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Abstract
In this paper, we provide relations among the following properties:

(a) the tail triviality of a probability measure u on the configuration space Y;
(b) the finiteness of a suitable L?-transportation-type distance dy;
(c) the irreducibility of local w-symmetric Dirichlet forms on Y.

As an application, we obtain the ergodicity (i.e., the convergence to the equilibrium)
of interacting infinite diffusions having logarithmic interaction and arising from deter-
minantal/permanental point processes including sine,, Airy,, Bessely 2 (@ > 1), and
Ginibre point processes. In particular, the case of the unlabelled Dyson Brownian
motion is covered. For the proof, the number rigidity of point processes in the sense
of Ghosh—Peres plays a key role.
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1 Introduction

The ergodicity (i.e., the convergence to the equilibrium) of interacting particle systems
is one of the significant hypotheses supporting the foundation of statistical physics.
In this paper, we study the ergodicity in terms of the theory of optimal transportation
and of the theory of point processes.

The author gratefully acknowledges funding by the Alexander von Humboldt Stiftung.

B Kohei Suzuki
kohei.suzuki@durham.ac.uk

1 Department of Mathematical Science, Durham University, South Road, Durham DH1 3LE, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-023-01243-3&domain=pdf
http://orcid.org/0000-0002-3048-9738

584 K. Suzuki

Configuration spaces. The configuration space Y = Y (X) over a locally compact
Polish space X is the set of all locally finite point measures on X:

N
Y(X):= {y:Zﬁxi:xieX, N eNogU{+o0}, y(K)<oo KEX;.
i=1

The space Y is endowed with the vague topology t, defined by the duality of com-
pactly supported continuous functions on X, and with a Borel probability measure 1,
understood as the law of a proper point process on X.

Interacting diffusions. A system of many interacting diffusions on the base space X
can be thought of as a single diffusion on Y, provided the system does not condense
too much by itself in the sense that every compact set in X contains only finitely many
particles throughout the time evolution. There have been a large number of studies on
a diffusion in Y, in particular, on a system of infinite stochastic differential equations
on R”, written ‘formally’ as

dxf=—évc1>(xf)dt—§va(xk,xf)dz+d3", keN, (1.1)

2 ik

whereby @ is a free potential, W is an interaction potential between particles, 8 >
0 is a constant called inverse temperature, and (Blk) reny are independent Brownian
motions on R”. One approach addressing a solution to (1.1) is to construct a u-
symmetric Dirichlet form (5T’“, F T’“) on L%(Y, 1), where u is a (quasi-) Gibbs
measure corresponding to the potentials ® and W, see, e.g., [4, 55] for Ruelle class
potentials; [14, 26, 38, 40, 42, 50, 52, 54] for more general interactions including
logarithmic potentials. Other approaches to tackle (1.1) have also been studied such
as the construction of time-correlation functions in [16, 29, 35]; the construction of
the unique strong solution to (1.1) in the case of the Dyson models in [53]. We refer
the readers to Rockner [48] and Osada [41] and also to Dello Schiavo and Suzuki [14,
Sect. 1.6] for more complete accounts and references.

Ergodicity. Regarding solutions to (1.1), the convergence to the equilibrium measure

w is characterised as the ergodicity of the L?(u)-semigroup {StT "} corresponding to
(EY-#, FY-1), which is defined as

2
/ <Sf’“u —f udu) du =250, ue L (w.
e T

An equivalent characterisation is the irreducibility (also called the L>-Liouville prop-
erty) of (ET-#, FYH), je.,

EVHW)=0 = u= const. p-ae.

See, e.g., Albeverio et al. [2, Proposition 2.3] for equivalent characterisations of the
ergodicity. Up to now, there were only few known examples, where one could show
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the ergodicity of {S,Y "} in the case of infinite particle diffusions: one is a a class of
Ruelle-type Gibbs measures with a compactly supported interaction potential and a
small activity constant z [4, Corollary 6.2]; the other is a labelled particle system
corresponding to the sine, process, which has been recently addressed in [44] by
relying upon the arguments of strong solutions to (1.1) developed in [43]. The case
of the unlabelled interacting diffusions corresponding to the sine; process (i.e., the
unlabelled infinite Dyson Brownian motion) is addressed in this article as a particular
case. The same case is dealt with in [37], which has been uploaded to arXiv almost at
the same time as this article; however, Osada and Osada [37] deals with this particular
case only.

Optimal transport theory on Y. If the base space X is equipped with a metric d,
the configuration space Y is equipped with the L2-transportation (also called: L>-
Wasserstein, or L2—Monge—Kantorovich—Rubinstein) distance

172
dy (y. n) = inf (/X & (x. y) dq(x,y)) ,

where the infimum is taken over all measures g on X** with marginals y and 5. As
opposed to the case of the space of probability measures having finite second moment
(i.e., the L%-Wasserstein space), the function dy is not a distance function since it
attains the value +o0 (e.g., when the total masses of y and 5 are different, or the tails
of y and 5 are not close enough), and this happens often, in the sense that this occurs
on sets of positive measure for any reasonable choice of a reference measure on Y.
The function is, therefore, called extended distance. In this article, we use a variant of
dy defined as

- dy(y,n) if yge = nge for some bounded set E,
dy(y,n) = .
+00 otherwise.

Recent studies have revealed that the L>-transportation distance is the right object to
describe geometry, analysis and stochastic analysis in Y such as the curvature bounds
on Y [15, 17, 52], the consistency between metric measure geometry and Dirichlet
forms [14, 46], characterisations of BV functions and sets of finite perimeters on Y
[8] and the integral Varadhan short-time asymptotic [15, 56].

Theory of point processes. A probability measure (1 on Y is said to be tail trivial
(T)2.6 if (see Definition 2.6)

w(A) € {0, 1} whenever A is a set in the tail o-algebra.

From a probabilistic viewpoint, the tail triviality is in essence a form of 0—1 law. This
property has been originally discussed in relation to phase transition of Gibbs states
(i.e., non-uniqueness of Gibbs measures with a given potential) and it is equivalent to
the extremality in the convex set of Gibbs measures with a given potential (see [21,
Corollary 7.4]). The tail triviality has been extended also to determinantal/permanental
point processes by Lyons [30] and Shirai and Takahashi [51] independently. Since
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then, it has been further developed for a wider class of determinantal/permantental
processes both in continuous and discrete settings by various studies, see Example 2.7.
A probability measure p on Y is said to be number rigid [Assumption (R); g] if the
following holds w-almost surely for every bounded Borel set E:

Vlee=nlee = y(E) =n(E).

Namely, if two configurations y and 7 coincide outside E, then the numbers of par-
ticles inside E for y and n coincide. The study of this remarkable spatial correlation
phenomenon has been initiated by Ghosh [22, 23] and Ghosh and Peres [25] for sine,,
Ginibre and GAF point processes and it has been further developed for other point
processes, see Example 2.9 for further references.

Setting. In this article, we work in the following setting. Let X = R” be the n-
dimensional Euclidean space and d be the Euclidean distance on R". Let (B,),.cy be
a monotone increasing sequence of convex compact domains covering R” and m, be
the Lebesgue measure restricted on B,.. For E C R", define the projection pr : T >
y +— yg := y | by the restriction of y on E. For a Borel probability measure p
on Y, define u(- | -gc = npe) to be the regular conditional probability measure with
respect to the o-algebra o (prc) conditioned to be n € Y. Define the corresponding

push-forward measure and its restriction on YHB,) = {y e Y(B)) : v(B,) =k}
by

w) = (prg e (- | -ge =npe). Wl = wl kg, -

We denote by y, the Poisson—Lebesgue measure on Y (B,) with intensity m, and by
n,’;r the restriction on Y*(B,). Let ' Y(B) be the square field on Y (B,) defined as

2

’

oo oo
k
PYE) ) = 3T B ) 1= 30V ulpu
k=0 k=0

where VOF is the symmetric product of the gradient operator V on R”.
List of assumptions. We say that u satisfies

e strong conditional absolute continuity (CAC')3 1 if
pl* ~ak ke Kli={keNo:pu!(Y(B,) >0} reN pae n

e conditional closability (CC)3 if the form

£XB () Z/r FYB () dpe?
(8)

is L?(u1)))-closable on a certain core (see Definition 3.2) for p-a.e. n and every
r € N. We denote its closure by (ET(B’)*’L?, @(ET(B")’“;]));
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e conditional irreducibility (Cl)4 1 if
SY,[L,TJ (M) — O, uc @(EY(Br);M;I) e u'T"(B,) = C;]’k //Ll,/]’k-a.e.,

for p-a.e. n,r € N, k € K, where C* is a constant depending on r, 7, k.

Under (CAC)3,; and (CC)3 2, we constructa Dirichlet form (€Y#, 2(£Y#)) in Propo-
sition 3.18. Let FX-# ¢ 2(EY*) be any closed subspace satisfying the Markovian
property, i.e, FX# is a closed subspace in 2(£Y°*) and it is also closed under unit

contraction [see (2.1)], which is called a Markovian subspace. We say that the form
(EX-1, FY-1) satisfies

e Rademacher-type property (Rad&y,ﬂ)ﬂl if
Lipy(dy, 1) € FX#*, TV () < Lipg, ),

where Lipb(ay, W) is the space of bounded ay-Lipschitz u-measurable functions
onY;
e quasi-regularity (QR)3.oq if

(EXH, FY1y is quasi-regular in (Y, 7y),
see Sect. 2.2 for the definition of the quasi-regularity.

Main result. We define the following function associated with the L?-transportation-
type distance dvy:

dy (8, A) := p-essinf inf dy(y,n) E,A CTY.
YEE neA

We now state the main theorem, where we provide relations among the following three
properties:

(@) w is tail trivial (T)2.6;
(b) dq (A, B) < oo whenever A is u-measurable, B is Borel and 1 (A)u(B) > 0;
(©) (EYH, FYH) is irreducible.

Theorem| (Theorem 4.6) Let u be a Borel probability measure on Y. Then,

o (b) = (a);
e if (R)2.8 holds, then (a) = (b).

Suppose that u satisfies (CAC')3.1 and (CC)3 2, and FYu o gEY1y s any closed
Markovian subspace. Then the following hold.

e if (Cha.1, (QR)3.20 and (R)2.8 hold, then (b) = (c);
° if(RadaT,ﬂ)}m holds, then (¢c) — (b).

We therefore have the following relation between the tail triviality and the irre-
ducibility.
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Corollary | (Tail triviality and Irreducibility, Corollary 4.7) Let u be a Borel proba-
bility measure on Y satisfying (CAC')3.1, (CC)3.2, and let FX-* < 2(EVH) be any
closed Markovian subspace. Then the following hold.

o If (Ch4.1, (QR)3.20 and (R)2.g hold, then
wis tail trivial = (ECH, FOM) s irreducible

e If Radg_)321 holds for FX,

ECH, FORY s irreducible = is tail trivial.

Applications. The first application of Theorem I as well as Corollary I is to con-
siderably enlarge the list of (long-range) interactions for which one can prove the
ergodicity of infinite particle systems. As an illustration, we will prove in Sect. 6 that
(EX-#, FY1) is jrreducible (i.e., {Sl‘T "*} is ergodic) for all the measures y belonging
to sinep, Airy,, Bessely > (@ > 1), and Ginibre point processes. In particular, the

semigroup {S,T "} associated with the unlabelled Dyson Brownian motion is covered.

The second application is to show the finiteness of the L’-transportation distance
dy (A, B), as well as of dy (A, B), between sets A, B C Y. As both dy and dv take
value +o00 on sets of positive measure, it is not straightforward to answer the following
geometric question:

when are dy (A, B) and dy (A, B) finite?

Theorem I tells us the finiteness of aT(A, B) (thus, also the finiteness of dy (A, B) as
dy < dy by definition) only by checking the positivity of measures p(A)u(B) > 0,
due to the tail triviality (T)2.¢ and the number rigidity (R)».g of u.

Comparisons with [4]. For a class of Gibbs measures or measures satisfying a certain
integration-by-parts formula (denoted by (IbP1) and (IbP2) in [4, Theorem 6.2, 6.5]),
relations between the ergodicity and the extremality of these measures have been
studied. We compare our result with theirs in the following three points:

e Choice of a core. Albeverio et al. [4] studies Dirichlet forms whose core consists
of cylinder functions while our Dirichlet forms have a flexibility for the choice
of a core, which for instance allows us not only to choose cylinder functions, but
also local functions as well as Lipschitz functions. This broadens the scope of
applications significantly as cores of Dirichlet forms corresponding to long-range
interactions constructed so far (e.g., [14, 26, 38, 40, 42, 50, 52]) are covered by
our setting, but not necessarily covered by the setting of cylinder functions.

e Extremality vs. tail-triviality. Albeverio et al. [4] proves that the extremality of
a class of Gibbs measures implies the ergodicity. The concept of the extremality
is equivalent to the tail triviality when Gibbs measures are considered, see [21,
Corollary 7.4]. However, the extremality is not necessarily defined beyond Gibbs
measures nor beyond measures satisfying (IbP1) and (IbP2), and many point
processes coming from random matrix theory are not always described as Gibbs
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measures nor do they satisfy (IbP1) and (IbP2). Rather they are described by
determinantal or permanental structures or by a scaling limit of eigenvalue distri-
butions of random matrices. In contrast, the tail triviality is a concept that can be
defined for arbitrary point processes, because of which Theorem I can be applied
also to the latter cases.

e Maximal domain vs. Rademacher-type property. Albeverio et al. [4] proves that the
irreducibility of the maximal Dirichlet form implies the extremality of Gibbs mea-
sures, which corresponds to (¢) = (a) in Thereom I. We however only assume
the Rademacher-type property (Rad dr, #)3,21 of our Dirichlet form, whose domain
is in general smaller than the maximal form. As the irreducibility of a larger domain
is a stronger statement, Theorem I proves the extremality of Gibbs measures (as
well as the tail triviality of general measures) under a weaker assumption.

Geometry and statistical physics. We would like to draw the reader’s attention to the
fact that the relation between (b) and (c) in Theorem I provides a relation between
the ergodicity of interacting diffusion processes and a quantitative information of
the optimal transport distance, where the ergodicity is a statistical-physical concept,
while the finiteness of the L2-transportation distance between -positive sets is a
purely geometric concept of the extended metric measure space (Y, dy, ).

We close this introduction by providing an outlook on further improvements. The
number rigidity (R),.g requires a strong spatial correlation to u, which is, however,
not a necessary condition for the ergodicity. Indeed, Albeverio et al. [3, Theorem 4.3]
proved the ergodicity for the Poisson measures, which obviously do not posses the
number rigidity (R)2 g, since the laws of the Poisson point processes inside and outside
bounded sets are independent. A challenging question is whether we can prove the
ergodicity of Dirichlet forms for general tail trivial invariant measures without (R); g.

Organisation of the paper. In Sect. 2, we introduce necessary concepts and recall
results used for the arguments in later sections. In Sect. 3, we construct Dirichlet forms
on Y. In Sect. 4, we prove the main results. In Sect. 5, we give sufficient conditions
to verify the main assumptions of Theorem I. In Sect. 6, we confirm that Theorem I
can be applied to sinep, Airy,, Bessely > (@ > 1), and Ginibre point processes.

2 Preliminaries
2.1 Numbers, tensors, function spaces

We write N := {1,2,3,...},Ng = {0, 1,2,...}, N := NU {00} and Ny := No U
{+o0}. The uppercase letter N is used for N € Ny, while the lowercase letter n is used
for n € Np. We shall adhere to the following conventions:

o the superscript (1*V (the subscript (I, y) denotes N-fold product objects;
o the superscript 0%V (the subscript gy ) denotes N-fold tensor objects;
o the superscript (J°V (the subscript [,y ) denotes N-fold symmetric tensor objects.

Let (X, 7) be a topological space with o-finite Borel measure v. A subset A C X is
called a domain if A is open and connected. A subset A C X is called a closed domain
if A is the union of a domain and all of its limit points. A subset A C X is called
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a compact domain if A is a closed domain and compact. Throughout this article, we
shall use the following symbols and phrases:

(a) LP(v) (1 < p < o0) for the space of v-equivalence classes of real-valued func-
tions u so that |u|” is v-integrable when 1 < p < oo, and u is v-essentially
bounded when p = oo; The L?(v)-norm is denoted by ||u||§ = ||u||€p(v) =
fX [u|? dv for1 < p < o0, and |[u|lc = |lull L) := esssupy |u|; When p = 2,
the inner-product is denoted by (u, v)2 = (4, V) 2, = fx uv dv;

(b) LY@w®") := {u € LP(v®") : u is symmetric} where u is said to be symmetric
if u(xy,...,xk) = ulxe(1y, ..., Xok)) for every element o in the k-symmetric
group Si;

(c) AB(X, 1) for the Borel o-algebra; (X, t)" for the completion of Z(X, t) with
respect to v; Z(X, t)* for the universal o -algebra, i.e., the intersection of Z(X)*
among all Borel probability measures p on X (we do not specify the topology
and simply write A(X), B(X)", B(X)* where the topology is clear from the
context); Measurable functions with respect to #(X), Z(X)", Z(X)* are called
Borel measurable, v-measurable, universally measurable respectively.

(d) Cp(X) for the space of T-continuous bounded functions on X; if X is locally com-
pact, Co(X) denotes the space of T-continuous and compactly supported functions
on X; Cg°(R") for the space of compactly supported smooth functions on the n-
dimensional Euclidean space R";

(e) 14 for the indicator function on A, i.e., 14(x) = 1 if x € A and 14(x) = 0
otherwise; 8, for the Dirac measure at x, i.e., §x(A) = lifx € Aand §,(A) =0
otherwise;

(f) A sequence (B, )N of subsets in X is called an exhaustion if B, C B, whenever
r < r’and U,enB, = X; If B, possesses a certain property P for every r € N
(e.g., By is compact, convex, or a domain), we call it P exhaustion (e.g., compact
exhaustion, compact convex exhaustion, domain exhaustion).

2.2 Dirichlet form

We refer the reader to Ma and Rockner [33] and Bouleau and Hirsch [5] for this
subsection. Throughout this article, a Hilbert space always means a separable Hilbert
space with inner product (-, -) g taking values in R.

Dirichlet form. Given a bilinear form (Q, Z(Q)) on a Hilbert space H, we write
Q):=Q0,u), Qu,v):=0w,v)+a,v)g, a>0.

Let (X, X, v) be a o-finite measure space. A symmetric Dirichlet form on L*(v) is
a non-negative definite densely defined closed symmetric bilinear form (Q, Z(Q))
on L% (v) satisfying the Markov property (i.e., the closedness under unit contraction)

ug:=0vunlez(Q) and Q(ug) < Qw), uec P(Q). 2.1

We note that (2.1) is equivalent to the closedness under normal contraction [18, Theo-
rem 1.4.1]. Namely, if u € Z(Q) and v is a normal contraction of u, then v € Z(Q).
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Here v is a normal contraction of u if there exists a v-measurable version v (resp. 1) of
v (resp. u) so that |v(x)| < |u(x)| forevery x € X and |v(x) — v(y)| < |a(x) —u(y)|
for every x, y € X.

Throughout this article, Dirichlet form always means symmetric Dirichlet form. A
subspace F C 2(Q) is called Markovian subspace if (2.1) holds for every u € F. If
not otherwise stated, Z(Q) is always regarded as a Hilbert space with norm

I lzc0) = Q1) == Q) + 1 I35,

To distinguish Dirichlet forms defined in different base spaces with different reference
measures, we write Q%" to specify the base space X and the reference measure v.
We denote the extended domain of Z(Q) by Z(Q),. defined as

D(Q)e :={u : X — R : v-measurable, |u| < cov-a.e.
Huplneny € 2(Q) Q-Cauchy s.t. u, — u v-ae.} 2.2)

Square field. A Dirichlet form (Q, Z(Q)) admits square field T if there exists a
dense subspace H C Z2(Q) N L*°(v) so that for every u € H, there exists v € L! v)
so that

20uh,u) — Q(h, u?) = / hvdv h e 2(0)NL>®®Wv).
X

In this case, v is unique, and denoted by I'(u#). The square field I" can be uniquely
extended to an operator on Z(Q) x 2(Q) — L'(v) [5, Theorem 1.4.1.3].

Resolvent, semigroup and generator. We refer the reader to [33, Chapter I, Sect. 2]
for this paragraph. Let (Q, Z(Q)) be a symmetric closed form on a Hilbert space H.
The infinitesimal generator (A, Z(A)) corresponding to (Q, Z(Q)) is the unique
densely defined closed operator on H satisfying the following integration-by-parts
formula:

—(u, Av)g = Q(u,v) Yu € 2(0), v e Z(A).
The resolvent operator. { Ry }o~0 is the unique bounded linear operator on H satisfying
Ou(Ryu,v) = (u,v)g Yue H ve 2(Q).

The semigroup. {T;};~¢ is the unique bounded linear operator on H satisfying
oo
Gy :/ e “Tudt ueH.
0

Irreducibility. Let (Q, 2(Q)) be a Dirichlet from on L%(v) and {T;};~0 be the
corresponding Lz(v)—semigroup. A v-measurable set A C X is {T;};~o-invariant if
T;(1qu) = 14 T;u for every u € L?(v)andt > 0. We say that {T;};~¢ is irreducible
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if every {T;},~o-invariant set A satisfies either v(A) = 0 or v(X \ A) = 0. If the total
mass of v is finite, the following are equivalent (see e.g., [2, Proposition 2.3]):

(1) {T;}s>0 is irreducible;
(i) (Q, 2(Q)) possesses the L>-Liouville property:

Qu)=0 =— u= const. v-ae.; 2.3)

(i) {T;};>0 is ergodic:

2
/(T,u —/ udv) dv =% 0, uce Lz(v).
X X

Following the convention of Albeverio et al. [2], we call (Q, Z(Q)) irreducible
if (2.3) holds and v(X) < oo.

Locality. Let (Q, 2(Q)) be a Dirichlet form on L2 (v). It is called local if for every
F.GeCXR)andu € 2(Q),

supp[F]1N supp[G] =9 — Q(Fpou,Goou) =0,

where Fy(x) := F(x) — F(0) and Go(x) := G(x) — G(0) (see [5, Definition 5.1.2 in
Chapter I).

Quasi-notion. Let (X, ) be a Polish space and v be a o -finite Borel measure on X
and (Q, 2(Q)) be a Dirichlet form on L?(v). For any A € Z(X), define

2(0)a:={ue2(Q):u=0v-ae.onX\A}.

A sequence (Ap),eny C A(X) is a Borel nest if Upen2(Q) 4, is dense in Z(Q). A
closed (resp. compact) nest is a Borel nest consisting of closed (resp. compact) sets. A
set N C X is exceptional if there exists a closed nest (F},),cn so that N C X\ U, Fj,.
Itis a standard fact that any exceptional set N is v-negligible (see, e.g., [33, Exe. 2.3]).
A property (p,) depending on x € X holds guasi-everywhere (in short: g.e.) if there
exists a polar set N so that (p,) holds for every x € X \ N. For a closed nest (F,), N,
define

C((Fyen) ={u:A—R:U;>1F, CACX, ul|p, is continuous for every n € N}.

A function u defined quasi-everywhere on X is quasi-continuous if there exists a
closed nest (Fy,),en so that u € C((Fp),en)-

A Dirichlet form (Q, 2(Q)) on L?(v) is quasi-regular if the following conditions
hold:

(QR1) there exists a compact nest (A;),eN;

(QR2) there exists a dense subspace D C Z(Q) so that every u € D has a quasi-
continuous v-version it;

(QR3) there exists {u, : n € N} C Z(Q) and a polar set N C X so that every u, has
a quasi-continuous v-version i, and {it,, : n € N} separates points in X \ N.
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Maximal function. Let (Q, 2(Q)) be a local Dirichlet form on L2(v) with 1 €
2(Q) having a square field I'2. Define

Do :=f{u e 2(0)NL¥W) : T%u) < 1}.

By Hino and Ramirez [27, Theorem 1.2], for a v-positive measure set A C X, there
exists a unique v-measurable function d,, 4 called maximal function satistying

(a) élv,A A ¢ € Dy for every ¢ > 0;

(b) dy,4 =0v-ae.on A;

(c) dy 4 is the largest function satisfying the previous two properties, i.e., if there
exists a function v satisfying (a) and (b), then

v < aU,A v-a.e.. 2.4)

2.3 Extended metric space

Let X be any non-empty set. A function d: X** — [0, oo] is called an extended
distance if it is symmetric, satisfying the triangle inequality and not vanishing outside
the diagonalin X*?,i.e.d(x, y) = 0iff x = y;adistanceifitis finite,i.e.,d(x, y) < 0o
for every x,y € X. A space X equipped with an extended distance d is called an
extended metric space (X, d). Let v be a measure on a o-algebra ¥ on X. Define

d(-, B) := inf d(-, y), d"(A, B) := v-essinf inf d(-,y), A,Be€X’, (2.5)
yEB A yEB

the latter of which is well-defined whenever inf e g d(-, y) is v-measurable (i.e., X"-
measurable).

Lipschitz algebra. A function f: X — R is called d-Lipschitz if there exists a
constant L > 0 so that

}u(x)—u(y)| <Ld(x,y), x,yeX. (2.6)

The smallest constant L satisfying (2.6) is called the (global) Lipschitz constant of u,
denoted by Lipy (). For any non-empty set A C X, define Lip(A, d), resp. Lip, (A, d)
as the space of all d-Lipschitz functions, resp. bounded d-Lipschitz functions on A.
For simplicity of notation, we omit specifying the base space X and simply write
Lip(d) :=Lip(X, d), resp. Lip,(d) :=Lip, (X, d) if no confusion can occur. Define
also Lip*(d) := {u € Lip(d) : Lipq(u) < o} and Lipj (d) := Lip®(d) N Lip,(d).
For a measure v on X defined on a o-algebra ¥ and a topology t on X, we define
respectively

Lip(d, v) := {u € Lip(d) : u is v-measurable},
Lip(d, ) := {u € Lip(d) : u is t-continuous},

and we further define Lip, (d, v), Lip} (d, v), Lip,(d, ) and Lipj (d, 7) for the corre-
sponding subspaces of v-measurable functions (resp. T-continuous functions).
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Let v be a finite measure on X and let (Q, Z(Q)) be a local Dirichlet form on
L?(v) having a square field I'C. We say that the Rademacher-type property holds for
Lip, (d, v) (resp. Lip,(d, 7)) if

Lip,(d, v) € 2(Q), T9(u) < Lipg(u)?, (Radg.,)

Lip,(d, 7) € 2(Q), T2(u) < Lipg(u)?, (Radg.,)

respectively.

2.4 Configuration space

A configuration on alocally compact Polish space X is an No-valued Radon measure y
on X, which is expressed by y = ZZN=1 8y, for N € No, where x; € X for every i
and y = 0 when N = 0. The configuration space Y = Y (X) is the space of all
configurations over X. The space Y is equipped with the vague topology 7y, i.e., the
topology generated by the duality of the space Co(X) of continuous functions with
compact support. We write the restriction ys :==7y |4 for A € Z(X) and the restriction
map is denoted by

Yy > pra(y) == va. 2.7
The N-particle configuration space is denoted by
YV (X) = {y eY:y(X)=N}, NeN.

Let G be the k-symmetric group. It can be readily seen that the k-particle configuration
space Yk is isomorphic to the quotient space X /&y

YE(X) = XOF .= x>k /&, k e N. (2.8)

The associated projection map from X *¥ to the quotient space X *¥ /& is denoted
by Pr. Forn € Y and E € #A(X), we define

TZ- ={y €Y :ygc =nge}. 2.9)

Conditional probability. For a Borel probability measure « on Y and E € AB(X),
p(- | pree() = nee)

denotes the regular conditional probability of p conditioned to be n € Y with respect

to the o-algebra generated by the projection map y € Y +— prg(y) = ye € Y(E)

(see e.g., [14, Definition 3.32]). Let ,u% be the probability measure on Y (E) defined
as

= (Prp)aun(- | pree() = nee), (2.10)
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and its restriction on the k-particle configuration space Y*(E) is denoted by M”E’k =
n

W Lk (E):

Remark 2.1 The conditional probability (- | prgc(-) = nge) is a probability measure

on Y whose support is contained in T% while ,u% is a probability measure on Y (E).

For every fixed 1, we identify the two of them without loss of information in the sense
that

prg : T% — Y (E) is a bi-measure-preserving bijection. (2.11)
Namely, the projection map prp is bijective with the inverse map prgl defined

as prg1 (¥) := y + nge, and both prp and pl‘El are measure-preserving between
the two measures (- | prge(-) = nge) and u:’g.

For a measurable functionu: ¥ — R, E € #A(X) and n € Y, we define

up(y):=u(y +nee) y € Y(E). (2.12)

By the property of the conditional probability, it is straightforward to see that for every

ue L),
/udM=/ [/ u'};du"Ei| du(n). (2.13)
Y r Ly @)

See, e.g., [14, Proposition 3.44]. For Q € A(Y), E € #(X)andn € Y, define Q% C
Y(E) as

QL :={y e Y(E):y +ne € Q). (2.14)
By applying the disintegration formula (2.13) to u = 1g, we obtain

n(£2) =/ 1 () de (). (2.15)

Poisson measure. Let (X, T, v) be a locally compact Polish space endowed with a
non-atomic Radon measure v satisfying v(X) < oo. The Poisson measure 1, on Y (X)
with intensity v is defined in terms of the symmetric tensor measures {v°F : k € N}
as follows:

() = e ”<X>Zu®k (-NY* X)) = e Z—(Pk)#\)@k (-nTHX)),
k=1
THC) = 0() Lpr ) - (2.16)

In the case that v is o -finite, take an exhaustion (B, ), <y so that v(B,) < oo forevery
r € N. The Poisson (random) measure , with intensity v is the unique probability
measure on Y satisfying
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(prp, gy = 7y, 1 €N (2.17)

The measure 7, does not depend on the choice of (B;),cn-

L>-transportation distance. Let (X, d) be a locally compact complete separable
metric space. For i = 1,2 let proj': X*> — X denote the projection to the i
coordinate for i = 1, 2. For y,n € Y, let Cpl(y, n) be the set of all couplings of y
and 7, i.e.,

Cpl(y, ) := Hq € . (X*?): projig =y, projiq = n} . (2.18)

Here .# (X *?) denotes the space of all Radon measures on X *. The L2—transp0rtation
extended distance on Y (X) is

1/2
dy(y,n):= inf ( dz(x,y)dq(x,y)) , inf@ =400. (2.19)
q€Cpl(y,n) \Jxx2

We refer thereader toe.g., [ 14, Proposition4.27,4.29, Theorem 4.37, Proposition 5.12]
and [46, Lemma 4.1, 4.2] for details regarding the L>-transportation extended distance
dy and examples of dy-Lipschitz functions. It is important to note that dy is an
extended distance in general, attaining the value +o00. Moreover, dy is lower semi-
continuous with respect to the product vague topology rvxz but not necessarily rvxz-
continuous.

We introduce a variant of the L2-_transportation extended distance, called L2-
transportation-type extended distance dy defined as

dy(y,n) if ype = npe forsomer >0,

dy(y,n) = (2.20)

+00 otherwise,
where (B;)ren is a compact exhaustion. The definition (2.20) does not depend on the
choice of an exhaustion. By definition, dy < dy on Y and dy = dy on Y(E) for
every compact subset £ C X. In particular, we have
Lip(Y, dy) C Lip(Y, ay), Lipa|Y (u) < Lipg, (u), u € Lip(Y, dy). (221

It can be readily seen readily that

dy(y,n) <oco <<= yge =nge,y(B) =n(B,) forsomer >0. (2.22)

Proposition 2.2 The map dy : Y>> — R is B(Y*?, 1}%)-measurable.

Proof According to (2.20), we can write

dy = dyla + colac, (2.23)
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where

A={(y.n) e Ir>0styg =np} =Uren{(y.m) € T% 1 ype = npe).
(2.24)

Let A, == {(y,n) € Y*?: yBe = npe}, which is tvxz—closed. As A is a countable
union of closed sets, we obtain A € %’(sz, ‘L'VXZ). Noting that dy is rvxz-lower semi-
continuous ( [46, (vi) Lem.4.1], see also [14, (vii) Proposition 4.27]), the function dy
is in particular %(sz, rvxz)-me_asurable, thus, the expression (2.23) concludes the
716 Sl r\,xz)-measurablility of dv. O

The following universal measurability of the distance function from a set will be
used in Theorem 4.6.

Proposition 2.3 Let A € A(Y, ty) and

dy(y, A) := inf dy(y, n). (2.25)
neiA

The map ¥ > y ar(y, A) is universally measurable (i.e., B(Y, ty)*-
measurable).

Proof It suffices to show that every sub-level set A, := {y € Y : dy(y, A) < r}is
universally measurable. Define I : Y(X %2y > R as

o / d(x, y)da(x, y).
X X2

The map I is lower semi-continuous in Y (X X2) ([46, (1) Lemma 4.1], see also [14,
(i1) Proposition 4.27]). The following set B, is, therefore, closed in Y (X x2y.

B, = {a eY(X*?) : I(@) < rz}.

Noting Y% c Y (X *?) is a Borel subset, the Borel setA € B(Y*?) defined in (2.24)
can be thought of as a Borel set in Y (X*2). Define B, := B, N A € Z(Y(X*?)).
By (2.20),

A, = {projie : o € B,.profe € A} = proj;,(far n (projg)—l(A)), (2.26)

where proj’ has been defined just before (2.18). As the map proj; CY(X*2) = Yis
continuous, the set B, N (proj#ﬁ)_1 (A) is a Borel set in Y (X *2). Noting the fact that a
continuous image of a Borel set in a Polish space is Suslin (e.g., [28, Theorem 21.10]),
we conclude by (2.26) that A, is a Suslin set in Y, therefore, universally measurable
(see, e.g., [19, 431B Corollary]). O

We present a lemma, which states that the operation (')’1’5 defined in (2.12) maps
from Lip(Y, dy) to Lip(Y(E), dy) and contracts Lipschitz constants.

@ Springer



598 K. Suzuki

Lemma2.4 Let u € Lip(Y, ay) and E C X be a Polish subset. Then, u"E €
Lip(Y(E), dy) and

Lipg, (u};) < Lipg (), n €Y. (2.27)
Proof Lety,¢ € Y(E)and n € Y. Then,

W (y) = uE (@] = lu(y +nge) — u(@ +nee)| < Lipg (w)dy (v + nge, ¢ +nee)
= Lipg (0dx (7. 0.
The proof is completed. O

Remark 2.5 By the same proof, one can replace ay with dy in the statement of
Lemma 2.4 and obtain

Lipg, (u}) < Lipg, (), ne Y. (2.28)

2.5 Tail triviality

Let (By), <y be a compact exhaustion. Let o ( prgc) denote the o-algebra generated
by the projection map ¥ > y +— prg.(y) = 5/35 € Y(Bf). We set 7(Y) :=
Nreno ( prye) and call it tail o -algebra. Bry the definition of the tail o-algebra .7 (),
every non-e;npty set & € 7 (Y) satisfies the following condition:

E=Y(B,)+ prgc(8), reN. (2.29)

Foraset 2 C Y, define 7p (E) := (prBﬁ»)_1 o prB;,-(E). By definition, E C 73, (E),
and 7p,(E) C 7p,(E) whenever r < r'. Define the tail set of E by

T(8) := UyenTs, (8). (2.30)

The tail set 7 (E) of E does not depend on the choice of the exhaustion (B,). It can
be readily shown that 7 (E) € (YY) and E C 7 (B).

Definition 2.6 (7uil triviality) A Borel probability measure © on Y (X) is called zail
trivial (T)o ¢ if

w(B) € {0,1} whenever E € 7 (Y). Mos

Example 2.7 The tail triviality has been verified for a wide class of point processes.

(1) (Determinantal point processes) Let X be a locally compact Polish space. Then,
all determinantal point processes whose kernel are locally trace-class positive
contraction satisfy the tail triviality (see [31, Theorem 2.1] and [7, 36, 51]). In
particular, sinep, Bessel,, 2, Airy, and Ginibre point processes are tail trivial.
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(i1) (Extremal Gibbs measure) A canonical Gibbs measure w is tail trivial iff w is
extremal (see [21, Corollary 7.4]). In particular, Gibbs measures of the Ruelle type
with sufficiently small activity constants are extremal (see [47, Theorem 5.7]).

2.6 Number-rigidity

The following definition of the number rigidity on the configuration space Y over
a locally compact Polish space X is an adaptation of the number rigidity originally
introduced by Ghosh—Peres [25] in the setting of the configuration space over the
complex plane.

Definition 2.8 (Number rigidity: cf. Ghosh—Peres [25, Theorem 1]) A Borel probabil-
ity measure p on Y has the number rigidity (in short: (R)>g) if, for every bounded
Borel set E C X, there exists £ C Y so that £ (2) = 1 and, for every y,n € Q

yEe = nge implies y (E) = n(E). (R)2.8

Example 2.9 The number rigidity has been verified for a variety of point processes:
Ginibre and GAF [25], sineg [23, Theorem 4.2], [10, 13], Airy, Bessel, and Gamma
[9], and Pfaffian [6] point processes. We refer the readers also to the survey [24].

3 Construction of Dirichlet forms

In this section, we construct a Dirichlet form on ¥ = Y(R"). Let (B,),cn be a
compact convex domain exhaustion in R”. We first construct a Dirichlet form on Y (B,)
called conditioned form with invariant measure ,u%r. ‘We then lift it onto Y, which is
called truncated form, whose gradient operator is truncated on B,. Finally we take the
monotone limit of the truncated forms as »r — oo and construct the limit Dirichlet
formon Y.

Notation. Hereinafter, we use the following notation.

m, m, for the Lebesgue measure on R” and its restriction on B, respectively;
d(x, y) := |x — y| for the Euclidean distance in R";
wl = MUB, for a probability measure 1 on Y, defined in (2.10);

o ul = u%r for a function u : ¥ — R, defined in (2.12).

3.1 Conditioned Dirichlet forms on Y (B,)

Let ng’z(m;@’k) be the space of m®* -classes of symmetric (1,2)-Sobolev functions
on the product space B,Xk ,l.e.,

W2 (m®*) = {u € Ly(m®): / V&P dmPt < oo},
B
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where V®F denotes the distributional derivative on (R")*%: V& .= (3u, ..., dgu).
As the space Wvl’z(m;@k) consists of symmetric functions, the projection Py : Ber —

Y*(B,) = B)*/&y acts on Ws1’2(m§k) and the resulting quotient space is denoted
by Wh2(mP*):

wh2(mky .= {u e L*(m®) /k |VOKu|2 dm@k < oo},
b

(Br)

where VOF is the quotient operator of the distributional gradient operator V&* through
the projection Py and m?k is the symmetric product measure defined as

1
m* .= — (Pp)sm&k,

’ k!

Definition 3.1 (Conditional absolute continuity) A Borel probability measure u on Y
is conditionally absolutely continuous (to mmy) if

uP* L wm, Lykgy €N, k €N, p-ae. n. (CAQ)3
Let K := {k € Ng : )] (YX(B,)) > 0}. We say that u satisfies (CAC')3 if
,u'ﬂ‘k ~ T, LTk(Br) reN, p-ae. n, k ek (CAC)H31

Foru,v : Y(B,) — Rsatisfyingulrk(gr), U|Tk(Br) € Wl’z(m9k) foreveryk € N,
set

oo
rYB) () p) = Z<V®k“|rk<3,)’ VQkU'Tk(B,)>’ rYB) () = TYE) (4, ).
k=0
3.1
Let us define the following algebra of functions:

LIP,(Y(B;),dy) := {u : Y(B;) — R bounded :
ulyi g,y € Lip,(Y¥(B,), dy).k € N}.

Note that the Lipschitz constant LipdT(u|Yk( Br)) may not be bounded in k for u €
LIP, (Y (B,), dy), thus

Lip,(Y(By).dy) & LIP,(Y(B), dy).

The quadratic functional associated with s, * is denoted by

n.k
EXBIM () = / IV ul? dult, (3.2a)
Y(B,)
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EYBIWT (1) .= /T rY®B) )y du, u e LIP(Y(B,), dy). (3.2b)
(Br)

Definition 3.2 (Conditional closability) Let u be a Borel probability measure on Y
satisfying (CAC)3.;. We say that p satisfies the conditional closability (CC)3, if the
form

X ) = [ TV ) d (s
Y(By)

u,v € LIP,(Y(B,),dy) N{u: X (B,) — R: EXBIM () < o0).
is closable on L?(Y'(B,), 1) for every r € Nand p-a.e.n € Y.
Remark 3.3 We give two remarks on (CC)35.
(i) The Rademacher theorem on convex domains in the Euclidean space implying
Lip, (Y (B,), dx) |k 5, € WH (M),

[V uly | = Livgy 0 on Y5(B), ke, (3.3)
the following bound follows:

Y% () < Lipg, u)*, u € Lip,(Y(B,), dy), (3.4)
which shows
Lip, (Y(B,). dy) C LIP,(Y(B,), dy) N {1 : X(B,) — R : EYEI1 (1) < o0},

thus, the form (3.2b) is well-posed on Lip, (Y (B,), dv).
(i1) A simple sufficient condition for (CC)3 is

qs'i’k-:ﬂ € Cy(YX(B,)) r. keN
roo dnm,. Tk(Br) b r , .

k
In this case, the closability of the form EYB.u s a standard consequence
of the Hamza-type argument by Ma and Rockner [32] and Fukushima [20]. For
an accessible reference, see, e.g., [33, pp. 44-45]. The closability of the form

k
EXB).17 then follows as it is a countable sum of the closable forms £Y(Br)-1/
over k € Ny (see e.g., [33, Proposition 3.7]). All examples we shall discuss in
Sect. 6 fall into this case.

Definition 3.4 (Conditioned form) Under (CAC)3,; and (CC)3 7, the closure of (3.2b)
is called conditioned form and denoted by

(ST(Br),;L:], @(gr(Bn,uﬁ))_ (3.5)
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The corresponding L2(u))-resolvent operator and the L2(w) )-semigroup are denoted
respectively by

n
[GYBowu}  and (T,FEH)

The square field Y3 naturally extends to the domain 2(EY®B)#) which is
denoted by the same symbol I'Y(5r),

3.2 Truncated Dirichlet forms

In this subsection, we construct the truncated Dirichlet form on Y. We start this section
by giving an operator mapping functions on Y to functions on R”.

Definition 3.5 ([34, Lemma 1.2], see also [14, Lemma 2.16]) Foru : Y — R,
define Uy, (1) : R" — R by

Uy ) =u(lx\y -y +8y) —u(lx\yy-v), yeX, xey. (3.6

We now define a square field operator on Y truncated to particles inside B,.

Definition 3.6 (Truncated square field on Y) Whenever VU, ,(u)|p, makes sense
m,-a.e. foru : ¥ — R, the truncated square field F,T is defined as

FYa ) = Y |Vl @) (x). 3.7

XEYB,

Thanks to Lemma A.1, Formula (3.7) is well-defined for p-a.e. y. Indeed, as the
weak gradient VU, , (u) is well-defined pointwise on a measurable set ¥ C B, with
m, (2¢) = 0, by applying Lemma A.1, Formula (3.7) is well-defined on a set 2 (r) of
p-full measure.

Based on the truncated square field F;r , we introduce the truncated form on Y
defined on a certain core.

Definition 3.7 (Core) Let {C, },<n be a sequence of algebras of j1-classes of measurable
functions so that C, D C,» for r < r’ and the following hold for every r € N:

(@) Cr € L®(w) and C, C L2(u) is dense;
(b) FQr (u) is well-defined p-a.e. for every u € C,;
(c) the following integral is well-defined and finite for every u € C,:

u) € 9(57(3’)’“2) u-a.e. n, ErY’“(u) = AE'NB’)’“? (u])du(n) < oo,
(3.8)

and (5;r #C,) is Markovian.
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Example 3.8 We have several choices of {C,},c<N. In each of the following examples,
we take a certain common core C and take C, = C for every r > 0.

(a) Cylinder functions. Take C, =C = F TC;;O for every r € N, where F TC;’O is the
space of cylinder functions defined as

FY oo {M: Y- R:u=F(y(f1),v(f2).....v(fi)).F € C;Z"’(R"),}
b fioooos fe €CERM), keNy ’
(3.9)

where y (f) = fRn fdy. We say that u satisfies (m,,) if the intensity measure
m,, is locally finite, viz.

m,E ::/ y(E)du(y) < oo, E C R" compact. (my)
Y

Under (m,), (CAC)3 1 and (CC)3 5, all the conditions of Definition 3.7 are satisfied
(see [14, Lemma 2.15, Proposition 3.45, Theorem 3.48]).
(b) Lipschitz functions. Take C, = C for every r € N, where C is equal to either

Lip,, (dx, 1), Lipy,(dx, 1), Lipy, (dy, ) N Cp(zy),0r Lip,(dy, ) N Cp(y).
(3.10)

As Lip,(dy, n) C L?(w) is dense (e.g., [1, Proposition 4.1]) and Lip, (dy, u) C
Lip, (dy, n) by (2.21), Lip, (dy, n) C L%(1) is dense as well. The density of
Lip, (dy, ) N Cp(ty) follows e.g., by [49, Lemma 2.27] combined with the fact
[14, Proposition 4.30] that (Y, dy, 7y) is an extended metric-topological space.
This therefore implies the density of Lip, (dy, u) N Cp(ty) as well. Thanks to the
Lipschitz contraction property of OK by Lemma 2.4 and of U, , [52, Lemma 4.1]
and by (3.4), the formula (3.8) readily follows. The Markov property follows
from the Markov property of (EYB)-17 9(gY(B)ury) by (3.8). Thus, all the
conditions of Definition 3.7 are satisfied under (CAC)3; and (CC)3.

(c) C'-local functions (e.g. [11, Definition I1.8]) Let Q* = {(x,y) € R" x Y :
x € y} and we equip Q* with the relative topology of the product topology in
R" x Y.LetC g () be defined as the space of bounded t,-continuous functions
u satisfying

(i) the map y — U, ((u)(y) is differentiable at x for every (x, y) € Q*.
(ii) the map Q* > (x,y) — VU, «(x) is continuous.

A function u : Y — Riis called local if u is o (pr g )-measurable for some r > 0,
where o (prp ) is the o-algebra generated by the map pryp . Define

Cp 10e(X) := {u € CJ(X) : u is local, lim sup & (u) < oo}. (3.11)

r—>0o0
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Assume (m,), (CAQ)3 1 and (CC)3, and take C, = C = C;’IOC(T) for every
reN.
Then all the conditions of Definition 3.7 are satisfied.

The following proposition relates the two square fields 1",Y and T Y (B,

Proposition 3.9 (Truncated form cf. [52, Proposition4.7]) Assume (CAC)3.1 and (CC)3
and take {C, };en as in Definition 3.7. The following relations hold for u € C, for every
reN:

PYE @ (y) =T @) (y + o), peae n, pl-aey € Y(B),

EXH(u) :=f €T(B’)’“F(u;7)du(n)=/ Y (u)du. (3.12)
Y e

As a consequence, the form (ErY " C,) is a densely defined closable Markovian form
and the closure (E,T’“, 9(6}?’“)) is a local Dirichlet form on L*(u). The L*(p)-
semigroup and resolvent corresponding to (5rT Hog ((S',T ") is denoted by {Trﬁ’“}bo
and {G;r,;x“ }a>0 respectively.

Furthermore, if Lip,(dy, n) C C,, then

rYw) < LipaT(u)z, u € Lip, (dy, 11). (3.13)

Proof Although the idea of the proof is similar to Suzuki [52, Proposition 4.7], the
core chosen there is different from the core C, here. We therefore give the proof below
for the sake of completeness.

We first prove (3.12). As the second line of (3.12) is an immediate consequence of
the first line and the disintegration formula (2.13), we only give the proof of the first line
of (3.12). Let u € C,. Then, the RHS of (3.12) is well-defined on a measurable set 2
of u-full measure by (b) in Definition 3.7. Let €2, be the section as defined in (2.14),
which is of ;' -full measure for p-a.e. n € by (2.15). As i, is absolutely continuous
with respect to the Poisson measure mr,, by (CAC)3 ;1 and the Poisson measure does
not have multiple points almost everywhere, we may assume that every y € ;! does
not have multiple points, i.e., y ({x}) € {0, 1} forevery x € B,.Lety € QN YX(B,).
Then,

2
Y@+ = Y| V(L - 7 + 180 +8) = u(Layg - (7 +18) )| @)

xey

= Y[V (v 0~ (xg-9)) @

xey

3 |Vul (L) - v+ 80) [F)

xey
v )| ()
=TYE) M) (y)
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where the first equality is the definition of the square field F,T ; the third equality
holds as u;! (1 x\(x} - ) does not depend on the variable denoted as e on which the
weak gradient V operates; the fourth equality follows from the definition of the sym-
metric gradient operator VOX, for which we used the fact that y € €] does not
have multiple points. As this argument holds for arbitrary k € Ny, (3.12) has been
shown. The local property follows immediately by (3.12) and the local property of
(E,T(B’)”‘g, @(S,T(B")’”?)). The Markov property of (£X*,C,) follows by Defini-
tion 3.7(¢c).

We now show the closability. Noting that EYB.7 g closable for u-a.e. n
by (CC)3., the superposition form (£X*, 2(EX'*)), which shall be defined below
in Definition 3.10, is closed by [5, Proposition V.3.1.1]. As the two forms (E,T’“, C))
and (X", 2(EXMY) coincide on C, by definition and C, ¢ Z(£°") by construction,
the closability of (5,Y #C.) is inherited from the closedness of the superposition form
EXH PEX ™). As C, € L2(1) is dense by Definition 3.7(a), the form (X%, C,)
is densely defined. As the Markov property extends to the closure (e.g., [18, Theo-
rem 3.1.1]), the form (EX*, 2(EX'*)) is Markovian as well.

We now prove (3.13). By the Rademacher-type property of £ T(B’)'“I'(‘n, we have
that

Y% w) < Lipy, u)*, u € Lip(Y(B,),dy) r > 0. (3.14)

In view of the relation between F,Y and T'Y3") in (3.12) and the Lipschitz contractiv-
ity (2.27) of the operator (-),!, we concluded (3.13). m]

3.3 Superposition form

Definition 3.10 (Superposition Dirichlet form, e.g., [5, Proposition V.3.1.1])
Assume (CAQ)3 1 and (CO)35.

DEYH) = {u e L*(w): / EXBIL 1y dpu(n) < oo},
e

Ex )= [ YO ) aui (3.15)
he

It is known that (S_,T’M, _@(é_’;r’“)) is a Dirichlet form on LZ(M) [5, Proposition

V.3.1.1]. The L?(u)-semigroup and the infinitesimal generator corresponding to
290 Y, =Y, 1 A X A Y. :

(& ", D(& 7)) are denoted by {T, ;" };~0 and (A, ", Z(A, ")) respectively.

The resolvent {GrY,[f }a>0 and the semigroup { Tr:rt’” }t+=0 corresponding to the

superposition form (‘:’rT '* can be obtained as the superposition of the resol-
Ul n

vent {G;r (Br).pir }a>0 and the semigroup {TtT(B’)’“ "}>0 associated with the form

EY B/ The following proposition shows that the semigroup (resp. resolvent) corre-
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sponding to the superposition form is identified with the superposition of the semigroup
(resp. resolvent), which has been proved by Dello Schiavo [12] in a general framework.

Proposition 3.11 (cf. [12, (iii) Proposition 2.13]) Assume (CAC)3.1 and (CC)3 5. The
following holds:

5 4 =, Y(B,),u)
GXtuy) = GXE 1wy (yp), T uy) = TP ul (v,  (3.16)

for p-a.e.y € X, everyt > Q.

Remark 3.12 The proof of Dello Schiavo [12, (iii) Proposition 2.13] has been given
in terms of direct integral. As the measure u, can be identified to the conditional
probability (- | -ge = npc) by a bi-measure-preserving isomorphism as remarked
in (2.11), our setting can be identified with a particular case of direct integrals in [12].

As the former form is constructed as the smallest closed extension of (ng Hoe,
it is clear by definition that

EXn=EYL on C., DETH) c DETH).

We introduce a condition for the domain & (5',Y .

Assumption 3.13 We say that (D)3 ;3 is satisfied if
EX 2EX M) = EX 2EXM) reN (D)3.13

Remark 3.14 (i) For a suitable choice of {C,},cn, Assumption (D)3 13 has been ver-
ified for a Dirichlet form whose invariant measure is sineg for every 8 > 0, see
[52, Theorem 4.11];

(i) (D)3.13 will be used only for (ii) in Theorem 4.3 below.

Under Assumption 3.13, Proposition 3.11 provides the superposition formula
for the resolvent {GI&“}Q>0 and the semigroup {T,’T,’” }~0 in terms of the resol-

n n
vent {GZ(B’)’M’ }o>0 and the semigroup {T,T(B’)’”’ }t=0 respectively.

Corollary 3.15 (Coincidence of semigroups) Assume (CAC)3.1, (CC)3.2 and (D)3 13.
The following three operators coincide:

= Y
GYilu(y) = GXlu(y) = GY B ul (yp), (3.17)
T, ~, Y(B,),u)
T uy) = TS uly) = TP ul (vs,) (3.18)

for p-a.e.y € Y, everyt > Q.
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3.4 Monotone limit form

The following proposition follows immediately from the definitions of the square
field T'Y and the core C, .

Proposition 3.16 (Monotonicity) Assume (CAC)3 1 and (CC)3 2. The form (EX", 2(EXH))
and the square field FrT are monotone increasing as r 1 oo, viz.,

TYw) <TXw), EXFw) <X w), 2EX*) c 2EXH) r<s.

Proof As C, is a core of the form (SrT’“, .@(&Y’“)) and C; C C, by Definition 3.7, it
suffices to check that F,Y (u) < 1"5T (u) on Cy, which is a immediate consequence of
the definition (3.7). The proof is complete. O

Definition 3.17 (Monotone-limit form) The form (EY-*, 2(£Y-1)) is defined as the
monotone limit:

DETH) = {u € N PEXH) : EVH () = lim EXH(u) < oo},
r—00
EVRw) := lim EXH(u). (3.19)
r—00
The form (EY-#, 2(EY-1)) is a Dirichlet form on L2() as it is the monotone limit
of Dirichlet forms (e.g., by Ma and Rockner [33, Exercise 3.9]). Note that the limit

form does not depend on the choice of the exhaustion (B,),cy. The square field 'Y
is defined as the monotone limit of 'Y as well:

Y w) = lim_ TYw) ue2ETH. (3.20)

We now show that the form (£Y-#, 2(£Y-*)) is a local Dirichlet form on L%(u)
and satisfies the Rademacher-type property with respect to the L’-transportation-type
distance dvy.

Proposition 3.18 Assume (CAC)3 1 and (CC)3 5. The form (£, 2(EY1)) is a local
Dirichlet form on L*(iv). Furthermore, if Lip,(dy, n) C C, for every r € N, then
(EX1, P(ET-1) satisfies Rademacher-type property:

Lip,(dy, p) € 2(€X*), TT(u) < Lipg, )*. (3.21)

Proof The local property of (EY-#, Z2(EY-1)) follows from (3.20). We show the
Rademacher-type property. Since I'Y is the limit square field of FQr as in (3.20),
it suffices to show

IY() <Lipg w)*, u €Lip(dy,pn) r >0,

which has been already proven in Proposition 3.9. We verified (RadaT u)3‘21' The
proof is complete. O
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The L2-resolvent operators and the L2-semigroups corresponding to the form (3.8)
and the form (3.19) are denoted respectively by

{GVY:ZY/L} Tr’,Y;’H}I>O and {Gﬁt’r’u}a>0’ {Tf’r’ﬂ}t>0'

a>0’ {

Proposition 3.19 Assume (CAC)3.1 and (CC)3,. The semigroup {T,T’M},Zo is the
L%()-strong operator limit of the semigroups {Trﬁ’”}tzo, viz.,

Y.

L ()~ lim GXlu=GY " u, L*(w- lim T u=T""u uel?(y), t>0.
r—>o0 ’ r—oo ’

Proof The statement follows from the monotonicity of (5", 2(EX") as r 1 oo
proven in Proposition 3.16 and [45, Sect. 14, p. 373]. O

3.5 Quasi-regularity

In this subsection, we discuss a sufficient condition for the quasi-regularity.

Assumption 3.20 (Quasi-regularity) Let FY-* C 2(EY+") be any closed Markovian
subspace. We call (QR)3 29 for FYX-* if

(EXH, FY1) is quasi-regular in (Y, 7). (QR)3.20

In the following, we introduce another monotone-limit form having a (pos-
sibly) smaller domain. Recall that the Rademacher-type property (Rad(-hr .,) for

Ty-continuous (_:Iy-Lipschitz functions has been defined in Sect. 2.3.

Proposition 3.21 (Smaller domain) Assume (CAC)31 and (CC)32. Let (Cr), ey be a
sequence of algebras in Definition 3.7. Then, the form (X", C) defined as

C:={u € NpenG : lim EX*(u) < oo},
r—00

EXR ) = lim EXF(u), (3.22)
r—00

is closable. Let (EY-*, FY-1) be the closure (EY*, C). Then, (EY-*, FY-1) is a local
Dirichlet form on L*(i1). Furthermore, if either of the following holds for everyr € N

Lip,(dy, u) CCy, resp. Lip,(dy, ) CCr, Lip,(dy, 7) CCr,
Lip,(dy, &) C Cy,

then (EV1, FY-1) satisfies Rademacher-type property
PR Y, Y L 2 }
Llpb(dT9 /-’L) C -7: ) F (M) S Llpd.r (M) ) (Radd,r’u)?ﬁ.zl

(resp. (Radgy ), (Raday’rv) and (Radyy -,)).
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Proof As C c 2(£Y*) by definition, the closability of C follows by the closed-
ness of 2(£Y"*) proven in Proposition 3.18. The local property of FY-* is inherited
from 2(EY*). The Markov property of (£Y-*, C) follows by the Markov property of
(ng #C.) and (3.22). As the Markov property is inherited to the closure by e.g., [18,
Theorem 3.1.1], we concluded that F¥# is Markovian. The rest of the arguments
follows by the same proofs as in Proposition 3.18. O

Corollary 3.22 Assume (CAQ)3.1 and (CO)32. If C, = C (r € N) is either one of the
following:

C = Lip,(dy, 7y) or C = Lip,(dy, 1), (3.23)

and FYX M is the closure C, then (£Y-*, FX -1 is a quasi-regular local Dirichlet form.

Proof First of all, the form is closable on C by Proposition 3.21 and the fact that C
satisfies Definition 3.7 as seen in (b) Example 3.8. Furthermore, (£ Yo FY1y is a
local Dirichlet form and the Rademacher-type property (Rad dy.z,) (TESP. (Radgy 7,))
holds by Proposition 3.21. Thus, we conclude the quasi-regularity (QR)3.20 by the
proof of [14, Corollary 6.3]. O

Remark 3.23 (A different core) Another sufficient condition for (QR)32¢ has been
studied in [38, Theorem 1] by taking a core C, = P, in Definition 3.7, where P,
is a space of smooth local functions (see, [38, (0.3)]) and take the domain to be the
closure of Z,,. We note that functions in the core C in (3.23) are not necessarily local
functions. The domain FY-# defined as the closure of C in Corollary 3.22 is therefore
not necessarily the same as the domain constructed as the closure of P, in [38].

4 Tail-triviality, finiteness of dy and irreducibility
4.1 Irreducibility and tail-triviality

Recall that (€Y#, FY-#) is irreducible if every u € F Y # with EY#(u) = 0 is equal
to a constant p-almost everywhere, see (2.3). The following definition corresponds to
the irreducibility of the conditioned form (3.5). Let (B,) be a compact convex domain
exhaustion in R”.

Definition 4.1 (Conditional irreducibility) We say that the conditional irreducibility
(in short: (Cl)4.1) holds if, for every r € N, u-a.e.n € Y and k € K,

ifue @(EY(B’)’“]J) and &Y Br-u7 (u) =0, thenu |yk 5 )= Cﬁ’k /L’Z’k-a.e.,
(Chaa

where C,! * is a constant depending on r, n and k.

Remark 4.2 (a) In terms of the corresponding diffusion process, Assumption (Cl)4.;
can be understood as the ergodicity of the finite interacting particles in Y (B;)
conditioned to be B¢ outside B,.
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(b) Assumption (Cl)4.1 can be verified for a wide class of invariant measures p such as
Gibbs measures including Ruelle measures, and determinantal/permanental point
processes, including sineg, Airy B> Bessely, g, Ginibre, which will be discussed in
Sect. 6.

The main theorem of this section is the following:

Theorem 4.3 Let v be a Borel probability measure on Y satisfying (CAC)3 |
and (CC)3., and FX*  2(EY-H) be any closed Markovian subspace.

(i) Suppose (D)3.13. Then
(X1, 2(ETH)) isirreducible = pistail trivial ((T)2.6)
(i) Suppose (CAC)3.1, (Ch4.1, (QR)3.20 offT'” and (R),.g. Then
wistailrivial (T)og) = (ETH, FTH)isirreducible

In the following subsections, we give the proof of Theorem 4.3.

4.2 Proof of (i)

Recall that (5 Yu & Y’“)) is irreducible if and only if {T,T’“ }t>0-invariant sets are
trivial (see, e.g., [2, Proposition 2.3 and Appendix]), i.e., every & C Y satisfying

TV (Agu) = 1T, " u, u e L2(w),
satisfies either £(E) = 1 or u(E) = 0. Therefore, it suffices to show that every set

E € T(Y)is (T,""},~o-invariant. By Proposition 3.19, we obtain 7, *u — T, *u
in L2(u) asr 1 oo for every u € LZ(M). Thus, it suffices to show that

every tail set E € .7 (Y) is {T:r,’“ }1>o-invariant for every r > 0. “.1)
Indeed, if it is true, then
T M lzu = L2(w)- lim T.5"1gu = L2(w)- lim 15T, 5"u = 15T, u.
r—00 ’ r—00 ’

We now show (4.1). By (2.29), every non-empty set & € .7 (Y) has the following
expression:

E=Y(B)+ prB;_;(E), for every r € N. “4.2)

By Proposition 3.15, for u € L (w),

Y, Y(B),ul
T u(y) = 1Y Pl (vg). peae y.
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By (4.2), the function (1g)} = 1 on Y(B,)if y € E and (1g)} = 0 otherwise, which
leads to

Y(B,

My Y(B),
T, E 1 u12)! (v,) = 1) T, B ul (vp.).

Therefore, for every r € N

Y(B,

T, s Y(B,), 1) Y,
75 1qu(y) = T,V Agw)) (vs,) = 12T, P ul (vs,) = 1T, u(y),

for p-a.e. y. The proof of (i) is complete. O

4.3 Proof of (ii)

By the number rigidity (R); g, we can take a measurable set ing C Y sothat u(2y; g) =
landif y,n € Q:ig with yge = npe, then y(B;) = n(By). Let Qg = mreNQ:ig’
which is of u-full measure as well. Let u € F X be so that I'Y (1) = 0. By the
monotonicity (3.20), we have FrT (1) = 0. By the formula (3.12) and the same proof
as [14, Proposition 5.14], for every r € N, there exists Qf C Y so that () = 1

and
rYwh =0 pl-ae, ne.

By Assumption (Cl)4.1, for r € N, there exists a measurable set ing ic € 20N g
of full u-measure so that, for every n € ing ic» there exists k = k(1) € No and a

constant C,’ k satisfying
ul = CM* ploae.. (4.3)

Note that the measure y, is fully supported on Y M (B,) by the number rigidity (R)2.g
and (CAC)3 1. Let Qyig, ic := ﬂreNinQ’ ic With (S2rig,ic) = 1.

By the quasi-regularity (QR)3 20, there exists a quasi-continuous p-version u of u
(see [33, Proposition 3.3 in Chapter IV]). Therefore, we can take a closed nest (K,
so that i is ty-continuous on K, for every m € N. Define Qqc := U;yenKin, Which
is of p-full measure since £2q is an exceptional set with respect to (5Y'“, F Y’”).
Up to relabelling K, we may therefore assume that u(K,,) > 1 — ﬁ Let 2, =
Qrig, ic N Ky form € N. Since u is y-continuous on £2,,, the function i) is continuous
on (2,,), for every n € Q,, and r € N where (2,,), is the section defined in (2.14).

By Proposition 2.13, we have that

w(Qm) = /Tui’((ﬂm)?) du(n). (4.4)

@ Springer



612 K. Suzuki

Thus, by noting that ©(€2,,) > 1 — ﬁ and that the integrand of the r.h.s. of (4.4) is
non-negative and bounded from above by 1, there exists €2, » C Y so that (2, ) >
1 — 5L and

2m

1)) >0 Vi € Q. 4.5)

Define Q7 := Q,, Ny r. AS (W(p 1), () > 1— ﬁ, by the Inclusion-Exclusion
formula, it holds that

1
w)>1——, meN. 4.6)
m

Combining (4.3) and (4.5) with the fact that p, Lk (B,) is fully supported in YX(B,)
and i is Ty-continuous on (£2,,);, we obtain that

iy p = Cf,n everywhere in ()] for every n € Q) . 4.7

By Lemma A.2 in the Appendix applied to €2, in (4.6), we can take n — m, € N
withm, < m,, forn < n’ so that, by taking 2 = lim sup,,_, o, Nr_ K2}, itholds that

n(€2) = 1.
We now prove that
Il is constant p-a.e. on Q. 4.8)

Claim 1 The statement (4.8) holds if the following statement is true: for every
E1, B2 C Q with w(E1)u(Ey) > 0, there exist y! € 1 and y? € E, so that

ity =ay?). (4.9)

Proof of Claim 1 Assume that the statement (4.9) is true. Take E; = {# > a} and
Er = {u < a} for a € R. If there exists a € R so that u(E1)u(E2) > 0, then this
contradicts (4.9). Thus, there is no such a € R, which means u(E;)u(&2) = 0 for
every a € R. This concludes that # is constant p-a.e. on 2. O

We thus only have to prove (4.9). We may assume p(E1) > 0, otherwise there
is nothing to prove. Since u is tail trivial, w(E;) > 0 and E; C 7 (&), it holds
that (7 (21)) = 1, where 7 (&) is the tail set of E; as defined in (2.30). Thus,
w(T(E1)NEs) > 0,and 7 (E1)NE, is non-empty. Take an element y> € 7 (E1)NE,.
By the definition (2.30) of the tail set 7 (&) and since 2 C g, there exists rg € N
and y! € B so that

Vi =Vie V' (Br) =1 (Bry). (4.10)
; 1 .2 y?
Claim 2 VB;+ Vi € (Qmj)j for some j € N.
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Proof of Claim 2 Recall

J
Q = limsup N}_, 2}, :ﬁUﬂ - (4.11)
n=1jznr=1

n—o0

As y!, y? € Q, there exist ji, j» € N with jj, j» > rg so that
1 : . 1 '
y € m an‘/_l, y?e m Qr, Lo in particular, y" € Q{,:jl y?e Qmjz

We may assume without loss of generality j; < j». As Q,/nljl C S, and Q;ﬁsz C Q
by definition, and the monotonicity €2,,; C €, by construction, we have

mj,

y e QR C R, C Q. VPEQ, C Q. 4.12)
As j» > rg, (4.10) implies
Ve = Vi v (Bp) =y (Bp) =ik (4.13)
By (4.12) and (4.13), we obtain
vh, VR, € Q) @.14)
O

We now resume the proof of (4.9). In view of (4.7) and (4.14), we conclude

O N 1 ~y? yik_

uly )=ulyp, +yp)=uj (yg, )=Cj (J/B ) =iy, + )/Bc ) = i(y?),
i ’ 2

which proves (4.9). The proof is complete. O

For a closed Markovian subspace FY-* ¢ 2(EY1), let StT " be the corresponding
Lz(u)-semigroup and (LY*, 2(LY-1)) be the infinitesimal generator respectively.

Corollary 4.4 Let i be a Borel probability measure on X and F X" C 2(EVH) be
any closed Markovian subspace. Suppose (CAC')3 1, (CC)3.2, (C4.1, (QR)3.20 of}"T'“,
(R)2.8 and (T)3.6. Then, the following hold:

@) (ET’“, fT'“) is irreducible;
(i) {S,Y’M} is irreducible, i.e., every E € HB(ty)"* with

Y, T,
S, s f) =18, " f, fel*w
satisfies either w(2) = 1 or u(8) = 0;
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(i) {ST"} is ergodic, i.e.,

2
/(S,T’“u—/ udpL) dMH—OO>O, ueLz(u);
Y Y

@iv) LY _harmonic functions are trivial, i.e.,
Ifu e DL and LY Hu =0, then u = const..

Proof The statement (i) is the consequence of Theorem 4.3. The equivalences (i) <
(il)) <= (iii)) <= (iv) are standard in functional analysis. We refer the readers to,
e.g., [2, Proposition 2.3 and Appendix]. O

Let (X;,P,) be the Markov process properly associated with the quasi-regular
Dirichlet form (5 Tu F Y*/‘) (see [33, Theorem 3.5 in Chapt. IV]). We write P, for

f v Py (-)dv(y) for abounded Borel measure v on Y. Recall that ]—"eT *# is the extended
domain of FY# defined in (2.2).

Corollary 4.5 Let . be a Borel probability measure on X and FY* C 9(ETH) be
any closed Markovian subspace. Suppose (CAC")3 1, (CC)3.2, (Ch4.1, (QR)3.20 Of]:T’M,
(R)2.8, (T2 and I € FLH.

Then, the following hold:

(i) for every Borel measurable p-integrable function u, it holds P-a.s. that
1 t
lim — u(Xy)ds = / udu; (4.15)
t—oot Jy Y

(ii) for every non-negative bounded function h, (4.15) holds in L'(Py. w)s
(iii) the convergence (4.15) holds P, -a.s. for € T’“-q.e. Y.

Proof The form (5 Yo F T'”) is irreducible by Theorem 4.3. Furthermore, it is recur-
rentas 1 € .7-"3’“ and £T’“(1) = 0, see Fukushima [18, Theorem 1.6.3]. Therefore,
by Fukushima [18, Theorem 4.7.3], the proof is complete (although Fukushima [18,

Theorem 4.7.3] assumes the local compactness of the state space, the same proof
applies verbatim).

4.4 Finiteness of ay

Recall that c_ll;(i, A) has been defined in (2.5) for E, A C Y. In this subsection, we
1nvest1 gate relations among the tail triviality (T);.¢, the irreducibility, and the finiteness
d’r(u A) < oo. Namely, we discuss relations among the following statements:

(@) w is tail trivial (T)2.65
(b) d%(E, A) < oo whenever E € Z(ty)*, A € B(1y) and u(E8), u(A) > 0;
(©) (EY:#, FY-1) is irreducible.
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Theorem 4.6 Let u be a Borel probability measure on Y. Then,

o (b) = (a);
e if (R)2.8 holds, then (a) — (b).

Suppose that ju satisfies (CAC)3.1 and (CC)32, and FY-* < 2(EY-H) is any closed
Markovian subspace. Then the following hold:

e if (Cha.1, (QR)3.20 and (R)2.8 hold, then (b) = (c);
° l'f(RadaT’u)}zl holds, then (¢c) — (b).

Proof (b) —> (a). We argue by contradiction. Assume (b) and suppose that x is not
tail trivial. Then, there exists a tail-measurable set & € .7 (Y) so that 4 (8), u(g°) >
0. Note that E € #(ty) as 7 (Y) C H(ty) by construction. Also note that 7 (E) = &
and 7 (E€) = ECas B, B¢ € .7(Y), where 7 (&) is the tail set of E defined in (2.30).
By (b), we have

dy (B, ) < oo. (4.16)
By (2.22), this implies that there exist 7/1 € g, )/2 € E¢ and r € N so that
Ve = Ve v (B) =y (By).

This however means that y!,y2 € T(8) N T(2°) = EN E° = ¢, which is a
contradiction.

(a) = (b). We argue by contradiction. Assume (a) and suppose that (b) does not
hold. Then, there exist 2, A C Y with © (&), u(A) > 0 so that dT(u A) = oc0. By
modifying a u-negligible set in & (without relabelling &), we have that

ay(-, A) = oo everywhere on E. 4.17)

Let Qrig be the set defined in the proof of (ii) of Theorem 4.3. Let A:=AN Qrig. As
A C A, we have

00 = ay(~, A) < ay(-, ZN\) everywhere on E. (4.18)
By (a), we have w(T(8)) = M(T(A)) 1 as u(8), /L(A) > 0,8 C 7(E) and
A C T(A). Therefore, w(7(E)NA) > 0and T(E) N A # ¥. Take y € T(E) N A.

By the definition of the tail-operation 7 and (R), g, there exist € E and r € N so
that

yBe =g, V(Br) =n(By).
Thus, by (2.22), we obtain ar(y, n) < oo, which contradicts (4.18).
(b) = (c). By (b) = (a) and (a) = (c) by (ii) of Theorem 4.3, we

conclude (c).
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(c) = (b). By (Radg_ ,)321, Proposition 2.3 and dy (-, A) A c € Lip)(d, p), it
holds that

dy(, M) Ace FOr TORdy(,A)Ac) <1, ¢>0.

Let d u, A be the maximal function associated with (5 Tou F Y’“) defined in (2.4). By
the definition of the maximal function d,, A, we obtain that

c_iT(-, A) ANe < aM,A AcC p-a.e..
Passing to the limit ¢ — oo, we obtain
dy(, A) <d,a, A€ B(ty). (4.19)
which leads to
al;(E, A) < u- esginfaM,A.

By Hino and Ramirez [27, Lemma 2.16], (c) implies u-essinfz d, o < oo, which
concludes (b). O

Corollary 4.7 Let ju be a Borel probability measure on Y satisfying (CAC)3.1, (CC)3.2,
and let FY-* ¢ P(EY-1) be any closed Markovian subspace. Then the following hold.

o If (Ch4.1, (QR)3.20 and (R)2.g hold, then
wis tail trivial = (ECH, FOM) s irreducible

e If (Radg )321 holds for FX,

ECH, FURy s irreducible = is tail trivial.

Remark 4.8 We proved the implication (c) = (b) in Theorem 4.3 under (D)3 ;3
with the domain 2(£Y-*). The same implication was proved in Corollary 4.7 under
a different assumption (RadaY’ ; ,)3.21 with a smaller domain F Y1t The assumption

(D)3.13 is a condition for the truncated forms E,T * while (RadaY ”)3,21 is a condi-

tion for (EY-#, FY-*). We do not have a simple comparison of these two different
conditions: as the irreducibility with a smaller domain is a weaker statement than that
with a larger domain, Corollary 4.7 looks providing the tail-triviality under a weaker
assumption than Theorem 4.3. However, we do not know whether (RadaT’ u)3'21 is
weaker than (D)3.13. For the verification, Corollary 4.7 is more convenient as will be
seen in Sect.5.
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5 Verifications of the main assumptions

In this section, we provide sufficient conditions for the verification of the main assump-
tions in Theorems 4.3, 4.6. See Examples 2.7, 2.9 for the tail triviality (T);.¢ and the
number rigidity (R)> s, and see Sect. 3.5 for the quasi-regularity (QR)320.

Quasi-Gibbs measures. We recall the definition of quasi-Gibbs measures. Several
slightly different (possibly non-equivalent) definitions for this concept were introduced
by H. Osada, see e.g. [40, Definition 2.1], [42, Dfn. 3.1], [41, Definition 5.1], or [43,
Definition 2.2].

Let ®: R" — R be %(ty)-measurable, and by ¥: (R")*> — R be Z(1,)®*-
measurable and symmetric. The function ® will be called the free potential, and W
the interaction potential. These potentials define a Hamiltonian 7. ¥ — R as

Ay > OFyp + %\I’*(yg’rz), yev.

Recall that K := {k € Ny : u!(Y*(B,)) > 0} has been defined in Definition 3.1.

Definition 5.1 (Quasi-Gibbs measures, cf. [43, Definition 2.2]) We say that a Borel
probability 1 on Y is a (&, W)-quasi-Gibbs measure if there exists a sequence { By },eN
of compact monotone increasing domains covering R” so that, for u-a.e. n € Y,
every r € N, every k € K}, there exists a constant ¢r o,k > 0so that

-1 - k -
Crnk€ “Tm, Lyk(p,) = urt < crpke “Tm, Lyk(p,) - 5.1

For quasi-Gibbs measures, (CAC')3 1 follows immediately by (5.1).

Remark 5.2 (a) The definition of quasi-Gibbs measures in [43, Definition 2.2] looks
slightly different from Definition 5.1 as we assume (5.1) only for k € K in place
of k € N. These two definitions are, however, equivalent since the definitions
of u* in this article is the restriction on Y*(B,):

M:l’k = Lyk(B,) )
while the corresponding measure in [43, Definition 2.2] has been defined as the
measure conditioned on Y*(B,).

(b) “u belongs to (P, W)-quasi-Gibbs measures” does not necessarily mean that
1 is governed by the free potential @ in the sense of the DLR equation. The
symbol ® here just plays a role as representative of the class of (®, ¥)-quasi-
Gibbs measures modulo perturbations by adding locally finite free potentials.
To be more precise, noting that the constant ¢, ; x can depend on r, 1, k, if 1 is
(@, W¥)-quasi-Gibbs, then p is (P + &', ¥)-quasi-Gibbs as well whenever @' p,
is bounded for every r € N. Therefore, in this case, we may write (0, ¥)-quasi-
Gibbs instead of (P, ¥)-quasi-Gibbs.

Example 5.3 (See [41]) The class of quasi-Gibbs measures includes all canonical
Gibbs measure, and the laws of some determinantal/permnental point processes, as
for instance:
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(1) mixed Poisson measures;

(2) canonical Gibbs measures;

(3) the laws of some determinantal/permanental point processes and related point
processes, e.g., sineg, Bessely, g, Airyg (8 = 1, 2, 4) and Ginibre point processes.

5.1 Assumption (CC)3 >
According to Remark 3.3 and (5.1), The Conditional Closability (CC)3.2 holds if
ek, € Co(YN(B)) keNy reN. (5.2)

Remark 5.4 While (5.2) is sufficient to cover all the examples discussed in Sect. 6, it
is not necessary for (CC)3». Condition (CC)3 5 holds true if u satisfies super-stability
and lower regularity in the sense of Ruelle [39, 47], or the existence of upper semi-
continuous bounds (®¢, V() such that

cdp<d<c Dy, cYy<W <c Y,

for some constant ¢ > 0, see [40, Eq. (A.3), p. 8]) and also [38, 39].

5.2 Assumptions (Cl)4 1

In this subsection, we verify Assumptions (Cl)4 1.

Assumption 5.5 Let u be a quasi-Gibbs measure on Y satisfying (CC)3 2, and suppose

(1) there exists a closed m-negligible set F C R” so that the free potential ® of u
satisfies ® € L (R"\F, m);

loc
(2) there exists a closed m®2-negligible set FI>) ¢ R"” x R” so that the interaction

potential W of y satisfies U € L2 (R" x R"\FI2l, m®?2).

Proposition 5.6 (Sufficient conditions for (Cl)4; [14, Proposition 7.13]) Under
Assumption 5.5, (Cl)4.1 holds.

Proof Noting that (Cl)4.; follows from the conditional Sobolev-to-Lipschitz property
proven in [14, Proposition 7.13], we conclude the statement. O

5.3 Markovian subspace with (QR)3.30 and (RadéIY ”)3_21

The quasi-regularity (QR)3.29 follows if F Y. is chosen to be the closure of either:

° Lipb(ay, 7y) or Lip, (dvy, ty) by Corollary 3.22;
e smooth local functions P, (see [38, Theorem 1]).

In the first case, Proposition 3.21 provides (RadaY W (Radg.,,,,) respectively. For all
these cores, the Markovian property of 7 Y-* has been proven in Proposition 3.21.

Corollary 5.7 (Corollary 3.22, Proposition 3.21) Let i be a quasi-Gibbs measure.
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(1) If either C = Lipb(ar, 7y), or C = Lip, (dvy, ty), then FY-t = C is Markovian
and

(QR)3 29 holds for FX-*
(ii) IfC = Lip,(dy, u1) (resp. C = Lip(dy, i), then FX-* = C is Markovian and

(RadaY’M)3_21(resp. (Rady,.)) holds for Fronr,

6 Examples

Based on verifying the sufficient conditions provided in the previous section, we
provide several examples to which our main results (Theorems 4.3, 4.6) applies. In the
following, we discuss four classes of examples: sine, Airy,, Bessely 2 (¢ > 1), and
Ginibre point processes. They belong to the class of quasi-Gibbs measures as explained
below, in particular, (CAC")3 1 holds true. As all the examples discussed in the following
are determinantal point processes, the tail triviality (T)» ¢ is a consequence of e.g., [31,
Theorem 2.1] (see Example 2.9 for more complete references).

As noted in (b) in Remark 5.2, the class of (®, W)-quasi-Gibbs measures is stable
under perturbations of ® in terms of adding locally bounded free potentials. As seen
in [40, Theorem 2.2], [42, Theorem 5.6] and [40, Theorem 2.3], the free potentials
® representing the classes of quasi-Gibbs measures in the cases of siney, Airy,, and
Ginibre are locally bounded, therefore ® can be reduced to the representative

® =0.

Thus, we only discuss the interaction potentials W for the cases below.

Example 6.1 (sine;) By Osada [40, Theorem 2.2], the sine; ensemble belongs to the
class of (0, W)-quasi-Gibbs measures with the interaction potential

W(x,y):=-2loglx —y|, x,yeR.

Assumption (CC)3 follows from (5.2). Assumptions (Cl)4.1 can be verified imme-
diately by Proposition 5.6 by noting that Assumption 5.5 is satisfied by taking
F2l={(x,y) e R*? 1 x = y}as W e L (R**\ FI2I, m®2). The number rigid-
ity (R)2.g has been proved by Ghosh [23, Theorem 4.2] and Chhaibi and Najnundel [10].
A Markovian subspace F T.u having the quasi-regularity (QR)3.,0 and (RadaT, u)3~2]
has been constructed in Corollary 5.7. We remark that the quasi-regularity (QR)3.20
with respect to F\'# = J, has been shown by a combination of Osada [40, Corol-
lary 4.1] and [38, Theorem 1].

Example 6.2 (Airy,) By Osada [42, Theorem 4.7], the Airy, ensemble belongs to the
class of (0, W)-quasi-Gibbs measures with the interaction potential

W(x,y):=—-2log|lx —yl, x,yeR.
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Thus the same arguments as in Example 6.1 apply to (CC)32, (Cl)4; and (QR)3.20.
The number rigidity (R)>.g has been proved in [9].

Example 6.3 (Bessely 2, « > 1) By Honda and Osada [26, Theorem 2.4], the class of
measures Bessely » (o« > 1) belongs to the class of (®, W)-quasi-Gibbs measures with
potentials (the sign of the potentials in [26, Theorem 2.4] is opposite)

®(x) = —alogx, WY(x,y):=—-2log|lx —y|, x,yecR.

Assumption (CC)3 , follows from (5.2). Assumptions (Cl)4 1 can be verified immedi-
ately by Proposition 5.6 by the same argument in Example 6.1 for W. For @, it suffices
totake F := {0} in (i) in Assumption 5.5, with which ® belongs to Lf;’c (R\F, m). The

number rigidity (R)2.g has been proved in [9]. A Markovian subspace F Y. having the
quasi-regularity (QR)3 20 and (Radéhr u)3'21 has been constructed in Corollary 5.7. We

remark that the quasi-regularity (QR)3 .20 with respect to F Tu — @oo has been shown
by combination of Honda and Osada [26, Theorem 2.4], Osada [40, Lemma 2.1] and
[38, Theorem 1].

Example 6.4 (Ginibre) By Osada [40, Theorem 2.3], the class of measures Ginibre
belongs to the class of (P, W)-quasi-Gibbs measures with the interaction potential

W(z1,22) i= —2log|z1 — 22|, 21,22 € R*Z.

Assumption (CC)3 2 follows from (5.2). Assumptions (Cl)4.1 can be verified imme-
diately by Proposition 5.6. Note that Assumption 5.5 is satisfied since (ii) of
Assumption 5.5 follows by taking FIZ = {(x,y) € (R»*? : x = y}, with
which ¥ € L;’gc((Rz)”\F (2] m®2). The number rigidity (R)».g has been proved
by Ghosh and Peres [25, Theorem 1.1]. A Markovian subspace FY** having the
quasi-regularity (QR)3.20 and (Radar’ M)3_21 has been constructed by Corollary 5.7.

We remark that the quasi-regularity (QR)3.29 with respect to F T — @oo has been
shown by combination of Osada [40, Corollary 4.1] and [38, Theorem 1].
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Appendix A
LemmaA.1 [52, Lemma A.1] Let ju be a Borel probability on X satisfying that j1,! is
absolutely continuous with respect to the Poisson measure mp, forr > 0and p-a.e. .
Let ¥ C B, sothat m.(X€) = 0. Let Q(r) :=={y € Y : ys = y3,}. Then,

M(Q(r)) =1 r>0.

Let (2, F, P) be a probability space. Recall that, for a sequence (A,) of sets in F,
we define the limit superior of sets as

limsup A, := ﬂ U Aj.

n—00 )
n>1j>n

By a simple application of the reverse Fatou’s lemma to the indicator function 14¢,
we see

P(limsupA,) > limsup P(A,).

n—o00 n—o0

LemmaA.2 Let (2, F, P) be a probability space. Let {2} },, ren C F satisfy that,
for any € > 0, there exists m¢ so that for everym > m¢ andr € N,

.
P(Q,)>1—¢€.
Then, there exists n — my, € N withm, < m, forn < n’ so that

P(limsupN'_ Q) ) = 1.

mp
n— oo

Proof Define Q"€ := My_, 2;, . Then, by asimple application of Inclusion-Exclusion
formula and the hypothesis P(£2), ) > 1 — € for every r € N, it holds that

P(Q") = 1 —c(n)e,
where c(n) is a constant monotone increasing in n. Let C (n) be a monotone increasing
sequence so that ¢(n)/C(n) < 1 and c(n)/C(n) | 0 asn — oo. Take ¢, := %,
and Q" := Q. By the upper semi-continuity of probability measures regarding the

limit superior of sets, we obtain

c(n) .

P(lim sup Q") > limsup P(Q") = limsup P(Q™) > lim 1 — =1.
( n—>oop ) - n—>oop ( ) n—>oop ( ) T n—>o00 C(n)
The proof is complete. O
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