl rescaling of the metric (or more 
generally a disformal transformation [25–27] of the metric) may not be able to remove all non-minimal couplings simultaneously. In these cases, we 
may not be able to transform into an Einstein frame and will have little choice but to continue working with non-minimal interactions with gravity.

2.1. Weyl transforming into the Einstein frame

Our aim is to isolate the new interactions between the matter fields that arise because of the modifications to the gravitational sector. The most 
common way of doing this is to transform to the Einstein frame. This amounts to a redefinition of the curvature-dependent objects (called a Weyl or 
conformal transformation) such that the resulting gravitational action does not present any non-minimal couplings.

For the Lagrangian defined in Eq. (9), this transformation will take the following form

𝑔𝜇𝜈 →
�̃�2

Pl
𝐹 (𝑋)

�̃�𝜇𝜈 , 𝑔𝜇𝜈 →
𝐹 (𝑋)
�̃�2

Pl

�̃�𝜇𝜈 , (12a)

𝑒𝜇
𝑎
→

�̃�Pl√
𝐹 (𝑋)

𝑒𝜇
𝑎
, 𝑒𝑎

𝜇
→

√
𝐹 (𝑋)
�̃�Pl

𝑒𝑎
𝜇
, (12b)

where �̃�𝜇𝜈 , 𝑒
𝜇
𝑎 and �̃�Pl are the metric, vierbein and Planck mass in the Einstein frame, respectively. These transformations are only well-defined for 

𝐹 (𝑋) > 0, which is satisfied as long as the effective 𝑀2
Pl is positive in the Jordan frame. To get through the algebra, the following transformations 

will be useful:√
−𝑔 𝐹 (𝑋)

2
𝑅→

√
−�̃�

(
�̃�2

Pl
2
�̃�−

3�̃�2
Pl𝐹

′(𝑋)2

4𝐹 (𝑋)2
�̃�𝜇𝜈𝜕𝜇𝑋𝜕𝜈𝑋

)
, (13a)

𝑒𝜇
𝑎
𝛾𝑎Ω𝜇 →

√
𝑋

�̃�Pl
𝑒𝜇
𝑎
𝛾𝑎

(
Ω̃𝜇 −

3𝑖
2
𝐹 ′(𝑋)
𝐹 (𝑋)

𝜕𝜇𝑋

)
, (13b)

where 𝐹 ′(𝑋) = 𝜕𝐹 (𝑋)∕𝜕𝑋 and all the curvature-dependent quantities with a tilde are built with the Einstein-frame metric �̃�𝜇𝜈 or vierbein 𝑒𝜇𝑎 .

Applying the transformations in Eq. (12) to the Jordan-frame action, we obtain

𝑆 =∫ d4𝑥
√
−�̃�

[
−
�̃�2

Pl
2
𝑅+

�̃�2
Pl
2

[
𝑍(𝑋)
𝐹 (𝑋)

+ 3𝐹 ′(𝑋)2

2𝐹 (𝑋)2

]
�̃�𝜇𝜈𝜕𝜇𝑋𝜕𝜈𝑋

− 1
4
�̃�𝛼𝜇�̃�𝛽𝜈𝐹𝛼𝛽𝐹𝜇𝜈 +

�̃�2
Pl

2𝐹 (𝑋)
�̃�𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙− 𝑞

�̃�3
Pl

𝐹 (𝑋)3∕2
�̄�𝑒𝜇

𝑎
𝛾𝑎𝐴𝜇𝜓

+ 𝑖
�̃�3

Pl
𝐹 (𝑋)3∕2

�̄�𝑒𝜇
𝑎
𝛾𝑎𝜕𝜇𝜓 + 1

2
�̃�3

Pl
𝐹 (𝑋)3∕2

�̄�𝑒𝜇
𝑎
𝛾𝑎𝜓

(
Ω̃𝜇 −

3𝑖
2
𝐹 ′(𝑋)
𝐹 (𝑋)

𝜕𝜇𝑋

)
−
�̃�4

Pl
𝐹 (𝑋)2

(
𝑦�̄�𝜙𝜓 − 1

2
𝜇2𝜙2 + 𝜆

4!
𝜙4 + 3𝜇4

2𝜆

)
−
�̃�4

Pl
𝐹 (𝑋)2

𝑈 (𝑋)
]
, (14)

wherein we have recovered a canonical Einstein–Hilbert term for the gravitational action. However, all the couplings of the Brans–Dicke scalar 
arising from the modification of gravity now appear explicitly in the matter Lagrangian. Notice, in particular, that most of the kinetic energies of 
the fields are not canonically normalized due to these new couplings.

To canonically normalize the field 𝑋, we must solve the integral

�̃�(𝑋) ≡ �̃�Pl

𝑋

∫
𝑋0

d�̂�

√
𝑍(�̂�)
𝐹 (�̂�)

+ 3𝐹 ′(�̂�)2

2𝐹 (�̂�)2
, (15)

where 𝑋0 is taken to be zero for simplicity. For the rest of the fields, we rescale them according to their classical scaling dimension, i.e.,

𝜓 →

√
𝐹 (�̃�)3∕2

�̃�3
Pl

�̃� , 𝜙→

√
𝐹 (�̃�)
�̃�Pl

�̃�, (16)

where 𝐹 (�̃�) ≡ 𝐹 (𝑋). With this, the Lagrangian takes the following form:

 =−
�̃�2

Pl
2
𝑅+ 1

2
�̃�𝜇𝜈𝜕𝜇�̃�𝜕𝜈�̃� − 1

4
�̃�𝛼𝜇�̃�𝛽𝜈𝐹𝛼𝛽𝐹𝜇𝜈

1

4

+ 𝑖 ̄̃𝜓𝑒𝜇
𝑎
𝛾𝑎𝜕𝜇�̃� +

2
̄̃𝜓𝑒𝜇
𝑎
𝛾𝑎Ω̃𝜇�̃� − 𝑞 ̄̃𝜓𝑒𝜇

𝑎
𝛾𝑎𝐴𝜇�̃�
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+ 1
2
�̃�𝜇𝜈𝜕𝜇�̃�𝜕𝜈�̃�+ 1

2
𝐹 ′(�̃�)
𝐹 (�̃�)

�̃��̃�𝜇𝜈𝜕𝜇�̃�𝜕𝜈�̃�

+ 1
8

(
𝐹 ′(�̃�)
𝐹 (�̃�)

)2
�̃�2�̃�𝜇𝜈𝜕𝜇�̃�𝜕𝜈�̃� − 𝑦 ̄̃𝜓�̃��̃�

+
�̃�2

Pl

𝐹 (�̃�)
1
2
𝜇2�̃�2 − 𝜆

4!
�̃�4 − 3𝜇4

2𝜆
�̃�4

Pl

𝐹 (�̃�)2
−
�̃�4

Pl

𝐹 (�̃�)2
�̃� (�̃�), (17)

where �̃� (�̃�) ≡ 𝑈 (𝑋) and 𝐹 ′(�̃�) = 𝜕𝐹 (�̃�)∕𝜕�̃�. Thus, one of the main inconveniences of working in the Einstein frame is that it loses the simplicity 
of the Lagrangian defined in the Jordan frame. This is because the Weyl transformation and the redefinition of the fields introduces factors of 𝐹 (�̃�)
throughout the Lagrangian, which, on making a series expansion of 𝐹 (�̃�), will introduce infinite towers of operators that involve the SM fields and 
increasing powers of the scalar field �̃�.

At this point, we can already make an important observation: The couplings between the SM fields and the scalar field �̃� arise only through 
the scalar kinetic terms and terms with dimensionful parameters, i.e., those terms that are not invariant under Weyl transformations. Thus, for the 
Standard Model (illustrated already by the toy model described here), the modifications to the dynamics from the new scalar field �̃� are, in the 
Einstein frame, communicated by the Higgs sector, with the squared mass parameter 𝜇2 of the tree-level Higgs potential playing the dominant role 
at low momentum exchange. In this way, there are strong parallels between the Brans–Dicke-type scalar-tensor theories and Higgs-portal theories 
(see Ref. [36]).

Expanding the fields around their vacuum expectation values will give rise to kinetic and mass mixings between �̃� and �̃�. Thus, when two 
fermions interact via their Yukawa coupling and exchange a would-be Higgs boson (�̃�) in the 𝑡 channel, there are two contributions to the central 
potential: a short-range interaction due to the heavy mode (the Higgs boson) and a long-range interaction due to the light mode (the light, additional 
scalar boson), see Ref. [36]. Such long-range forces arising from the additional scalar fields of extended gravity sectors are often referred to as “fifth 
forces”. In this way, even if the original matter Lagrangian is only minimally coupled to gravity in the Jordan frame, there can be experimentally 
testable modifications to the force laws that depend on the dynamics of the new scalar field.

Given how these new interactions manifest in the Einstein frame, it is instructive to consider how the same modifications to the dynamics 
manifest in the Jordan frame, without making the Weyl transformation (at least at first). This is the focus of the next subsection.

2.2. Staying in the Jordan frame

We can determine the modifications to the dynamics without performing a Weyl transformation to the Einstein frame and work directly in the 
Jordan frame. In this frame, new interactions between the fields of the matter sector arise through the gravity sector itself, and we proceed by 
perturbing the metric around a flat spacetime [53–55] in the gravitational weak-field limit.

Expanding the metric up to leading order in perturbations corresponds to

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈, (18a)

𝑔𝜇𝜈 = 𝜂𝜇𝜈 − ℎ𝜇𝜈+⋯, (18b)

where 𝜂𝜇𝜈 is the usual flat spacetime metric and ℎ𝜇𝜈 is the perturbation in the metric, which, once quantized, corresponds to the graviton. The 
higher-order terms in the expansion of 𝑔𝜇𝜈 are necessary to satisfy 𝑔𝜇𝜈𝑔𝜈𝜌 = 𝛿

𝜌
𝜇 to all orders.

For the gravitational sector of the Brans–Dicke-like theory [Eq. (11)], with action

𝑆G = ∫ d4𝑥
√
−𝑔

[
−𝐹 (𝑋)

2
𝑅

]
, (19)

we obtain the following expansion up to second order in the fields:

G =𝐹 (𝑋)
2

(1
4
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝜕𝜇ℎ𝜕

𝜇ℎ+ 1
2
𝜕𝜇ℎ𝜇𝜈𝜕

𝜈ℎ− 1
2
𝜕𝜇ℎ𝜇𝜌𝜕𝜈ℎ

𝜈𝜌
)

− 𝐹
′(𝑋)
4

𝜕𝜇𝑋𝜕
𝜇ℎ+ 𝐹

′(𝑋)
2

𝜕𝜇𝑋𝜕𝜈ℎ
𝜇𝜈. (20)

It still remains to fix a gauge, and one choice is the harmonic gauge, which satisfies the following condition:

∇𝜇∇𝜇 = 𝜕𝜇𝜕𝜇 → 𝑔𝜇𝜈Γ𝜌
𝜇𝜈

= 0. (21)

This can be introduced into the Lagrangian through the term

GF =
𝑀2

Pl𝜉

4
𝑔𝜇𝜈Γ𝜇Γ𝜈 , (22)

where Γ𝜇 = 𝑔𝛼𝛽Γ𝜇
𝛼𝛽

and 𝜉 is a Lagrange multiplier that we will set to 𝜉 = 1. With this gauge choice, linearization of Einstein–Hilbert gravity leads to 
the familiar Fierz–Pauli Lagrangian [55], given by

𝑀2 (1 1 )

5

FP =
Pl
4 2

𝜕𝜌ℎ𝜇𝜈𝜕
𝜌ℎ𝜇𝜈 −

4
𝜕𝜇ℎ𝜕

𝜇ℎ . (23)
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When working with Brans–Dicke theories in the Jordan frame, it is convenient to use a different gauge: one that maps to the harmonic gauge 
when performing the Weyl transformation to the Einstein frame.2 This can be achieved by redefining the covariant derivative such that its action 
on a covector 𝑌𝜈 is as follows:

𝜇𝑌𝜈 = 𝜕𝜇𝑌𝜈−Γ𝜌𝜇𝜈𝑌𝜌−𝐶𝜌𝜇𝜈𝑌𝜌, (24)

where

𝐶𝜌
𝜇𝜈

= 𝐹 ′(𝑋)
2𝐹 (𝑋)

(𝛿𝜌
𝜇
𝜕𝜈𝑋 + 𝛿𝜌

𝜈
𝜕𝜇𝑋 − 𝑔𝜇𝜈𝜕𝜌𝑋). (25)

This modified covariant derivative will map to ∇𝜇 when going to the Einstein frame and satisfies the identity 𝜌(𝐹 (𝑋)𝑔𝜇𝜈) = 0 while preserving 
diffeomorphism invariance in the action, as shown in Ref. [37,56–58]. We can then define a scalar-harmonic gauge condition in terms of the new 
covariant derivative, namely

𝜇𝜇 = 𝜕𝜇𝜕𝜇 → 𝑔𝜇𝜈Γ𝜌
𝜇𝜈

− 𝐹
′(𝑋)
𝐹 (𝑋)

𝜕𝜌𝑋 = 0. (26)

This can be introduced into the Lagrangian as

GF =
𝐹 (𝑋)𝜉

4
𝑔𝛼𝛽

[
𝑔𝜇𝜈Γ𝛼

𝜇𝜈
− 𝐹

′(𝑋)
𝐹 (𝑋)

𝜕𝛼𝑋

][
𝑔𝜎𝜌Γ𝛽

𝜎𝜌
− 𝐹

′(𝑋)
𝐹 (𝑋)

𝜕𝛽𝑋

]
, (27)

where we have introduced the explicit coupling to the Lagrange multiplier 𝜉, which will be again set to 𝜉 = 1. Expanding this gauge fixing term 
around a Minkowski background and adding it to the linearized gravitational sector from Eq. (20), we obtain

 =𝐹 (𝑋)
4

(1
2
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝜕𝜇ℎ𝜕

𝜇ℎ

)
+𝐹

′(𝑋)2

4𝐹 (𝑋)
𝜕𝜇𝑋𝜕

𝜇𝑋 − 𝐹
′(𝑋)
4

𝜕𝜇𝑋𝜕
𝜇ℎ. (28)

Herein, we have recovered the usual kinetic energy terms of the graviton, as appear in the Fierz–Pauli Lagrangian (23), with the exception that 
non-minimal couplings to the field 𝑋 appear through the overall factor of 𝐹 (𝑋). Notice that the Lagrangian (28) contains two additional terms 
relative to the Fierz–Pauli Lagrangian (23). The first contributes to the kinetic energy of the field 𝑋, which will have to be canonically normalized, 
and the second is a kinetic interaction between 𝑋 and the trace of the graviton ℎ. As we will show later, it is this kinetic mixing that leads to 
additional interactions between the matter fields.

On including the matter sector from the original action in Eq. (9), we obtain the following Lagrangian after the linearization up to first order in 
1∕

√
𝐹 (𝑋) (noting that 𝑀2

Pl = 𝐹 (𝑣𝑋 )):

 =𝐹 (𝑋)
4

(1
2
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝜕𝜇ℎ𝜕

𝜇ℎ

)
− 𝐹

′(𝑋)
4

𝜕𝜇𝑋𝜕
𝜇ℎ

−1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 +
[
𝑍(𝑋)
2

+ 𝐹
′(𝑋)2

4𝐹 (𝑋)

]
𝜕𝜇𝑋𝜕

𝜇𝑋 + 1
2
𝜕𝜇𝜙𝜕

𝜇𝜙

+𝑖�̄�𝛾𝜇𝜕𝜇𝜓 − 𝑞�̄�𝛾𝜇𝐴𝜇𝜓 − 𝑦�̄�𝜙𝜓

+1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆
−𝑈 (𝑋) + 1

2
ℎ𝜇𝜈𝑇

𝜇𝜈

]
+⋯ , (29)

where graviton self-interactions have been ignored and 𝑇𝜇𝜈 is the energy-momentum tensor of the matter sector.

The kinetic energy of the 𝑋 field can be canonically normalized by defining

𝜒(𝑋) =

𝑋

∫
𝑋0

d�̂�

√
𝑍(�̂�) + 𝐹

′(�̂�)2

2𝐹 (�̂�)
, (30)

where 𝑋0 is again taken to be zero for simplicity. Doing so leads to the Lagrangian

G =
𝐹 (𝜒)
4

(1
2
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝜕𝜇ℎ𝜕

𝜇ℎ

)
−
𝐹 ′(𝜒)
4

𝜕𝜇𝜒𝜕
𝜇ℎ

−1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 + 1
2
𝜕𝜇𝜒𝜕

𝜇𝜒 + 1
2
𝜕𝜇𝜙𝜕

𝜇𝜙

+𝑖�̄�𝛾𝜇𝜕𝜇𝜓 − 𝑞�̄�𝛾𝜇𝐴𝜇𝜓 − 𝑦�̄�𝜙𝜓

+1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆
− �̂� (𝜒) + 1

2
ℎ𝜇𝜈𝑇

𝜇𝜈

]
+⋯ , (31)

where 𝐹 (𝜒) ≡ 𝐹 (𝑋), 𝐹 ′(𝜒) = 𝜕𝐹 (𝜒)∕𝜕𝜒 and �̂� (𝜒) ≡ 𝑈 (𝑋). Now, we have only the graviton left to canonically normalize, since it is still non-

minimally coupled to the function 𝐹 (𝜒). However, as noted previously, the potential �̂� (𝜒) must lead to a non-vanishing vacuum expectation value 
for 𝜒 at late times so that the theory mimics Einstein gravity.3 With this in mind, we shift 𝜒 → 𝜒 + 𝑣𝜒 to obtain

2 This argument can also be applied when gauge fixing other fields. See Appendix A for a demonstration of working with the U(1) gauge field.
6

3 We might expect 𝑣𝜒 to be evolving on cosmological timescales, but these timescales are long compared to the those relevant for elementary particle interactions.
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Fig. 1. Series of diagrams contributing to the fifth force, and arising from the kinetic mixing between the graviton ℎ𝜇𝜈 and the scalar field 𝜒 . The ellipsis represents 
the series summing over all insertions of the kinetic mixing.

 =
𝐹 (𝑣𝜒 )

4

(1
2
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝜕𝜇ℎ𝜕

𝜇ℎ

)
−
𝐹 ′(𝑣𝜒 )

4
𝜕𝜇𝜒𝜕

𝜇ℎ

−1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 + 1
2
𝜕𝜇𝜒𝜕

𝜇𝜒 + 1
2
𝜕𝜇𝜙𝜕

𝜇𝜙

+𝑖�̄�𝛾𝜇𝜕𝜇𝜓 − 𝑞�̄�𝛾𝜇𝐴𝜇𝜓 − 𝑦�̄�𝜙𝜓

+1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆
− �̂� (𝜒 + 𝑣𝜒 ) +

1
2
ℎ𝜇𝜈𝑇

𝜇𝜈 +⋯ , (32)

where higher-order terms in the interactions between 𝜒 and ℎ𝜇𝜈 have been omitted in the ellipsis.

The modification of gravity leads to a kinetic mixing between the trace of the graviton ℎ and the 𝜒 field; the last term in the first line of Eq. (32). 
The example of the fifth-force exchange described in the previous section then manifests in the Jordan frame through this mixing, as shown in Fig. 1

(see Ref. [37]).

We can remove this mixing by the following transformation of the graviton and 𝜒 field4:

ℎ𝜇𝜈 →
2
𝑀Pl

ℎ𝜇𝜈 +
1
𝑀Pl

𝐹 ′(𝑣𝜒 )√
𝑀2

Pl + 𝐹
′(𝑣𝜒 )2

𝜎𝜂𝜇𝜈, (33a)

𝜒 →− 1√
1 +

(
𝐹 ′(𝑣𝜒 )
𝑀Pl

)2
𝜎, (33b)

where 𝐹 (𝑣𝜒 ) =𝑀2
Pl has been substituted and 𝜎 corresponds to the canonically normalized scalar field. This amounts to a perturbative implementation 

of the Weyl transformation, as is clear when one considers the resulting Lagrangian

 =1
4
𝜕𝜇ℎ𝜕

𝜇ℎ− 1
2
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝐹𝜇𝜈𝐹

𝜇𝜈

+𝑖�̄�𝛾𝜇𝜕𝜇𝜓 − 𝑞�̄�𝛾𝜇𝐴𝜇𝜓 − 𝑦�̄�𝜙𝜓 − �̂� (𝜒(𝜎) + 𝑣𝜒 )

+1
2
𝜕𝜇𝜎𝜕

𝜇𝜎 + 1
2
𝜕𝜇𝜙𝜕

𝜇𝜙+ 1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆

+ 1
𝑀Pl

ℎ𝜇𝜈𝑇
𝜇𝜈 + 1

2𝑀Pl

𝐹 ′(𝑣𝜒 )√
𝑀2

Pl + 𝐹
′(𝑣𝜒 )2

𝜎𝑇 𝜇
𝜇
+⋯ , (34)

where 𝑇 𝜇𝜇 is the trace of the matter energy-momentum tensor. The fifth force arising from the final term in Eq. (34) will depend on the trace of the 
energy-momentum tensor of the interacting particles, leading to at most derivative interactions with 𝜎 for scale-invariant sectors [59] (cf. Ref. [60], 
wherein the energy-momentum tensors for the different sectors of the SM are given, including ghost fields).

We have seen that working in the Jordan frame requires us to linearize the gravitational sector and to diagonalize the fields, while, in the 
Einstein frame, we had to perform the Weyl transformation and various rescalings of the matter fields, losing the simplicity of the potentials in the 
process. Whichever approach we take, the overall message of this section is not a discussion on which frame is best for calculations, as it is a matter 
of preference, but the fact that deriving Feynman rules for scalar-tensor theories is a tedious and time-consuming task, even for the simplest models.

This begs for a tool that helps us automate this process. In the rest of this paper, we will introduce the Mathematica package FeynMG within 
the FeynRules environment, which can efficiently perform manipulations on scalar-tensor theories of the types described in this section.

3. Implementation

FeynMG implements calculations of the type described in Section 2. The only necessary input is a model file compatible with FeynRules
containing the matter Lagrangian and the description of all the existing fields and parameters. The user can then supplement this Lagrangian with 
their chosen scalar-tensor theory.

Scalar-tensor theories will generally give rise to both mass and kinetic mixings between fields. While FeynRules can deal with mass mixing if 
pre-defined in the model file, it cannot deal with kinetic mixing or cases where the form of the mass mixing is not known a priori. This is because

FeynRules will ignore terms of quadratic order and will assume that all fields are canonically normalized. The scope of FeynMG is to linearize 
gravity and perform the necessary redefinitions to the fields such that it can be consistently used by FeynRules and all compatible packages.

We aim to make the code as easy to use as possible without losing the generality in the model files and desired gravitational actions. For example, 
for the input Lagrangian, it is possible to use an action defined in flat spacetime (i.e., reuse a FeynRules model file without modifying it). This is 

4 This transformation can be calculated in multiple ways. In Ref. [37], this was achieved by solving the system of equations that left the action diagonalized. 
7

Alternatively, in Appendix C, we show how to achieve this directly by transforming the kinetic matrix.
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possible thanks to the function InsertCurv, which for every pair of contracted indices will insert a metric 𝑔𝜇𝜈 or vierbein 𝑒𝜇𝑎, as appropriate, and 
promote partial derivatives to covariant derivatives.

Once all the minimal curvature dependencies are inserted into the Lagrangian, we need to append a gravitational action, wherein, e.g., the Ricci 
scalar can be specified using RScalar (see Appendix D.1 for the list of defined curvature objects). As is the case for FeynRules, it is necessary 
to identify fields and parameters. These attributes can be assigned to variables by using the functions AddScalar[] and AddParameter[], 
respectively, allowing complete freedom when creating the gravitational sector, and any number of new scalar degrees of freedom and parameters 
to be defined. In principle, the package should be able to deal with any gravitational sector, but it becomes more complicated the further away 
we go beyond Brans–Dicke theories. The effective Planck mass can be extracted at any point in the calculation by using the function GiveMpl. 
Moreover, using InsertMpl will calculate the effective 𝑀Pl from the action and substitute it into the expression.

As shown previously, in the particular case of Brans–Dicke gravity, we can perform a Weyl transformation such that the gravitational sector is of 
Einstein–Hilbert form and the matter action is instead dressed with additional scalar interactions. This is implemented in FeynMG by the function 
ToEinsteinFrame. However, more general scalar-tensor theories may not have an Einstein frame, forcing us to stay in the Jordan frame and 
proceed by linearizing gravity. The latter is implemented by the function LinearizeGravity, where the gravitational sector will be expanded up 
to second order, generating the kinetic energy for the graviton, and the matter sector will be expanded up to linear order in the interactions with 
the metric perturbation ℎ𝜇𝜈 . Moreover, the Jacobian 

√
−𝑔 will be automatically inserted, unless the option {Jacobian->0ff} is provided.

As described in the previous section, in the case of Brans–Dicke-like theories, it can be convenient to use the scalar-harmonic gauge from 
Eq. (27). By specifying the option {SHGauge->0n}, LinearizeGravity will determine the scalar-harmonic gauge fixing term and append it to 
the Lagrangian, depending on the specific coupling function 𝐹 (𝑋).5 This gauge choice will likely leave CMod terms in the linearized Lagrangian, 
corresponding to the modification of the Christoffel symbols

𝐶𝜌
𝜇𝜈

= 𝐹 ′(𝑋)
2𝐹 (𝑋)

(𝛿𝜌
𝜇
𝜕𝜈𝑋 + 𝛿𝜌

𝜈
𝜕𝜇𝑋 − 𝑔𝜇𝜈𝜕𝜌𝑋). (35)

Notice that the 𝐹
′(𝑋)

2𝐹 (𝑋) prefactor will have to be expanded in terms of 𝑋. Once this expansion is truncated at some order in 𝑋, we can no longer make 
a non-linear redefinition of the 𝑋 field (such as 𝑋→𝑋2), since the ignored higher-order terms will give contributions at lower orders. To avoid this 
problem, CMod won’t be expanded until all the kinetic energies of the scalar fields have been canonicalized.

When dealing with tensor algebra, we are used to working with Einstein’s index notation, for which the following holds: 𝐴𝜇𝐴
𝜇 =𝐴𝜌𝐴𝜌. However,

Mathematica will treat both terms 𝐴𝜇𝐴𝜇 and 𝐴𝜌𝐴𝜌 as distinct, since their indices are not represented by the same variable, leading to an overly 
complicated and long expression filled with repeated terms. The function IndexSimplify deals with this problem by replacing indices term by 
term from a user-supplied set of indices, so that the expression can be simplified using Mathematica’s native functionality.

From here, which frame we use is unimportant, since the package has all the tools to leave the Lagrangian in a form that is readable by

FeynRules. If we stay in the Jordan frame (as may be necessary for theories that do not have an Einstein frame), one first needs to normalize the 
fields canonically. For scalar fields, the canonical normalization is implemented by the function CanonScalar, which will find and normalize the 
lowest-order derivative term of every field. In the case where the lowest order is already very complicated, one can use the in-built Mathematica

function Series to perform a series expansion.

Similarly, we also need to normalize the graviton kinetic energy canonically. For that, depending upon the gravitational action, we might need 
to expand the fields around their vacuum expectation values, using VevExpand, which first calculates all the possible values for the vevs, and 
then shifts all the fields around the user’s chosen branch of solutions. Once the graviton kinetic energy has a constant prefactor, we can then use 
CanonGravity, leaving all the fields canonically normalized with derivative interactions. As mentioned before, it will be at this point where all 
the CMod terms arising from the modified covariant derivatives will be expanded to make manifest their dependence on the additional scalar degree 
of freedom arising from the extended gravitational sector.

The only thing left to do is to deal with any mass or kinetic mixings that have arisen between any of the metric and scalar degrees of freedom. 
As mentioned previously, FeynRules assumes that all fields are canonical and only works with terms higher than quadratic order, so any mixing 
terms in the Lagrangian would be ignored in the outcome. To deal with this, MassDiagMG or KineticDiagMG diagonalizes the scalar field masses 
or kinetic energies, respectively. When proceeding in the Jordan frame, as we saw in the last section, the dominant modifications to the dynamics 
arise through kinetic mixing between the additional scalar field and the trace of the graviton (cf., e.g., Fig. 1). The function GravKinMixing will 
calculate and substitute into the Lagrangian the field redefinitions that diagonalizes this kinetic mixing, i.e., the equivalent of Eq. (33). With this, 
the Lagrangian is in a form ready to be used by FeynRules.

Linearizing gravity and manipulating the Lagrangian into a form amenable to FeynRules can take significant computing time for extensive or 
complicated models. So that this process does not need to be repeated each time, the user can use the function OutputModelMG to create a new 
model file from the final form of the Lagrangian produced by FeynMG, which includes all the information about the redefined fields, the parameters 
of the extended model and the effective Lagrangian itself. This model file can then be used directly in FeynRules without the need to rerun the 
manipulations implemented by FeynMG.

To summarize, the package FeynMG provides a set of tools to help the user to upgrade the original FeynRules model file to one that includes 
the degrees of freedom of a canonical or extended gravitational sector.

4. Usage

In this section, we provide the instructions for loading FeynMG and use it to perform the manipulations described in the preceding sections. We 
will work in the Jordan Frame, given that the same tools can be used for the Einstein frame. In Appendix D, we provide a summary of the tools 
provided by FeynMG.
8

5 Similarly, it is possible to update the rest of the covariant derivatives in the Lagrangian to their modified forms by specifying the option {UpdDevs->0n}.
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4.1. Installation

FeynMG has dependencies on FeynRules, so both packages need to be loaded into Mathematica to make use of FeynMG. This can be done by 
running

In[1]:= << FeynRules`

<< FeynMG`

within the appropriate working directory (set via SetDirectory[]).

The next step is to load a model file that is compatible with FeynRules using the FeynRules function LoadModel[] (for an extensive 
description of how to build these files, see Ref. [1]). As mentioned previously, this model file does not need to include gravity in the defined fields 
or Lagrangians; these can be appended through FeynMG, as described earlier in Section 3.

4.2. Defining a gravitational action and transforming to the Einstein frame

Throughout this section, we will work with the same Lagrangian from Eq. (9), whose matter sector is defined via

LQED =− 1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 + 1
2
𝜕𝜇𝜙𝜕

𝜇𝜙− 𝛼𝜕𝜇𝐴𝜇𝜕𝜈𝐴𝜈
+ 𝑖�̄�𝛾𝜇𝜕𝜇𝜓 − 𝑞�̄�𝛾𝜇𝐴𝜇𝜓 − 𝑦�̄�𝜙𝜓

+ 1
2
𝜇2𝜙2 − 𝜆

4!
𝜙4 − 3𝜇4

2𝜆
. (36)

Note that the last term of the first line corresponds to the Lorentz covariant gauge-fixing term for the U(1) gauge field.

The first thing to do is to introduce the minimal gravitational couplings of this matter Lagrangian. This amounts to inserting metrics or vierbeins, 
as appropriate, for each pair of contracted indices, and promoting all partial derivatives to covariant ones. To implement this in FeynMG, we run

In[2]:= LCurv=InsertCurv[LQED]

Out[2]= -
3 𝜇4

2 lam
+
𝜇2 phi2

2
-

lam phi4

24
-phi

_

psii1,i2psii1,i2

+
1

2
𝜕a2[phi]𝜕mu[phi]gUp[a2,mu]-

1

4
DGravnu[Aa3]D

Grav
a4[Amu]

gUp[a3,mu]gUp[a4,nu]+ ..... -e Amu
_

psii1,i2.psij1,i2𝛾i1,j1
v1

VUp[mu,v1]+i
_

psii1,i2.𝜕mu[psij1,i2] 𝛾i1,j1
v2 VUp[mu,v2]

+
1

8
i 𝜕mu[VUp[d1,c1]]

_

psii1,i2.psij1,i2 VDown[c2,c1]

VUp[mu,v3] 𝛾c2.𝛾d1.𝛾v3i1,j1 + .....

Herein, gUp[a,b] and gDown[a,b] are upper- and lower-indexed metrics, respectively, VUp[a,b] and VDown[a,b] are upper- and lower-

indexed vierbeins, respectively, and DGrava[] is the gravitational covariant derivative. Notice that we have not included the 
√
−𝑔 factor in the 

Lagrangian; this is because, for simplicity, FeynMG always assumes this term to be present. Additionally, in this toy model, we have ignored the 
ghost fields as they decouple in QED; had we included them, they would have been upgraded as shown in Appendix B.

Since the expressions can be long, we will show only the main sections of the output that motivate the next step in the calculation and represent 
the rest of the terms in ellipsis.

For this example, we will introduce a Brans–Dicke gravitational sector of the form of Eq. (11), such that

𝑆 = ∫ d4𝑥
√
−𝑔

[
−
𝜒

2
𝑅+ 𝜔

2𝜒
𝑔𝜇𝜈𝜕𝜇𝜒𝜕𝜈𝜒 + 1

2
𝜇2
𝜒
𝜒 −

𝜆𝜒

4!
𝜒2 −

3𝜇4
𝜒

2𝜆𝜒
+ LCurv

]
, (37)

where the 𝜒 field should not be confused with the one defined in Eq. (30). Before defining the gravitational part of the Lagrangian within FeynMG, 
we need to give appropriate attributes to the additional field 𝜒 and the additional parameters ({𝜔, 𝜇𝜒 , 𝜆𝜒 }). In principle, these can be directly added 
by updating the model file itself (which should be done before loading it into FeynRules). Alternatively, the FeynMG functions AddScalar[] and 
AddParameter[],6 allow the new scalar fields and parameters to be defined after the model file has been loaded into FeynRules. For the specific 
case of Eq. (37), we need to execute the following:

In[3]:= AddScalar[chi];

AddParameter[muC];

AddParameter[lamC];

AddParameter[w];

The full Lagrangian can then be defined via

In[4]:= LJordan= LCurv + chi RScalar/2 + (w/(2chi))

gUp[Index[Lorentz,mu],Index[Lorentz,nu]]
9

6 For more information on these functions, see Appendix D.8.
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del[chi,Index[Lorentz,mu]] del[chi,Index[Lorentz,nu]]

+ (muC^2chi)/2 - (lamC(chi^2))/(4!)

- (3muC^4)/(2lamC);

In the case of Brans–Dicke-type scalar-tensor theories, it may be convenient to transform to the Einstein frame (see Section 2.1). This is achieved 
in FeynMG by executing

In[5]:= LEinstein=ToEinsteinFrame[LJordan]

Out[5]= -
1

24
lamC M4

pl
+
M4
pl
muC2

2chi
+ ..... -

1

2
M2
pl
RSc -

M4
pl
phi

_

psii1,i2psii1,i2

chi2

+
3 M2

pl
𝜕a1[chi]𝜕mu[chi]gUp[a1,mu]

4chi2
+
M2
pl
w 𝜕a1[chi]𝜕mu[chi]gUp[a1,mu]

2chi2

+ ..... - 𝛼 DGrava3[Amu]D
Grav

a4[Anu]gUp[a3,mu]gUp[a4,nu]-
e M3

pl
Amu

chi3/2

_

psii1,i2.psij1,i2𝛾i1,j1
v1 VUp[mu,v1]+

i M3
pl

chi3/2

_

psii1,i2.𝜕mu[psij1,i2]

𝛾i1,j1
v2 VUp[mu,v2] + ..... +

iM3pl

16chi5/2
𝜕d2[chi]

_

psii1,i2.psij1,i2

VDown[c2,mu]VUp[d3,d2]VUp[mu,v3] 𝛾v3.𝛾d3.𝛾c2i1,j1

The output agrees with the result from Eq. (14), including the last term, which comes from the fermion spin-connection [Eq. (13)]. As mentioned 
before, the Jacobian factor 

√
−𝑔 is assumed in the calculation (although it can be omitted by specifying the option {Jacobian->Off} (see 

Appendix D.2 for further details). The gravitational sector is now of canonical Einstein–Hilbert form, and we can take the flat spacetime (Minkowski) 
limit by calling

In[6]:= GravityOff[LEinstein]

Out[6]= -
1

24
lamC M4

pl
+
M4
pl
muC2

2chi
+ ..... +

M2
pl
w 𝜕mu[chi]

2

2chi2
+
3 M2

pl
𝜕mu[chi]

2

4chi2

+
M2
pl
𝜕mu[phi]

2

2chi
+
1

2
𝜕a3[Aa4]𝜕a4[Aa3] - .....

wherein the couplings of the additional scalar field to the matter fields are manifest. The remaining fields are, however, not canonically normalized, 
and further manipulations are needed in order to pass this Lagrangian back to FeynRules. These are the focus of the next subsection.

4.3. Brans–Dicke theory for FeynRules in the Jordan frame

The calculation in the Jordan frame repeats the same steps as in the last subsection up to and including In[4]: We first need to load a model 
file. We then insert the curvature dependence using InsertCurv[] with the Lagrangian as the argument and provide a gravitational sector for the 
theory. The next step is to expand the metric around a flat spacetime background. This can be done by using

In[7]:= E1=LinearizeGravity[LJordan,{SHGauge->On,UpdDevs->On}]

Out[7]= -
chi2 lamC

24
+ ..... +

1

4
𝜕𝜆1[chi]𝜕b1[hb1,𝜆1]-

1

8
chi 𝜕mu1[hb1,𝜆1]

2

-
1

8
chi 𝜕𝜆1[hb1,𝜆2]

2+ .....

where LJordan was defined previously in In[4], and the provided options specify that the scalar-harmonic gauge from Eq. (27) is used and 
all covariant derivatives are updated to the modified form from Eq. (24). As mentioned previously, the Jacobian 

√
−𝑔 has been included when 

linearizing gravity by default, but it can be omitted using {Jacobian->Off} (see Appendix D.3).

As we can see in the second line, many of the terms are repeated, since Mathematica does not use Einstein’s index notation, for which two 
repeated indices are summed over. As a result, various terms in the output will be equivalent, differing only in their index labels (e.g., 𝐴𝜇𝐴𝜇 =𝐴𝜌𝐴𝜌). 
In order to force Mathematica to combine these terms, we have to use the same set of indices for all the terms. This problem is solved by the 
function IndexSimplify:

In[8]:= E2=IndexSimplify[E1,{mu,nu,rho}]

Out[8]= ..... -𝛼 AmuAnu CMod[chi]
{1}mu

rho,rho CMod[chi]
{1}nu

MG1,MG1 +
𝜕mu[chi]

2

4chi

+
w 𝜕mu[chi]

2

2chi
+
1

2
𝜕mu[phi]

2 -
1

2
𝜕nu[Amu]

2 + ..... +
1

8
chi 𝜕rho[hmu,nu]

2

+ ..... -
1

4
𝜕mu[chi] 𝜕mu[h]+ ..... -

1

16
chi 𝜕mu[h]

2+ .....
10

The optional argument {mu,nu,rho} allows the user to choose a set of 𝑛 indices from which the first 𝑛 replacements will be taken.
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The output of E2 contains significantly fewer terms than E1. Moreover, E2 already contains the expected graviton kinetic energy and its kinetic 
mixing with the scalar field chi, as in Eq. (29), thanks to the specification of the option {SHGauge->0n} in LinearizeGravity that implements 
the scalar-harmonic gauge and associated covariant derivatives from Eq. (35), which are convenient for the case of pure Brans–Dicke-type theories. 
This choice has led to the CMod[] terms in the Lagrangian, which need to be expanded in terms of the chi field. However, as described earlier, the 
truncation to first order in chi does not commute with non-linear field redefinitions, so the CMod[] term will only be expanded once all the fields 
have their canonical kinetic energy.

We can check that the kinetic energies appearing in E2 are not canonically normalized by running

In[9]:= CheckCanonScalar[E2]

Out[9]=
(1+2w) 𝜕mu[chi]

2

4 chi
+

1

2
𝜕mu[phi]

2

There are one or more non-canonical kinetic energies.

Use CanonScalar.

As the output indicates, we can execute

In[10]:= E3=CanonScalar[E2]

Out[10]= ..... +
chi4 lamC

96(1+2w)2
+
chi2 muC2

4(1+2w)2
+.....+

chi2 muC2w

2(1+2w)2
+.....+

1

2
𝜕mu[chi]

2

-
4𝛼AmuAnu 𝜕mu[chi]𝜕nu[chi]

v2
chi

+
1

2
𝜕mu[phi]

2 + ..... +
chi2 𝜕rho[hmu,nu]

2

16(1+2w)

+.....-
chi 𝜕mu[chi] 𝜕mu[h]

4(1+2w)
+ .....-

chi2 𝜕mu[h]
2

32(1+2w)2
-
chi2w 𝜕mu[h]

2

16(1+2w)2
+ .....

The kinetic energies of the scalar fields are now canonically normalized, leading to the expansion of every CMod[] (where present). This expansion 
is performed in terms of the scalar field chi.

At this stage, the kinetic energy of the graviton is composed of multiple terms. These could be simplified by means of Mathematica’s 
FullSimplify command, but this will often prove time-consuming, and it is not necessary, except for aesthetic reasons. From here, the only 
thing left to do is to canonically normalize the graviton kinetic energy. To this end, we need to shift the fields around their vevs, so the graviton 
kinetic energy acquires a constant prefactor. This can be achieved by running

In[11]:= E4=VevExpand[E3]

{
1==

{
vchi->vchi,vphi->vphi

}
,2==

{
vchi->-

2
√
3
√
muC2 +2muC2w√
lamC

,vphi->0
}
,

....., 7==
{
vchi->-

2
√
3
√
muC2 +2muC2w√
lamC

,vphi->

√
6 𝜇√
lam

}
,.....

}

Out[12]= -𝜇2phi2 -

√
lam 𝜇 phi3√

6
+ ..... -

chi3
√
lamC muC

4
√
3(1+2w)3/2

+.....

+
1

2
𝜕mu[chi]

2 -
𝛼 lamC AmuAnu 𝜕mu[chi]𝜕nu[chi]

3 muC2(1+2w)
+
1

2
𝜕mu[phi]

2

+ ..... +
3 muC2𝜕rho[hmu,nu]

2

4lamC
+ ..... +

√
3 muC 𝜕mu[chi]𝜕mu[h]

2
√
lamC

√
1+2w

+ .....

Note that this function shows all the extrema of the potential. Since there may be multiple minima, the function allows the user to choose which 
vev (or set of vevs) will be used by a dialogue window prompt (in this case, we choose option 7). Notice that the vchi dependence already present 
from the expansion of the CMod functions has also been replaced by the user-selected vev in E3.

Once we have a constant prefactor to the graviton kinetic energy, we can canonically normalize it using

In[13]:= E5=CanonGrav[E4]

Out[13]= -𝜇2phi2 -

√
lam 𝜇 phi3√

6
+ ..... -

chi3
√
lamC muC

4
√
3(1+2w)3/2

+.....+
1

2
𝜕mu[chi]

2

-
𝛼 lamC AmuAnu 𝜕mu[chi]𝜕nu[chi]

3 muC2(1+2w)
+
1

2
𝜕mu[phi]

2 +.....+
1

2
𝜕rho[hmu,nu]

2

+ ..... -
𝜕mu[chi]𝜕mu[h]√

2
√
1+2w

+ ..... -
1

4
𝜕mu[h]

2 + .....

We have recovered the usual canonically normalized Fierz–Pauli kinetic energy terms from Eq. (23). We also see the expected kinetic mixing 
11

between the scalar field and the graviton, which can be identified by executing
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In[14]:= CheckGravityMixing[E5]

Out[14]= -
𝜕mu[chi]𝜕mu[h]√

2+4w

There are kinetic mixing terms for gravity.

Use GravKinMixing.

The final manipulation is to diagonalize this kinetic mixing. This can be achieved by running (see Appendix C for a detailed description of how 
this operation is done)

In[15]:= E6=GravKinMixing[E5,{OutSimplify->On}]

Out[15]= -𝜇2phi2 -

√
lam 𝜇 phi3√

6
+ ..... +

1

2
𝜕mu[chi]

2 + .....

+
1

2
𝜕mu[phi]

2 -
chi

√
lamC 𝜕mu[phi]

2

2
√
3muC

√
3+2w

+.....+
1

2
𝜕rho[hmu,nu]

2

+ ..... -
1

4
𝜕mu[h]

2 +..... -

√
6 𝜇

_

psii1,i2.psii1,i2√
lam

+.....+
2
√
2chi

√
lamC 𝜇

_

psii1,i2.psii1,i2√
lam muC

√
3+2w

- .....

-
i
√
3chi

√
lamC

_

psii1,i2.𝜕mu[psij1,i2] 𝛾mu
i1,j1

2 muC
√
3+2w

+ .....

The argument {OutSimplify->On} applies FullSimplify[] up to quadratic terms, so that the kinetic energy terms appear explicitly canoni-

calized. Note that this simplification is not a prerequisite to further processing of the output with FeynRules.

FeynMG can extract the effective 𝑀Pl at any point in the calculations (before or after linearizing gravity or canonically normalizing the kinetic 
energies). For example, for the diagonalized Lagrangian from Out[15] (corresponding to E6), we obtain

In[16]:= GiveMpl[E6]

Out[16]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is Sqrt[6] GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.√
6muC√
lamC

The effective value for the Planck mass in the inputted Lagrangian is automatically calculated and printed using the defined values of the loaded 
parameters. In this case, since both parameters {muC,lamC} were defined using AddParameter[], their values were set by default to 1.7 Moreover, 
we can substitute the calculated value for 𝑀Pl into the Lagrangian by calling

In[17]:= InsertMpl[E6]

Out[17]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is Sqrt[6] GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.

-𝜇2phi2 -

√
lam 𝜇 phi3√

6
+ ..... +

1

2
𝜕mu[chi]

2 + .....

+
1

2
𝜕mu[phi]

2 -
chi 𝜕mu[phi]

2√
2 Mpl

√
3+2w

+.....+
1

2
𝜕rho[hmu,nu]

2

+ ..... -
1

4
𝜕mu[h]

2 + ..... -

√
6 𝜇

_

psii1,i2.psii1,i2√
lam

+ ..... +
4
√
3chi𝜇

_

psii1,i2.psii1,i2√
lam Mpl

√
3+2w

- ..... +i
_

psii1,i2.𝜕mu[psij1,i2] 𝛾mui1,j1

-
3ichi

_

psii1,i2.𝜕mu[psij1,i2] 𝛾mu
i1,j1√

2 Mpl
√
3+2w

- .....
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7 When using AddParameter[], the value of the parameter can be specified using the option Value→X. For more information, see Appendix D.8.
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This function also automatically adds 𝑀Pl to the list of defined parameters, with its corresponding value (
√
6 GeV for this specific case) and

InteractionOrder→-1. Notice that a Yukawa coupling between the fermion fields and the chi field has appeared in the fourth line, as expected. 
However, a closer look at this term shows that the coupling constant is four times larger than the result 𝑚𝜓∕

√
2𝑀2

Pl(2 + 3𝑤) from Refs. [36,37]. 
This is because of the last term in the expression, which will also contribute to the tree-level interactions between the fermion and the scalar field, 
leading then to the same results as in Refs. [36,37].

At this point, all the interactions up to second order in the fields have been canonically normalized and diagonalized, so there are no kinetic 
or mass mixings. Therefore, the updated Lagrangian for the matter fields with the additional scalar field couplings is now in a form that can be 
processed further by FeynRules and compatible packages for phenomenological studies.

4.4. Outputting a model file

FeynMG allows the user to create a new model file with the Lagrangian of their choice, in which all the introduced particles (such as the graviton 
and additional scalar field) and new parameters (such as 𝑀Pl) will be incorporated and properly defined.8 This can be done by running

In[18]:= OutputModelMG[OldModelFile,NewModelFile,Lagrangian];

where OldModelFile is the name of the original FeynRules model file that the user loaded, NewModelFile is the chosen name of the new 
model file, and Lagrangian is the final Lagrangian, as prepared with FeynMG.

The upgraded model file can be read directly into FeynRules without needing to load or rerun FeynMG.

5. Conclusions

Modifying the gravitational sector of a Lagrangian can lead to new interactions between matter fields that need not be Planck-suppressed, 
but making these interactions manifest by hand on a model-by-model basis is tedious and time-consuming. In this paper, we have presented the

Mathematica package FeynMG, which can manipulate scalar-tensor theories of gravity into a format that can be processed by FeynRules.

Even for the simplest toy models, it is necessary to perform transformations of the metric or linearize the gravitational action, redefine multiple 
fields, expand around the vacuum expectation values of the scalar fields and diagonalize mass and/or kinetic mixings, in particular those between 
additional scalar fields and the trace of the graviton. FeynMG provides a set of functions that allow the user to recycle existing FeynRules model 
files that do not contain gravity and to implement these various steps.

Once the user arrives at a canonically normalized Lagrangian, in which all kinetic and mass mixings have been diagonalized, it can be further 
processed by FeynRules and compatible packages to allow phenomenological studies of scalar-tensor theories of gravity. Moreover, instead of 
deriving the same Lagrangian every time one uses Mathematica, FeynMG allows the output of a new model file with all the updated fields, 
parameters and chosen Lagrangian. A summary list of functions can be found in Appendix D.

In this paper, we have described the implementation of a minimal example in FeynMG: Brans–Dicke theory coupled to QED plus a real scalar 
prototype of the Standard Model Higgs. The inbuilt functions, however, may be used to manipulate more complicated gravitational sectors, such as 
multi-field scalar-tensor theories or Horndeski theories, and additional functionality is being developed for future release.
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Appendix A. Modified covariant derivative and U(1) Feynman gauge

In Section 2.2, we described an update to the covariant derivative in the Jordan frame, based on Ref. [37,56–58], that proves convenient for 
Brans–Dicke-type theories with only a non-minimal coupling to the Ricci scalar. This modified covariant derivative 𝜇 reduces to the usual ∇𝜇
when Weyl transformed to the Einstein frame. This modified covariant derivative is given by

𝜇𝑌𝜈 =∇𝜇𝑌𝜈−𝐶𝜌𝜇𝜈𝑌𝜌, (A.1)
13

8 New particles and parameters created using AddScalar[] and AddParameter[] will also be added, see Appendix D.8 for more information.

https://gitlab.com/feynmg/FeynMG
http://feynrules.irmp.ucl.ac.be
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where

𝐶𝜌
𝜇𝜈

= 1
2𝑋

(𝛿𝜌
𝜇
𝜕𝜈𝑋 + 𝛿𝜌

𝜈
𝜕𝜇𝑋 − 𝑔𝜇𝜈𝜕𝜌𝑋), (A.2)

and it allows us to define the so-called scalar-harmonic gauge, which maps to the usual harmonic gauge in the Einstein frame.

We can proceed similarly with other gauge fixing terms, such as the one for the U(1) gauge field. For instance, defined in the Einstein frame 
where gravity is canonical, the Feynman gauge fixing action takes the following form:

𝑆 ⊃ ∫ 𝑑4𝑥
√
−�̃� �̃�𝜇𝜈 �̃�𝜎𝜌∇̃𝜇𝐴𝜈∇̃𝜎𝐴𝜌, (A.3)

where all the tilded objects are built with the Einstein frame metric �̃�𝜇𝜈 . On transforming to the Jordan frame, we would find that the gauge fixing 
term has to be written as

𝑆 ⊃ ∫ 𝑑4𝑥
√
−𝑔 𝑔𝜇𝜈𝑔𝜎𝜌𝜇𝐴𝜈𝜎𝐴𝜌, (A.4)

where the covariant derivatives have transformed to their modified forms from (A.1), which will introduce new couplings between the gauge field 
𝐴𝜇 and the scalar field that appears in the Weyl rescaling of the metric. These new couplings are encoded in the 𝐶𝜌𝜇𝜈 terms. In what follows, we will 
show that these new interactions are those that ensure there are no interactions between the scalar field and the gauge field at dimension four, as 
we would expect from general arguments based on Weyl invariance.

Let us first define the object Δ𝜆𝜇𝜈 via

1
2
𝑔𝜌𝜆Δ𝜆𝜇𝜈 = Γ𝜌

𝜇𝜈
+𝐶𝜌

𝜇𝜈
, (A.5)

where we have taken the common factor of the upper-indexed metric so the result can be generalized to any order of its expansion in ℎ𝜇𝜈 . For the 
case of Brans–Dicke theory with a coupling function 𝐹 (𝑋), we find

Δ𝜆𝜇𝜈 = 𝜕𝜇𝑔𝜆𝜈 + 𝜕𝜈𝑔𝜇𝜆 − 𝜕𝜆𝑔𝜇𝜈 +
𝐹 ′(𝑋)
𝐹 (𝑋)

(𝑔𝜆𝜈𝜕𝜇𝑋 + 𝑔𝜇𝜆𝜕𝜈𝑋 − 𝑔𝜇𝜈𝜕𝜆𝑋) (A.6)

reduces to

Δ𝜆𝜇𝜈 = 𝜕𝜇ℎ𝜆𝜈 + 𝜕𝜈ℎ𝜇𝜆 − 𝜕𝜆ℎ𝜇𝜈 +
𝐹 ′(𝑋)
𝐹 (𝑋)

(𝜂𝜆𝜈𝜕𝜇𝑋 + 𝜂𝜇𝜆𝜕𝜈𝑋 − 𝜂𝜇𝜈𝜕𝜆𝑋) (A.7)

on perturbing the metric around a flat background (Eq. (18)). After canonically normalizing the 𝑋 field through the redefinition from Eq. (30), i.e.,

𝜒(𝑋) =

𝑋

∫
0

d�̂�

√
𝑍(�̂�) + 𝐹

′(�̂�)2

2𝐹 (�̂�)
, (A.8)

this leads to

Δ𝜆𝜇𝜈 = 𝜕𝜇ℎ𝜆𝜈 + 𝜕𝜈ℎ𝜇𝜆 − 𝜕𝜆ℎ𝜇𝜈 +
𝐹 ′(𝜒)
𝐹 (𝜒)

(𝜂𝜆𝜈𝜕𝜇𝜒 + 𝜂𝜇𝜆𝜕𝜈𝜒 − 𝜂𝜇𝜈𝜕𝜆𝜒), (A.9)

where we have defined 𝐹 (𝜒) ≡ 𝐹 (𝑋) and 𝐹 ′(𝜒) ≡ 𝜕𝐹 (𝜒)∕𝜕𝜒 . As described in Section 2.2, we now expand the scalar field around its vev, so that 
the graviton can also be canonically normalized [see Eq. (32), where the kinetic mixing between the graviton and 𝜒 is manifest]. At this point, Δ𝜆𝜇𝜈
has the form

Δ𝜆𝜇𝜈 =𝜕𝜇ℎ𝜆𝜈 + 𝜕𝜈ℎ𝜇𝜆 − 𝜕𝜆ℎ𝜇𝜈

+
𝐹 ′(𝑣𝜒 )

𝐹 (𝑣𝜒 ) + 𝜒𝐹 ′(𝑣𝜒 )
(𝜂𝜆𝜈𝜕𝜇𝜒 + 𝜂𝜇𝜆𝜕𝜈𝜒 − 𝜂𝜇𝜈𝜕𝜆𝜒). (A.10)

The kinetic mixing between the graviton and the scalar can be removed [see Eq. (33)] by means of the transformations in Eq. (33). With this, 
we obtain Eq. (34) and

Δ𝜆𝜇𝜈 =
2
𝑀Pl

(
𝜕𝜇ℎ𝜆𝜈 + 𝜕𝜈ℎ𝜇𝜆 − 𝜕𝜆ℎ𝜇𝜈

)
+ 1
𝑀Pl

𝐹 ′(𝑣𝜒 )√
𝑀2

Pl + 𝐹
′(𝑣𝜒 )2

(
𝜂𝜆𝜈𝜕𝜇𝜎 + 𝜂𝜇𝜆𝜕𝜈𝜎 − 𝜂𝜇𝜈𝜕𝜆𝜎

)

−
𝐹 ′(𝑣𝜒 )

𝐹 ′(𝑣𝜒 )𝜎 +𝑀Pl

√
𝑀2

Pl + 𝐹
′(𝑣𝜒 )2

(𝜂𝜆𝜈𝜕𝜇𝜎 + 𝜂𝜇𝜆𝜕𝜈𝜎 − 𝜂𝜇𝜈𝜕𝜆𝜎), (A.11)

where 𝐹 (𝑣𝜒 ) =𝑀2
Pl has been substituted and 𝜎 corresponds to the canonically normalized additional scalar field. We can now expand the denomi-

nator in the third line up to first order in 𝑀−1
Pl to give

Δ𝜆𝜇𝜈 =
2
𝑀Pl

(
𝜕𝜇ℎ𝜆𝜈 + 𝜕𝜈ℎ𝜇𝜆 − 𝜕𝜆ℎ𝜇𝜈

)
, (A.12)
14

showing a perfect cancellation of the couplings to the additional scalar. Thus, after diagonalizing, the covariant derivative takes the following form:
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𝜇𝐴𝜈 = 𝜕𝜇𝐴𝜈− 2
𝑀Pl

Γ𝜌
𝜇𝜈
𝐴𝜌, (A.13)

which is nothing but the standard covariant derivative ∇𝜇𝐴𝜈 from Einstein gravity. This is as we would expect, since the diagonalization is essentially 
a perturbative implementation of the Weyl transformation to the Einstein frame.

We can obtain the same result without diagonalizing and instead summing over all insertions of the graviton-scalar kinetic mixing. Our calcula-

tions have shown that the following two series of diagrams cancel with each other:

where the ellipsis contains the sum over the infinite series of insertions of mixings (where zero kinetic mixing is also included for the diagram on 
the right). Similarly, from the diagrams above, we can calculate the incoming graviton amplitude by inserting an additional kinetic mixing to the 
left of the 𝜒 propagators. Thus, we find that all the diagrams containing kinetic mixings will end up cancelling each other, leaving just the diagram 
with no kinetic mixings. Diagrammatically, this implies that

which corresponds to the Feynman diagram for the coupling between the gauge field and gravity through the usual Chistoffel symbols.

In either case, we see that the role of the additional terms arising from 𝐶𝜌𝜇𝜈 in the updated covariant derivatives is to maintain the Weyl invariance 
of the Maxwell Lagrangian (at dimension four) once gauge fixing terms are included in the Jordan frame.

Appendix B. Gauge symmetry preservation in scalar-tensor theories

With the exception of Appendix A, we have so far ignored any implications that the extension of gravity may have on the existing symmetries 
of the matter Lagrangian. In this Appendix, we will show that, for the scalar-tensor theories considered in this paper (i.e., those connected to an 
Einstein frame via a conformal transformation), the gauge symmetries in the matter Lagrangian are not broken due to the modifications of gravity. 
To do so, we will focus on the Faddeev–Popov procedure, where the introduction of ghost fields eliminates unphysical degrees of freedom [60].

For generality, we consider the following (non-Abelian) Yang–Mills Lagrangian

YM = −1
4
𝐹𝑎
𝜇𝜈
𝐹 𝜇𝜈

𝑎 − 1
2𝜉
𝜕𝜇𝐴

𝑎𝜇𝜕𝜈𝐴
𝑎𝜈 − 𝑐𝑎𝜕𝜇𝐷𝜇𝑐𝑎, (B.1)

where 𝐴𝑎
𝜇

is the SU(𝑁) gauge field, where 𝑎 takes values from 1 to 𝑁 ; 𝜉 is a Lagrange multiplier; 𝑐𝑎 and 𝑐𝑎 are the Faddeev–Popov ghost fields;

𝐹𝑎
𝜇𝜈

= 𝜕𝜇𝐴𝑎𝜈 − 𝜕𝜈𝐴
𝑎
𝜇
+ 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇
𝐴𝑐
𝜈
, (B.2)

𝐷𝜇𝑐
𝑎 = 𝜕𝜇𝑐𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏𝜇𝑐

𝑐 , (B.3)

are the strength tensor and SU(𝑁) covariant derivative (which reduces to Eq. (2) in the U(1) case), respectively; 𝑔 is a dimensionless constant; 
and 𝑓𝑎𝑏𝑐 are the SU(𝑁) structure constants. As in Section 2, and to study the implications of modified gravity, we first have to insert all minimal 
couplings, upgrade all partial derivatives to gravitational covariant ones, and append a gravitational sector. For this, we will consider the modified 
gravitational action from Eq. (11), leading to

𝑆YM ⊃ ∫ 𝑑4𝑥
√
−𝑔

[
−
𝐹 (𝜒)
2
𝑅− 1

4
𝑔𝜇𝜈𝑔𝛼𝛽𝐹 𝑎

𝜇𝛼
𝐹 𝑎
𝜈𝛽

− 1
2𝜉
𝑔𝜇𝜈𝑔𝛼𝛽𝛼𝐴𝑎𝛽𝜇𝐴𝑎𝜈 − 𝑐𝑎𝑔𝜇𝜈𝜇𝐷𝜈𝑐𝑎

]
, (B.4)

where we have used the updated covariant derivatives defined in Eq. (24). As we will show, this choice for the covariant derivative is not required 
to conserve the symmetries of the matter Lagrangian. However, we make this choice for convenience, as it eliminates all modifications entering 
through the Christoffel symbols in the linearized and diagonalized Jordan-frame Lagrangian, as shown in Appendix A.

Notice that, while the SU(𝑁) gauge symmetry is broken by the gauge-fixing term, the inclusion of the ghost leads to the conservation of an exact 
global symmetry, called BRST invariance, as a residue of the existing SU(𝑁) symmetry. The symmetry transformations are well-known both for flat 
spacetimes, and extending them to curved backgrounds is straightforward: we just need to insert the minimal couplings to gravity and upgrade the 
partial derivatives in the transformations, as we did for the action [51]. In this way, we find the following infinitesimal BRST transformations for 
each field in curved backgrounds:

𝐴𝑎
𝜇
→𝐴𝑎

𝜇
+ 1
𝑔
𝜃𝐷𝜇𝑐

𝑎 (B.5a)

𝑎 𝑎 1 𝜇𝜈 𝑎
15

𝑐 → 𝑐 −
𝑔𝜉
𝜃𝑔 𝜇𝐴𝜈 (B.5b)
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𝑐𝑎→ 𝑐𝑎 − 1
2
𝜃𝑓𝑎𝑏𝑐𝑐𝑎𝑐𝑏. (B.5c)

𝐷𝜇𝑐
𝑎→𝐷𝜇𝑐

𝑎 , (B.5d)

where 𝜃 is a Grassmann variable satisfying 𝜃2 = 0, and the omitted fields do not transform under this symmetry. Using this set of transformations, 
we find the following variations of each term:

𝛿

(
𝑔𝜇𝜈𝑔𝛼𝛽𝐹 𝑎

𝜇𝛼
𝐹 𝑎
𝜈𝛽

)
→ 0 , (B.6a)

𝛿

(
1
2𝜉
𝑔𝜇𝜈𝑔𝛼𝛽𝛼𝐴𝑎𝛽𝜇𝐴𝑎𝜈

)
→ − 𝜃

𝑔𝜉
𝑔𝜇𝜈𝑔𝛼𝛽 (𝜇𝐴𝑎𝜈)(𝛼𝐷𝛽𝑐𝑎) , (B.6b)

𝛿
(
−𝑐𝑎𝑔𝜇𝜈𝜇𝐷𝜈𝑐𝑎)→ 𝜃

𝑔𝜉
𝑔𝜇𝜈𝑔𝛼𝛽 (𝜇𝐴𝑎𝜈)(𝛼𝐷𝛽𝑐𝑎) . (B.6c)

Substituting these results in the action, we can confirm that this set of transformations is indeed a symmetry of the Yang–Mills action, even 
when gravity is modified as in Eq. (B.4). As mentioned, since this derivation did not require the expansion of 𝜇 , it is generic for any choice of 
the gravitational covariant derivative. Moreover, given that the linearization of gravity and the subsequent Lagrangian manipulations shown in 
Section 2 do not break any of the SU(𝑁) symmetries, we should expect the BRST symmetry to be maintained at all steps of the calculation, as long 
as we also perform these operations to the transformations from Eqs. (B.5).

Furthermore, these results can be extended to the Einstein frame. This can be shown by making the Weyl transformation from Eq. (12) to the 
Jordan-frame action in Eq. (B.4). With this, we obtain the following Einstein-frame action:

𝑆YM ⊃ ∫ 𝑑4𝑥
√
−�̃�

[
−
�̃�2

Pl
2
�̃�− 1

4
�̃�𝜇𝜈 �̃�𝛼𝛽𝐹 𝑎

𝜇𝛼
𝐹 𝑎
𝜈𝛽

− 1
2𝜉
�̃�𝜇𝜈 �̃�𝛼𝛽∇̃𝛼𝐴𝑎𝛽∇̃𝜇𝐴

𝑎
𝜈
−
�̃�Pl
𝐹 (𝜒)

𝑐𝑎�̃�𝜇𝜈∇̃𝜇𝐷𝜈𝑐𝑎
]
, (B.7)

where all tilded quantities are built using the Einstein-frame metric �̃�𝜇𝜈 , and we can see that the modified covariant derivative 𝜇 has transformed 
into the usual Christoffel symbols. Note that we work with the Lagrange multiplier field already evaluated on-shell.

While the SU(𝑁) field-strength tensor and gauge-fixing terms do not pick up any 𝜒 couplings, the same is not true for the ghost terms. However, 
the BRST invariance is still maintained under a modified set of field transformations. In particular, these are

𝐴𝑎
𝜇
→𝐴𝑎

𝜇
+ 1
𝑔
𝜃𝐷𝜇𝑐

𝑎 , (B.8a)

𝑐𝑎→𝑐𝑎 − 𝐹 (𝑋)
𝑔𝜉�̃�Pl

𝜃�̃�𝜇𝜈∇̃𝜇𝐴𝑎𝜈 , (B.8b)

𝑐𝑎→𝑐𝑎 − 1
2
𝜃𝑓𝑎𝑏𝑐𝑐𝑏𝑐𝑐 , (B.8c)

𝐷𝜇𝑐
𝑎→𝐷𝜇𝑐

𝑎 , (B.8d)

which is nothing but the Weyl rescaling of the Jordan-frame BRST transformations from Eqs. (B.5), as we would expect. In this way, the different 
terms in Eq. (B.7) vary as

𝛿

(
𝑔𝜇𝜈𝑔𝛼𝛽𝐹 𝑎

𝜇𝛼
𝐹 𝑎
𝜈𝛽

)
→0 , (B.9a)

𝛿

(
1
2𝜉
𝑔𝜇𝜈𝑔𝛼𝛽𝛼𝐴𝑎𝛽𝜇𝐴𝑎𝜈

)
→− 𝜃

𝑔𝜉
�̃�𝜇𝜈 �̃�𝛼𝛽 (∇̃𝜇𝐴𝑎𝜈)(∇̃𝛼𝐷𝛽𝑐

𝑎) , (B.9b)

𝛿

(
−
�̃�Pl
𝐹 (𝜒)

𝑐𝑎�̃�𝜇𝜈∇̃𝜇𝐷𝜈𝑐𝑎
)
→
𝜃

𝑔𝜉
�̃�𝜇𝜈 �̃�𝛼𝛽 (∇̃𝜇𝐴𝑎𝜈)(∇̃𝛼𝐷𝛽𝑐

𝑎) , (B.9c)

and the invariance of the Einstein-frame action (B.7) can be verified readily.

Appendix C. Diagonalizing graviton-scalar kinetic mixing

A convenient way to eliminate all the kinetic mixings is to find the matrix transformation that diagonalizes the kinetic terms. However, creating a 
kinetic mixing matrix between 2-forms (the graviton) and scalar fields is not straightforward. In this appendix, we describe a method for determining 
the transformation and diagonalizing the kinetic terms, which is implemented in FeynMG in the function GravKinMixing[].

The main obstacle is that the graviton kinetic term contains both ℎ𝜇𝜈 and its trace ℎ. For example, we might have a Lagrangian of the form

 = 1
2
𝜕𝜌ℎ𝜇𝜈𝜕

𝜌ℎ𝜇𝜈 − 1
4
𝜕𝜌ℎ𝜕

𝜌ℎ−𝐶𝜕𝜌ℎ𝜕𝜌𝜒 + 1
2
𝜕𝜌𝜒𝜕

𝜌𝜒, (C.1)

where both the graviton and the scalar field have already been canonically normalized, but there remains a kinetic mixing proportional to 𝐶 (which 
for the calculation from Section 2.2 corresponds to 𝐶 = 𝐹 (𝑣𝜒 )∕4). Since the graviton has two kinetic terms, it is unclear how to construct a matrix 
that encapsulates all the kinetic couplings between distinct fields.

We proceed by redefining ℎ𝜇𝜈 so that its kinetic energy contains only one term. To do so, we perform an analytic continuation of the graviton 
into the complex plane, redefining

ℎ𝜇𝜈 → ℎ̃𝜇𝜈 −
1
4
(1 + 𝑖)ℎ̃𝜂𝜇𝜈 . (C.2)
16

This leads to the Lagrangian
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 = 1
2
𝜕𝜌ℎ̃𝜇𝜈𝜕

𝜌ℎ̃𝜇𝜈 +𝐶𝑖𝜕𝜌ℎ̃𝜕𝜌𝜒 + 1
2
𝜕𝜌𝜒𝜕

𝜌𝜒, (C.3)

which contains only one kinetic energy term for the graviton. The kinetic matrix is then defined straightforwardly as

𝐾 =
⎛⎜⎜⎜⎝

1
2 𝑖

𝐶

2

𝑖
𝐶

2
1
8

⎞⎟⎟⎟⎠ , (C.4)

with partial derivatives of the fields collected into the vector

𝐹𝜌𝜇𝜈 =
⎛⎜⎜⎝
𝜕𝜌ℎ̃𝜇𝜈

𝜂𝜇𝜈𝜕𝜌𝜒

⎞⎟⎟⎠ , (C.5)

such that the Lagrangian (C.1) can be written in the form  = (𝐹𝜌𝜇𝜈)𝖳𝐾𝐹𝜌𝜇𝜈 , where 𝖳 denotes matrix transposition.

We want a transformation 𝑊 of the matrix 𝐾 such that

𝑊 𝖳𝐾𝑊 =
⎛⎜⎜⎜⎝
1
2 0

0 1
8

⎞⎟⎟⎟⎠ . (C.6)

The transformations for the fields are as follows:

(𝐹𝜌𝜇𝜈)𝖳𝐾𝐹𝜌𝜇𝜈 = (𝐹𝜌𝜇𝜈𝑊 −1𝑊 )𝖳𝐾𝑊𝑊 −1𝐹𝜌𝜇𝜈 = (𝐹𝜌𝜇𝜈)𝖳𝑊 𝖳𝐾𝑊 𝐹𝜌𝜇𝜈, (C.7)

since, by defining 𝐹𝜌𝜇𝜈 =𝑊 −1𝐹𝜌𝜇𝜈 , we would get a Lagrangian free of kinetic mixings.

For the generic kinetic mixing, where 𝐾 is defined by Eq. (C.4), the transformation matrix is

𝑊 =
⎛⎜⎜⎜⎝
1 −1√

1+4𝐶2

0 −𝑖𝐶√
1+4𝐶2

⎞⎟⎟⎟⎠ . (C.8)

The scalar fields transform through 𝐹𝜌𝜇𝜈 =𝑊𝐹𝜌𝜇𝜈 and therefore

ℎ̃𝜇𝜈 → ℎ̃𝜇𝜈 −
𝑖𝐶√

1 + 4𝐶2
𝜎𝜂𝜇𝜈, (C.9a)

𝜒 →
−1√

1 + 4𝐶2
𝜎. (C.9b)

Undoing the complexification in Eq. (C.2), we obtain the transformations of the original fields that diagonalize the kinetic terms:

ℎ𝜇𝜈 → ℎ𝜇𝜈 +
𝐶√

1 + 4𝐶2
𝜎𝜂𝜇𝜈, (C.10a)

𝜒 →
−1√

1 + 4𝐶2
𝜎. (C.10b)

For the specific case of the Lagrangian in Out[16] from Section 4.3, for which 𝐶 = 1∕
√
2(2𝜔+ 1), we get

ℎ𝜇𝜈 → ℎ𝜇𝜈 +
1√

2(2𝜔+ 3)
𝜎𝜂𝜇𝜈, (C.11a)

𝜒 → −
√
2𝜔+ 1√
2𝜔+ 3

𝜎. (C.11b)

Appendix D. Functions of FeynMG

D.1. Curvature building blocks

gUp[i1,i2] — Spacetime metric with raised indices, which must be specified as Lorentz, i.e., gUp[Index[Lorentz, i1],Index[Lorentz, 
i2]] leads to an upper-indexed metric 𝑔𝑖1𝑖2. For more information on the function Index, see FeynRules manual [1].

gDown[i1,i2] — Spacetime metric with lowered indices, which must be specified as Lorentz, i.e., gDown[Index[Lorentz, i1],In-
dex[Lorentz, i2]] leads to an upper-indexed metric 𝑔𝑖1𝑖2.

eta[i1, i2] — Flat spacetime metric 𝜂𝑖1𝑖2. The indices must be Lorentzian, such that eta[Index[Lorentz,i1],Index[Lorentz,i2]]. The 
specification of lower or upper indices is not necessary in this case, since FeynRules does not make that distinction.

Sqrtg — Square root of minus the determinant of the metric, corresponding to the Jacobian factor 
√
−𝑔 of the volume element. By default it is 

assumed as a prefactor to any Lagrangian.
17

VUp[mu,a] — Upper indexed vierbein 𝑒𝜇𝑎. Indices must be Lorentzian, such that VUp[Index[Lorentz,mu],Index[Lorentz,a]].
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VDown[mu,a] — Lower indexed vierbein 𝑒𝜇𝑎. Indices must be Lorentzian, such that VDown[Index[Lorentz,mu],Index[Lorentz,a]].

CovDev[A,mu] — Gravitational covariant derivative. As in General Relativity, it will take a different form depending on which object it is acting 
on (i.e., a spinor, scalar or vector field).

ChrisSym[a,b,c] — Christoffel symbols Γ𝑎
𝑏𝑐

of General Relativity.

RiemannTensor[a,b,c,d] — Riemann curvature tensor (4-form). It will appear in the Lagrangian as 𝑅𝑎
𝑏𝑐𝑑

until the function ExpandGravity
is applied.

RicciTensor[a,b] — Ricci tensor (2-form). It will appear as 𝑅𝑎𝑏 in the Lagrangian until the function ExpandGravity is applied.

RScalar — Ricci scalar. It will appear in the Lagrangian as 𝑅Sc until the function ExpandGravity is applied.

SHGauge[F] — Generalization of the harmonic gauge — the scalar-harmonic gauge [37], see Eq. (27) — for Brans–Dicke theories with a curvature 
term of the form G = −

√
−𝑔F𝑅∕2. It reduces to the usual harmonic gauge for the Einstein–Hilbert action with F =𝑀2

Pl.

CheckMetric[L] — Tests whether every pair of indices in a Lagrangian L is contracted with a metric.

InsertMetric[L] — Takes a Lagrangian L and inserts an upper indexed metric 𝑔𝜇𝜈 at every pair of contracted indices. Useful for adapting

FeynRules model files for use in FeynMG.

InsertDevs[L] — Upgrades all partial derivatives of vector and fermion fields to covariant derivatives. Useful for adapting FeynRules model 
files for use in FeynMG.

InsertCurv[L] — Applies both InsertMetric and InsertCurv to the Lagrangian L. Useful for adapting FeynRules Model Files for use in
FeynMG.

D.2. Metric transformations

ToEinsteinFrame[L,Opts] — Performs a Weyl transformation of the Lagrangian L to the Einstein frame, in the case of Brans–Dicke-type 
scalar-tensor theories. By specifying the options (Opts), the user can turn off the default inclusion of the Jacobian 

√
−𝑔, using {Jacobian→Off}.

WeylTransform[L,𝑤] — Performs a Weyl transformation of a Lagrangian L, such that the metric transforms as 𝑔𝜇𝜈 →𝑤2𝑔𝜇𝜈 and 𝑔𝜇𝜈 →𝑤−2𝑔𝜇𝜈

and the vierbeins as 𝑒𝑎
𝜇
→𝑤𝑒𝑎

𝜇
and 𝑒𝜇𝑎 →𝑤−1𝑒𝜇𝑎 .

GravityOff[L] Takes the Minkowski limit for all curvature objects and eliminates all gravitational perturbations (the graviton) in a Lagrangian

L.

D.3. Expansion tools

LinearizeGravity[L,Opts] — Linearizes gravity around a flat background metric up to second order in the gravitational sector and first 
order in the matter sector of a Lagrangian L. By specifying the options (Opts), the gravitational sector can be linearized up to third order using 
{Grav3pt→On} and the matter sector up to second order using {Matter2nd→On}. The user can turn off the default inclusion of the Jacobian √
−𝑔, using {Jacobian→Off}. Moreover, for Brans–Dicke gravitational sectors, one can choose to automatically use the scalar-harmonic gauge 

(SHGauge) using {SHGauge→ On}, and update the rest of the covariant derivatives into their modified form from Eq. (24) using {UpdDevs→ On}.

ExpandGravity[L] — Expands all the gravitational objects, such as the Ricci scalar, Ricci tensor or Riemann tensor in terms of the metric.

ExpandCMod[L] — Expands the CMod (modification of the covariant derivatives) in terms of the scalar degree of freedom. This function will be 
automatically applied once all the scalar fields are canonically normalized.

Orderh[L,n] — Truncates a Lagrangian L up to the 𝑛-th order in the perturbation of the metric perturbation ℎ𝜇𝜈 .

OrderSimplify[L,n] — Applies the Mathematica function FullSimplify to all the terms in a Lagrangian L of 𝑛-th order or lower in the 
fields.

IndexSimplify[L,{i1,i2,...}] — Replaces the Lorentz indices of all the terms of a Lagrangian L so that equivalent terms can be combined. 
The second argument allows the user to specify a set of indices from which the replacements will be chosen.

IndexChange[L,{i1,i2,...}] — Replaces the Lorentz indices of a Lagrangian L sequentially from the set of indices {i1,i2,...}.

D.4. Tools for canonicalizing fields

CanonScalar[L] — Canonically normalizes the leading kinetic energy terms of the scalar fields of the Lagrangian L.

CanonGrav[L] — Canonically normalizes the graviton kinetic energy, assuming that the kinetic terms have a constant prefactor.

MassDiagMG[L] — Diagonalizes the scalar field mass matrix of the Lagrangian L.

KineticDiagMG[L,n] — Diagonalizes the kinetic energies of the scalar fields of the Lagrangian L.
18

GravKinMixing[L] — Diagonalizes the kinetic mixings between the trace of the graviton and the scalar fields of the Lagrangian L.
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D.5. Vacuum expectation values

VevExtract[L,Opts] — Solves for the vacuum expectation values of the real scalar fields in the Lagrangian L. By specifying the options 
{Fields→ {p1,p2,...}}, the user can choose which fields to expand around their vevs.

VevExpand[L] — Expands and solves for the vacuum expectation values of the real scalar fields in the Lagrangian L. The function will output all 
the different solutions, and a dialogue window will prompt the user to select a set of vevs for substitution into the Lagrangian. By specifying the 
options {Solution→n} and {Fields→{p1,p2,...}}, the user can choose the 𝑛-th solution and the fields to be expanded directly.

D.6. Checking functions

CheckCanonScalar[L] — Finds the leading scalar field kinetic energy terms in the Lagrangian L and tests whether they are canonically normal-

ized.

CheckMassMatrix[L] — Extracts the mass matrix for the scalar fields of the Lagrangian L and checks if it is diagonalized.

CheckKineticMatrix[L] — Extracts the kinetic energy matrix for the scalar fields of the Lagrangian L and checks if it is diagonalized.

CheckGravityMixing[L] — Checks whether there is any kinetic mixing between the trace of the graviton ℎ and a scalar field.

D.7. Effective Planck mass

GiveMpl[L] — Extracts the effective 𝑀Pl from the Lagrangian L. It can be used at any stage of the calculation (before or after linearizing gravity 
or canonically normalizing the kinetic energies).

InsertMpl[L] — Extracts and inserts the effective 𝑀Pl of the Lagrangian L. It can be used at any stage of the calculation (before or after linearizing 
gravity or canonically normalizing the kinetic energies).

D.8. Output model file

AddScalar[P,Opts] — Adds a new massless scalar field named P into the loaded set of fields, such that it can be recognized by FeynRules. 
Within the options (Opts), the user can choose the mass and width of the associated particle by including {Mass→X} or {Width→X}, respectively.

AddParameter[P,Opts] — Adds a new parameter named P into the loaded set of parameters, such that it can be recognized by FeynRules. 
Within the options (Opts), the user can choose its value by including {Value→X} or its interaction order by including {InteractionOrder→X}
(where 𝑋 is set to 1 by default).

OutputModelMG[OldF,NewF,L,Opts] — Creates a new model file named NewF from an original FeynRules model file OldF. The new model 
file will contain the same defined fields and parameters as the original file, with the addition of all the new particles and parameters created 
using AddScalar and AddParameter, together with the Lagrangian (L), the graviton (ℎ𝜇𝜈) and Planck mass (𝑀Pl). By specifying the option

{UpdateMass→True}, the masses of all scalar fields will be updated.
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