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A B S T R A C T

Stock price prediction is challenging in financial investment, with the AI boom leading to increased interest
from researchers. Despite these recent advances, many studies are limited to capturing the time series
characteristics of price movement via recurrent neural networks (RNNs) but neglect other critical relevant
factors, such as industry, shareholders, and news. On the other hand, graph neural networks have been applied
to a broad range of tasks due to their superior performance in capturing complex relations among entities and
representation learning. This paper investigates the effectiveness of using graph neural networks for stock
price movement prediction. Inspired by a recent study, we capture the complex group-level information (co-
movement of similar companies) via hypergraphs. Unlike other hypergraph studies, we also use a graph model
to learn pairwise relations. Moreover, we are the first to demonstrate that this simple graph model should
be applied before using RNNs, rather than later, as prior research suggested. In this paper, the long-term
dependencies of similar companies can be learnt by the next RNNs, which augments their predictability.
We also apply adversarial training to capture the stochastic nature of the financial market and enhance
the generalisation of the proposed model. Hence, we contribute with a novel ensemble learning framework
to predict stock price movement, named MONEY. It is comprised of (a) a Graph Convolution Network
(GCN), representing pairwise industry and price information and (b) a hypergraph convolution network for
group-oriented information transmission via hyperedges with adversarial training by adding perturbations on
inputs before the last prediction layer. Real-world data experiments demonstrate that MONEY significantly
outperforms, on average, the state-of-the-art methods and performs particularly well in the bear market.
1. Introduction

Stock prediction has been a crucial research topic for a long time,
and investors are always interested in having a higher predictive accu-
racy model to gain profit. Whilst it is notoriously difficult to predict
stocks when extensive uncertainty factors, such as policies or social
conditions, like pandemics, can influence the financial market (Lee and
Soo, 2017), evidence shows that certain factors, like industry informa-
tion, can forecast the entire stock market by up to two months (Hong
et al., 2007). Moreover, stocks in a similar industry will behave differ-
ently from the ones outside that industry (Feng et al., 2019). These are
thus relevant relational factors necessary to integrate comprehensively.
Graph neural networks (GNNs) are a powerful technology leveraging
the advantage of network structure (Matsunaga et al., 2019; Sun et al.,
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2021a), thus promisingly suitable for such a task. Indeed, some ini-
tial solutions have been proposed (Cui et al., 2021), but are limited.
Existing GNNs usually model pairwise relations of stocks and other
information as simple graphs to predict if the price will rise or fall on
the next trading day. However, stock prices are more likely to co-move
for similar companies and, for such complex behaviour (Aghabozorgi
and Teh, 2014), more advanced models are required to capture it.
Therefore, we propose to build hypergraphs,1 which allow modelling
group-level relations among stocks from industry and fund-holding
(mutual fund as shareholders) aspects (Cui et al., 2021).

Despite the success of GNNs on simple graphs, the study of deep
learning on hypergraphs is still at an early stage, and most exist-
ing GNNs cannot exploit the high-order structure encoded by hyper-
edges (Bai et al., 2021a). Few studies explored the area: Sawhney
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Fig. 1. Price movement of three stocks.
et al. (2020) proposed a gated temporal convolution over hypergraphs
to capture stock trends and Cui et al. (2021) applied hypergraph
attention networks to predict stock price movement and validated the
effectiveness of using hypergraphs to capture similar patterns of stocks
in the same group. However, they mainly focused on the group-level
analysis and neglected the pairwise correlations between two similar
companies, which indeed exist in financial markets (Qie, 2011).

For instance, Aghabozorgi and Teh (2014) suggests that stocks from
the same industry may exhibit similar volatility patterns. To illustrate
this point, we present Fig. 1. This figure plots stocks from Ningbo Bank
(NB), China Merchants Bank (CMB), and Bank of China (BOC), using
data obtained from.2 This visual representation validates their argu-
ment. The correlation coefficient between two stocks can be calculated
as:

𝑅𝑥𝑦 =
∑𝑛

𝑘=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
√

∑𝑛
𝑘=1(𝑥𝑖 − �̄�)2

∑𝑛
𝑘=1(𝑦𝑖 − �̄�)2

(1)

The correlation coefficient 𝑅𝑥𝑦 between NB and CMB is 0.72, while
the correlation coefficient between NB and BOC is 0.64. The strong
correlation between these two pairs can be partially attributed to
them being held by the same mutual fund between 30/09/2020 and
31/12/2020. Thus, we expect other stocks in the same industry and
held by the same fund to also display pairwise relations.

Unlike prior works (Cui et al., 2021; Kim et al., 2019; Sawhney
et al., 2020; Ye et al., 2021), we consider not only price information
but also industry information via a graph neural network (GCN) to
augment the pairwise behaviour of similar companies, before using
recurrent neural networks (RNNs). Different from other studies using
RNNs and GCN with historical price features (Peng, 2020), we apply
GCN first so that the long-term dependencies of pairwise companies
can be captured by RNNs later and avoid assuming price movement to
be linear or stationary, as Aghabozorgi and Teh (2014) suggested. We
do not process fund-holding information via the GCN at this stage, as it
is included in the later hypergraph convolution. Moreover, compared
to the industry information, fund-holding information is less influential
for single stock due to the diversification investment strategy, which
requires mutual funds to hold widely spread portfolios across different
types of securities (Berk and Van Binsbergen, 2015) but can be a good
signal of market trend. To sum up, our method, MONEY, can consider
both pairwise and group-level relations between companies in the same

2 https://uqer.datayes.com/.
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industry and hold by the same fund, capturing dynamic historical price
information.

Moreover, as the financial market is volatile and the price move-
ment is stochastic, standard training may cause overfitting. Therefore,
the research questions are:

1. Can stock price movement prediction be improved by capturing
complex relational industry information?

2. How to enhance the robustness of the model while not compro-
mising its predictive performance?

Addressing the questions, we propose to use hypergraph convolu-
tion with adversarial training by considering perturbated features and
including an adversarial loss in the total loss calculation. Additionally,
we use the voting ensemble learning method to classify the predicted
classes yielded from standard training and adversarial training, to-
gether with the highest number of votes. The contributions of the paper
are summarised as follows:

• This is a novel ensemble learning framework that firstly applies
both hypergraph convolution and simple graph learning to cap-
ture complex relations among similar stocks and address the
stochasticity of stocks by adversarial training, which can be used
as a solid baseline for future research.

• To the best of our knowledge, this is the first attempt to demon-
strate the effectiveness of integrating auxiliary information (e.g.
industry) via GCN before using RNNs so that the long-term depen-
dencies of pairwise relations of similar companies can be learnt
by RNNs later, unlike prior approaches, which deploy RNNs first.

• Experimental results on a real-world dataset prove that our pro-
posed model, MONEY, significantly outperforms the state-of-the-
art on stock price movement prediction for most indicators (ac-
curacy, precision, recall and F1 score) and has more stable per-
formance.

2. Related work

2.1. GNN for price prediction

Researchers have attempted to apply GNNs to learn stock repre-
sentations by modelling stock relations as graphs. For instance, Chen
et al. (2018) combined a Long Short-Term Memory (LSTM) with GCN to
learn shareholding information. Later, Ye et al. (2021) applied a multi-
graph convolution network to predict stock movement, treating the

https://uqer.datayes.com/
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embedding of shareholding, industry and news relation graphs equally
in the prediction.

Recently, researchers also proposed to construct different types
of graphs to model the relationships between stock prices and other
relevant information. Xiong et al. (2021) built a heterogeneous graph
for stock prediction by aggregating event level and contextual in-
formation. Cui et al. (2021) deployed a hypergraph convolutional
network to represent the impact of industry and fund-holding on stock
movements, showcasing the ability of hypergraphs to capture complex
group-level relationships among stocks. It is noteworthy to mention
that the prowess of hypergraph neural networks is not limited to the
finance sector. Recent literature, like Guo et al. (2021), Sun et al.
(2021b), Wang et al. (2022) and Li et al. (2022a), indicated their
success in recommendation and learning analytics domains. For readers
interested in a broader view of hypergraph modelling application across
diverse fields, these studies provide valuable insights.

Despite the success of the aforementioned financial prediction meth-
ods, most of them first fed only historical price features of stocks
into RNN models to obtain new price embeddings. Then, the updated
embedding could be processed with the other factors, such as similar
corporations (Chen et al., 2018), news (Xiong et al., 2021), indus-
try (Hou et al., 2021) or shareholding information (Kim et al., 2019;
Ye et al., 2021), by using GCN or other graph neural networks. How-
ever, this post-processing came too late. In fact, these methods were
limited by assuming other historical information is linear or stationary
— by using RNN first, and only capturing pairwise relations among
stocks. Concomitantly, existing hypergraph models overemphasised the
group-level relations and neglected instead such pairwise information.
Moreover, none of these studies dealt appropriately with overfitting
(here, due to continuous market fluctuations).

2.2. Adversarial training

Arguably the most effective method to enhance the generalisation
of models, by ‘defending’ against perturbed examples, it received con-
siderable recent attention (Bai et al., 2021b). The main purpose of
adversarial training is to augment clean data with adversarial exam-
ples so that models can still deliver consistent results when facing
adversarial attacks. For stock movement prediction, their stochastic and
dynamic characteristics require dealing with overfitting. Addressing
the problem, Feng et al. (2018) applied adversarial training to finan-
cial time-series analytics and validated the effectiveness of simulating
the stochasticity of stock features. Recently, Zhang et al. (2021) pro-
posed a sentiment-guided generative adversarial network to explore the
stock prediction problem. Li et al. (2022b) then combined adversarial
training with transfer learning and obtained competitive results.

2.3. Ensemble learning for price prediction

A machine-learning technique for improving classification or re-
gression performance by considering multiple algorithms (Dong et al.,
2020), it has started to be applied to price forecasting in conjunction
with deep learning, where it outperformed the single models on finan-
cial time series (Jiang et al., 2020). For instance, Zhao et al. (2017)
proposed a denoising autoencoders (SDAE) method with bootstrap
aggregation (bagging) to model complex relationships of oil price with
its factors. Li and Pan (2021) utilised a blending ensemble learning
method consisting of two RNNs to predict the S&P 500 Index. Jiang
et al. (2020) incorporated four types of tree-based ensemble algo-
rithms: random forest, extremely randomised trees, XGBoost and Light-
GBM, with four types of RNNs: vanilla RNN, Bidirectional RNN, LSTM
and gated recurrent unit (GRU) (Chung et al., 2014), into a stacking
167

framework for stock index prediction.
3. Proposed MONEY framework

3.1. Problem formulation

This research aims to predict the movement direction of the stock
for the following trading day. Given different lengths (5, 10, 20 trading
days Cui et al., 2021) of past daily transaction 𝑋𝑠 and industry features
𝐼𝑠, as well as fund-holding information 𝐹𝑠, we consider three movement
directions of stock prices compared with the price 𝑃 on the previous
trading day 𝑡 − 1: rise, steady, fall. In line with previous work (Cui
t al., 2021), rise (1) means the closing price of a stock on the next
rading day 𝑃𝑡 is over 0.55% higher than the closing price before 𝑃𝑡−1.
f 𝑃𝑡 is more than 0.50% lower than 𝑃𝑡−1, then the price movement is
onsidered as fall (−1); otherwise, steady (0). These settings consider

the transaction costs such as tax to find profitable trading opportunities
as in practice (Harris, 2013; Lee, 2015) and also balance different types
of samples. The cross-entropy loss function of stock price movement
prediction can be defined as:

𝑙𝑜𝑠𝑠ℎ𝑖𝑛𝑔𝑒 = −
𝐶
∑

𝑐=0
𝑦𝑜,𝑐 𝑙𝑜𝑔(𝑝𝑜,𝑐 ) (2)

where 𝐶 is the number of classes, which, in our paper, is 3 (rise, steady,
fall); 𝑦 is the binary indicator, showing if the prediction of observation
𝑜 is correctly classified, and 𝑝 is the predicted probability of observation
𝑜 as 𝑐 class. If we consider adversarial training, then the total loss
becomes:

𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = −
𝐶
∑

𝑐=0
𝑦𝑜,𝑐 𝑙𝑜𝑔(𝑝𝑜,𝑐) − 𝛽

𝐶
∑

𝑐=0
𝑦𝑜,𝑐 𝑙𝑜𝑔(𝑝𝑎,𝑐 ) (3)

where the addition term is the adversarial loss and 𝑝𝑎,𝑐 is the predicted
probability of a perturbed observation 𝑜 classified correctly as 𝑐 class; 𝛽
is a hyperparameter balancing the two types of loss, so that the model
is encouraged to classify both original objects and perturbed samples,
correctly. The overall structure of our proposed framework is shown in
Fig. 2. It consists of two models;

model A: industry information first passes stock price (a) through
a GCN (b); then a GRU and temporal attention layer (c) are applied
to capture the time-series characteristics of stocks followed by a hyper-
graph construct (d); then separate convolution networks (e) for industry
and fund-holding information; and, finally, a linear classification neural
network (f);

model B: As we have considered the pairwise industry information
via GCN in model A, model B starts with a GRU, to capture price-
time dependency, following existing research, and without the GCN (b),
to process industry information at the beginning but includes instead
an extra input of adversarial samples to the classification layer (g).
The predictions yielded by Models A and B, which comprise modules
a,b,c,d,e,f and a,c,d,e,f,g, respectively, will be integrated into a new
embedding, denoted as �̂�𝑠. �̂�𝑎𝑑𝑣 is the prediction yielded from model B
with adversarial examples. �̂�𝑓 is the final prediction, which considers
both �̂�𝑠 and �̂�𝑎𝑑𝑣, via a voting method.

The differences between our MONEY model and state-of-the-art
HGTAN (Cui et al., 2021) are threefold: (1) we use GCN first to augment
the pairwise industry relation before using RNN to capture the long-
term dependency of price and demonstrating the effectiveness of using
GCN first; (2) we consider the stochastic characteristics of the stock
market and apply adversarial training to enhance the generalisation
ability of model; (3) we do not use triple attention mechanisms among
hyperedges and hypergraphs, but still outperform the HGTAN as shown
in Tables 2–4. Details are explained in the following subsections, and

we will explain how to construct hypergraphs first.
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Fig. 2. Illustration of MONEY framework.
Fig. 3. Simple graph and hypergraph.

3.2. Hypergraph construction

Definition 1 (Hypergraph). An undirected hypergraph can be denoted
as 𝐺 = (𝑉 ,𝐸) where 𝑉 is the set of 𝑁 nodes and 𝐸 is the set of 𝑀
hyperedges. In a hypergraph, any of the edges 𝑒 can join any number
of vertices 𝑣, to describe more complex relationships between entities,
shown as (b) in Fig. 3; while in simple graphs, one edge can only
link two vertices, representing a pairwise relation between nodes as
(a) in Fig. 3. A hypergraph is often denoted as an incidence matrix
𝐻 ∈ 𝑅𝑁×𝑀 :

𝐻(𝑖, 𝑗) =

{

1 if node 𝑖 is included in hyperedge 𝑗
0 otherwise

Same as Cui et al. (2021), we construct two hypergraphs to model
the industry and fund-holding relations among stocks, separately. In
the industry hypergraph, all the companies in the same industry are
connected by one hyperedge and each node 𝑣 ∈ 𝑉 has features with 10
dimensions; this is similar to the fund-holding hypergraph. We apply
graph convolutions to the two hypergraphs to update embeddings of
each stock (node) to be later used in the price movement classification.

3.3. GCN for industry information

We feed the daily stock prices 𝑥𝑠,𝑡 of stock 𝑠 as stock features and the
related industry information 𝐼𝑠 into a GCN 𝑓 (𝜃) to augment the pairwise
patterns of similar companies and obtain an updated embedding 𝑥𝑡𝑖 for
every trading day 𝑡:

𝑥𝑡𝑖 = 𝑓 (𝜃) ⋅ 𝑥𝑠 (4)
168
We build undirected edges between stocks that are in the same
industry and use two layers of convolution, as shown in Fig. 4. We did
not use GCN to process fund-holding information, which is considered
at a later stage. Moreover, compared to the industry information,
fund-holding information is less influential for single stock due to the
diversification investment strategy, which requires mutual funds to
hold widely spread portfolios across different types of securities (Berk
and Van Binsbergen, 2015), but can be a good signal of market trend.
After the GCN layer, the new embedding 𝑥𝑡𝑖 will be passed to GRU to
capture the time-series information.

3.4. Gated recurrent unit for long term dependency

Following Cui et al. (2021), we use a GRU to learn the embedding
of stock features, due to its ability to capture long-term dependency for
sequential data. Note that the input stock feature has been augmented
by considering the influence of industry. The primary purpose of GRU
is to deploy a gated process, to manage and update the flow of infor-
mation between cells of neural network units, which can be formulated
as follows:
𝑧 = 𝜎(𝑊𝑧 ⋅ 𝑥

𝑡
𝑖 + 𝑈𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧),

𝑟 = 𝜎(𝑊𝑟 ⋅ 𝑥
𝑡
𝑖 + 𝑈𝑟 ⋅ ℎ𝑡−1 + 𝑏𝑟),

ℎ̂ = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ 𝑥
𝑡
𝑖 + 𝑟 ∗ 𝑈ℎ ⋅ ℎ𝑡−1 + 𝑏𝑧),

ℎ𝑡 = 𝑧 ∗ ℎ𝑡−1 + (1 − 𝑧) ∗ ℎ̂.

(5)

where 𝑥𝑡𝑖 is obtained from Eq. (4) and 𝑊𝑧, 𝑊𝑟, 𝑊ℎ are the weight
matrices, which need to be trained. ℎ𝑡−1 is the hidden state, which
includes historical information from the previous trading day and 𝑈𝑧,
𝑈𝑟, 𝑈ℎ are also parameters to train. 𝑧 is the reset gate to decide how
much historical information should be disregarded and 𝑟 is the update
gate to decide how much past information to pass on for the future. The
update and reset gates could alleviate the vanishing gradient problem
during the backpropagation of time-series data. ℎ̂ denotes the current
information to be considered for the current hidden state ℎ𝑡. The new
embedding ℎ𝑡 will feed into the temporal attention layer.

3.5. Temporal attention

The attention mechanism has been increasingly applied to predict
stock price trends (Yu and Wu, 2019; Li et al., 2020; Cui et al.,
2021). Attention can capture the different influences of the hidden
representations on the overall learned embedding at different time
steps (Feng et al., 2018). Due to the recency bias hypothesis (Hao et al.,
2016), stating that the most recent price has a stronger correlation with
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Fig. 4. Overview of GCN.
the future movement, it is reasonable to use a temporal attention layer
to yield the aggregated temporal dynamics representations of stocks 𝑠𝑑 :

𝑠𝑑 =
𝑇
∑

𝑡=1
𝛼𝑡𝑠ℎ

𝑡
𝑠

𝛼𝑡𝑠 =
exp(𝛼𝑡𝑠)

∑𝑇
𝑡=1 exp(𝛼𝑡𝑠)

𝛼𝑡𝑠 = tanh(𝑊𝛼ℎ
𝑡
𝑠 + 𝑏𝛼)𝑈𝑇

𝛼

(6)

where 𝛼𝑡𝑠 is the weight of the hidden state at time 𝑡 of stock 𝑠. 𝑊𝛼ℎ𝑡𝑠, 𝑏𝛼
and 𝑈𝑇

𝛼 are parameters needed to be learned. The aggregated temporal
representation 𝑠𝑑 will then feed into the hypergraph convolution layer,
explained in Section 3.6.

3.6. Hypergraph convolution with adversarial training

To model the group-level relationships among stocks, we apply
hypergraph convolution to both the industry graph 𝐺𝑖 and the fund-
holding hypergraph 𝐺𝑓 . For instance, in the industry graph 𝐺𝑖, each
stock connects via the same edge 𝑒𝑖 and will aggregate messages passed
from its neighbours. One step of convolution on the hypergraph can be
formulated as:

ℎ𝑙+1𝑠 = 𝜎(
𝑀
∑

𝑗=1

𝑁
∑

𝑖=1
⋅ℎ𝑙𝐹 ) (7)

where ℎ𝑙+1 is the feature matrix of stock 𝑠 at the next layer and 𝜎
is a nonlinear activation LeakyReLU. ∑𝑀

𝑗=1
∑𝑁

𝑖=1 refers to applying the
convolution to the set of 𝑀 hyperedges, starting from hyperedge 𝑗,
where all the contained nodes of different hyperedges 𝑀 will update
based on their local neighbours, starting from node 𝑖. 𝐹 is a weight
matrix to be learnt between the 𝑙 and 𝑙+1 layer. After the convolution,
we have updated the industry embedding ℎ𝑖 and the fund-holding
embedding ℎ𝑓 , which will be simply concatenated, to obtain a new
embedding ℎ𝑚𝑠 for the prediction layer and further adversarial training
in Eq. (8).

Adversarial Training is to augment each minibatch of clean data with
adversarial examples (AEs), which are generated by adding adversarial
perturbation (Shafahi et al., 2019). Feng et al. (2018), validated the
effectiveness of adversarial training to address the stochastic property
of stock price. Therefore, we add adversarial perturbation to stock
embedding at a higher level after the temporal attention layer, but
before the prediction layer.

ℎ𝑎𝑑𝑣𝑠 = ℎ𝑚𝑠 + 𝑝𝑎𝑑𝑣𝑠 , 𝑝𝑎𝑑𝑣𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑠𝑠𝑎𝑑𝑣(𝑦, 𝑦𝑎𝑑𝑣) (8)

𝑝𝑎𝑑𝑣 = 𝜖 𝐺𝑠
, 𝐺𝑠 =

𝜕𝑙(𝑦, 𝑦𝑎𝑑𝑣) (9)
169

𝑠
‖𝐺𝑠

‖2 𝜕ℎ𝑠
Fig. 5. Hypergraph convolution with adversarial training in MONEY framework.

where ℎ𝑠𝑎𝑑𝑣 is the latent representation of an adversarial example and
ℎ𝑠 is the concatenated embedding obtained from the hypergraph con-
volution above. 𝑝𝑎𝑑𝑣𝑠 is the optimal max-norm constrained perturbation,
updated by the fast gradient approximation method (Goodfellow et al.,
2014) in Eq. (9), where 𝐺 is the gradient of the adversarial loss with
L2 norm constraint of stock 𝑠 and 𝜖 is to change the scale of pertur-
bation. Feng et al. (2018) empirically demonstrated that adversarial
training enforced the decision boundary to be close to original objects
so that the model is able to capture stochasticity and classify the
perturbed samples correctly.

Fig. 5 describes the process of using a hypergraph convolution
network for the industry and fund-holding hypergraphs and the ℎ𝑠 and
its adversarial example ℎ𝑠𝑎𝑑𝑣 will be fed into a linear prediction layer
for classification. ̂𝑦1𝑠 and ̂𝑦2𝑠 is the prediction generated by model A
and B separately. These two predictions will be concatenated and ̂𝑦𝑎𝑑𝑣
is the adversarial prediction generated from model B as explained in
Section 3.1. The ensemble learning of these three predictions is further
explained in Section 3.7.
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Table 1
Dataset summary.

Data Number

Node (Stock) 758
Attributes 6
Industry-belonging relationships 104
Fund-holding relationships 61
Percentage of steady 24.7%
Percentage of rising 38%
Percentage of dropping 37.3%

3.7. Ensemble learning

Various ensemble strategies can be utilised, including bagging,
boosting, stacking, blending, averaging, weighted average, AdaBoost
and so on Dietterich (2000). In this paper, we propose two base models,
as shown in Fig. 2: (A) The stock price information will be processed
with industry information via GCN and then the updated embeddings
of the stock will be fed into a GRU with a temporal attention layer,
a hypergraph convolution network and a linear neural network, to
obtain a prediction. (B) Stock features will directly pass through a GRU,
temporal attention layer and hypergraph convolution network, in order
to obtain another prediction, which will be concatenated with the one
generated by model A as �̂�𝑠. Additionally, adversarial examples after
the hypergraph convolution will also be fed into the linear prediction
layer and yield a �̂�𝑎𝑑𝑣. Then we use the max voting here to classify the
sample as the class �̂�𝑠 and �̂�𝑎𝑑𝑣 with the highest votes.

. Experiments

.1. Experimental setup

Dataset In this paper, we use the dataset from Cui et al. (2021), con-
aining 758 frequently traded stocks collected from the A-share market
n China between 01/04/2013 and 12/31/2019, to be fairly compared
ith Cui et al. (2021). In the future, we will collect data from other
arkets like US or Europe to further validate our framework. Each

tock in the dataset has six attributes: the opening price, high price, low
rice, close price, trading amount, and value. All the input features of
tocks have been min–max normalised. If some stocks lack trading data
uring a temporary suspension period, the price attributes of the most
ecent day before the suspension will be used. We split the dataset into
hree parts: 60% for training, 20% for validation, and 20% for testing
n line with Cui et al. (2021). The validation set is utilised to optimise
he hyperparameters of our model. The industry information groups
tocks into 104 industry categories, defined by the Shenwan Industry
lassification Standard,3 and ‘fund-holding’ information is learnt from
uarterly portfolio reports of the 61 mutual funds established before
013 in the A-share market, similar as Cui et al. (2021). Details of the
ataset are shown in Table 1.
Baselines We compare against prior works, from one trading

ethod, mean reversion (MR), one conventional LSTM model, one
ual attention LSTM and five recently proposed graph neural network
lgorithms as baselines for stock movement prediction.

• MR: the model applied a mean reversion indicator to predict the
local trend reversion by assuming extreme changes in the price
will revert back to its previous state (Serban, 2010).

• LSTM: the model applied LSTM to predict future movements of
stock prices (Nelson et al., 2017).

• DARNN: the model proposed a dual stage attention with recur-
rent neural network to selectively harness relevant features for
efficient prediction (Qin et al., 2017).

3 http://www.swsindex.com/idx0530.aspx.
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• GCN+LSTM: the model applied GCN to learn relationships among
stocks via feeding embeddings of stocks to an LSTM network
(Chen et al., 2018).

• HATS: the model used a hierarchical attention network to adap-
tively learn the importance of different relation types for stock
prediction (Kim et al., 2019).

• TGC: applied a novel temporal graph convolution to model the
temporal evolution jointly, and relational embeddings of stocks
for prediction (Feng et al., 2019).

• STHGCN: proposed a novel Spatio-Temporal Hypergraph Convo-
lution Network to learn stock price evolution over stock industry
relations (Sawhney et al., 2020).

• HGTAN: proposed a novel hypergraph tri-attention network to
predict the stock price movement and considered both industry-
belonging and fund-holding information (Cui et al., 2021). This
represents the current state of the art

Parameters We implement the proposed ensemble learning frame-
ork with PyTorch 1.10.2 and CUDA 10.2. According to Ye et al.

2021), the length of historical information impacts model perfor-
ance; here, we thus test the model with different lengths of trading

nformation: the past 5, 10 and 20 trading days. Hyperparameters are
orrowed from Cui et al. (2021), optimised with the same validation
et, for a fair comparison: the feature dimension of a stock is set as
6 and batch size as 32; the hidden units’ size of GRU is 32 and the
imensions of 𝑑𝑘 and 𝑑𝑣 in the temporal attention mechanism are both
. The maximum number of epochs is 600 and the dropout rate is 0.5. 𝛽
n the loss function 3 is set as 1𝑒−2, as in Feng et al. (2018). We use the
ame settings for the baseline models as their public implementations.
Evaluation We use accuracy, precision, recall, and F1 score to

valuate the classification performance of the proposed model, which
re calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(10)

here 𝑇𝑃 and 𝑇𝑁 are the correctly predicted positive classes and
egative classes, respectively. 𝐹𝑃 and 𝐹𝑁 denote the falsely predicted
ositive classes and negative classes, respectively. As we implement
ulti-label classification (3 movement directions), the metric is cal-

ulated in macro-setting using the scikit-learn library. For instance,
recision is calculated as:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑇𝑃𝑟

𝑇𝑃𝑟 + 𝐹𝑃𝑟
+

𝑇𝑃𝑠
𝑇𝑃𝑠 + 𝐹𝑃𝑠

+
𝑇𝑃𝑓

𝑇𝑃𝑓 + 𝐹𝑃𝑓
) ∗ 1

3
(11)

where r, s and f refers to rise, steady and fall, respectively.

4.2. Effectiveness results on the real world dataset

Tables 2, 3, and 4 show the future stock price movement prediction
performance of different models on the real-world benchmark datasets,
with the past 5, 10 and 20 trading days as lengths of the look-back
window. MONEY mostly significantly outperforms all baselines in pre-
cision, recall and F1 score metrics, where it exceeds the second best
by an average of 1.14%, 3.63% and 2.45% for three trading lengths.
F1 value considers both precision and recall measurements, which
enhances models’ sensitivity and generalisation ability for performance
evaluation (Sokolova et al., 2006). In stock investment, we prefer to
seize every chance to earn profits (high recall: proportion of actual
positives correctly identified) and expect to earn more each time (high
precision: proportion of positive identification being correct). Therefore
we believe that the F1 score is the most important metric of these
four metrics. In such a case, our proposed MONEY model significantly

http://www.swsindex.com/idx0530.aspx
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Table 2
Classification performance of baselines and the proposed model with 5 trading days as
record.

Method Accuracy Precision Recall F1

MR 35.59% 39.37% 33.77% 36.36%
LSTM 34.92% 35.34% 33.91% 34.27%
DARNN 37.68% 37.81% 35.17% 36.43%
GCN+LSTM 37.24% 37.23% 33.54% 35.22%
HATS 38.74% 36.92% 34.29% 35.52%
TGC 37.43% 38.28% 34.05% 36.01%
STHGCN 38.53% 37.35% 34.65% 35.89%
HGTAN 39.51% 38.90% 36.96% 37.89%
MONEY 38.67% 42.06% 41.80% 41.93%

Table 3
Classification performance of baselines and the proposed model with 10 trading days
as record.

Method Accuracy Precision Recall F1

MR 34.73% 29.34% 31.79% 30.52%
LSTM 35.09% 38.09% 34.37% 35.90%
DARNN 38.89% 38.59% 35.22% 36.82%
GCN+LSTM 37.44% 39.07% 34.49% 36.62%
HATS 38.05% 39.23% 34.52% 36.67%
TGC 38.42% 39.35% 35.72% 37.44%
STHGCN 38.81% 36.57% 35.11% 35.75%
HGTAN 39.83% 41.72% 37.32% 39.37%
MONEY 41.04% 39.83% 41.79% 40.79%

Table 4
Classification performance of baselines and the proposed model with 20 trading days
as record.

Method Accuracy Precision Recall F1

MR 35.32% 38.03% 33.60% 35.68%
LSTM 35.03% 36.43% 34.23% 35.20%
DARNN 38.41% 37.99% 39.24% 38.60%
GCN+LSTM 37.30% 39.28% 34.16% 36.54%
HATS 38.85% 38.70% 35.06% 36.78%
TGC 37.81% 36.96% 34.49% 35.67%
STHGCN 38.45% 37.22% 32.82% 34.87%
HGTAN 40.02% 41.77% 39.03% 40.32%
MONEY 39.90% 43.92% 40.61% 42.20%

improves the F1 score by 7.34% in total using the Wilcoxon signed-
rank test and is more advanced, compared with the state-of-the-art
HGTAN, particularly without using complex triple attention among
hyperedges and hypergraphs. This demonstrates the effectiveness of
capturing group-level and pairwise information via hypergraph convo-
lution and GCN on stock price movement. For the accuracy metric, our
model obtains the highest value for the ten trading days window and
performs relatively competitively with knowledge of the past 20 and 5
trading days. The improvement of using adversarial training is analysed
in Section 4.4.

4.3. Investment simulation and profitability

We compare our MONEY model with competitors from 04/23/2019
to 05/09/2019, ten trading days in total, following the same forecasting
window size as in Cui et al. (2021), and depict it in Table 5. It gains
the highest accuracy in five days and the crucial advantage of our
proposed framework, MONEY, is its significantly stable performance in
prediction.

It achieves over 70% accuracy (all accuracies higher than 70%
underlined) in seven days, while the state-of-the-art, HGTAN, only has
such performance in three days, and the remaining models mostly
have accuracy higher than 70% in one of the ten trading days. We
normalised four important market indexes: Hushen 300, Shenzheng
Zongzhi, Shangzheng 50 and Zhongxiao 300 to visualise in Fig. 6, and
they all plummeted into a so-called ‘bear market’ during the ten trading
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days. More specifically, the most representative index Hushen 300, con-
sisting of the 300 largest market capitalisation and most liquid stocks,
fell from 4019 on 04/23/2019 to 3599.7 on 05/09/2019 rapidly, and
the investors all panicked. Fig. 7 shows falling stocks are the majority
for seven days (04/23, 04/25, 04/26, 04/29, 05/06, 05/08, 05/09),
and our method constantly obtains over 70% accuracy, except for one
day, which illustrates the effectiveness of our method in comparison to
other models, and its capacity to avoid loss.

Similar to Cui et al. (2021), we compare the profitability of different
models from 08/31/2018 to 10/31/2019, shown in Table 6. CR is the
cumulative return rate, frequently used in profitability analysis (Jacobs
and Levy, 1988). SR denotes the Sharpe ratio, which measures invest-
ment return with the associated risk (Sharpe, 1966; Magdon-Ismail and
Atiya, 2004):

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐸(𝑅𝑠) − 𝑅𝑓

𝜎𝑠
(12)

where 𝐸 is the expected value, 𝑅𝑠 is the return rate of stock 𝑠 and
𝑅𝑓 is the risk-free rate (1.5% as one-year deposit interest rate in
2019), and 𝜎𝑠 denotes the standard deviation of the stock excess return.
Our method reaches the highest cumulative return rate, 22.33%, with
competitive performance at risk management with the highest Sharpe
ratio of 0.775, which indicates it returns more profit compared with
other models under the same risk situation.

4.4. Ablation study

We compare the classification performance of our MONEY frame-
work, its separate components and the second best model HGTAN in
Table 7 on the dataset with knowledge of the 10 past trading days.
We thus demonstrate the improvement brought by each module, first
separately and then as a whole via our MONEY framework:

• GCN+GRU+TA+HGCN (Module A): GCN is firstly applied to pro-
cess historical price features with industry information augment-
ing the pairwise relations, followed by a GRU network with a
temporal attention layer (TA) and the generated embedding is
then fed into a hypergraph convolution network (HGCN) to learn
the industry and fund-holding group-level relations of stocks.

• GRU+TA+HGCN (Module B): a variant without pairwise relations
using GCN; otherwise it is the same as variant A.

• GRU+TA+HGCN+Adv (Module C): this variant does not consider
pairwise relations using GCN but extends HGCN with adversarial
training to enhance the generalisation ability to deal with the
stochasticity of stock features, as Feng et al. (2018) suggested,
compared with variant A.

• GRU+TA (Module D): this is the base component, which solely
considers historical price information.

• GRU+TA+GCN+HGCN (Module E): this is to compare with Mod-
ule A and demonstrates the effectiveness of applying GCN to
capture pairwise relations before RNN models.

• GCN + GRU + TA + Adv (Module F): this variant contrasts with
the MONEY method to validate the value of HGCN.

Overall, each module improves the performance compared to the
aseline (Module D) and our model outperforms all variants in terms
f recall and F1 score by using the synergistic power of all the modules
ogether. MONEY also significantly outperforms the state-of-the-art
ompetitor, HGTAN, in terms of accuracy, recall and F1 score and
elivers significantly stable performance in a bear market, as addressed
n Section 4.3. To be specific, when comparing modules A and B, GCN
mproves all four metrics in total 3.14%, particularly 1.03% in the most
ritical metric, F1 value, as discussed before. This validates our point
hat pairwise relations should not be neglected, even if we have already
onsidered group-level information. Compared with Module E, Module

significantly improves three measurements in total 5.11% (1.49%
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Table 5
Accuracy of stock movement prediction between 04/23/2019 and 05/09/2019.

Date 04/23 04/24 04/25 04/26 04/29 04/30 05/06 05/07 05/08 05/09

MR 16.23% 52.77% 9.76% 17.68% 19.13% 64.78% 7.12% 73.48% 25.33% 17.81%
LSTM 24.80% 46.44% 14.38% 22.43% 22.03% 66.49% 8.31% 69.92% 30.87% 20.32%
DARNN 35.36% 43.27% 20.19% 30.74% 24.14% 61.87% 14.12% 57.26% 30.61% 25.86%
GCN+LSTM 22.43% 48.02% 15.44% 21.50% 23.22% 63.72% 11.35% 71.11% 28.36% 18.73%
HATS 37.86% 38.26% 31.40% 38.13% 43.67% 50.53% 48.55% 50.26% 44.59% 33.25%
TGC 69.39% 38.26% 31.40% 38.13% 43.67% 50.53% 48.55% 50.26% 44.59% 33.25%
STHGCN 21.24% 27.44% 15.04% 23.88% 14.78% 66.62% 12.67% 75.20% 26.65% 19.26%
HGTAN 57.78% 22.03% 88.26% 60.16% 72.43% 16.62% 76.52% 31.27% 44.99% 56.07%
MONEY 71.37% 28.76% 70.84% 72.03% 27.18% 71.90% 71.77% 27.84% 70.84% 71.77%
Fig. 6. China a share market index trend.
Fig. 7. Different movement of stocks.
in F1 value) and performs competitively in terms of precision. The
result illustrates that price movement can be learnt more effectively
by using GCN before RNNs. GCN will first capture similar volatility
patterns of stocks in the same industry, enhancing the prediction abil-
ity of the following RNN models. Moreover, adversarial training can
significantly enhance the model’s robustness by considering the stock
price’s stochasticity, as the precision, recall and F1 score of module
C are all improved, compared with module B, at a reasonable cost
of downgrading the accuracy. Adding a hypergraph convolution to
module D, the fundamental function would improve by 2.41% in terms
of accuracy, shown in module B. The precision and F1 score can also
172
increase by 2.27% and 1.03%. In addition, the comparison between
MONEY and module F also demonstrates the need to use hypergraphs
to deal with the group-level information for stock price movement
prediction.

5. Conclusion and future directions

In this paper, we point out that existing work for stock movement
prediction suffers from insufficiently capturing both group-wise and
pairwise relations of relevant information rather than solely historical
price features, leading to a weak generalisation ability due to the
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Table 6
Profitability of different models during back test.

Method CR SR

MR 4.89% 0.123
LSTM 4.73% 0.147
DARNN 3.23% 0.083
GCN+LSTM 6.51% 0.217
HATS 11.55% 0.697
TGC 8.23% 0.513
STHGCN 6.23% 0.248
HGTAN 19.78% 0.699
MONEY 22.33% 0.775

Table 7
An ablation study of MONEY on dataset with 10 trading days as record.

Method Accuracy Precision Recall F1

Module A 41.38% 42.07% 39.35% 40.66%
Module B 41.28% 41.29% 38.11% 39.64%
Module C 40.01% 42.87% 38.56% 40.60%
Module D 38.86% 39.02% 38.20% 38.61%
Module E 40.37% 42.39% 36.42% 39.18%
Module F 39.38% 40.04% 37.34% 38.66%
HGTAN 39.83% 41.72% 37.32% 39.37%

MONEY 41.04% 39.83% 41.79% 40.79%

stochastic characteristics of stocks. We also demonstrate that pairwise
relation learning should be applied before RNN models rather than
later, as stocks display similar volatility patterns and using the GCN
model first to capture the patterns can enhance the prediction ability
of the following RNN models. Addressing these problems, we pro-
pose a novel ensemble learning framework, MONEY, to better assist
investors in predicting future trends of stocks. To effectively capture
pairwise information of industry, a graph convolution network is ap-
plied before RNN models. To capture the group-level information of
both industry and fund-holding, a hypergraph convolution network is
implemented after the GRU model with a temporal attention layer.
Adversarial training is introduced before the final prediction layer in
the model (B) to simulate the stochastic movement during training.
Ensemble learning allows the two models to complement each other,
keeping their benefits and enhancing learning about these relations
and robustness. All components are jointly trained on real-world stock
market datasets. Our model significantly outperforms the state-of-the-
art for most of the indicators without using complex triple attention
mechanisms among hyperedges and hypergraphs and provides much
more stable performance, particularly when facing a bear market.

As aforementioned, we only test our model in one market, and the
time period does not include Covid-19 to be comparable with Cui et al.
(2021). It is a limitation and in future, we will explore the method
in different markets. More advanced deep learning methods, including
graph contrastive learning (Sun et al., 2022b) and graph dynamic
attention (Brody et al., 2021; Sun et al., 2022a) can also be applied
for stock prediction tasks.
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