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Abstract
We characterize the limiting behavior of partial sums of multiplicative functions
f : Fq [t] → S1. In contrast to the number field setting, the characterization depends
crucially on whether the notion of discrepancy is defined using long intervals, short
intervals, or lexicographic intervals. Concerning the notion of short interval discrep-
ancy, we show that a completely multiplicative f : Fq [t] → {−1,+1} with q odd
has bounded short interval sums if and only if f coincides with a “modified" Dirichlet
character to a prime power modulus. This confirms the function field version of a
conjecture over Z that such modified characters are extremal with respect to partial
sums. Regarding the lexicographic discrepancy, we prove that the discrepancy of a
completely multiplicative sequence is always infinite if we define it using a natural
lexicographic ordering of Fq [t]. This answers a question of Liu and Wooley. Con-
cerning the long sum discrepancy, it was observed by the Polymath 5 collaboration
that the Erdős discrepancy problem admits infinitely many completely multiplicative
counterexamples on Fq [t]. Nevertheless, we are able to classify the counterexamples
if we restrict to the class of modified Dirichlet characters. In this setting, we determine
the precise growth rate of the discrepancy, which is still unknown for the analogous
problem over the integers.
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1 Introduction and results

The Erdős Discrepancy Problem (EDP), formulated in [4] (see also [8, 19] for related
questions), states that, given any sequence f : N → {−1,+1}, the discrepancy of f
on homogeneous arithmetic progressions satisfies

sup
d,N≥1

∣
∣
∣

∑

n≤N

f (dn)

∣
∣
∣ = ∞. (1)

This was eventually settled affirmatively in a groundbreaking paper of Tao [17] in
2015.

The special case where f is completely multiplicative (that is, f (mn) = f (m) f (n)

for all m, n ∈ N) was already highlighted by Erdős as the key special case; in this
case, the formulation simplifies to

sup
N≥1

∣
∣
∣

∑

n≤N

f (n)

∣
∣
∣ = ∞, f : N → {−1,+1} completely multiplicative. (2)

The Polymath 5 online collaboration project [15] devoted to the Erdős discrepancy
problem was indeed able to reduce the proof of (1) to (an averaged version of)
the completely multiplicative case (2), with f now taking values on the unit circle
S1 := {z ∈ C : |z| = 1} of the complex plane. Tao established in [17] this case
of completely multiplicative functions, and hence the whole conjecture (1), making
crucial use of his proof [18] of the logarithmic two-point Elliott conjecture on corre-
lations of multiplicative functions. A further reason to concentrate on the discrepancy
of completely multiplicative sequences is that such sequences or small perturbations
thereof are speculated to have minimal growth rate for the discrepancy among all
sequences, as discussed below.

In this paper we shall consider corresponding discrepancy problems in function
fields. Let q be a fixed prime power and let M denote the set of monic polyno-
mials in Fq [t]; this set M is an analogue of the positive integers. For elements
of M we have a unique factorization into products of irreducible monic poly-
nomials (prime polynomials). Let deg(G) denote the degree of G ∈ Fq [t]. For
completelymultiplicative functions f : M → {−1,+1} (that is, functions that satisfy
f (G1G2) = f (G1) f (G2) for all G1,G2 ∈ M), it is known (see e.g. [5]) that the
partial sums

σ f (n) :=
∑

G∈M
deg(G)≤n

f (G)

behave rather differently from their number field counterparts. In particular, in the
Polymath 5 project [16] it was observed that if we define the long sum discrepancy

D f := sup
D∈M
N≥1

∣
∣
∣

∑

G∈M
deg(G)≤N

f (DG)

∣
∣
∣, (3)
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Erdős discrepancy in function fields

then the Erdős discrepancy question for D f has a negative answer, in the sense that
there exists even a completely multiplicative f : M → {−1,+1} such thatD f < ∞.

In fact, without much additional difficulty we can prove the following.

Proposition 1.1 There are uncountably many completely multiplicative functions f :
M → {−1,+1} for which D f < ∞.

One of themain goals of the present paper is to characterize the boundedness of par-
tial sums of completely multiplicative functions in function fields, discovering along
theway difficulties and features that are not present in the integer setting.We apply this
to demonstrate that there are natural formulations of the Erdős discrepancy problem in
function fields that in contrast have an affirmative answer for completelymultiplicative
sequences (see Theorem 1.5). Another consequence of our work is further evidence
towards the widely-believed conjecture over Z that the functions whose discrepancies
are of slowest possible growth are “modified” characters (Conjecture 1.4). See Theo-
rems 1.3 and 1.8 for a precise statement (and Definition 1.6 for the notion of modified
characters).

1.1 Extremizers for the short sum discrepancy

Themain reasonwhyD f is not suitablywell-behaved in function fields is because long
intervals are too coarse to witness discrepancies in a given sequence. More precisely,
an interval M≤N := {G ∈ M : deg(G) ≤ N } contains too few other intervals
M≤n ; there are only N + 1 of them, whereas the intervalM≤N has size (i.e. number
of elements) of order � qN . In contrast, the interval [1, N ] in N contains N intervals
of the form [1, n] with n ∈ Z. At the same time, Tao’s proof of the Erdős discrepancy
problem makes full use of the fact that there are a lot of different subintervals for an
interval in N by showing in fact the unboundedness of the quantity

1

log N

∑

m≤N

1

m

∣
∣
∣

∑

|n−m|<H

f (n)

∣
∣
∣

2
,

where H = H(N ) is slowly growing. This suggests that it is natural to look at the
corresponding short sum discrepancy over function fields:

S f := lim sup
H→∞

lim sup
N→∞

sup
D,G0∈M
deg(G0)=N

D∈M

∣
∣
∣

∑

G∈M
deg(G−G0)<H

f (DG)

∣
∣
∣,

which is now taken over the family of short intervals

IH (G0) := {G ∈ M : deg(G − G0) < H}.

These short intervals are much more numerous than the corresponding long intervals
and thus provide a much more refined scale to measure the fluctuations of the partial
sums; there are � qN of them inside the set of polynomials of degree at most N .
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Note that over the integers the short sum discrepancy is bounded from above in
terms of the long sum discrepancy: since the integers are linearly ordered, we get by
the triangle inequality that

lim sup
H→∞

lim sup
N→∞

∣
∣
∣

∑

|n−N |≤H

f (dn)

∣
∣
∣ ≤ 2 lim sup

N→∞

∣
∣
∣

∑

n≤N

f (dn)

∣
∣
∣.

Thus, one presumes that the behavior of the short sum discrepancy S f is rather
similar to that of Erdős discrepancy in the integers. Indeed, we show that S f = ∞ for
“nearly all” completely multiplicative functions f : M → {−1,+1}, but, in contrast
to the integer case, it turns out that there are also a few exceptional functions. Our
next theorem gives a complete classification of the cases where S f is bounded for a
completely multiplicative function f : M → {−1,+1} (see Definition 2.1 below for
the definition of a short interval character and its length).

Corollary 1.2 (Short sumdiscrepancy is bounded only formodified characters of prime
power modulus) Let f : M → {−1,+1} be completely multiplicative. Then S f < ∞
if and only if there is a prime power Pk ∈ M, a primitive Dirichlet character χ

modulo Pk, a short interval character ξ , and an integer j ∈ {0, 1} such that f (P ′) =
χ(P ′)ξ(P ′)(−1) jdeg(P

′) for all primes P ′ 	= P. Moreover, if q is odd, we have ξ ≡ 1.

This result is a corollary of the following more general theorem that applies to
completely multiplicative functions taking values on the unit circle.

Theorem 1.3 Let f : M → S1 be a completelymultiplicative function. ThenS f < ∞
if and only if there is a prime power Pk ∈ M, a primitive Dirichlet character χ

modulo Pk, a short interval character ξ , and a real number θ ∈ [0, 1] such that
f (P ′) = χ(P ′)ξ(P ′)e2π iθdeg(P ′) for all primes P ′ 	= P.

Corollary 1.2 and Theorem 1.3 are closely related to the following conjecture on
the growth of the partial sums of multiplicative functions on the integers (see [17,
Section 1] and [10, Section 1] for some discussion).

Conjecture 1.4 (Extremality of partial sums of modified characters) Let f : N → S1

be completely multiplicative. Then

∣
∣
∣

∑

n≤x

f (n)

∣
∣
∣ � log x

if and only if there exists a non-principal Dirichlet character χ modulo a prime power
pk such that f (p′) = χ(p′) for all p′ 	= p. Conversely, for such f there exists a
subsequence Nk → ∞, such that

∣
∣
∣

∑

n≤Nk

f (n)

∣
∣
∣ � log Nk . (4)

123



Erdős discrepancy in function fields

Little is known towards this conjecture (which contains the Erdős discrepancy problem
as a special case), apart from the case where f differs from a Dirichlet character (not
necessarily of prime power modulus) at only finitely many primes, which was handled
in [10, Corollary 1.6]. This case contains (4), which was first handled in [1], and is the
easy part of the conjecture. In fact, the best currently known growth rate for partial
sums of length x of a completely multiplicative function f : N → S1 is of the form
�((log log x)c), for some explicit c > 0 [13, Theorem 4.1.1], [7, Section 9.4].

Both Corollary 1.2 and Conjecture 1.4 manifest the same general phenomenon:
the smallest possible discrepancy over Z and over Fq [t] (for short sums) is attained
by “modified" characters to prime power moduli. Over Fq [t] with q even, we have
an interesting low characteristic phenomenon that the set of characters with bounded
discrepancy is somewhat larger than in the case of q odd; this eventually stems from
Theorem 2.2 below.

Notice that while over Z the smallest possible partial sums are believed to be of the
order � log x , over Fq [t] they are O(1). In order to explain this feature, we recall that
for the Borwein–Choi–Coons example [1] given by the“modified" character

f3(p) :=
{

χ3(p), p 	= 3

1, p = 3,

the partial sums satisfy

∑

n≤x

f3(n) =
∑

k≤log x/ log 3

f3(3)
k

∑

m≤x/3k�
χ3(m) � log x,

since the innermost sum is bounded. On the other hand, to construct a sequence xk on
which the partial sums grow with rate � log xk one exploits the fact that the intervals
[1, M] contain a different number of residue classes modulo 3, depending on the value
of M (mod 3). This is no longer true over Fq [t], as all short intervals IH (G0) contain
the same number of residue classes to any modulus Q as soon as H ≥ deg(Q). This
results in a “logarithmic" drop1 as far as quantitative statements are concerned. We
shall revisit this further in the following subsections.

1.2 Discrepancy with the lexicographic ordering

To rectify the aforementioned difference between the settings of function fields and
integers from the previous subsection, a natural approach involves replacing the partial
ordering of Fq [t] employed in constructing the sets {G ∈ Fq [t] : deg(G) ≤ N } used
to define D f with a lexicographic ordering of Fq [t]. This is (a generalization of)
an ordering that has been used in the influential work of Liu and Wooley [12] on
Waring’s problem over Fq [t]. It arises by associating a base q integer expansion to

1 One can also view this residue class uniformity feature as a manifestation of a “smoother” summation in
Fq [t], in contrast to the sharp cutoffs arising in sums over Z. As pointed out in [18] (and attributed to Bill
Duke), introducing the smoothing weight max{0, 1 − n

x } in the Borwein–Choi–Coons example over the
integers also results in uniformly bounded partial sums, and thus a “logarithmic drop”, as x → ∞.
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each polynomial in Fq [t]. In order to define this ordering, we must first impose an
ordering on Fq . Let a0, a1, . . . , aq−1 be an arbitrary ordering of Fq , and define the
size 〈a〉 ∈ {0, 1, . . . , q − 1} of a ∈ Fq as

〈a〉 = k if a = ak .

Then we extend 〈·〉 to Fq [t] by defining

〈bN t N + · · · + b1t + b0〉 = 〈bN 〉qN + · · · + 〈b1〉q + 〈b0〉.

Implicit in this definition is the requirement2 that 〈0〉 = 0, and we assume that our
ordering always satisfies this property. It is clear that the map 〈·〉 is a bijection from
Fq [t] toN∪{0}. Thus it defines a total order≺ onFq [t] by setting A ≺ B if 〈A〉 < 〈B〉,
which is a lexicographic order on Fq [t] (and thus a natural one to use).

We remark that Liu and Wooley confined themselves to the lexicographic order
(denoted 〈·〉ξ ) that arises from ordering Fq as 0, ξ0, . . . , ξq−1, where ξ is a fixed
generator of F

×
q . Our results apply to this ordering as well as to any other ordering 〈·〉

with 〈0〉 = 0.
Answering a question of Liu and Wooley,3 we are able to show that when one uses

the ordering given by 〈·〉, the Erdős discrepancy conjecture holds for all completely
multiplicative sequences. Thus, defining the lexicographic discrepancy as

L f := sup
D∈M
N≥1

∣
∣
∣

∑

G∈M〈G〉≤N

f (DG)

∣
∣
∣,

we will prove the following.

Theorem 1.5 (Lexicographic discrepancy of completely multiplicative sequences is
always infinite) For any completely multiplicative sequence f : M → S1, we have
L f = ∞.

Thus, for any completely multiplicative function f : M → S1, the lexicographi-
cally ordered partial sums of f satisfy

sup
N≥1

∣
∣
∣

∑

G∈M〈G〉≤N

f (G)

∣
∣
∣ = ∞.

We conclude this subsection by mentioning that the lexicographic ordering appears to
be a natural ordering also for several other classical problems over Fq [t] (in particular,
for those where partial summation plays a role).

2 Otherwise, we would have 〈G + 0 · tdeg(G)+1〉 > 〈G〉, which is absurd.
3 Personal communication; Oberwolfach 2019.
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1.3 Long sum discrepancy

Having formulated our results for L f and S f , we revisit the long sum discrepancy
D f to study what can be said about its boundedness. We provide a classification of all
modified characters that have bounded D f ; these functions are defined as follows.

Definition 1.6 (Modified characters) We call a function f : M → S1 a modified
character if f is completely multiplicative and for some primitive Dirichlet character
χ (mod Q) of some modulus Q ∈ M we have f (P) = χ(P) for all primes P � Q,
and otherwise f (P) ∈ S1 for all P | Q. We also define modified characters on N

analogously.

In the integer setting, the class of modified characters contains the class of func-
tions for which Borwein, Choi and Coons [1] showed unboundedness of discrepancy.
Indeed, they considered completely multiplicative functions f : N → {−1,+1} such
that for some prime p we have f (p′) = χp(p′) for all p′ 	= p, where χp is the Leg-
endre symbol (mod p), analogizing the function f3 constructed above. We note that
such functions are significantly easier to work with, since the value of

∑

n≤N f (n) is
easy to compute given the base p expansion of N . As soon as one studies modified
characters to composite moduli, matters are more complicated and a direct computa-
tion of the partial sums (both in the integer case and in the function field case) appears
very difficult, requiring control of the digital expansion of N in (at least) two different
bases simultaneously.

We prove the following characterization for the discrepancy of modified characters,
whereω(Q) stands for the number of distinct primedivisors of a polynomial Q ∈ Fq [t]
and v2(n) is the 2-adic valuation of n.

Corollary 1.7 Let f : M → {−1,+1} be a modified character associated with a
primitive character of modulus Q. Then D f < ∞ if and only if one of the following
holds:

(i) ω(Q) = 1.
(ii) ω(Q) = 2, and (up to permutation) the primes P1, P2 dividing Q satisfy:

• f (P1) = −1, f (P2) = 1, and
• v2(deg(P1)) ≥ v2(deg(P2)).

(iii) ω(Q) = 3, and (up to permutation) the primes P1, P2, P3 dividing Q satisfy:

• f (P1) = f (P2) = −1 and f (P3) = 1,
• v2(deg(P1)) 	= v2(deg(P2)), and
• v2(deg(Pj )) ≥ v2(deg(P3)) for j = 1, 2.

We also give a complete characterization in the case where the modified character
is complex-valued; here the statement perhaps surprisingly depends on whether or not
a certain polynomial associated to f has multiple roots.

Theorem 1.8 Let f : M → S1 be a modified character associated to a primi-
tive character of modulus Q with deg(Q) ≥ 1. Define the polynomial p(z) :=
∏

P|Q(zdeg(P) − f (P)).
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a) If all the zeros of p have multiplicity 1, then

∣
∣
∣

∑

G∈M
deg(G)≤N

f (G)

∣
∣
∣ �Q 1.

b) If b ≥ 2 is the highest multiplicity of a zero of p, then there is an increasing sequence
{Nk}k≥1 such that

∣
∣
∣

∑

G∈M
deg(G)≤Nk

f (G)

∣
∣
∣ �Q Nb−1

k .

It is a natural question to ask for classification of all ±1-valued multiplicative
functions in M with D f < ∞. Proposition 1.1 and Corollary 1.7 imply that in the
case of general functions this appears all but impossible, whereas for the natural class
of modified characters we can give a complete characterization.

Theorem 1.8 is also related to Conjecture 1.4. Namely, one expects that for a
completely multiplicative function f : N → S1 there is an increasing sequence
{Nk}k≥1 such that

∣
∣
∣

∑

n≤Nk

f (n)

∣
∣
∣ � log Nk . (5)

As mentioned, from [1] it follows that (5) holds whenever f is a modified charac-
ter (with prime power modulus). Theorem 1.8 verifies an analogous statement over
function fields, namely that when f : M → S1 is a modified character for which
D f = ∞, we have

∣
∣
∣

∑

G∈M
deg(G)≤Nk

f (n)

∣
∣
∣ � log(qNk ) � Nk .

Theorem1.8 also reveals an interesting phenomenon about the spectrum of different
growth rates of discrepancy (and once again confirms the “logarithmic" drop). It shows
that the discrepancy of a modified character on Fq [t] always grows like Nd for some
number d ∈ N∪{0}; there are no other possible growth rates. It would be interesting to
say something about the spectrum of discrepancies for general multiplicative functions
on Fq [t] (or even on Z); however, this seems extremely difficult since in the non-
pretentious case the known lower bound on the growth of the discrepancy is very
weak (see Sect. 2 for relevant definitions).

2 Strategy of proofs

As in Tao’s resolution of the Erdős discrepancy problem [17], our proofs naturally split
into two main parts: the case of non-pretentious multiplicative functions and the case

123
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of pretentious multiplicative functions (see Fig. 1). At various points we are forced to
significantly deviate from the treatment in the number field case.

By pretentious functions we mean multiplicative functions f : M → S1 such
that for some character χ̃ : M → C of bounded conductor the pretentious distance
between f and χ̃ is bounded (the Granville–Soundararajan pretentious distance can be
generalized to function field setting; see (7) below). In the integer setting, the relevant
characters would be of the form χ̃(n) = χ(n)nit , so a Dirichlet character χ times an
Archimedean character n �→ nit , for some t ∈ R. A key technical point in this paper
is that these characters are not sufficient for understanding the behavior of the short
sum discrepancy. We thus need a larger set of characters, introduced in the following
definition.

Definition 2.1 (Characters in function fields) A multiplicative function χ : M → C

which is not identically zero is called a Dirichlet character of modulus Q ∈ M
if χ(M + Q) = χ(M) for all M ∈ M and χ(M) = 0 whenever (Q, M) 	= 1.
We say that χ (mod Q) is primitive if there is no divisor Q′ | Q, deg(Q′) < deg(Q)

such that for someDirichlet characterχ ′ (mod Q′)we haveχ(M) = χ ′(M)whenever
(M, Q) = 1.We say thatχ (mod Q) is principal ifχ(M) = 1whenever (M, Q) = 1.

A function eθM → S1 of the form eθ (M) := e(θdeg(M)) for θ ∈ [0, 1] is called
an Archimedean character.

A multiplicative function ξ : M → Cwhich is not identically zero is called a short
interval character if there exists ν ≥ 0 such that ξ(A) = ξ(B) whenever the ν + 1
highest degree coefficients of A and B agree. The smallest such ν is called the length
len(ξ) of ξ .

Any of the characters above are multiplicative. The Archimedean characters play
much the same role as the characters n �→ nit on N. The notion of short interval
characters was introduced by Hayes [6], and it has no integer analogue.

2.1 The non-pretentious case

In the non-pretentious case, the main ingredient that we need is a function field version
of Tao’s result on two-point logarithmic correlations of multiplicative functions. This
was established by the authors in [11].

Theorem 2.2 (Two-point logarithmic Elliott conjecture in function fields, [11]) Let
B ∈ Fq [t]\{0} be fixed. Let f1, f2 : Fq [t] → U be multiplicative. Let N be large, and
assume that f1 satisfies the non-pretentiousness condition

min
M∈M

deg(M)≤W

min
ψ (mod M)

min
ξ short

len(ξ)≤N

min
θ∈[0,1]

∑

P∈P
deg(P)≤N

1 − Re( f1(P)ψ(P)ξ(P)eθ (P))

qdeg(P)

N→∞−−−−→ ∞

for every fixed W ≥ 1. Then

1

N

∑

G∈M
deg(G)≤N

q−deg(G) f1(G) f2(G + B) = o(1).
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Moreover, if f1is real-valued and q is odd, then the same conclusion follows provided
only that

min
M∈M

deg(M)≤W

min
ψ (mod M)

min
θ∈{0,1/2}

∑

P∈P
deg(P)≤N

1 − Re( f1(P)ψ(P)eθ (P))

qdeg(P)

N→∞−−−−→ ∞.

Proof This is [11, Theorem 1.5] ��

2.2 The pretentious case

Assuming for the sake of contradiction that a completely multiplicative f has finite
short sum discrepancy S f , Theorem 2.2 can be used as in [17] to achieve the crucial
reduction to the case in which f pretends to be a twisted character G �→ χξeθ (G),
where χ is a primitive Dirichlet character of bounded conductor, ξ is a short interval
character and θ ∈ [0, 1]. At this point, after removing the twist ξeθ (which is essentially
a triviality) we significantly deviate from Tao’s analysis in [17].

The first step of this different argument is a technique that allows us to pass from
the pretentiousness condition

∑

P∈P

1 − Re( f (P)χ(P))

qdeg(P)
< ∞

to the far more restrictive hypothesis

|{P ∈ P : f (P) 	= χ(P)}| < ∞. (6)

To accomplish this reduction we use a technical device, which we call the “rotation
trick." This general trick played a crucial role in the recent work [10] on multiplicative
functions over the integers.

After this reduction to f satisfying (6), it remains to treat the case where f is a
modified character (see Definition 1.6 above). At this point it should be noted that the
corresponding argument in [17] (see Section 4, from (4.8) onwards) is insufficient,
due essentially to the fact that for any H > deg(Q), orthogonality implies

∑

deg(M)<H

χ(M) = 0,

for any non-principal Dirichlet character modulo Q (and, as discussed above, the anal-
ysis of Borwein–Choi–Coons from [1] runs into serious difficulties in the case where
Q has several prime factors). However, a more elaborate argument using Ramanu-
jan sums (see Proposition 4.7 below) does permit one to show that for suitable large
choices of H , and for N large in terms of H , one does have
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max
G0∈M

deg(G0)=N

∣
∣
∣
∣
∣
∣
∣
∣

∑

G∈M
deg(G−G0)<H

f (G)

∣
∣
∣
∣
∣
∣
∣
∣

�Q H (ω(Q)−1)/2,

where ω(Q) denotes the number of distinct prime factors of the modulus Q of the
modified character corresponding to f . The logarithmic power growth rate is consistent
with the discrete patternwitnessed inTheorem1.8. The above enables us to show that if
the number of primes at which f and χ differ exceeds 1 then S f = ∞. The remaining
case in which ω(Q) = 1 can be analyzed directly (because the modulus is a power of
a single prime), and this is accomplished at the end of Sect. 4, leading to the proof of
Theorem 1.3.

2.3 The lexicographic discrepancy result

It is crucial to remark that the collection of lexicographic intervals is a refinement of
the collection of short intervals, in the sense that if deg(G0) = N and H < N and G̃0
is the unique element of IH (G0) divisible by t H , then we can express

IH (G0) = IH (G̃0) = {G ∈ M : 〈G̃0〉 ≤ 〈G〉 < 〈G̃0〉 + qH }.

Thus, in view of our short interval result (Theorem 1.3), a completely multiplicative
function f : M → S1 that is uniformly bounded on lexicographic intervals must
be a modified character to prime power modulus. Our main obstacle is thus to rule
out uniform boundedness of lexicographic partial sums for this class of functions, for
which the analysis in short intervals is not sufficient.

To accomplish this, we fully exploit the “digital" structure of the lexicographic
ordering to obtain a recursive relation for partial sums over 〈G〉 ≤ N at a carefully
chosen sequence of scales N . The construction is somewhat complicated, and we
relegate further explanation to the proof of Proposition 5.1.

The proof strategy of Theorems 1.3 and 1.5 is visualized in the following diagram.

2.4 The long sum discrepancy result

The proof of Theorem1.8 proceeds differently than the proofs of Theorems 1.3 and 1.5,
using a generating function argument and GRH in function fields, and can be read
independently.

2.5 Structure of the paper

The paper is organized as follows. In Sect. 4, we prove the short interval discrepancy
theorem (Theorem 1.3). In Sect. 5, we establish the discrepancy theorem for lexico-
graphic discrepancy (Theorem 1.5). Lastly, Sect. 6 concerns the long sum discrepancy
result, Theorem 1.8.
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Fig. 1 A diagram describing the different steps of the proofs of Theorems 1.3 and 1.5

3 Notation

Throughout the paper, p is the characteristic of Fq , and q = pk for some k ≥ 1.
We denote by M the space of monic polynomials in Fq [t] (we omit the q-

dependence in M; thus, whenever M appears it is understood that the base field
has size q), and by P we denote the space of monic irreducible (prime) polynomials
in Fq [t]. For N ∈ N, we write MN , M≤N and M<N to denote, respectively, the set
of monic polynomials of degree exactly N , less than or equal N and strictly less than
N . Analogously, we define PN , P≤N and P<N to be the corresponding sets of monic
irreducible polynomials. We denote the degree of M ∈ Fq [t] by deg(M).

Given two polynomials F,G ∈ Fq [t], not both zero, we define their greatest com-
mon divisor (F,G) as the unique monic polynomial D ∈ M such that D | F, D | G
and such that for any D′ ∈ M satisfying D′ | F, D′ | G we have D′ | D. The least
common multiple [F,G] of F and G is in turn defined by [F,G] := FG/(F,G).

Typically, G will be used to denote an element of M, whereas R or P denotes an
element of P and M denotes an element of Fq [t], monic or otherwise.

Given two polynomials G0,G ∈ M and a parameter H ≥ 1, we write

IH (G0) := {G ∈ M : deg(G − G0) < H}

to denote the short interval centred at G0 of size H .
As usual, given t ∈ R we write e(t) := e2π i t . Given a parameter θ ∈ [0, 1] and a

polynomial G ∈ Fq [t], we also write eθ (G) := e(θdeg(G)). Finally, given a rational

function F/G ∈ Fq(t)with Laurent series expansion F/G = ∑N ′
k=−N aktk , we define

eF(α) := e((trFq/Fpa−1(α))/p), where trFq/Fp denotes the usual field trace.
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Throughout the paper, we write U := {z ∈ C : |z| ≤ 1} and S1 := {z ∈ U : |z| =
1}. Given sequences f , g : M → U, we define the pretentious distance between them
by

D( f , g; N ) :=
⎛

⎝
∑

P∈P≤N

q−deg(P)(1 − Re( f (P)g(P)))

⎞

⎠

1/2

, (7)

and also set

D f (N ) := min
θ∈[0,1] D( f , eθ ; N )2.

We frequently use the pretentious triangle inequalities (see e.g. [9, Section 2]): for any
functions f1, f2, f3, f4 : M → U, we have

D( f1, f3; N ) ≤ D( f1, f2; N ) + D( f2, f3; N ) (8)

and

D( f1 f2, f3 f4; N ) ≤ D( f1, f3; N ) + D( f2, f4; N ). (9)

For f : M → U a 1-boundedmultiplicative function, we define the Dirichlet series
corresponding to f by

L(s, f ) :=
∑

G∈M
f (G)q−deg(G)s =

∏

P∈P

∑

k≥0

f (Pk)q−kdeg(P)s, (10)

for Re(s) > 1; in this region both expressions converge absolutely.
We will sometimes write μk to denote the set of kth order roots of unity, where

k ∈ N.
The functions �, ω, λ, μ, φ, rad and νP , defined on M, are the analogues of the

corresponding arithmetic functions in the number field setting. Thus

• �(G) = deg(P) if G = Pk for some k ≥ 1 and P ∈ P and �(G) = 0 otherwise.
• ω(G) is the number of distinct irreducible divisors of G.
• λ : M → {−1,+1} is the completely multiplicative function with λ(P) = −1
for all P ∈ P .

• μ : M → {−1, 0,+1} is given by μ(G) = (−1)ω(G) for G not divisible by P2

for any P ∈ P , and μ(G) = 0 otherwise.
• φ(G) is the size of the finite multiplicative group (Fq [t]/GFq [t])×.
• rad(G) = 1 if G = 1 and rad(G) = P1 · · · Pk if P1, . . . , Pk are the distinct
irreducible factors of G.

• νP (G), for P ∈ P , is the largest integer k such that Pk | G.

Recall also Definition 2.1 for the definitions of the various types of characters used in
this paper.
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Throughout this paper, the cardinality q of the underlying finite field Fq is fixed.
For the sake of convenience we have chosen to omit mention of dependencies on q of
implicit constants in our estimates. In particular, the implicit constants in any estimate
may depend on q throughout this paper.

4 The short sum discrepancy

The proof of Theorem 1.3 will be achieved through a series of reductions, starting
with a reduction to the case of functions that pretend to be characters.

4.1 Reduction to the pretentious case

In this subsection, we will show that the short sum discrepancy S f of f is infinite
whenever f is non-pretentious in a suitable sense. Recall the notions of characters and
pretentiousness in this context from Definition 2.1 and the notation section, respec-
tively.

Proposition 4.1 Let f : M → S1 be a completely multiplicative function, and let
C > 0. Assume that

S f = lim sup
H→∞

lim sup
N→∞

max
G0∈MN

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

g(G)

∣
∣
∣
∣
∣
∣

≤ C . (11)

Then there is a primitive Dirichlet character χ with cond(χ) �C 1, a short interval
character ξ of length�C 1 and a real number θ ∈ [0, 1] such thatD(g, χξeθ ; N ) �C

1 for all N ≥ 1.
Moreover, in the case that f : M → {−1,+1} we may conclude, in fact, that there

is a real primitive character χ , a real short interval character ξ and θ ∈ {0, 1/2} such
that D( f , χξeθ ; N ) �C 1 for all N ≥ 1. If q is additionally odd, we can also say
that ξ ≡ 1.

Proof Let H = H(C) be an integer large enough in terms of C . We may assume that
N is large enough in terms of H , so that in particular 1 ≤ H <

√
log N/10. We

may bound S2
f from below by a (logarithmically-weighted) L2-average of sums over

intervals IH (G0) with G0 ∈ M≤N to deduce that

1

N + 1

∑

G0∈M≤N \M≤√
log N

q−deg(G0)

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

f (G)

∣
∣
∣
∣
∣
∣

2

≤ (S f + 1)2 �C 1.
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Weexpand the square, exchange orders of summation and separate the terms accord-
ing to deg(G0) = m. We obtain

1

N + 1

∑

√
log N<m≤N

q−m
∑

G0∈Mm

∑

deg(M1),deg(M2)<H

f (G0 + M1) f (G0 + M2) �C 1.

(12)

For each m ≥ H and M1 ∈ M of degree < H , we have Mm + M1 = Mm . Thus,
making on the left-hand side of (12) the change of variables G := G0 + M1 and
M := M2 − M1 (so that deg(M) < H ), and then bounding the contribution from the
summands with m <

√
log N trivially as O(q2H

√
log N ), we reach

|M<H |
N + 1

∑

m≤N

q−m
∑

G∈Mm

∑

deg(M)<H

f (G) f (G + M) �C 1 + q2H
√

log N/N .

If we isolate the choice M = 0 from the remaining shifts, we deduce that

∣
∣
∣
∣
∣
∣
∣
∣

∑

deg(M)<H
M 	=0

1

N + 1

∑

m≤N

q−m
∑

G∈Mm

f (G) f (G + M)

∣
∣
∣
∣
∣
∣
∣
∣

�C 1 − OC (
√

log N/N ).

By the assumption that N is large in terms of H , the triangle inequality and the
pigeonhole principle then imply that for some M 	= 0 with deg(M) < H we actually
have

∣
∣
∣
∣
∣
∣

1

N

∑

m≤N

q−m
∑

G∈Mm

f (G) f (G + M)

∣
∣
∣
∣
∣
∣

�C q−H �C 1.

By the first statement in Theorem 2.2, we conclude that there exists a primitive
Dirichlet character χN with cond(χN ) = OC (1), a primitive short interval character
ξN of length ≤ N and a point θN ∈ [0, 1] such that D( f , χN ξNeθN ; N ) �C 1. Note
that the set of Dirichlet characters of conductor at most OC (1) is bounded in size (in
terms of C) and that [0, 1] is compact. There is thus an infinite increasing sequence
{N j } j of positive integers, a primitive character χ of conductor�C 1 and a θ ∈ [0, 1]
for which θN j → θ as j → ∞, such that

lim sup
j→∞

D( f , χξ j eθ j ; N j ) < ∞,

where by an abuse of notation we have written ξ j := ξN j and θ j := θN j , for conve-
nience.

Since N j+1 > N j , it follows from the triangle inequality (8) that

D(ξ j eθ j , ξ j+1eθ j+1 ; N j ) ≤ D( f , χξ j eθ j ; N j ) + D( f , χξ j+1eθ j+1 ; N j+1) �C 1 (13)
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uniformly in j ≥ 1. Now, suppose ξ jξ j+1 is nontrivial. Note that ξ jξ j+1 is a short
interval character of length≤ max{len(ξ j ), len(ξ j+1)} ≤ N j . But then by (7) and [11,
Lemma 3.2],

D(ξ j eθ j , ξ j+1eθ j+1 ; N j )
2 = log N j − Re

⎛

⎜
⎝

∑

P∈P≤N j

ξ j ξ j+1(P)eθ j−θ j+1 (P)q−deg(P)

⎞

⎟
⎠ + O(1)

(14)

≥ (1 − o(1)) log N j . (15)

This contradicts (13). It must follow that ξ j = ξ j+1 for all j sufficiently large (in
terms of C). In particular, it follows that there is a j0 �C 1 such that ξ j = ξ j0 for all
j ≥ j0. Setting ξ := ξ j0 , which is a short interval character of length�C 1, we deduce
that D( f , χξeθ j ; N j ) �C 1 for all j ≥ 1, and therefore by the triangle inequality (8)
it follows that

D(eθ j , eθ j+k ; N j ) ≤ D( f , χξeθ j ; N j ) + D( f , χξeθ j+k ; N j+k) �C 1,

uniformly in j, k ≥ 1. Since the expression on the left-hand side is continuous in
θ j+k , taking k → ∞ we deduce that

D(eθ j , eθ ; N j ) �C 1,

uniformly in j , and hence for all j ≥ 1 we have

D( f , χξeθ ; N j ) ≤ D( f , χξeθ j ; N j ) + D(χξeθ , χξeθ j ; N j )

= D( f , χξeθ j ; N j ) + D(eθ , eθ j ; N j ) + OC (1) �C 1,

where we used the fact that |χξ(P)| = 1 for all P ∈ P of degree �C 1.
Since D( f , χξeθ ; N j ) ≤ D( f , χξeθ ; N ) ≤ D( f , χξeθ ; N j+1) whenever N j ≤

N < N j+1, we deduce that

D( f , χξeθ ; N ) �C 1, (16)

uniformly in N . This completes the proof of the first claim.
To prove the second claim where f : M → {−1,+1}, we take the conclusion (16)

and apply the triangle inequality (9) to deduce that

D(1, χ2ξ2e2θ ; N ) ≤ 2D( f , χξeθ ; N ) �C 1. (17)
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Arguing similarly as in (14), this implies that χ2 is principal and ξ2 ≡ 1. Furthermore,
in this case, by (7) we have

D(1, χ2e2θ ; N )2 = D(1, e2θ ; N )2 + OC (1)

= log N −
∑

n≤N

cos(4πθn)

n
+ OC (1). (18)

If 2θ 	≡ 0 (mod 1), there exist η > 0 and B > 0 such that every interval of length
B contains an integer n for which | cos(4πθn)| ≤ 1 − η. Inserting this into (18) and
comparing with (17), we conclude that we must have 2θ ≡ 0 (mod 1).

Lastly, if q is odd, then by the statement in Theorem 2.2 about real-valued f , we
also have ξ ≡ 1 (in fact, there are no nontrivial real-valued short interval characters
then). The second claim thus follows. ��

4.2 Reduction tomodified characters

We have demonstrated that in order to characterize those completely multiplicative
functions f with bounded short sum discrepancy S f , it suffices to treat functions that
are pretentious to a twisted character. Bymeans of the following proposition, however,
we can in fact restrict ourselves to functions differing from a twisted character at a
bounded number of irreducibles, only. The proof of the proposition utilizes what we
call a “rotation trick”; see [10] for applications of the same idea in the integer setting.

Proposition 4.2 Let f : M → S1 be completely multiplicative. Suppose there exist
Q ∈ M and a primitive Dirichlet character χ modulo Q, a primitive short interval
character ξ of length ν ≥ 0 and θ ∈ [0, 1] such that D( f , χξeθ ;∞) < ∞. Let

S := {P ∈ P : f (P) 	= χ(P)ξ(P)eθ (P)}.

If |S| = ∞ then S f = ∞.

Proof Let f : M → S1 be be completely multiplicative. Assume for the sake of
contradiction that |S| = ∞. We will prove that

lim sup
H→∞

lim sup
N→∞

max
G0∈MN

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

f (G)

∣
∣
∣
∣
∣
∣

= ∞. (19)

For N large enough in terms of H , both eθ and ξ are constant on any short interval
IH (G0) with G0 ∈ MN , so we may replace f by f ξe−θ in (19) and (still calling
this new function f for convenience) we may assume that D( f , χ;∞) < ∞ and that
S := {P ∈ P : f (P) 	= χ(P)} is infinite.
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Let 1 � H � n � N be parameters, each of which is large enough in terms of
the parameters to the left of it. Since D( f , χ;∞) < ∞, we can impose the condition

D( f , χ; n,∞)2 :=
∑

P∈P
deg(P)>n

1 − Re( f (P)χ(P))

qdeg(P)
≤ 1/q3H . (20)

Since |S| = ∞, there exists a function F : N → R≥0, depending only on H , such
that there are > q2 H primes P ∈ S with deg(P) ∈ (n, F(n)].

For each M ∈ Fq [t] of degree < H pick some PM ∈ S such that the PM are all
distinct and such that deg(PM ) ∈ (n, F(n)], and let kM �H ,n 1 be a positive integer
to be chosen later. We set

� :=
∏

G∈M≤n

G2 ·
∏

deg(M)<H

PkM
M ;

note that

deg(�) ≤ 2
∑

G∈M≤n

deg(G) +
∑

deg(M)<H

kMdeg(PM )

≤ 8nqn +
(

max
deg(M)<H

kM

)

qH F(n)

≤ (log N )/(50 log q),

if H is large enough and N is large enough in terms of n and H .
By the Chinese remainder theorem, we can choose R ∈ M2deg(()�) such that

R ≡ 0

⎛

⎝ mod
∏

G∈M≤n

G2

⎞

⎠

R ≡ −M + PkM
M

(

mod PkM+1
M

)

for all M ∈ M with deg(M) < H .
Note that if M 	= M ′ are in Fq [t] and deg(M), deg(M ′) < H , then PM ′ � (R+M),

since otherwise PM ′ | (M ′ − M) but deg(PM ′) > H . Therefore,

(R + M, �) = (M, �) · PkM
M = M̃ PkM

M , (21)

where, setting a to be the leading coefficient of M , we put M̃(t) := M(t)/a.
We consider the double sum

� := q−N
∑

deg(M)<H

∑

G∈MN

f (G� + R + M).
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Since S f < ∞, swapping the orders of summation, summing in M and applying the
triangle inequality, we see that

|�| ≤ q−N
∑

G∈MN

∣
∣
∣
∣
∣
∣

∑

deg(M)<H

f (G� + R + M)

∣
∣
∣
∣
∣
∣

≤ S f + 1 < ∞.

Now fix M ∈ M<H for the moment. Set

dM := a(R + M, �) = MPkM
M , �M := �/dM .

Factoring out primes in common with � and noting that deg(R + M) < N , we have

∑

G∈MN

f (G� + R + M) = f (dM )
∑

G∈MN

f

(

G�M + R + M

dM

)

= f (dM )
∑

G ′∈MN+deg(�M )

f (G ′)1G ′≡(R+M)/dM (mod �M ).

Using orthogonality of Dirichlet characters modulo �M , the above expression equals
to

f (dM )

φ(�M )

∑

ψ (mod �M )

ψ((R + M)/dM )
∑

G ′∈MN+deg(�M )

f (G ′)ψ(G ′).

Choosing n large enough in terms of H , we can guarantee that Q|�M , regardless of
M . Thus, there is a character χ ′ modulo �M that is induced by χ . If ψ 	= χ ′ then,
provided N is large enough in terms of n, [11, Corollary 3.7] yields

max
deg(M)<H

max
ψ (mod �M )

ψ 	=χ ′

∣
∣
∣
∣
∣
∣

∑

G ′∈MN+deg(�M )

f (G ′)ψ(G ′)

∣
∣
∣
∣
∣
∣

� qN+deg(�)N−1/4+o(1) � qN /N 1/5,

since deg(�) ≤ log N
50 log q . Thus,

q−N
∑

G∈MN

f (G� + R + M)

= f (dM )χ ′
(
R + M

dM

)
qdeg(�M )

φ(�M )
q−N−deg(�M )

∑

G ′∈MN+deg(�M )

f (G ′)χ ′(G ′) + O(N−1/5).

(22)
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Observe that using (21), R/M ≡ 0 (mod Q) and (R/M +1, �M ) = (PkM
M , �M ) = 1,

we have

χ ′
(
R + M

dM

)

= χ ′
(

R/M + 1

PkM
M

)

= χ(PM )kM . (23)

Applying Delange’s theorem over function fields to f χ ′ (see [9, Theorem 1.4.1]),
and recalling that χ ′(P) = 0 if P | �M , we see that

∑

G ′∈MN+deg(�M )

f (G ′)χ ′(G ′)

= qN+deg(�M )

(
φ(�M )

qdeg(�M )

∏

P∈P
deg(P)>n

P 	=PM ′ ∀M ′ : deg(M ′)<H ,M ′ 	=M

(

1 − q−deg(P)
) (

1 − f χ ′(P)q−deg(P)
)−1

+ O

(

D

(

f , χ; log N

2 log q
, ∞

)

+ N−1/2
))

= φ(�M )

qdeg(�M )
qN+deg(�M )

(

1 + O

(
∑

P∈P
deg(P)>n

1 − Re( f (P)χ ′(P))

qdeg(P)
+ q−3H/2 + N−1/2

))

= φ(�M )

qdeg(�M )
qN+deg(�M )

(

1 + O(q−3H/2 + N−1/2)
)

(24)

by (20), provided that that n is large enough in terms of H . Since the above can be
done uniformly over all deg(M) < H , we deduce upon inserting (24), (23) and (21)
into (22) that when N is large enough relative to H ,

S f + 1 ≥ � = q−N
∑

deg(M)<H

∑

G∈MN

f (G� + R + M) =
∑

deg(M)<H

f (dM )χ(PM )kM + o(1)

=
∑

deg(M)<H

f χ(PM )kM
∏

deg(P)≤n

f (P)νP (M) + o(1)

=
∑

deg(M)<H

f χ(PM )kM f (M) + o(1).

We now show that there is a choice of the multiplicities kM that makes

∣
∣
∣
∣
∣
∣

∑

deg(M)<H

f χ(PM )kM f (M)

∣
∣
∣
∣
∣
∣

≥ qH/10,

say, which will provide the desired contradiction for H large enough. This follows
from the following lemma.
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Lemma 4.3 Let m ≥ 1, let w1, . . . , wm ∈ S1, and let ζ1, . . . , ζm ∈ S1 \ {1}. Then
there exist k j ∈ N such that

∣
∣
∣
∣
∣
∣

∑

j≤m

ζ
k j
j w j

∣
∣
∣
∣
∣
∣

≥ m/7. (25)

Proof By the pigeonhole principle, there exists a closed arc I of the unit circle S1 of
length 2π/3 that contains≥ m/3 of the complex numbersw j . Let J be the set of j for
which w j ∈ I . Form a semicircle C ⊂ S1 such that I ⊂ C and such that the midpoint
of I is the midpoint of the arc of C.

Now, for every j ∈ J , pick k j such that |ζ k j
j − 1| ≤ 1/(100m). For every j ∈

{1, . . . ,m}\J , pick k j such that ζ
k j
j w j ∈ C; this is clearly always possible since

{ζ k
j : k ∈ N} intersects any semicircle. Let α ∈ S1 be such that the half-plane

determined by C is {z ∈ C : Re(αz) ≥ 0}. Note that Re(αz) ≥ 1
2 whenever z ∈ I .

Thus
∣
∣
∣
∣
∣
∣

∑

j≤m

ζ
k j
j w j

∣
∣
∣
∣
∣
∣

≥ Re

⎛

⎝α
∑

j≤m

ζ
k j
j w j

⎞

⎠

≥ Re

⎛

⎝α
∑

j∈J

ζ
k j
j w j

⎞

⎠

≥ m

3
·
(
1

2
− 1

100

)

≥ m

7
,

which proves the claim ��
Taking ζM = f χ(PM ) 	= 1 and wM = f (M) in the lemma, a choice of multiplic-

ities kM �n,H 1 can be made, and the claim follows. ��

4.3 The case of modified characters

It now remains to consider functions that differ at only finitely many primes from a
non-principal Dirichlet character. Indeed, as was noted in the proof of Proposition 4.2,
if

lim sup
H→∞

lim sup
N→∞

max
G0∈MN

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

f (G)

∣
∣
∣
∣
∣
∣

= ∞,

holds for a function f , then it also holds for the function f ξe−θ , so we may assume
by Proposition 4.2 that |{P ∈ P : f (P) 	= χ(P)}| < ∞.

This is precisely the case of modified characters (see Definition 1.6 above).
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Remark 4.4 Note that if f differs from a non-principal Dirichlet character χ ′ at only
finitely many primes S, say, then by setting χ := χ ′χ(QS)

0 , where QS := ∏

P∈S P
and χ

(QS)
0 denotes the principal character modulo QS , then f is a modified character

modulo [Q, QS].

4.3.1 Modified characters with at least two prime factors

The lastmajor ingredient thatwe require before proceeding to the proof of Theorem1.3
involves showing that modified characters have unbounded short sum discrepancy,
provided the modulus has at least two distinct prime factors. We start with a lemma
that will be used subsequently.

Lemma 4.5 For a Dirichlet character χ (mod Q) with Q ∈ M we define the Gauss
sum4

τ(χ) =
∑

A (mod Q)

χ(A)eF

(
A

Q

)

.

Then τ(χ) 	= 0 whenever χ (mod Q) is primitive and non-principal.

Proof Ifχ (mod Q) is primitive and non-principal, the same argument as in the integer
case (see [2, Section 2]) shows that |τ(χ)| = qdeg(Q)/2, so the claim follows. ��
We will also need the following formula for the Gauss sums

τ(χ, B) :=
∑

A (mod Q)

χ(A)eF

(
AB

Q

)

,

particularly when χ is imprimitive.

Lemma 4.6 Let Q = Q1Q2 ∈ M, where (Q1, Q2) = 1 and Q2 is squarefree. Let χ
be a character modulo Q, induced by a primitive character χ∗ modulo Q1. Then for
any non-zero B ∈ Fq [t],

τ(χ, B) = τ(χ∗)χ∗(Q2)χ∗(B)φ((Q2, B))μ(Q2/(Q2, B))1(Q,B)|Q2 .

Proof Following the proof of [14, Lemma 5.4] in the function field setting, we find
that

τ(χ, B) = τ(χ∗)χ∗(B/(Q, B))
φ(Q)

φ(Q/(Q, B))
μ(Q2/(Q, B))χ∗(Q2/(Q, B))

if (Q, B)|Q2, and τ(χ, B) = 0 otherwise. We focus on the former case. Since
(Q1, Q2) = 1 and Q2 is squarefree, B is coprime to Q1 = cond(χ), (Q, B) =
4 Recall the definition of the exponential function eF(·) in Fq (t) from Sect. 3
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(Q2, B) and we can simplify the character factors to give χ∗(Q2)χ∗(B). Further-
more, we have

φ(Q)

φ(Q/(Q, B))
= φ(Q2)

φ(Q2/(Q2, B))
= φ((Q2, B)),

which implies the claim. ��
Now the result about modified characters modulo Q 	= Pr follows in a strong form

from the following result.

Proposition 4.7 Let f : M → S1 beamodified charactermodulo Q ∈ M, associated
with a non-principal character χ , induced by a primitive character χ∗ modulo Q∗.
Assume moreover that Q/Q∗ is squarefree and coprime to Q.

Let N ≥ 1 be large. Then for any 1 ≤ T ≤ N/(10(deg(Q))ω(Q)+1) there is a
choice of H ∈ [T , T (deg(Q))ω(Q)] such that

max
G0∈M≤N

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

f (G)

∣
∣
∣
∣
∣
∣

�Q H
1
2 (ω(Q)−1).

Remark 4.8 As we shall see, the assumption that Q/Q∗ be squarefree and coprime to
Q is satisfied in our application.

The proof is based on a careful analysis of Ramanujan sums. For G ∈ M, H ∈
Fq [t], the Ramanujan sum cG(H) is defined by

cG(H) :=
∑∗

A (mod G)

eF

(
AH

G

)

,

where ∗ in the sum denotes summation over invertible residue classes. Ramanujan
sums satisfy the relation

∑

D|G
cD(H) = qdeg(G)1G|H , (26)

so that by Möbius inversion we get

cG(H) =
∑

E |G
μ(G/E)qdeg(E)1E |H . (27)

Lemma 4.9 Let Q ∈ M, deg(Q) ≥ 1, and let n ∈ Z. Then

∑

deg(M)<n

cQ(M) =
{

φ(Q) if n ≤ 0

0 if n ≥ 1.

123



O. Klurman et al.

Proof Let S(n) denote the sum on the left-hand side. Then

S(n) =
∑

deg(M)<n

cQ(M) = cQ(0) +
∑

0≤m<n

∑

deg(M)=m

cQ(M),

where the sum on the right-hand side is interpreted as empty unless n ≥ 1. If n ≤ 0,
we are done since cQ(0) = φ(Q), so suppose n ≥ 1.

Expanding cQ(M) using (27), we get

S(n) = cQ(0) +
∑

E |Q
μ(Q/E)qdeg(E)

∑

0≤m<n

∑

deg(M)=m
E |M

1

= cQ(0) +
∑

E |Q
μ(Q/E)qdeg(E)

∑

0≤m<n

(q − 1)qm−deg(E)1m≥deg(E)

= cQ(0) + (q − 1)
∑

E |Q
μ(Q/E)

∑

deg(E)≤m<n

qm .

Summing the geometric series, using
∑

E |Q μ(Q/E) = 0 for deg(Q) ≥ 1 and (27),
we get

S(n) = cQ(0) +
∑

E |Q
μ(Q/E)(qn − qdeg(E)) = cQ(0) −

∑

E |Q
μ(Q/E)qdeg(E)

= cQ(0) − cQ(0) = 0.

This completes the proof of the claim. ��

4.3.2 Proof of proposition 4.7

Since χ (mod Q) is non-principal, we have deg(Q) ≥ 1. Write Q = Pr1
1 · · · Prk

k
where the Pj are all distinct, and set d j := deg(Pj ) for all j . Suppose f : M → S1

is completely multiplicative, with f (P) = χ(P) for all P 	= Pj . We put H =
Tr1d1 · · · rkdk and observe that we have the inequalities

T ≤ H ≤ T ( max
1≤ j≤k

r j d j )
ω(Q) ≤ T (deg(Q))ω(Q),

as required.
Let N > 10T (deg(Q))ω(Q)+1 ≥ 10Hdeg(Q). Then

max
G0∈M≤N

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

f (G)

∣
∣
∣
∣
∣
∣

2

≥ q−N
∑

G0∈MN

∣
∣
∣
∣
∣
∣

∑

deg(M)<H

f (G0 + M)

∣
∣
∣
∣
∣
∣

2

= q−N
∑

G0∈MN

∣
∣
∣
∣
∣
∣

∑

rad(D)|Q
f (D)

∑

deg(M)<H

χ

(
G0 + M

D

)

1D|(G0+M)

∣
∣
∣
∣
∣
∣

2

=: T . (28)
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We will show the following lower bound for T .

Lemma 4.10 Assume the hypotheses of Proposition 4.7, and write QS := Q/Q∗.
Then

T ≥ φ(Q)

qdeg(Q)

(
φ(QS)

qdeg(QS )

)2 ∏

P|QS

∣
∣
∣1 − f χ∗(P)q−deg(P)

∣
∣
∣

−2

⎛

⎜
⎜
⎝
qH

∑

rad(D)|Q
deg(D)≥H

q−deg(D)

⎞

⎟
⎟
⎠

+ oN→∞(1).

Proof (Deduction of Proposition 4.7 assuming Lemma 4.10) Note that the product

∏

P|QS

|1 − f χ∗(P)q−deg(P)|−2

is non-vanishing, and therefore �Q 1. From Lemma 4.10, we thus obtain

T �Q qH
∑

rad(D)|Q
deg(D)≥H

q−deg(D) + oN→∞(1) ≥
∑

rad(D)|Q
deg(D)=H

1 + oN→∞(1)

= |{α ∈ N
k
0 : α1r1d1 + · · · + αkrkdk = H}| + oN→∞(1),

since Q = Pr1
1 · · · Prk

k with d j = deg(Pj ), for each j . As H = Tr1d1 · · · rkdk ,

|{α ∈ N
k
0 : α1r1d1 + · · · + αkrkdk = H}|

≥ |{α ∈ N
k
0 : α1r1d1 + · · · + αkrkdk = Tr1d1 · · · rkdk and

∏

1≤i≤k
i 	= j

ri di |α j for all 1 ≤ j ≤ k}|

= |{β ∈ N
k
0 : β1 + · · · + βk = T }| =

(
T + k − 1

k − 1

)

�k T k−1 �Q Hk−1.

In particular, we obtain T �Q Hω(Q)−1. It thus follows from (28) that

max
G0∈M≤N

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

f (G)

∣
∣
∣
∣
∣
∣

2

≥ T �Q Hω(Q)−1,

as required. ��
It therefore remains to prove Lemma 4.10.

Proof of Lemma 4.10 The proof of the lemma is a technical computation, but can be
divided into several steps.

Step 1: Reduction to a sum over a hyperplane (mod Q). Note that if deg(D) > N
then the only solution to D|(G0+M) requiresG0+M = 0, which is impossible since
deg(M) = H < N = deg(G0). Thuswemay additionally assume that deg(D) ≤ N in
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the inner sum defining T . Splitting into residue classes modulo Q and then expanding
the square (and making the change of variables M �→ −M for later convenience), we
have

T = q−N
∑

G0∈MN

∣
∣
∣
∣
∣
∣
∣
∣

∑

rad(D)|Q
deg(D)≤N

f (D)
∑

deg(M)<H

χ

(
G0 − M

D

)

1D|(G0−M)

∣
∣
∣
∣
∣
∣
∣
∣

2

= q−N
∑

G0∈MN

∣
∣
∣
∣
∣
∣
∣
∣

∑∗

A (mod Q)

χ(A)
∑

rad(D)|Q
deg(D)≤N

f (D)
∑

deg(M)<H

1D|(G0−M)1(G0−M)/D≡A (mod Q)

∣
∣
∣
∣
∣
∣
∣
∣

2

= q−N
∑∗

A1,A2 (mod Q)

χ(A1)χ(A2)
∑

rad(Dj )|Q
deg(Dj )≤N

j=1,2

f (D1) f (D2)

·
∑

deg(Mj )<H
j=1,2

|{G0 ∈ MN : G0 ≡ Mj (mod Dj ), (G0 − Mj )/Dj ≡ A j (mod Q), j = 1, 2}|.

Fix momentarily D1, D2 with rad(Dj )|Q for j = 1, 2, and set D := (D1, D2) and
D̃ j := Dj/D for j = 1, 2. Note that the pair of congruences G0 ≡ Mj (mod Dj ) for
j = 1, 2 is solvable if and only if D|(M2 − M1), and provided deg([D1, D2]) ≤ N
the general solution has the form

G0 = R[D1, D2] + M1L2D2 + M2L1D1

D

= R[D1, D2] + M1 + M2 − M1

D
L1D1 = R[D1, D2] + M2 − M2 − M1

D
L2D2,

where L1, L2 are reduced residue classes modulo [D1, D2] that satisfy L1D1 +
L2D2 = D. Thus, provided that deg([D1, D2]) ≤ N , we have

|{G0 ∈ MN : G0 ≡ Mj (mod Dj ), (G0 − Mj )/Dj ≡ A j (mod Q), j = 1, 2}|

=
∣
∣
∣
∣
∣

{

R ∈ MN−deg([D1,D2]) :
{

RD̃2 + L1(M2 − M1)/D ≡ A1 (mod Q)

RD̃1 − L2(M2 − M1)/D ≡ A2 (mod Q)

}∣
∣
∣
∣
∣
,

We note that even the condition deg([D1, D2]Q) < N may be assumed in what
follows, since the contribution to T from those D1, D2 that lack this is

�Q q2H−N max
deg(M2)<H

∑

rad(Dj )|Q
deg(D1)≤deg(D2)≤N
deg([D1,D2]Q)≥N

|{G0 ∈ MN : G0 ≡ M2 (mod D2)}|

� q2H
∑

rad(D2)|Q
deg(D2)≥(N−deg(Q))/2

q−deg(D2)
∑

rad(D1)|Q
deg(D1)≤N

1
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�Q q2H−N/2NOQ(1) = oN→∞(1),

as 2H ≤ 2Hdeg(Q) < N/5.
Earlier we had deduced that D|(M2−M1). Making the change of variables M ′D =

M2 − M1, we get

T = qH−N
∑

rad(Dj )|Q
deg(Q[D1,D2])<N

f (D1) f (D2)
∑∗

A1,A2 (mod Q)

χ(A1)χ(A2)

·
∑

deg(M ′)<H−deg(D)

∣
∣
∣
∣
∣

{

R ∈ MN−deg([D1,D2]) :
{

RD̃2 + M ′L1 ≡ A1 (mod Q)

RD̃1 − M ′L2 ≡ A2 (mod Q)

}∣
∣
∣
∣
∣
+ oN→∞(1);

note that if deg(D) ≥ H the summation contains the choice M ′ = 0 alone. It is easy
to verify that the system of congruences

{

RD̃2 + M ′L1 ≡ A1 (mod Q)

RD̃1 − M ′L2 ≡ A2 (mod Q)

is solvable if, and only if,

{

M ′ ≡ A1 D̃1 − A2 D̃2 (mod Q)

R ≡ L1A2 + L2A1 (mod Q).

Therefore, T is, up to oN→∞(1) error, equal to

qH−N
∑

rad(Dj )|Q
deg(Q[D1,D2])<N

f (D1) f (D2)
∑∗

A1 (mod Q)
A2 (mod Q)

χ(A1)χ(A2)
∑

deg(M ′)<H−deg(D)

M ′≡A1 D̃1−A2 D̃2 (mod Q)
∑

R∈MN−deg([D1,D2 ])
R≡A1L2+A2L1 (mod Q)

1

= qH
∑

rad(Dj )|Q
deg(Q[D1,D2])<N

f (D1) f (D2)

qdeg(Q[D1,D2])
∑∗

A1 (mod Q)
A2 (mod Q)

χ(A1)χ(A2)
∑

deg(M ′)<H−deg(D)

M ′≡A1 D̃1−A2 D̃2 (mod Q)

1.

Changing variables as D1 = DD̃1 and D2 = DD̃2, and reinstating triples D, D̃1, D̃2
with deg(Q[D1, D2]) = deg(QDD̃1 D̃2) ≥ N , this is equal to

= qH
∑

rad(D)|Q
q−deg(D)

∑

rad(D̃ j )|Q
(D̃1,D̃2)=1

f (D̃1) f (D̃2)

qdeg(QD̃1 D̃2)

∑∗

A1 (mod Q)
A2 (mod Q)

χ(A1)χ(A2)
∑

deg(M ′)<H−deg(D)

M ′≡A1 D̃1−A2 D̃2 (mod Q)

1

+ O(q2H−N/3+oQ (1)),
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the error term being oN→∞(1) since N > 7H .

Step 2: Decoupling D̃1 and D̃2 via Ramanujan sums. By (26) and the fact that
rad(D̃ j ) | Q, inserting additive characters (mod Q) to detect the condition M ′ ≡
A1 D̃1 − A2 D̃2 (mod Q) yields

∑∗

A1,A2 (mod Q)

χ(A1)χ(A2)
∑

deg(M ′)<H−deg(D)

M ′≡A1 D̃1−A2 D̃2 (mod Q)

1

= q−deg(Q)
∑

C (mod Q)

∑

deg(M ′)<H−deg(D)

eF

(
CM ′

Q

)

τ(χ,−C D̃1)τ (χ,−C D̃2).

Write Q = Q∗QS , where Q∗ is the conductor of χ ; by assumption, we have
(Q∗, QS) = 1 and QS squarefree. By Lemma 4.6, for each j = 1, 2 we have

τ(χ,−C D̃ j ) = τ(χ∗)φ((QS,C D̃ j ))μ(QS/(QS,C D̃ j ))χ
∗(−QSC D̃ j )1(C D̃ j ,Q∗)=1.

We insert these expressions into the above, using |τ(χ∗)|2 = qdeg(Q
∗). Removing

the condition (D̃1, D̃2) = 1 by Möbius inversion and splitting the products C D̃ j

according to (C D̃ j , QS), we obtain

T = qH−deg(QQS )
∑

rad(D)|Q
q−deg(D)

∑

E1,E2|QS

φ(E1)μ

(
QS

E1

)

φ(E2)μ

(
QS

E2

)

·
∑

rad(D̃ j )|QS

(D̃1,D̃2)=1

f χ∗(D̃1) f χ∗(D̃2)

qdeg(D̃1 D̃2)

∑

deg(M ′)<H−deg(D)

∑

C (mod Q)
(C,Q∗)=1

E j=(QS ,C D̃ j ), j=1,2

eF(CM ′/Q) + oN→∞(1)

= qH−deg(QQS )
∑

rad(D)|Q
q−deg(D)

∑

E j |QS

φ(E1)μ

(
QS

E1

)

φ(E2)μ

(
QS

E2

)
∑

L|QS

μ(L)

q2deg(L)

·
∑

rad(D̃ j )|QS

f χ∗(D̃1) f χ∗(D̃2)

qdeg(D̃1 D̃2)

∑

deg(M ′)<H−deg(D)

∑

C (mod Q)
(C,Q∗)=1

E j=(QS ,CL D̃ j ), j=1,2

eF(CM ′/Q) + oN→∞(1).

We next define F := (C, QS) for each C modulo Q. We also decompose D̃ j =
D′

j D
′′
j , where rad(D

′
j )|[F, L] and rad(D′′

j )|QS/[F, L], so that E j = rad(D′′
j )[F, L]

for each j = 1, 2. This leads to the expression

T = qH−deg(QQS )
∑

rad(D)|Q
q−deg(D)

∑

F |QS

∑

L|QS

μ(L)

q2deg(L)
φ([F, L])2

∑

rad(D′
j )|[F,L]

j=1,2

f χ∗(D′
1) f χ

∗(D′
2)

qdeg(D
′
1D

′
2)

·
∑

rad(D′′
j )|QS/[F,L]
j=1,2

μ

(
(QS/[F, L])
rad(D′′

1 )

)

φ(rad(D′′
1 ))μ

(
(QS/[F, L])
rad(D′′

2 )

)

φ(rad(D′′
2 ))

f χ∗(D′′
1 ) f χ∗(D′′

2 )

qdeg(D
′′
1 D

′′
2 )
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·
∑

deg(M ′)<H−deg(D)

∑

C (mod Q)
(C,Q∗)=1
F=(C,QS )

eF

(
CM ′

Q∗QS

)

.

Replacing C by C̃ := C/F in the innermost sum, and noting that (C/F, Q/F) = 1
in that case, it follows from Lemma 4.9 (and deg(Q/F) ≥ deg(Q∗) ≥ 1 since χ is
non-principal) that

∑

deg(M ′)<H−deg(D)

∑

C (mod Q)
(C,Q∗)=1
F=(C,QS )

eF(CM ′/Q) =
∑

deg(M ′)<H−deg(D)

∑∗

C̃ (mod Q/F)

eF(C̃M ′/(Q/F))

=
∑

deg(M ′)<H−deg(D)

cQ/F (M ′) = φ(Q/F)1deg(D)≥H ,

for each F |QS . Inserting this into the expression for T then gives

T =

⎛

⎜
⎜
⎝
qH

∑

rad(D)|Q
deg(D)≥H

q−deg(D)

⎞

⎟
⎟
⎠

· φ(Q∗)
qdeg(QQS )

∑

F |QS

φ

(
QS

F

)
∑

L|QS

μ(L)φ([F, L])2
q2deg(L)

·
∑

rad(D′
j )|[F,L]

j=1,2

f χ∗(D′
1) f χ

∗(D′
2)

qdeg(D
′
1D

′
2)

∑

rad(D′′
j )| QS[F,L]

j=1,2

2
∏

j=1

μ

( QS[F,L]
rad(D′′

j )

)

φ(rad(D′′
j )) · f χ∗(D′′

1 ) f χ∗(D′′
2 )

qdeg(D
′′
1 D

′′
2 )

+ oN→∞(1).

Step 3: Concluding the proof. Finally, we make one last change of variable G :=
[F, L]. For each G|QS , we have (using the squarefreeness of QS repeatedly)

∑

F,L|QS[F,L]=G

φ(QS/F)
μ(L)

q2deg(L)
=

∑

R|G

μ(R)

q2deg(R)

∑

L ′F ′=G/R

φ

(
QS/R

F ′

)
μ(L ′)

q2deg(L ′)

= φ

(
QS

G

)
∑

R|G

μ(R)

q2deg(R)

∑

F ′L ′=G/R

φ

(
G/R

F ′

)
μ(L ′)

q2deg(L ′)

= φ

(
QS

G

)
∑

R|G

μ(R)

q2deg(R)

∑

L ′|G/R

φ(L ′)μ(L ′)
q2deg(L ′)

= φ

(
QS

G

)
∑

R|G

μ(R)

q2deg(R)

∏

P|G/R

(

1−q−deg(P)(1−q−deg(P))
)

= φ

(
QS

G

)
∏

P|G

(

1 − q−deg(P)
)

= q−deg(G)φ(QS).
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Applying the change of variables and the above identity into the previous expression
for T , we obtain

T =

⎛

⎜
⎜
⎝
qH

∑

rad(D)|Q
deg(D)≥H

q−deg(D)

⎞

⎟
⎟
⎠

φ(Q∗)φ(QS)

qdeg(QQS )

∑

G|QS

φ(G)2

qdeg(G)

∑

rad(D′
j )|G

j=1,2

f χ∗(D′
1) f χ

∗(D′
2)

qdeg(D
′
1D

′
2)

·
∑

rad(D′′
j )|QS/G

j=1,2

μ

(
QS/G

rad(D′′
1 )

)

φ(rad(D′′
1 ))μ

(
QS/G

rad(D′′
2 )

)

φ(rad(D′′
2 ))

f χ∗(D′′
1 ) f χ

∗(D′′
2 )

qdeg(D
′′
1 D

′′
2 )

+ oN→∞(1)

= φ(Q)

qdeg(QQS )

∑

G|QS

φ(G)2

qdeg(G)

∣
∣
∣
∣
∣
∣

∑

rad(D′)|G

f χ∗(D′)
qdeg(D′)

∣
∣
∣
∣
∣
∣

2 ∣
∣
∣
∣
∣
∣

∑

rad(D′′)|QS/G

μ

(
QS/G

rad(D′′)

)

φ(rad(D′′)) f χ∗(D′′)
qdeg(D′′)

∣
∣
∣
∣
∣
∣

2

·

⎛

⎜
⎜
⎝
qH

∑

rad(D)|Q
deg(D)≥H

q−deg(D)

⎞

⎟
⎟
⎠

+ oN→∞(1)

≥ φ(Q)

qdeg(Q)

(
φ(QS)

qdeg(QS )

)2 ∏

P|QS

∣
∣
∣1 − f χ∗(P)q−deg(P)

∣
∣
∣

−2 ·

⎛

⎜
⎜
⎝
qH

∑

rad(D)|Q
deg(D)≥H

q−deg(D)

⎞

⎟
⎟
⎠

+ oN→∞(1),

where in the last step we used positivity to bound the sum over G from below by the
term at G = QS , and the factorization

∑

rad(D′)|QS

f χ∗(D)

qdeg(D)
=

∏

P|QS

(

1 − f χ∗(P)q−deg(P)
)−1

.

This completes the proof. ��

4.3.3 Modified characters to prime power modulus

Proof of Theorem 1.3 (⇒) Suppose f : M → S1 is a completely multiplicative func-
tion for which S f < ∞. By Proposition 4.1, there is a primitive Dirichlet character χ

modulo Q′, a primitive short interval character ξ of length ν ≥ 0 and θ ∈ [0, 1] such
that D( f , χξeθ ;∞) < ∞.

We start with the case Q′ = 1. Let N be large and 1 ≤ H ≤ N − ν − 1. Set
f1(G) := f e−θ ξ(G) for each G ∈ M, so that D( f1, 1;∞) < ∞. Further, note that
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Erdős discrepancy in function fields

ξeθ is constant on intervals IH (G0) for all G0 ∈ MN . We thus obtain

max
G0∈MN

∣
∣
∣
∣
∣
∣

∑

deg(M)<H

f (G0 + M)

∣
∣
∣
∣
∣
∣

= max
G0∈MN

∣
∣
∣
∣
∣
∣

∑

deg(M)<H

f1(G0 + M)

∣
∣
∣
∣
∣
∣

≥ q−N
∑

G0∈MN

∣
∣
∣
∣
∣
∣

∑

deg(M)<H

f1(G0 + M)

∣
∣
∣
∣
∣
∣

≥ q−N

∣
∣
∣
∣
∣
∣

∑

G0∈MN

∑

deg(M)<H

f1(G0 + M)

∣
∣
∣
∣
∣
∣

= qH−N

∣
∣
∣
∣
∣
∣

∑

G∈MN

f1(G)

∣
∣
∣
∣
∣
∣

,

where we used the triangle inequality and the fact that M + MN = MN for all
deg(M) < H . We now apply Delange’s theorem in function fields (see [9, Theorem
1.4.1]) to f1, which gives that

qH−N

∣
∣
∣
∣
∣
∣

∑

G∈MN

f1(G)

∣
∣
∣
∣
∣
∣

= (c + oN→∞(1))qH ,

where, since f1 is 1-pretentious, we have

c =
∏

P∈P
(1 − q−deg(P))(1 − f1(P)q−deg(P))−1 	= 0.

It follows directly that S f = ∞, a contradiction.
We are left with the case Q′ 	= 1, so deg(Q′) ≥ 1. We apply Proposition 4.2 to f

to deduce that

S := {P : f (P) 	= χ(P)ξ(P)eθ (P)}

is finite. Put Q := [Q′,
∏

P∈S P] = Q′Q′′, where Q′′ is squarefree and coprime to
Q′.

Then f ξe−θ is a modified character modulo Q (as per Remark 4.4), and χ is non-
principal with conductor Q′. By Proposition 4.7 (appliedwith T being a large constant,
so that H is small compared to N and ξeθ is constant on IH (G0) for any G0 ∈ MN )
we find that ω(Q) = 1. Thus, Q = Q′ and ω(Q′) = 1, so χ is a primitive Dirichlet
character modulo a prime power.

To conclude, we thus have f (G) = χ̃(G)ξ(G)eθ (G) for all G, where χ is a
primitive Dirichlet character modulo Q = Pr for some r ≥ 1 and some prime P , χ̃
is a modified character corresponding to χ , and ξ has bounded length.
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(⇐) Conversely, let f (G) = χ̃(G)ξ(G)eθ (G) for all G, where χ is a primitive
Dirichlet character modulo Q = Pr for some r ≥ 1 and some prime P , χ̃ is a
modified character corresponding to χ , and ξ has length ν. Denote f1(G) := χ̃(G).
As we noted before, ξeθ is constant on IH (G0) for anyG0 ∈ MN and H ≤ N−ν−1,
so S f = Sχ̃ . Thus it suffices to show that Sχ̃ < ∞.

Let H ≥ 1 and suppose N ≥ H . For any G0 ∈ MN ,

∑

G∈IH (G0)

χ̃ (G) =
∑

k≥0

f (P)k
∑

deg(M)<H

χ((G0 − M)/Pk)

=
∑∗

A (mod Pr )

χ(A)
∑

k≥0

f (P)k
∑

deg(M)<H
M≡G0 (mod Pk )

(G0−M)/Pk≡A (mod Pr )

1. (29)

Considerfirst the contribution from k < H/deg(P)−r .Making the changeof variables
M = Bk(G0) + PkM ′ in the inner sum over M , where Bk(G0) is the residue class of
G0 mod Pk , we see that

∑

deg(M)<H
M≡G0 (mod Pk )

(G0−M)/Pk≡A (mod Pr )

1 =
∑

deg(M ′)<H−kdeg(P)

M ′≡A (mod Pr )

1 =
∑

deg(M ′)<H−kdeg(P)

M ′≡0 (mod Pr )

1,

which is independent of A. Thus, by orthogonality these values of k contribute nothing
to (29).

In the range k > H
deg(P)

, there is at most one polynomial M that contributes for at
most one such value of k (and in this case, M must represent the projection of G0 to
spanFq {1, . . . , t H }). This results in a O(1) term.

It follows that

∑

G∈IH (G0)

f (G) =
∑

H/deg(P)−r≤k≤H/deg(P)

f (P)k
∑

deg(M)<H
M≡G0 (mod Pk )

χ((G0 − M)/Pk) + Or (1),

and estimating each term by the triangle inequality this is � 1, uniformly over H . It
follows that

lim sup
N→∞

max
G0∈MN

∣
∣
∣
∣
∣
∣

∑

G∈IH (G0)

χ̃ (G)

∣
∣
∣
∣
∣
∣

� 1

uniformly over H , and hence Sχ̃ < ∞, as claimed. ��
Proof of Corollary 1.2 The proof of Corollary 1.2 is identical to that of Theorem 1.3,
save that by the second conclusion in Proposition 4.1wemay assume that ξ is quadratic
for general q and trivial if q is odd, while χ is real and θ ∈ {0, 1/2}. ��
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5 The lexicographic discrepancy

We fix once and for all a lexicographic ordering 〈·〉 of Fq [t] (recalling the necessary
property that 〈0〉 = 0). Suppose f : M → S1 is a completely multiplicative function,
such that

sup
N≥1

∣
∣
∣
∣
∣
∣
∣
∣

∑

G∈M〈G〉<N

f (G)

∣
∣
∣
∣
∣
∣
∣
∣

< ∞.

We remark that on taking N = qn for n ≥ 1, this shows that Dg < ∞. Taking
N = 〈G0〉 for any G0 ∈ Mn , we see that

sup
n≥1

sup
G0∈Mn

∣
∣
∣
∣
∣
∣
∣
∣

∑

G∈M〈G〉≤〈G0〉

f (G)

∣
∣
∣
∣
∣
∣
∣
∣

< ∞.

By the triangle inequality, it also follows that for any h ≥ 1,

sup
n≥1

sup
G0∈Mn

∣
∣
∣
∣
∣
∣
∣
∣

∑

G∈M
〈G0〉≤〈G〉<〈G0〉+qh

f (G)

∣
∣
∣
∣
∣
∣
∣
∣

< ∞.

But as pointed out in Sect. 2, the short interval sums Ih(G0) coincide with the sum
in absolute values whenever n ≥ h and th−1|G0. Thus, we deduce that S f < ∞. By
Theorem 1.3, we may conclude that f = χ̃αξeθ , where ξ is a short interval character
of bounded length, θ ∈ [0, 1] and χ̃α is a primitive modified character with prime
power modulus Pr , such that

χ̃α(P) = e(α), (30)

for some α ∈ R/Z. We will use this notation in the sequel.
We have thus reduced our task to showing the following. In the sequel we write

χ̃ = χ̃α for ease of notation.

Proposition 5.1 Let g : M → S1 be of the form g = χ̃ξeθ with χ̃ a primitive
modified character associated to a prime power modulus, ξ a short interval character,
and θ ∈ R. Then we have

sup
N≥1

∣
∣
∣
∣
∣
∣
∣
∣

∑

G∈M〈G〉<N

g(G)

∣
∣
∣
∣
∣
∣
∣
∣

= ∞. (31)

123



O. Klurman et al.

Assume for the sake of contradiction that (31) fails. Before proceeding to the proof
of Proposition 5.1 let us make some observations.

Firstly, the function g may be extended naturally to all of Fq [t] by the formula

g(G) = g(P)vP (G)χ(G/PvP (G))ξ(G)e(θdeg(G)),

since ξ and χ are both defined on all of Fq [t].
Secondly, we may assume that

∑

G∈Mn
g(G) is bounded, as otherwise

∑

G∈M
〈G〉<qn+1

g(G) −
∑

G∈M〈G〉<qn

g(G) =
∑

G∈Mn

g(G)

is unbounded, implying that the claim (31) holds.
The next lemmawill allow us to study more precisely the behaviour of long interval

sums of modified characters, which will be crucial in the proof of Proposition 5.1.

Lemma 5.2 Let f : M → S1 be a fixed completely multiplicative function. Suppose
there exist θ ∈ [0, 1], a short interval character ξ of length ν ≥ 0, and a non-
principal Dirichlet character modulo Pr , where P ∈ P and r ≥ 1, such that f (P ′) =
χ(P ′)ξ(P ′)eθ (P ′) for all P ′ 	= P.

(1) For any H ≥ 1,

∑

M∈M<H

f (M) =
∑

M ′∈M<ν+rdeg(P)

χξ(M ′)eθ (M
′)

∑

0≤k<(H−deg(M ′))/deg(P)

f (P)k .

(2) If f (P) is a dth root of unitywith d ≥ 1, then H �→ ∑

M∈M<H
f (M) is d ·deg(P)-

periodic.

Proof (1) We have

∑

M∈M<H

f (M) =
∑

m<H

∑

M∈Mm

f (M)

=
∑

m<H

e(θm)
∑

0≤k≤m/deg(P)

( f e−θ )(P)k
∑

M∈Mm
M≡0 (mod Pk )

χξ(M/Pk)

=
∑

m<H

e(θm)
∑

0≤k≤m/deg(P)

( f e−θ )(P)k
∑

M ′∈Mm−kdeg(P)

χξ(M ′).

Swapping orders of summation, this equals to

∑

0≤k<H/deg(P)

f (P)k
∑

kdeg(P)≤m<H

e(θ(m − kdeg(P)))
∑

M ′∈Mm−kdeg(P)

χξ(M ′)

=
∑

0≤k<H/deg(P)

f (P)k
∑

0≤ j<H−kdeg(P)

e( jθ)
∑

M ′∈M j

χξ(M ′)
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=
∑

0≤ j<H

e( jθ)

⎛

⎝
∑

M ′∈M j

χξ(M ′)

⎞

⎠
∑

0≤k<(H− j)/deg(P)

f (P)k .

If j ≥ ν + rdeg(P) then the sum over M ′ is 0, as is seen by partitioning M j into
short intervals of the form I j−ν(G) and using the orthogonality of Dirichlet characters.
Thus, the above simplifies to

∑

0≤ j<ν+rdeg(P)

e( jθ)
∑

M ′∈M j

χξ(M ′)
∑

0≤k<(H− j)/deg(P)

f (P)k

=
∑

M ′∈M<ν+rdeg(P)

χξ(M ′)eθ (M
′)

∑

0≤k<(H−deg(M ′))/deg(P)

f (P)k . (32)

This proves the first claim.
(2) If f (P) 	= 1, this follows immediately from (1), since F(n) := ∑

0≤k≤n f (P)k

is d-periodic by the fact that the dth roots of unity sum up to 0. If instead f (P) = 1,
then the claim follows by noting that F(n + 1) = F(n) + 1 and using (1) and the
orthogonality relations for χξ [3, Exercise 5.1.2]. ��

Let us now introduce some notation. Denote the partial sums of a function f :
Fq [t] → C in the lexicographic ordering over monic and non-monic polynomials by

SMN ( f ) :=
∑

G∈M〈G〉<N

f (G) and SN ( f ) :=
∑

G∈Fq [t]
〈G〉<N

f (G).

Similarly denote the partial sums arranged according to degree over monic and non-
monic polynomials by

�M
N ( f ) :=

∑

G∈M
deg(G)<N

f (G) and �N ( f ) :=
∑

G∈Fq [t]
deg(G)<N

f (G).

We can express the sum �n j (χ̃) in terms of the corresponding monic sum �M
n j

(χ̃)

as follows. Since every non-zero polynomial in Fq [t] can be uniquely written as cG
where G ∈ M and c ∈ F

×
q , for all n ≥ 1 we have

�n(χ̃) = �M
n (χ̃)

∑

c∈F×
q

χ̃(c). (33)

If ζ is any generator of F
×
q , then

∑

c∈F×
q

χ̃(c) =
∑

0≤ j≤q−2

χ̃(ζ ) j = (q − 1)1χ̃ (ζ )=1 := cq , (34)
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where we used the fact that xq−1 = 1 for all x ∈ F
×
q .

Our proof of Proposition 5.1 distinguishes the case P = t from P 	= t . For the case
P = t we begin with the following lemma.

Lemma 5.3 Suppose g = ξeθ χ̃ , where χ̃ is amodifiednon-principal charactermodulo
tr , such that SMN (g) = O(1) uniformly over all N ≥ 1. Then χ̃ (t) = 1.

Proof We observe that if N ,m ≥ 1 and M < qm then, subject to M ≡ N ≡ 0
(mod qr ) we have

SqmN+M (χ̃) = χ̃ (t)mSN (χ̃) + SM (χ̃). (35)

To see this, we first decompose

SqmN+M (χ̃) =
∑

j≥0

χ̃ (t) j
∑

〈G ′〉≤qm− j N+M/q j

χ(G ′).

Next, we remark that if a ≥ 0 is such that qa ≤ A < qa+1 then

∑

〈G〉≤qr A

χ(G) =
∑

deg(G)<a+r

χ(G) +
∑

qr+a≤〈G〉≤qr A

χ(G) =
∑

〈M〉≤(A−qa)qr
χ(tr+a + M)

=
∑

〈M〉≤(A−qa)qr
χ(M),

and so by induction we obtain, for each j ≥ 0,

∑

〈G ′〉≤qm− j N+M/q j

χ(G ′) =
∑

〈G〉≤R j (N ,M)

χ(G),

where R j (M, N ) ∈ {0, 1, . . . , qr − 1} satisfies R j (M, N ) ≡
⌊
qmN+M

q j

⌋

(mod qr ).

Now, if m > j and qr |N we have R j (M, N ) ≡ ⌊

M/q j
⌋

(mod qr ), and so

∑

0≤ j<m

χ̃ (t) j
∑

〈G〉≤M/q j

χ(G) =
∑

〈G〉≤M

χ̃ (G) = SM (χ̃).

Next, suppose j ≥ m. In this case, M/q j < 1 and
⌊
qmN+M

q j

⌋

= ⌊

qm− j N
⌋

, since

if the floor was one larger this would mean that

1 > {N/q j−m} > 1 − M

q j
> 1 − 1/q j−m,

which is impossible. Thus, we have
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∑

j≥m

χ̃(t) j
∑

〈G′〉≤qm− j N+M/q j

χ(G ′) =
∑

j≥m

χ̃(t) j
∑

〈G〉≤qm− j N

χ(G) = χ̃(t)m
∑

l≥0

∑

〈G〉≤N
tl ||G

χ̃(G)

= χ̃ (t)mSN (χ̃),

and (35) follows.
Now,we iterate (35) as follows.Assume there is A ≡ 0 (mod qr ) such that SA(χ̃) 	=

0, and let K ≥ ν + 1 be chosen so that qK > A (with ν the length of ξ ). For J ≥ 1,
let {m j } j≤J be an increasing sequence of integers for which |e(m j Kα)− 1| < 1/100
for each j . Setting B := A(1 + qm1K + · · · + qmJ K ), we obtain

SB(χ̃) = SA(χ̃) + e(m1Kα)S(B−A)/qm1K (χ̃) = SA(χ̃) (1 + e(m1Kα) + . . . + e(mJ Kα)) .

It follows that if SA(χ̃) 	= 0 then |SB(χ̃)| � J . We then have

∑

〈G〉<B
G∈M

g(G) =
∑

〈G〉<qmJ K

G∈M

g(G) + eθ ξ(t)mJ
(

SB(χ̃) − SqmJ K (χ̃)
)

,

and as the left-most two terms are both bounded we obtain that |SqmJ K (χ̃)| � J . But
as mJ K > r can be assured when J is sufficiently large, (35) (with N = qr and
M = 0) implies that |Sqr (χ̃)| � J , which is an obvious contradiction as J → ∞.

Thus, suppose instead that Sqr N (χ̃) = 0 for all N ≥ 1. In this case, it suffices to
notice that then,

Sqr (N+1)(χ̃) − Sqr N (χ̃) = 0

for all N ≥ 1. Specializing N1 = qM1 and N2 = qM2 , where M1, M2 ≥ r , we obtain
in both cases that

0 = Sqr (N j+1)(χ̃) − Sqr N j (χ̃) =
∑

〈G〉<qr
χ̃ (t M j+r + G) = χ̃(t)Mj+r

+
∑

0≤l<r

χ̃ (t)l
∑

〈G〉<qr−l

χ(G),

the double sum on the right-hand side being independent of j = 1, 2. It follows from
this that χ̃(t)M1 = χ̃ (t)M2 , so choosing e.g., M2 = M1 + 1 yields the claim χ̃(t) = 1
in this case. ��
Proof of Proposition 5.1 when P = t Let {n j }1≤ j≤k be an increasing sequence of inte-
gers satisfying n j+1 > n j + ν + r for each 1 ≤ j ≤ k − 1. Define

N j := 〈1〉
∑

1≤i≤ j

qni
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for each 1 ≤ j ≤ k; since 〈·〉 is a bijection on Fq and 〈0〉 = 0 we note that N j > 0 for
each j ≥ 1. Note also that if G is monic and satisfies 〈G〉 < N j then either deg(G) <

n j or else G = tn j + M , where 〈M〉 < N j−1. In the latter case, since n j > n j−1 + ν

we have ξeθ (tn j + M) = ξeθ (t)n j whenever 〈M〉 < N j−1. Furthermore, if G 	= 0
then νt (tn j +G) = νt (G) and thus by our choice of n j we have χ̃ (tn j +G) = χ̃(G).
Lemma 5.3 shows that we may assume χ̃ (t) = 1 and we thus obtain

∑

〈G〉<Nk
G∈M

g(G) =
∑

G∈M<nk

g(G) + ξeθ (t)
nk

⎛

⎝
∑

0<〈G〉<Nk−1

χ̃(tnk + G) + 1

⎞

⎠

= ξeθ (t)
nk SNk−1(χ̃) + O(1). (36)

We similarly have for 1 ≤ m ≤ k − 1 that

SNm (χ̃) =
∑

deg(G)<Nm

χ̃(G) + 1 +
∑

0<〈G〉<Nm−1

χ̃ (tnm + G) = �Nm (χ̃) + 1 + SNm−1(χ̃),

and on iterating this we get

SNm (χ̃) =
∑

1≤ j≤m

(

�N j (χ̃) + 1
) + O(1). (37)

We now deduce from (36), (37) that

∣
∣
∣
∣
∣
∣

∑

1≤ j≤k−1

(�N j (χ̃) + 1)

∣
∣
∣
∣
∣
∣

= O(1).

On the other hand,wehave�N j (χ̃) = cq
∑

G∈M<N j
χ̃ (G) (where cq is given by (34)),

and by Lemma 5.2(2) the map n �→ ∑

G∈M<n
χ̃(G) is constant (since deg(t) = 1

and χ̃ (t) = 1). Thus, we in fact obtain that

(k − 1)

∣
∣
∣
∣
∣
∣

cq
∑

G∈M<n

χ̃ (G) + 1

∣
∣
∣
∣
∣
∣

= O(1),

for any n ≥ 1. Taking n = 1, we see that cq
∑

G∈M<1
χ̃(G) = cqχ(1) 	= −1 in any

case. We obtain the contradiction k � 1, and the claim is proved. ��
We will split the remaining case P 	= t into two subcases depending on whether
α ∈ Q or not (recall from (30) that e(α) = χ̃ (P)). Our argument in both subcases has
a common setup that we introduce presently.

Pick a sequence (mk)k≥1 such that mk − mk−1 ≥ 10ν, and let a ≥ 1 be an
integer to be chosen later, which is bounded in terms of α and Pr . Let (nk)k≥1 =
(mkφ(Pr ) + a)k≥1. We assume furthermore that mk is chosen so that mk ≥ 2nk−1,
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so e.g., mk/mk−1 ≥ 10νφ(Pr ) is sufficient. As in the case P = t , define a sequence
(Nk)k≥1 by

Nk = 〈1〉
k
∑

j=1

qn j . (38)

Note that, by Euler’s theorem over Fq [t], we have

tφ(Pr ) ≡ 1 (mod Pr ).

This means that

tφ(Pr ) = 1 + PvG0 (39)

where v ≥ r and G0 ∈ M is coprime to P . If mk is chosen to be a power of q then
by the binomial formula,

tnk−a = (1 + PvG0)
mk = 1 + (PvG0)

mk . (40)

Since, by assumption, mk ≥ 2nk−1 we obtain that

tnk ≡ ta (mod P2rnk−1). (41)

The fact that tnk−a − 1 is highly divisible by P will be used crucially in the sequel.
We now split our sum, similarly as in (36), as

SMNk
(g) =

∑

G∈M〈G〉<qnk

g(G) +
∑

G∈Fq [t]
0≤〈G〉<Nk−1

g(tnk + G)

= �M
nk (g) +

∑

G∈Fq [t]
0≤〈G〉<Nk−1

g(tnk + G).

Note that by (41) and the fact that nk > nk−1 + ν, we have

g(tnk + G) = e(θnk)ξ(t)nk χ̃ (ta + G)

for all G ∈ M≤nk−1 \ {−ta}. Also note that the conditions 〈G + ta〉 < n and 〈G〉 < n
are equivalent whenever qa+1 | n, and qa+1 | N j for all j ≥ 1. Hence, we obtain

SMNk
(g) = �M

nk (g) + e(θnk)ξ(t)nk SNk−1(χ̃) + g(tnk − ta) (42)
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Similarly, for all k ≥ 1, we have

SNk (χ̃) = �nk (χ̃) +
∑

G∈Fq [t]
0≤〈G〉<Nk−1

χ̃ (tnk + G)

= �nk (χ̃) + SNk−1(χ̃) + χ̃ (tnk − ta),

(43)

where N0 := 0. Iterating (43) and substituting into (42) produces

SMNk
(g) = e(θnk)ξ(t)nk

⎛

⎝

k−1
∑

j=1

�n j (χ̃) +
k
∑

j=1

χ̃(tn j − ta)

⎞

⎠ + �M
nk (g) + O(1)

= e(θnk)ξ(t)nk

⎛

⎝

k−1
∑

j=1

�n j (χ̃) +
k
∑

j=1

χ̃(tn j − ta)

⎞

⎠ + O(1),

(44)

where we used the assumption �M
nk (g) = O(1). This leads to

k−1
∑

j=1

�n j (χ̃) +
k
∑

j=1

χ̃ (tn j − ta) = O(1). (45)

At this point, we may distinguish between the remaining two cases.

Proof of Proposition 5.1 when P 	= t Asmentioned, the proof splits into two subcases.

5.1 Case 1: P �= t,˛ /∈ Q

Let G0 and v ≥ r be as in (39). Let d := ord(χ(G0)) and let β be a limit point of
the sequence {vq Anα (mod 1)}n≥1, where A = 20Cνrdeg(P) and C ≥ 1 is a large
integer depending only on α to be chosen below. By the pigeonhole principle we may
select �1 < · · · < �k sufficiently large in terms of α and deg(P) such that

‖vq A� j α − β‖ < 1
100 ,

and so that q A� j ≡ c0 (mod d) for all 1 ≤ j ≤ k and some 1 ≤ c0 ≤ d. We now
set m j = q A� j , and a = γ deg(P), where 1 ≤ γ = γ (α) ≤ C is an integer to be
chosen later. With this choice, we have n j = φ(Pr )q A� j + γ deg(P), and for suitably
large �1 we have n1 ≥ 10Cdeg(P) + a ≥ 2a. For k ≥ 1 we may verify the required
inequalities nk − nk−1 > ν + r and

mk ≥ 10φ(Pr )mk−1 = 10(nk−1 − a) ≥ 5nk−1 for all k ≥ 1.
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By Lemma 5.2(1), for any j ≥ 1 we have

�M
n j

(χ̃) =
∑

M ′∈M
deg(M ′)<ν+rdeg(P)

χ(M ′)
∑

0≤�<(n j−deg(M ′))/deg(P)

e(α�)

= 1

1 − e(α)

∑

M ′∈M
deg(M ′)<ν+rdeg(P)

χ(M ′)
(

1 − e

(

α

(

1 +
⌊
n j − deg(M ′)

deg(P)

⌋)))

.

As the sum over M ′ (without the bracketed expression) vanishes, we may ignore the
term 1 in the brackets. Recalling (33), (34) and that deg(P)|a, we can rewrite �n j (χ̃)

as

�n j (χ̃) = −e(α(1 + γ ))cq
1 − e(α)

∑

M ′∈M
deg(M ′)<ν+rdeg(P)

χ(M ′)e
(⌊

m jφ(Pr ) − deg(M ′)
deg(P)

⌋

α

)

.

Summing over j , we obtain

∑

1≤ j≤k−1

�n j (χ̃)

= e(γ α) ·
(

− cqe(α)

1 − e(α)

∑

M ′∈M
deg(M ′)<ν+rdeg(P)

χ(M ′)
∑

1≤ j≤k−1

e

(⌊
m jφ(Pr ) − deg(M ′)

deg(P)

⌋

α

))

=: e(γ α)S(α).

Note thatS(α) is independent of γ . Splitting off χ̃ (t)a in (45), that expression becomes

e(γ α)S(α) + χ(tdeg(P))γ
k
∑

j=1

χ̃(tn j−a − 1) = O(1).

Now, since α /∈ Q and χ(tdeg(P)) is a root of unity of order d, it follows that (taking
C = C(α) large enough ) an integer γ = γ (α) ∈ [1,C] can be chosen so that

|arg(e(γ α)S(α)) − arg(χ(tdeg(P))γ
k
∑

j=1

χ̃ (tn j−a − 1))| ∈ (− 1
100 ,

1
100

)

.

Hence, (45) in fact implies that

χ(tdeg(P))γ
k
∑

j=1

χ̃ (tn j−a − 1) = O(1). (46)
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Now by construction, for each 1 ≤ j ≤ k,

χ̃ (tn j−a − 1) = χ̃(P)vq
A� j

χ(G0)
q A� j = e(vq A� j α)χ(G0)

c0 ,

and by choice of � j we have that |e(vq A� j α) − e(β)| ≤ 2π
100 < 1

10 . It follows that

∣
∣
∣
∣
∣
∣

k
∑

j=1

χ̃(tn j−a − 1)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

χ(G0)
c0e(β)k +

k
∑

j=1

χ(G0)
c0(e(vq A� j α) − e(β))

∣
∣
∣
∣
∣
∣

≥ 9k
10 ,

which contradicts (46) for k sufficiently large. This completes the proof in Case 1.

5.1.1 Case 2. P �= t and˛ ∈ Q

In this case, we may find b ≥ 1 such that χ̃ (P) = e(α) is a bth root of unity. We select
mk = q A�k , where A = 2νrdeg(P) and �k is chosen so that �k − �k−1 ≥ 10 and also
so that χ̃ (tφ(Pr )q A�k − 1) = g0 for all k ≥ 1, where g0 ∈ S1 (for this, it suffices for
q A�k to be constant modulo [b, d], where as above d = ord(χ(G0)). We also pick
a ∈ [1, bdeg(P)].

By (40) we have

χ̃(tnk − ta) = χ̃ (t)aχ̃ (tnk−a − 1) = χ(t)ag0, (47)

by the definition of g0.
We combine (44), (33) and (34), using the fact (following from Lemma 5.2(2)

and the assumption χ̃ (P)b = 1) that n �→ �M
n (χ̃) is bdeg(P)-periodic and n j ≡ a

(mod bdeg(P)). We then see that

k−1
∑

j=1

�n j (χ̃) +
k
∑

j=1

χ̃(tn j − ta) = k
(

cq�
M
a (χ̃) + g0χ(t)a

)

+ O(1). (48)

Now, as the left-hand side of (48) is O(1), we must have

cq�
M
a (χ̃) + g0χ(t)a = 0 (49)

for all a ∈ [1, bdeg(P)]. We have cq = 0 or cq = q−1, and the first of these is clearly
impossible, since |g0χ̃(t)a | = 1. Hence, (49) becomes

(q − 1)�M
a (χ̃) + g0χ(t)a = 0 (50)

Since the sequence n �→ �M
n (χ̃) is bdeg(P)-periodic, and n �→ χ(t)n is also

bdeg(P)-periodic, we deduce that

(q − 1)�M
n (χ̃) + g0χ(t)n = 0 (51)
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for all n ≥ 0.
From (51) we see that, for Re(s) > 1, we have

∑

G∈M
χ̃ (G)q−sdeg(G) =

∑

n≥0

�M
n (χ̃)q−sn = − g0(q − 1)−1

1 − χ(t)q−s
.

But on the other hand in the same region of s by (10) we have

∑

G∈M
χ̃(G)q−sdeg(G) =

∏

R∈P

∑

k≥0

χ̃(P)kq−skdeg(R) = L(s, χ)

1 − χ̃(P)q−sdeg(Pr )
.

Comparing these, we see that

L(s, χ) = −g0(q − 1)−1(1 − χ̃(P)q−sdeg(Pr ))

1 − χ(t)q−s
; (52)

initially this holds for Re(s) > 1, but by analytic continuation we in fact have this for
all s. In particular, if deg(Pr ) ≥ 2, this implies that L(s, χ) has a root other than s = 0
off the critical line Re(s) = 1/2. But by GRH over function fields this is not possible.
Hence, deg(Pr ) = rdeg(P) = 1, and r = 1. Then, P being monic and coprime to t
implies that P = t + c for some c ∈ Fq \ {0}. As cq 	= 0 it follows that χ is 1 on F

×
q ,

and therefore χ(t) = χ(−c) = 1. Since L(s, χ) is analytic, it follows that χ̃ (P) = 1
as well, but then L(s, χ) = −g0(q − 1)−1 	= 0 for all s. On the other hand, since
deg(P) = 1 we obtain

∑

M∈Mn
χ(G) = 0 for all n ≥ 1, and thus

L(s, χ) =
∑

M∈M
χ(M)q−sdeg(M) = 1.

Comparing with (52), we obtain (q − 1)−1 = −g0, so that as g0 ∈ S1 we must
have q = 2 and g0 = −1. Hence, χ̃ must be a generalized character (mod t + 1),
and additionally χ̃ (t + 1) = 1. But now if G ∈ F2[t] is any monic polynomial, then
by changing bases we can write

G =
∑

0≤ j≤r

a j (t + 1) j ,

with a j ∈ {0, 1}. If j0 is the minimal index for which a j 	= 0 then we immediately
find that χ̃ (G) = χ̃ (a j0) = 1. Hence χ̃ ≡ 1. But this contradicts the assumption
|�M

a (χ̃)| = | − g0χ̃ (t)a | = 1 for all a ≥ 1, since

�M
1 (χ̃) = 1 + χ̃ (t) + χ̃ (t + 1) = 3.

This completes the analysis of Case 2 and the proof of Proposition 5.1 in this case. ��
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Remark 5.4 We remark that the proof of Proposition 5.1 gives at best a growth rate of
� log log N for the lexicographic discrepancy SMN (g). This is because the sequence
(nk)k must satisfy nk ≥ 2nk−1 so that by (38) we have k � log log Nk .

The proof of Theorem 1.5 is now complete.

6 The long sum discrepancy

We will next prove our characterization result for unboundedness of the long sum
discrepancy (Theorem 1.8), as well as Proposition 1.1 that complements it. We begin
the proof of Theorem 1.8 with the following simple observation.

Lemma 6.1 Let f : M → U be a modified character associated with a non-principal
Dirichlet character χ modulo Q ∈ M, and let N > deg(Q) be large. Then

∑

G∈M≤N

f (G) =
∑

0≤m<deg(Q)

⎛

⎜
⎜
⎝

∑

A (mod Q)
A∈M≤m

χ(A)

⎞

⎟
⎟
⎠

∑

rad(D)|Q
deg(D)=N−m

f (D).

Proof We split the sum on the left-hand side according to the common factors of G
with Q to obtain

∑

G∈M≤N

f (G) =
∑

rad(D)|Q
f (D)

∑

G ′∈M≤N−deg(D)

χ(G ′)

=
∑

A (mod Q)

χ(A)
∑

rad(D)|Q
f (D)

∑

G ′∈M≤N−deg(D)

G ′≡A (mod Q)

1.

We separate the contribution with deg(D) ≤ N − deg(Q) from its complement.
Observe that when deg(D) ≤ N − deg(Q), the inner sum above is independent
of A. Thus, orthogonality implies that its contribution is 0. On the other hand, if
deg(D) > N − deg(Q) and G ′ ∈ M≤N−deg(D) with G ′ ≡ A (mod Q) then G ′ = A.
It follows that

∑

G∈M≤N

f (G) =
∑

rad(D)|Q
N−deg(Q)<deg(D)≤N

f (D)
∑

A (mod Q)
A∈M≤N−deg(D)

χ(A).

Splitting the sum according to the size of deg(D), we get

∑

G∈M≤N

f (G) =
∑

0≤m<deg(Q)

⎛

⎜
⎜
⎝

∑

A (mod Q)
A∈M≤m

χ(A)

⎞

⎟
⎟
⎠

∑

rad(D)|Q
deg(D)=N−m

f (D),

as claimed. ��
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Proof of Theorem 1.8 Let N > deg(Q) be large. By the residue theorem, we have

∑

rad(D)|Q
deg(D)=N−m

f (D) = 1

2π i

∫

|z|=r

⎛

⎝
∑

rad(D)|Q
f (D)zdeg(D)

⎞

⎠
dz

zN−m+1

= 1

2π i

∫

|z|=r

∏

P|Q

(

1 − f (P)zdeg(P)
)−1

zm
dz

zN+1 ,

for any r ∈ (0, 1). Using Lemma 6.1 together with this expression for each m ≤
deg(Q) − 1, we have

∑

G∈M≤N

f (G) =
∑

0≤m<deg(Q)

⎛

⎜
⎜
⎝

∑

A (mod Q)
A∈M≤m

χ(A)

⎞

⎟
⎟
⎠

∑

rad(D)|Q
deg(D)=N−m

f (D)

= 1

2π i

∫

|z|=r

∏

P|Q

(

1 − f (P)zdeg(P)
)−1

⎛

⎝
∑

A∈M<deg(Q)

χ(A)
∑

deg(A)≤m≤deg(Q)−1

zm

⎞

⎠
dz

zN+1

= 1

2π i

∫

|z|=r

∏

P|Q

(

1 − f (P)zdeg(P)
)−1

(1 − z)−1
∑

A∈M<deg(Q)

χ(A)zdeg(A)(1 − zdeg(Q)−deg(A))
dz

zN+1 ,

where we used the geometric sum formula in the last step. By the orthogonality of
characters, we have

∑

A∈M<deg(Q)
χ(A)zdeg(Q) = 0. Thus, if z = qs for some s ∈ C

then by writing L(z, χ) := L(s, χ)/(1 − z) (see (10) for the definition of L(s, χ)),
the previous expression simplifies to

1

2π i

∫

|z|=r
L(z, χ)

∏

P|Q

(

1 − f (P)zdeg(P)
)−1 dz

zN+1 , (53)

using orthogonality in the last step.
Now let λ1, . . . , λJ be the collection of distinct roots of

∏

P|Q(1 − f (P)zdeg(P)),

with respective multiplicities satisfying b1 ≤ . . . ≤ bJ ; note that λ j ∈ S1 for all j . A
partial fraction decomposition of the reciprocal of this polynomial yields coefficients
{a j,l}1≤l≤b j ,1≤ j≤J such that

∏

P|Q
(1 − f (P)zdeg(P))−1 =

∏

1≤ j≤J

(1 − λ j z)
−b j =

∑

1≤ j≤J

∑

1≤l≤b j

a j,l

(1 − λ j z)l
.

Noting that for each pair ( j, l) we have the formal power series expansion

(1 − λ j z)
−l =

∑

k≥0

(
l − 1 + k

k

)

λkj z
k,
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we see that

∑

G∈M≤N

f (G) =
∑

k≥0

∑

1≤ j≤J

∑

1≤l≤b j

a j,l

(
l − 1 + k

k

)

λkj

(
1

2π i

∫

|z|=r
L(z, χ)zk

dz

zN+1

)

=
∑

1≤ j≤J

∑

1≤l≤b j

a j,l

∑

N−deg(Q)<k≤N

(

[zN−k]L(z, χ)
)(l − 1 + k

k

)

λkj ,

(54)

where, given a formal power series F(z) in z we write [zm]F(z) to denote the mth
coefficient of F , for m ∈ N ∪ {0}. We shall use this last expression to prove both parts
of the proposition, beginning with part b).
Part b). By hypothesis, b = bJ ≥ 2. Let 1 ≤ i ≤ J be the minimal index for which

bi = bi+1 = · · · = bJ ≤ deg(Q). As
(l−1+k

k

) = Nl−1

(l−1)! + Odeg(()Q)(Nl−2) for any
l ≥ 2 and k ∈ (N − deg(Q), N ], we get

∑

1≤ j≤J

∑

1≤l≤b j

a j,l

∑

N−deg(Q)<k≤N

(

[zN−k]L(z, χ)
)(l − 1 + k

k

)

λkj

=
∑

i≤ j≤J

a j,b

∑

N−deg(Q)<k≤N

(
b − 1 + k

k

)(

[zN−k]L(z, χ)
)

λkj + Odeg(()Q)(N
b−2)

= Nb−1

(b − 1)!
∑

i≤ j≤J

a j,b

∑

0≤m<deg(Q)

([zm]L(z, χ)
)

λN−m
j + Odeg(()Q)(N

b−2)

= Nb−1

(b − 1)!
∑

i≤ j≤J

a j,bλ
N
j L(λ j , χ) + Odeg(()Q)(N

b−2),

where in the last step we made the change of variables m = N − k, which leads to the
power series in the penultimate line simplifying to λN

j L(λ j , χ).

We note that L(λ j , χ) 	= 0 for all j because by GRH [3, Thm. 5.5 and Ex. 5.2.2]
we know that L(z, χ) has no zeros off the circle |z| = q−1/2, aside from a simple zero
at z = 1 (which has been cancelled in the definition of L(z, χ)). Moreover, a j,b 	= 0
for all i ≤ j ≤ b as well, otherwise the maximal power of (1 − λ j z)−1 in the partial
fraction decomposition would be strictly smaller than b. Finally, applying Dirichlet’s
theorem we can find a sequence of {Nr }r such that maxi≤m≤J |λNr

m − 1| ≤ ε for any
specific choice of ε > 0 (chosen small relative to Q and J ). It follows that for all
l ∈ {0, . . . , J − i − 1} we have

∑

i≤ j≤J

a j,bL(λ j , χ)λ
Nr+l
j =

∑

i≤ j≤J

a j,bL(λ j , χ)λlj + OJ (ε), (55)

and thanks to the invertibility of the van der Monde matrix generated by λi , . . . , λJ

(which are distinct by assumption) the expression (55) is 	= 0 for at least one l and
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some ε > 0 sufficiently small. This implies then that

max
Nr≤N≤Nr+J

∣
∣
∣
∣
∣
∣

∑

G∈M≤N

f (G)

∣
∣
∣
∣
∣
∣

�Q Nb−1
r ,

as r → ∞. This completes the proof of part b).
Part a). From (54), we have

∑

G∈M≤N

f (G) =
∑

1≤ j≤J

∑

1≤l≤b j

a j,l

∑

N−deg(Q)<k≤N

([zN−k]L(z, χ))

(
l − 1 + k

k

)

λkj .

Since b j ≤ bJ , we have b j = 1 for all j . As above, we obtain

∑

G∈M≤N

f (G) =
∑

1≤ j≤J

a j,1

∑

N−deg(Q)<k≤N

([zN−k ]L(z, χ))λkj =
∑

1≤ j≤J

a j,1λ
N
j L(λ j , χ). (56)

Note that λ j ∈ S1 for all j , and L(z, χ), is holomorphic and thus bounded on S1 (in
terms solely of the conductor Q). Furthermore, a j,1 depends only on Q. It follows
that the sum here is OQ(1). This completes the proof. ��

This gives the following list of corollaries, which includes Corollary 1.7.

Corollary 6.2 Let f : M → S1 be a modified character associated with a non-
principal character of modulus Q.

a) If Q = Pk is a prime power then D f < ∞.
b) If ω(Q) ≥ 2 and there exist prime divisors P1, P2 of Q satisfying deg(P1) =

deg(P2) and f (P1) = f (P2) then D f = ∞.
c) Ifω(Q) ≥ 2andhere exist primedivisors P1, P2 of Q satisfying f (P1) = f (P2) =

1 then D f = ∞.
d) Suppose f takes values in {−1,+1}.

i) If ω(Q) ≥ 4 then D f = ∞.
ii) If ω(Q) = 3 then D f < ∞ if and only if (up to permutation) the primes

P1, P2, P3 dividing Q satisfy f (P1) = f (P2) = −1, f (P3) = 1, and
v2(deg(P1)) 	= v2(deg(P2)) and v2(deg(Pj )) ≥ v2(deg(P3)) for j = 1, 2.

iii) Ifω(Q) = 2 thenD f < ∞ if and only if (up to permutation) the primes P1, P2
dividing Q satisfy f (P1) = −1, f (P2) = 1, and v2(deg(P1)) ≥ v2(deg(P2)).

Proof a) Since the zeros of the equation zm = a (with m = deg(P) and a = f (P))
are all distinct, Theorem 1.8 a) implies that the discrepancy is bounded.

b) Since the expressions zdeg(Pj ) f (Pj ) = 1 are identical for j = 1, 2, they thus
yield identical roots, so by Theorem 1.8 b) the claim follows.

c) This follows from Theorem 1.8 b), as zdeg(P1) = 1 and zdeg(P2) = 1 must share
the common root z = 1.
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d) i) Let f : M → {−1,+1}, and let P1, P2, P3, P4 be distinct prime divisors of
Q. At least two prime divisors P1, P2 are such that f (P1) = f (P2). If the parities of
deg(P1) and deg(P2) are the same then as in the proof of b) the equations zdeg(P1) =
f (P1) and zdeg(P2) = f (P2) will share a common root. Now by c), if the common
value of f (P1) and f (P2) is 1 then this is true regardless of these parities. Thus, we
may assume that the value 1 occurs at most once among the values f (Pj ), for the 4
prime factors of Q. But then at least 3 of the primes Pj are such that f (Pj ) = −1,
and among their degrees at least two have the same parity. Thus, we may conclude
that

∏

P|Q(1 − f (Pj )zdeg(Pj )) has a multiple root, and the first claim follows from
Proposition 6.2 b).

ii) Now let P1, P2, P3 be the prime divisors of Q. The argument in i) shows that if
at least two of f (Pi ) equal to 1, or all of the f (Pi ) equal to −1 then the discrepancy
is unbounded. We are left with the case where exactly two of the f (Pi ) are −1; say
f (P1) = f (P2) = −1 and f (P3) = 1. One easily sees that

{z ∈ C : zm = −1} ∩ {z ∈ C : zn = −1} 	= ∅ if and only if v2(m) = v2(n),

{z ∈ C : zm = −1} ∩ {z ∈ C : zn = 1} 	= ∅ if and only if v2(m) < v2(n).

(57)

Applying this with m, n ∈ {deg(P1), deg(P2), deg(P3)} yields the claim.
iii) The proof of the case ω(Q) = 2 is almost identical to that of case ω(Q) = 3;

again one makes use of (57). ��
Proof of Proposition 1.1 This follows by generalizing the Polymath 5 example in [16]
of a completely multiplicative function having bounded long sum discrepancy.

For d ≥ 1 define the quantities

αd =
∑

G∈Md

�(G) f (G), βd =
∑

G∈Md

f (G).

Using deg(G) = ∑

D|G �(D) and the complete multiplicativity of f , we obtain the
recursion

dβd =
d
∑

i=1

αiβd−i . (58)

It was shown by Polymath 5 [16] that there exist a constant C and a completely
multiplicative function f : M → {−1,+1} for which the corresponding αi satisfy
|αi | < qi for all i ≥ C and for which 0 ≤ ∑

0≤i≤d βi ≤ C for all i ≥ 1 (Polymath
5 stated their result in the form that if the size q of the field is large enough, then
∑

0≤i≤d βi ∈ {0, 1} for all i , but the same proof gives the claim above for all q.).
Since the βi are completely determined by the αi , this then means that Dg ≤ C
for any completely multiplicative g that produces the same sequence of αi . From
this we deduce that there are uncountably many choices of g: for each subset S of
N ∩ [C + 1,∞), we may form a new completely multiplicative function fS which is
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obtained from f by choosing for each d ∈ S two irreducibles P1,d , P2,d of degree d
with f (P1,d) = − f (P2,d), putting fS(Pj,d) = − f (Pj,d) for j = 1, 2, and setting
fS(P) = f (P) at all other irreducibles P . The new function fS has the same sequence
of αi associated with it as to f , so it too has discrepancy bounded by C . ��
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