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Abstract

Federated Learning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly Deep Learning (DL)
models on multiple devices or servers while maintaining data localized at owners’ sites. Without centralizing data, FL holds promise
for scenarios where data integrity, privacy and security and are critical. However, this decentralized training process also opens up
new avenues for opponents to launch unique attacks, where it has been becoming an urgent need to understand the vulnerabilities
and corresponding defense mechanisms from a learning algorithm perspective. This review paper takes a comprehensive look at
malicious attacks against FL, categorizing them from new perspectives on attack origins and targets, and providing insights into
their methodology and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Based on the
source and target of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D),
Model to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highlighting their
effectiveness, assumptions and potential areas for improvement. Defense strategies have evolved from using a singular metric to
excluding malicious clients, to employing a multifaceted approach examining client models at various phases. In this survey paper,
our research indicates that the to-learn data, the learning gradients, and the learned model at different stages all can be manipulated
to initiate malicious attacks that range from undermining model performance, reconstructing private local data, and to inserting
backdoors. We have also seen these threat are becoming more insidious. While earlier studies typically amplified malicious
gradients, recent endeavors subtly alter the least significant weights in local models to bypass defense measures. This literature
review provides a holistic understanding of the current FL threat landscape and highlights the importance of developing robust,
efficient, and privacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications. The categorized
bibliography can be found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning.

Keywords: Federated Learning, Deep Learning, Model Vulnerability, Privacy Preserving

1. Introduction Learning (FL) [9, 10], a distributed learning paradigm emerges

as a pioneering solution to address these challenges, where mul-

In the era of Artifical Intelligence (AI) that is built upon
big data, the need to extract valuable insights from massive
amounts of information is driving innovation across industries.
Achievements of data-driven Deep Learning (DL) models have
been witnessed in many areas, ranging from Natural Language
Processing (NLP) [1, 2, 3] to visual computing [4, 5, 6, 7]. It
is generally agreed upon that the more training data, the greater
potential performance of the model. To illustrate, the research
work [8] claims if one were able to collect data from all medical
facilities, models trained on such dataset would have the poten-
tial of “answering many significant questions”, such as drug
discovery and predictive modeling of diseases. Data central-
ization scheme for training AI model has been the predominant
method for decades. However, methods solely relying on cen-
tralized training scheme are becoming less viable, not only due
to the cost of computational resources, but more importantly,
the growing concerns related to privacy and security, which has
triggered the need for alternative learning paradigms. Federated
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tiple decentralized parties collaborate on a learning task while
the data remains with its owner. In contrast to traditional ap-
proaches, where all data has to be centralized, FL stemming
from the increasing concerns on data privacy allows model to
be trained at the source of data creation. This innovative ap-
proach not only minimizes the risk of data leakage, maintains
the privacy of sensitive information, but also lifts the compu-
tational burden of cloud centers, which is considered as a po-
tential alternative for completing multi-party learning in many
domains, such as: healthcare [11, 12, 13], finance [14, 15, 16],
smart cities [17, 18, 19] and autonomous driving [20, 21, 22].
We observed that there is a significant growth related to FL in
both academic research and industrial applications.

Recent studies on exploiting vulnerabilities of FL, have il-
luminated the fact that the robustness of FL architectures is
not as secure as expected, where each building block in FL
algorithms, ranging from its data distribution, communication
mechanisms, to aggregation processes, is susceptible to mali-
cious attacks [23, 24, 25, 26]. These vulnerabilities can po-
tentially compromise the privacy and security of the partici-
pants, meanwhile downgrade the integrity and effectiveness of
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Figure 1: An Overview of Common Vulnerabilities in FL. Malicious attackers can: (a) manipulate model updates to prevent the global model from converging;
(b) tamper data labels to induce erroneous predictions after training; (c) inject backdoors into the global model; (d) reconstruct data or inference data properties by

eavesdropping model updates; (e) steal the global model while contribute nothing.

the entire learning system. Figure 1 illustrates various common
FL attacks and provides a comprehensive overview on different
stages and components in the FL that can be targeted by oppo-
nents. Specifically, a variety of tactics that a malicious attacker
can employ, as follows:

e Data Tampering: By disrupting data label or introduc-
ing sample noisy the adversary misguides the global model
making inaccurate or biased predictions.

e Model Manipulation: By changing the model weight
during aggregation, the attacker forces the global model
to deviate from the desirable convergence. It can be a sub-
tle change over time, or a drastic disruption that leads to
significant performance degradation.

e Data Reconstruction: By exploring the gradient informa-
tion or model weight, the opponent attempts to reconstruct
or infer specific attributes of the original data, thereby
breaching the privacy of data owner.

e Backdoor Injection: By embedding backdoor into the
global model, the contestant deceives the trained model to
give designated prediction when the corresponding trigger
pattern in the input is presented.

Despite the promising future of FL aimed at alleviating pri-
vacy concerns, FL still faces a wide variety of threats. In con-
trast to reviewing FL from system and network security per-
spectives, in this survey, we focus on retrospecting the research
advancements of FL vulnerability that is inherited from the na-
ture of machine learning algorithms. As shown in Figure 1, we
identify that a malicious attacker can attack every component
in the FL system. For example, an opponent may masquerade
as a participating client of the system and provide toxic data
to degrade the prediction performance of the global model, or

intercept client updates and inject backdoor or reconstruct pri-
vate training data. In this paper, we propose a taxonomy of FL.
attacks centered around attack origins and attack targets, which
are outlined in Table 1. Our taxonomy of FL attacks emphasizes
exploited vulnerabilities and their direct victims. For instance,
label-flipping is a typical D2M attack, often described as a data
poisoning technique. If the local data is tampered by such a des-
ignated attack, the trained global model can be compromised by
such training data and exhibit anomalous behavior.

The rest of survey is organized as such: In Section 2, we
firstly introduce the essential preliminaries of FL algorithm.
Then, following the proposed taxonomy, we review each type
of attack, including D2M Attack, M2M Attack, M2D Attack
and Composite Attack in Section 3, 4, 5 and 6 respectively.
Within each section, both threat models and the corresponding
defense strategies are presented, compared and discussed. Sec-
tion 7 concludes our findings and provides our recommendation
for future research directions.

2. Preliminaries of Federated Learning

FL can be categorized into horizontal FL, vertical FL, and
federated transfer learning, based on how the training data is
organized [27]. Since the majority of research on FL vulnerabil-
ities focuses on the horizontal FL setting, therefore, we also fo-
cus on horizontal FL as the central topic in this review. FedAvg
is the most classic horizontal FL algorithm, where the global
model is learned by averaging across all local models trained
on clients. Surprisingly, such a simple aggregation scheme has
been proven to be effective in many case studies [28, 29, 30],
where the convergence is also mathematically sound [31]. Im-
provements upon FedAvg include incorporating local update
corrections [32, 33] or adaptive weighting schemes [34, 35, 36],
however, the fundamental aggregation scheme remains similar.
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Table 1: Our proposed taxonomy

Type of Attack Definition Example
Data to Model (D2M) tampering the data alone to degrade model performance label-flipping
Model to Model (M2M) tampering updates to prevent learning convergence Byzantine attack
Model to Data (M2D) intercepting model updates to inference private data information gradient leakage
Composite (D2M+M2M) tampering both data and updates to manipulate model behavior backdoor injection

Therefore, we present FedAvg [10] as an example to demon-
strate the potential components in FL system that can be tar-
geted by malicious parties. Firstly, all clients receive the iden-
tical global model wy from the central server that is randomly
initialized. Then, the local model is trained on each client with
its local data. Once the local training steps finish (i.e., the num-
ber of pre-set iteration or epoch is reached), individual clients
send either the updated local model wg or the model difference
u to the server. The central server aggregates the global model
w, by averaging the local models, and send the updated model
to each client. To speed up the training, a subset of clients are
chosen randomly for the current round of training, which is also
considered as a dropout regularization for FL. The pseudo code
of original FedAvg algorithm is given in Algorithm 1, where the
terms highlighted indicate the entities that can be compromised.

The comparison between surveys on FL attacks and defenses
is summarized in Table 2. While most surveys include de-
tailed discussion on defense strategies, some of them only give
high-level overviews on threat models, such as explaining the
concept of Byzantine attacks (M2M) without delving into di-
verse attacks as we summarized in Table 4. Our work reviews
FL vulnerabilities from the perspective of learning algorithms.
Our review includes major threat models that exploits the learn-
ing paradigm of FL and discusses defense strategies to counter
these threats.

3. Data to Model Attacks

We describe Data to Model (D2M) attacks in FL as threat
models that are launched by manipulating the local data while
the models in training are being targeted as victims. D2M at-
tacks are also considered as black-box attacks because the at-
tackers do not need to access inside information such as client
model weights or updates, tampering the data alone is often
suffice to launch a D2M attack. However, the attackers can
also draw information from local dataset or client models to en-
hance the effectiveness of D2M attacks. We present the timeline
of D2M research in Figure 3. The characteristics of discussed
D2M attacks are shown in Table 3.

3.1. D2M Attacks on Class Labels

The D2M attack of poisoning data labels is called label-
flipping. Such an attack aims at misleading the training models
by feeding tampered labels for training. For instance, the at-
tackers may switch the labels for car images to “planes”, result-
ing in the model to classify car images as planes after training.

Algorithm 1 FedAvg for Horizontal FL. (Terms highlighted
are the vulnerable components can be targeted by adversaries.)

n; is the number of local samples, Ng is the total number of
samples among selected clients, D; is the local training data, w
is model weights

Server:

create and send model to all clients

1:

2: clients own their respective data D;

3: initialize wy

4: foreachroundr =1,2,....,Rdo

5. sample |§| clients, send w,_; to each clients in S
6: for eachclienti € § do

7: W' or u; «Client(i, w, 1)

8:  end for

9w, « Z'Sl = Wl or w, — W,y + Z'{i‘l N Ui
10:  validate the model with w,
11: end for

Client(i, w):

for each epoch e = 1,2, ..., E do
We < We—] —1" Vw(,,l L(D/)

end for

U— Wg — W

return wg or u to server

AN | 4y

Label-flipping attack is first studied and proved its effective-
ness in the centralized setting [42]. Later on, [43, 44] demon-
strate label-flipping attack in FL scenarios. Theses studies fol-
low [42] and flip the labels from the victim class to a different
target class. Authors of [44] show that with only 4% of to-
tal clients being malicious, label-flipping attack can cause the
recall on victim class to drop by 10% on the Fashion-MNIST
dataset [45], indicating that even a small number of malicious
clients can effectively degrade the performance of a defense-
less FL system through label-flipping attack. In PoisonGAN
[46], the label-flipping attack is further improved. Targeting a
FL system for image classification, the authors of PoisonGAN
use the global model received on clients as the discriminator for
Generative Adversarial Network (GAN). The attacker trains a
local generator until the global model classifies generated im-
ages as the victim class. The attackers can then flip labels of
generated images, compromising client models by feeding fake
images along with flipped labels. The noteworthy advantage
of PoisonGAN is that the attacker now does not need to access
clients’ data. The attacker can simply generate their own poi-
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Table 2: Comparison of Related Surveys on Federated Learning Attacks and Defenses

Federated Learning Attacks and Defenses
Surveys D2M M2M M2D Composite
Threat [ Defense Threat | Defense Threat [ Defense Threat [ Defense
Kairouz et al. [23] ) v ) v o v
Nguyen et al. [37] v v v v v v
Zhang et al. [38] o v o v ) v o v
Gong et al. [39] o o o v
Yin et al. [40] v
Zhang et al. [41] o v ) v o v
ours v v v v v v v
o: high-level overview v: detailed review.
Clean Data | Malicious Client Central Server
I o 0o 0
o o0
e o o | —Pp| Upload >
* Updates from
D2M Attack Poisoned Data
Poisoned Data Misbehaving Model
Figure 2: An illustration for D2M attack.
—— FedAvgwas proposed
1 Asack 2016 and earlier 2017 2018 2019 2020 2021 2022 2023
® Defense \ handpicked label-flipping | [learnable labetfipping | | _aftack ",’(’eammg
[ Threat Type ;%I::gient:\tl al.
!BiggioetaL 2013 ! Fungetal. ! Caoetal. Sun e% al. . ! Sunetal. ! Maetal. D2M
@ Fungetal. © Caoetal. © Tolpeginet al. © Maetal.
| disrupting donvergence | i [ feeriding | greckon |
|
! Blanchard et al. ﬂ::r;adli'etal. ! Baruchetal. ! Fangetal. ! Frabonietal. é:;:;gef:l. M2M
Blanchard et al. Xieetal. W: tal. Pillutlaetal.
O crenetal 1 namietal  Wanseta O letar
Federated Learning Vinetal.
Attacks and Defenses ‘ partial information leakage ‘ ‘ full information leakage ‘
Ateniese et al. 2015 Lietal.
J !McPherson etal. 2016 ! Hitaj et al. ! Zhuetal. ! Zhangetal. Renetal. M2D
Chamikaraetal. N
| T e o D | @ \eietal © scheligaetal. © Renetal.
: A injectic : | insidious tampering |
Bhagoji et al.
earar | Vo et Wt e site
® McMahan et al. © Lecuyeretal. © Wuetal. @ Lietal. @ Ceoetal.
Xieetal. Rieger et al.
Andreinaetal. Nguyen et al.

Figure 3: The timeline of research on FL attacks and defenses.

sonous data samples. Instead of arbitrarily choosing the target
class to flip, studies such as [47, 48] investigate different heuris-
tic for choosing the target class. Semi-targeted attack proposed
in [48] uses distance measures to determine which target class
can more easily affect model predictions. The intuition of this

attack is that if samples of two different classes are relatively
close in the feature space, then label-flipping attack on these
two classes is more likely to succeed as the proximity of fea-
tures suggests easier learning convergence. The authors of [48]
consider both the Independent and Identically Distributed (IID)
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and non-Independent and Identically Distributed (non-IID) sce-
narios. If client data is IID, the attacker uses the global model
to extract features for the local training data. The geometric
center of each class is computed based on features of local data
and the target class should be the one closest to the victim class.
In the non-IID scenario, the local feature space no longer well
represents the structure of the global feature space. Thus, the
authors leverages the scale of updates to measure which class is
closer to the victim class. The attacker feeds local samples of
the victim class to the global model and examines the scale of
gradients when these samples are annotated as different classes.
The class label that induces the smallest gradient is chosen as
the target class. Different from [46, 48] that exploit the global
model for their attacks, the heuristic of the edge-case attack [47]
is built on the distribution of the training data. The edge-case
attack flips labels into classes in the tail of the data distribution.
Although the edge-case attack only affects a minority of sam-
ples, it can severely impair the model’s fairness for underrepre-
sented input and may pose great threats in autonomous driving
systems [47]. Experiments in [47] show that the attack is most
effective when the attacker holds most of the edge samples. As
honest clients possess larger portions of edge samples, the at-
tack is erased by benign updates.

3.2. D2M Attacks on Samples

Labels are not the only target in D2M attacks. Depending
on the FL scenario, the attackers may choose to poison other
relevant client data. A threat model that targets the sample size
on clients is proposed in [52]. Based on the fact that FedAvg
computes the weighted average of client weights based on the
numbers of their corresponding local samples, the attacker can
simply falsely report the number of local samples to be a large
number such that the aggregated model will be dominated by
the attacker’s chosen model. AT?FT [50] is another D2M at-
tack that generate poisonous samples. The difference between
AT?FT and PoisonGAN [46] is that the former does not flip la-
bels. Authors of AT?FT formulates their attack as a bilevel opti-
mization problem in which the attacker tries to perturb subsets
of local training samples such that losses on local clean data
are maximized. In essence, the AT2FT algorithm maximizes
local losses through gradient ascent where gradients w.r.t the
perturbed data are approximated by minimizing a dual prob-
lem. The D2M attacks are also not limited to classification
tasks. The authors of [53] propose a D2M threat model, lo-
cal environment poisoning, targeting federated Reinforcement
Learning (RL). The attacker can influence the learned policy
by providing fake rewards during local agent training. Fake
rewards are derived from gradient descent such that they min-
imize the objective function of RL. A D2M threat model on
Federated Recommendation (FedRec) systems is proposed in
[54]. Specifically, the authors of [54] focused on the graph neu-
ral network based FedRec system proposed in [55]. By feeding
compromised client models with fake item ratings during train-
ing, the attacker can force the recommendation system to show
specified item ratings for specific users.

Unlike the above methods that use D2M attacks to influence
model predictions, the covert channel attack proposed in [51]

aims at secretly transmitting messages between two clients. On
the receiver client, the attacker first looks for edge samples from
its local training data such that even a small perturbation in the
data results in different classification outcomes. Perturbed edge
samples along with the transmission interval, the clean and poi-
soned class predictions are sent to the sender client. The sender
client decides whether to fine-tune its local model with the per-
turbed data depending on the message bit it wishes to send and
the local model’s prediction. Once the receiver client receives
the updated model, it can decode the message bit based on the
classification outcome of perturbed samples.

For D2M attacks to be successful, studies in [43, 44, 49]
show that it is vital to ensure the availability of malicious clients
during training. If no malicious client are selected to partici-
pate in the global model update, the effects of their attacks can
be quickly erased by updates from benign clients [44]. Recent
studies on FL threat models tend to combine D2M attacks with
M2M attacks to launch more powerful composite attacks. Since
the attacker also manipulates model updates, composite attacks
can be stealthier and more persistent. Such attacks also give the
attacker more freedom of when and how to trigger the attack.

3.3. Defense Against D2M Attacks

In this section we introduce defense strategies proposed
along with studies on label-flipping attacks [43, 44, 49, 53].
Since D2M attacks ultimately induce changes in model updates,
FL system administrators may also consider defense mecha-
nisms designed for M2M or composite attacks.

Strategies proposed in [43] and [44] are both inspired by
the observation that gradients in FL behave differently in terms
of benign and malicious clients. In particular, because of the
non-IID nature of data, it is observed in [43] that gradients
from benign clients are more diverse than those from mali-
cious clients. This is because benign gradients conform to the
non-IID distribution of local data while malicious models have
a shared poisoning goal. The defense strategy FoolsGold [43]
thus aims at reducing the learning rate of similar model up-
dates while maintaining the learning rate of diverse updates.
To determine the similarity of model updates, the history of all
model updates are stored and pair-wise cosine similarity be-
tween current and historical updates are computed. The de-
fense strategy in [44] requires prior knowledge on the attack
target. This method needs the user to first choose a suspect
class that is believed to be poisoned. Then only model updates
directly contributing to the prediction of the suspect class are
collected. These model weights subsequently go through Prin-
cipal Component Analysis (PCA) and are clustered based on
their principal components. Principal components of benign
and malicious clients fall in different clusters. Similar to gra-
dients, model weights can also be used to differentiate benign
and malicious clients. Sniper [49] is a defense strategy based
on the Euclidean distances between model weights. The central
server first computes the pair-wise distances between received
client models. Then the server constructs a graph based on the
distances. Client models are the nodes of the graph, and if the
distance between two client models are smaller than the given
threshold, these two models are then linked by an edge. If the
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Table 3: Characteristics of D2M Attacks.

Threat Model Threat Objective Poisoned Data
Label-Flipping [43, 44, 49] mislassification class labels
Semi-Target Poisoning [48] misclassification class labels

Edge-case Attack [47] misclassification class labels
AT?FT [50] misclassification general samples
PoisonGAN [46] misclassification generglggiin“ynd

class labels

Covert Channel [51]

secretly passing messages

edge samples

Fake Sample Size [52]

disrupting convergence

client dataset size

Local Environment Poisoning [53]

poisoning policy

agent rewards

Poisonous Ratings [54]

controlling item
recommendation

item ratings

number of models in the maximum clique of the graph is larger
than half of the total number of clients, models in this clique are
aggregated to update the global model. Otherwise, the server
increases the distance threshold and repeat the above process
until a suitable clique can be found.

Parallel learning [56] is a paradigm of RL in which multiple
agents learn concurrently to solve a problem. Parallel learning
not only alleviates data deficiency but also stabilizes training,
as agents learn from diverse experiences. Unlike multi-agent
RL, which aims to develop competitive or cooperative strate-
gies among clients, parallel RL focuses on solving single-agent
problems through parallel training. This objective is similar
to that of conventional federated learning, in which the goal
is to obtain a global model through distributed local model
training. Therefore, federated reinforcement learning becomes
imperative when the learning environment of RL is privacy-
sensitive. For the D2M threat model targeting federated RL, a
corresponding defense strategy was also proposed in [53]. This
method requires the central server to evaluate client agent per-
formance to determine their credibility. Specifically, the central
server tests client policies and computes their corresponding re-
wards. The central server aggregates client policies based on a
set of weights derived from normalized rewards.

3.4. Evaluation Metrics for Attacks and Defenses on Classifi-
cation Tasks

Since the majority of studies on D2M attacks focus on im-
age classification, the most commonly used datasets for D2M
attack evaluation are MNIST [57], Fashion-MNIST [45] and
CIFAR-10 [58]. Natural language and domain-specific datasets
can also be seen [43, 47, 50, 54]. Attack Success Rate (ASR) is
widely used to evaluate the effectiveness of an attack. Specif-
ically, for D2M attacks targeting classification tasks, ASR is
defined as the proportion of targeted test samples being mis-
classified, namely,

_ ZyepHf(x0) =y, v # yi)

ASR
DI

D

where D is the test set for evaluation, x; is the data sample while
y; is its corresponding groundtruth label, y, is the label chosen
by the attacker, f(-) is the attacked global model, and 1{-} equals
to 1 if the condition inside the brackets is met. ASR is also used
to evaluate M2M or composite attacks. The metric respectively
reflects how severely the attack disrupts model convergence and
how sensitive the model is to backdoor triggers. In addition, the
performance of the attack can also be demonstrated by the de-
crease in overall classification accuracy. For regression tasks,
mean absolute error and root mean squared error are employed.
While some defenses provide formal proof for their effective-
ness, most work on FL defenses is empirically validated by
demonstrating the robustness of model performance when the
defense is adopted in a malicious environment.

4. Model to Model Attacks

We define Model to Model (M2M) attacks in FL as threat
models that manipulate local model updates or weights to af-
fect the global model, as depicted in Figure 4. The primary
objective of an M2M attack is to disrupt the convergence of FL
algorithms. The presence of M2M attacks is also described as
the Byzantine problem [59]. In a distributed system affected
by the Byzantine problem, benign and malicious participants
coexist in the system. Malicious participants deliberately dis-
seminate confusing or contradicting information to undermine
the system’s normal operations. Therefore the challenge for the
system administrator lies in achieving consensus among benign
participants despite the presence of malicious ones. Defend-
ing against these M2M attacks means ensuring that the learning
algorithm to converge to an optimal minima regardless of poi-
soned updates from malicious clients. In addition to the above
threat model, a special case of M2M attacks, called the free-
rider attack, aims to steal the global model itself, infringing on
the intellectual property rights of the model owner. An mali-
cious party may pretend to join the FL system solely to obtain
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Figure 4: An illustration of M2M attack.

the distributed global model, without contributing to the learn-
ing task. Since the threat model of free-rider attack is compara-
tively straightforward, we discuss this type of attack along with
its defense mechanisms in the same section. The characteristics
of discussed M2M attacks are shown in Table 4.

4.1. General M2M Threat Models

Existing M2M threat models can be divided into a priori and
a posteriori attacks.A priori attacks do not require any knowl-
edge of benign clients while a posteriori attacks need to forge
poisonous model updates based on information from benign
clients.

4.1.1. Priori M2M Attacks

A straightforward a priori M2M (prioM2M) attack is send-
ing noise to the central server. This method is dubbed as Gaus-
sian Byzantine in [61]. The Gaussian distribution for noise
sampling often has zero mean but large variance to disrupt the
convergence of the learning algorithm. Gaussian Byzantine is
often used as the baseline attack [62, 63]. Bit-flipping is a
prioM2M attack proposed in [62]. On malicious clients, the
bit-flipping attack flips four significant bits of certain 32-bit
floating numbers in the original gradients as poisoned model
updates. Another two prioM2M attacks, same-value attack and
sign-flipping attack, are proposed in [63]. For the same-value
attack, malicious clients upload vectors with an identical ran-
dom value on each dimension to the server. In the sign-flipping
attack, malicious clients computes their own gradient as nor-
mal but flip the sign of gradients before uploading them to the
central server. The prioriM2M attack proposed in [64] takes se-
cure aggregation rules into account. It specifically attacks FL
systems equipped with median-based aggregation rules such as
TrimMedian [70] or Krum [61]. The basic idea of the attack is
to report false updates on multiple malicious clients such that
with high probability the aggregation rule picks one of the ma-
licious updates as the median for global update. The authors
of [64] use a statistical heuristic to find the maximum devia-
tion range which is used to forge the malicious updates. The
value on each dimension of the original updates on malicious

clients is transformed by the maximum deviation range to at-
tain forged malicious updates. The authors also augment this
attack with the D2M attack, which is discussed in Section 3.4.

4.1.2. Posteriori M2M Attacks

For a posteriori M2M (postM2M) attacks, omniscient nega-
tive gradient approach proposed in [62] is an equally straight-
forward approach compared to Gaussian Byzantine. This
method assumes that the attacker have full knowledge of benign
clients, then malicious clients only need to send scaled negative
sum of benign gradients to the central server. The scaling fac-
tor is a large number on the order of magnitude of 10%°. The
postM2M attack proposed in [65] takes Bayzantine-resilient ag-
gregation rules into account. Specifically, this attack targets ag-
gregation rules that compute the norms of client gradients to
filter out malicious updates. The problem with norm-based ag-
gregation rules is that L” norms cannot tell if two norms only
differ in one specific dimension or every dimension. Thus, the
attacker can exploit this by only poisoning one dimension of the
gradients. The poisoned value can be scaled by a large factor
while still being accepted by the aggregation rule as its norm
is not far away from those of the benign gradients. Moreover,
as the norm chosen by the aggregation rule approaches the in-
finite norm, the attacker can poison every dimension of model
updates.

The above attacks can be launched individually on clients
controlled by the attacker, these approaches does not require
malicious clients to coordinate with each other. A colluding
postM2M attack is later proposed in [66]. This method tar-
gets aggregation rules such as Krum [61] and Buylan [65] that
use the Euclidean distance between client models as the cri-
terion for choosing trustworthy models. The threat model in
[66] aims at pushing the global model towards the opposite of
the benign update direction. To achieve this at the presence of
aforementioned aggregation rules, a chosen malicious client is
responsible for generating model updates that maximizes the
global model update in the opposite direction. Other malicious
clients generate updates that are close to the chosen one, con-
ceiving the aggregation rules that malicious clients form a be-
nign cluster and the chosen malicious client should be picked
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Table 4: Various M2M threat models
Threat Model Approach Type Objective
free-riding [60] pretend as a client stealing global model
Byzantine Gaussian[61] uploading Gaussian noise
P flipping significant bits
bit-flipping [62] cly)fp ﬂoitingg numbers
uploading vectors with
same-value attack [63] identical values across a priori

all dimensions

sign-flipping [63]

flipping signs of gradients
on attacked clients

median cheating [64]

cheating the aggregation
rule to pick the false
median

negative gradient [62]

uploading the scaled
sum of benign gradients from
malicious clients

norm attack [65]

scaling certain dimensions
of gradients

colluding attack [66]

deceiving the aggregation
rule to pick the chosen
malicious client

a posteriori

PipAttack [67]

generating item embeddings
based on public information

FedRecAttack [68]

minimizing the rating
scores of untargeted items

User Approximation [69]

generating item embeddings
through approximated user

inhibiting convergence

converging to an inferior
minima

increasing ER@K of target

items

embeddings

by the aggregation rule.

4.2. M2M Threat Models on Federated Recommendation Sys-
tems

As mentioned in the introduction section, FL is well-suited
for recommendation systems thanks to its ability to provide per-
sonalized recommendations and reduce privacy risks. A com-
monly used FedRec framework is proposed in [71]. Research
on the vulnerabilities of domain-specific FL like FedRec is still
a nascent area. In this section, we introduce three noteworthy
studies [68, 67, 69] focusing on exploiting security vulnerabili-
ties of FedRec.

The common goal of existing attacks on FedRec is to in-
crease the exposure rate of certain items. The affected recom-
mendation system may always present or never show certain
items to users. In [68, 67, 69], the attackers are assumed to
only have access to item embeddings, local and global models.
Embeddings that characterize users are always hidden from the
attackers. In PipAttack [67], the attacker increases target items’
exposure rate by forging their embeddings to be similar to those
of popular items. Since the attacker have no access to the pop-
ularity of items in the system, this information is retrieved from
the Internet. Based on the retrieved information, the attacker
locally train a popularity classifier with item embeddings as in-
put. The weights of the classifier are then fixed, target item

embeddings are poisoned by enforcing them to be classified as
popular by the classifier. The poisoned item embeddings are
uploaded to the central server to mislead the FedRec system.

Authors of FedRecAttack [68] later points out that major
limitations of PipAttack include that it may severely degrade
the recommendation performance and it needs around 10% of
clients to be attacked for it to be effective. Since the expo-
sure rate at rank K (ER@K) [67], meaning the fraction of users
whose top-K recommended items include the target item, is a
non-differentiable function, FedRecAttack uses a surrogate loss
function to facilitate the attack. FedRecAttack also assumes
that around 5% of user-item interaction histories are publicly
available for the attacker to use. The loss function of FedRecAt-
tack encourages the rating scores of recommended non-target
items to be smaller than the scores of target items with no inter-
action history, then the gradients of target item embeddings w.r:¢
this loss function are uploaded to the central server. To further
eschew being detected by secure aggregation rules, these gradi-
ents are normalized before uploading if their norms are larger
than the threshold.

Both PipAttack and FedRedAttack require public prior
knowledge to work. In contrast, the A — ra/A — hum attack pro-
posed in [69] does not have this requirement. A — ra/A — hum
also uses a surrogate loss function to promote the ER@K for
target items, but this attack focuses on approximating the user
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embeddings which are inaccessible in FedRec. A — ra assumes
that the user embeddings are distributed by a zero mean Gaus-
sian with the variance as a hyper-parameter. The attacker first
samples a number of user embeddings from the Gaussian dis-
tribution, then maximized the interaction scores target items
and sampled user embeddings to derive poisonous item em-
beddings. Instead of sampling from a Gaussian, A — hum uses
online hard user mining to generate user embeddings. The at-
tacker first generate hard user embeddings that are not likely to
interact with existing items. Then target item embeddings are
optimized to increase their interaction chances with the synthe-
sized hard users.

Table 5: Characteristics of M2M Defenses

Type of Defense Aggregation Criterion
GeoMed[72] geometric median
RFA [73] Welszfeld.—smothed
geometric median
MarMed[62] dimension-wise median
MeaMed[62] mean-around median
TrimMean[70] dimension-wise trimmed mean

Krum/Multi-Krum [61] Euclidean distance

Euclidean distance and mean-

Bulyan[65] around median

ELITE[74] gradient information gain

4.3. Defense Against M2M Attack

Because the median is robust to outliers in statistics, it is
widely used in M2M defenses to filter out malicious updates.
GeoMed [72] is an exemplar of median-based M2M defenses.
In GeoMed, the central server first divides received client gradi-
ents into multiple groups and computes the mean of each group.
Then the geometric median of group means is used as the gra-
dient for updating the global model. The approach of using ge-
ometric median for robust aggregation is further improved by
authors of RFA [73]. In RFA, clients compute their aggregation
weights based on the aggregation rule inspired by the Weiszfeld
algorithm [75]. Including the geometric median, more median-
based defenses are studied in [62]. Marginal Median (MarMed)
is a generalized form of median proposed in [62]. It com-
putes the median on each dimension for client gradients. Mean-
around-Median (MeaMed) in [62] further leverages more val-
ues around the median. Built upon MarMed, MeaMed finds the
top-k values that are nearest to the median of each dimension,
then the mean of these nearest values is used as the gradient on
their corresponding dimensions.

Besides median, trimmed mean also has the benefit of be-
ing less sensitive to outliers. The authors of [70] introduce
coordinate-wise trimmed mean as an aggregation rule. For each
dimension of client gradients, this rule removes the top-k largest
and smallest values, the mean of the remaining values is treated
as the gradient on the corresponding dimension.

Another criterion for filtering out malicious updates is the
Euclidean distance between norms. Krum [61] and Bulyan [65]
are two exemplary defenses built on this criterion. Krum is
motivated by avoiding the drawbacks of square-distance or ma-
jority based aggregation rules. The problem pointed out in [61]
is that malicious attackers can collude and misguide the center
of norms to a bad minima for the sqaure-distance based aggre-
gation, and the majority based aggregation is too computation-
ally expensive as it needs to find a subset of gradients with the
smallest distances among them. For a central server that adopts
Krum as its aggregation rule, it first finds the (n — f — 2) near-
est neighbors for each client based on the Euclidean distances
between their updates, where n is the number of clients that
participate the training, f is the estimated number of malicious
clients. Then the central server sums up the distances between
each client and their corresponding neighbors as Krum scores.
The client with lowest score is chosen by the central server,
and its gradient is used to update the global model for the cur-
rent training round. Multi-Krum [61] is a variation of Krum
that balances averaging and Krum. It chooses top-k clients with
highest Krum scores. The average of chosen clients’ updates
is used to update the global model. The prerequisite for Krum
to be effective is that the number of malicious clients needs to
satisfy f > (n—2)/2.

Although the convergence of Krum has been proven in [61],
authors of Bulyan [65] point out that the attacker can simply
deceive Krum to pick the malicious client that converges to an
ineffective local minima. Such an attack is launched by manip-
ulating the gradient norms as discussed above. Bulyan refines
norm-based aggregation rules such as Krum by adding an extra
stage after a client has been chosen by the central server. The
added stage is akin to MeaMed [62]. Bulyan first iteratively
move clients chosen by Krum or other rules to a candidate set.
Once the number of candidates passes the threshold 2f + 3,
Bulyan computes the MeaMed on each dimension of candi-
date gradients. The resulting vector is regarded as the output of
Bulyan and subsequently used to update to global model. For
Bulyan to be effective, the number of malicious clients needs to
satisfy f > (n — 3)/4.

Different from the above approaches, ELITE [74] uses infor-
mation gain to filter out malicious updates. ELITE first com-
putes the empirical probability density function for each di-
mension of gradients, which allows for deriving the dimension-
wise information entropy. The sum of all entropy is computed
as the total entropy of updates for the current training round.
Then for each participating client, their information gain is de-
fined as the difference between the original total entropy and
the total entropy with this client being removed. Clients with
largest information gains are considered as malicious and hence
excluded from the aggregation. The intuition behind ELITE
is that benign gradients tend to roughly point at the same di-
rection, namely the direction of the optimal gradient, whereas
malicious gradients tend to point at rather different directions.
When the majority of clients are benign, removing malicious
gradients results in less total entropy as the uncertainty of gra-
dients is reduced.
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4.3.1. Defense Against Free-Rider Attacks

Since the objective of free-rider attacks is to obtain the global
model in the FL system, free-rider clients need to upload their
own local model such that they can pretend to be benign clients.
Free-rider models are constructed with minimum cost. The
free-rider can simply upload their received global model to the
server [60], or Gaussian noise may be added to the received
model before uploading [76]. The key of defending against
free-rider attacks is to identify which clients submit free-rider
models. Existing defenses can be categorized into watermark-
ing methods and anomaly detection methods. Watermarking
methods incorporate watermark learning tasks on clients, while
anomaly detection approaches are learned on the server. If a
client model fails to trigger watermarked behaviors or being
classified as an anomaly, such client is considered as a free-
rider.

Watermarking neural networks has been studied in the cen-
tralized setting [77, 78] to verify the ownership of deep neu-
ral networks. Watermarks are commonly embedded into inter-
mediate features or backdoored test samples. In the FL sce-
nario, WAFFLE [79] is an early work of FL. watermarking in
which the server embeds watermarks by retraining the aggre-
gated model with backdoored samples. However, watermarking
on the server side is not suitable for defending against free-rider
attacks, as the free-rider model is identical to the global model.
FedIPR [80] addresses the problem by generating secret wa-
termarks on clients. At the initialization stage of FL, FedIPR
requires each client to generate their own trigger dataset, wa-
termark embedding matrix and the location of watermarks. In
addition to the primary learning task, local models now learns
to embed watermarks in both the intermediate features and lo-
cal trigger set. In the verification stage, client models are fed
with their respective trigger set. If the detection error of trig-
ger samples is smaller than a given threshold, this client passes
the verification. FedIPR also verifies feature-based watermarks
by evaluating the Hamming distance between the watermark in
the global model and local secret watermark. One major chal-
lenge of FedIPR is that clients may generate conflicting water-
marks. Authors of FedIPR proves that different client water-
marks can be embedded without conflicts when the total bit-
length of watermarks is bounded by the channel number of the
global model. If the bit-length exceeds the threshold, FedIPR
also gives a lower bound for detecting watermarks.

Anomaly detection based free-rider defense are inspired by
anomaly detection approaches in the centralized setting, such
as [81, 82]. Authors of [76] concatenate client updates on the
server to train an auto-encoder. The auto-encoder learns to re-
construct received client updates. In the verification stage, if the
reconstruction error induced by updates from one client is larger
than then given threshold, this client is deemed as a free-rider.
Another approach proposed in [76] is using DAGMM [82] in-
stead of the vanilla auto-encoder. DAGMM detects anomaly
data by feeding the latent representation of the auto-encoder to
a Gaussian mixture network to estimate the likelihood of the
representation being abnormal.
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5. Model to Data Attacks

In this section, we will introduce the Model to Data (M2D)
attacks in FL, which is to reveal a specific attribute, partial
or full of the data. We summarized the methods to be non-
gradient-based leakage and gradient-based data leakage.

5.1. Non-Gradient-Based Data Leakage

We define non-gradient-based data leakage as the disclosure
of private information that occurs independently of the gradient
generated during the training stage. For instance, the leakage
can involve identifying specific attributes or membership details
within the training data, or recovering original training images
from obscured or masked versions. Typically, such leakage ex-
ploits the capabilities of a well-trained model to execute these
attacks.

5.1.1. Attribute Inference

The paper [83] is one of the earliest works that targets the
leakage of private information from an Machine Learning (ML)
model. In this paper, the authors construct a novel meta-
classifier that is used to attack other ML classifiers with the aim
of revealing sensitive information from the training data. This is
considered a white-box attack, as the adversary has knowledge
of both the structure and the parameters of the target model.
Specifically, the method assumes full access to a well-trained
target model and pre-sets a particular attribute to be identified,
determining whether or not it exists in the training data. To do
this, the authors first create multiple synthetic training datasets,
some of which partially contain the pre-set attributes, while the
rest do not. They then train several classification models on
these synthetic datasets; the architecture of these classification
models is identical to that of the target model. Subsequently,
the parameters of these classification models are used as input
for training the meta-classifier. Finally, the parameters from
the well-trained target model are fed into this meta-classifier to
determine if the particular attribute exists in the training data.
Both the target model and the meta-classifier are ML models,
e.g., Artificial Neural Network (ANN), Hidden Markov Model
(HMM) [84], Support Vector Machine (SVM) [85], or Decision
Tree (DT). The authors provide two example cases to evalu-
ate their method. In one example, they identify the speaker’s
nationality using a speech recognition dataset processed by an
HMM. Later, they use an SVM to set up a network traffic classi-
fier to distinguish between two kinds of traffic conditions, using
the meta-classifier to identify the type of traffic. In both exam-
ples, the meta-classifiers are DTs.

5.1.2. Membership Identification

The above work is further improved by [86], who focus on
membership identification attacks. They propose a shadow
training technique to identify whether specific samples are part
of the training dataset. The membership inference problem is
formulated as a classification task. An attack model is trained
to distinguish between the behavior of shadow models when
fed with forged training data. These shadow models are de-
signed to behave similarly to the target model. The approach
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Figure 5: M2D Attack.

qualifies as a black-box attack, meaning that the attacker only
possesses knowledge of the output for a given input. Several
effective methods have been developed for generating forged
training data for the shadow models. The first method utilizes
black-box access to the target model to synthesize the data. The
second method leverages statistical information related to the
target model’s training dataset. In the third method, it is as-
sumed that the adversary has access to a noisy version of the
target model’s training dataset. While the first method operates
without assuming any prior knowledge about the distribution of
the target model’s training data, the second and third methods
allow the attacker to query the target model just once before
determining whether a particular record was part of its training
dataset.

5.1.3. Image Recovery

In terms of recovering valuable information from obfuscated
images, [87] is one of the earliest works to the best of our
knowledge. Obfuscated images are easily accessible through
various data protection techniques (e.g., blur, mask, corrupt,
and P3) [88, 89]. In the study [87], the authors utilized a DL
model to recover valuable information from obfuscated images
for classification tasks. They assumed that the adversary has
access to a portion of the original training data and applied one
of the encryption methods to those images to train the attack
model. For this reason, their method is generally not suitable
for most real-world scenarios.

To demonstrate how neural networks can overcome pri-
vacy protection measures, they employed four commonly used
datasets for recognizing faces, objects, and handwritten digits.
Each of these tasks carries substantial privacy concerns. For
instance, the successful identification of a face could infringe
upon the privacy of an individual featured in a captured video.
Recognizing digits could enable the deduction of written text
content or vehicular registration numbers.

The final results are impressive. On the MNIST [57] dataset,
they achieved an accuracy of about 80% for images encrypted
by P3 with a recommended threshold level of 20. Conversely,
the accuracy exceeds 80% when the images are masked by
windows of resolution 8 X 8. On the CIFAR-10 [58] dataset,
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only vehicle and animal images were used for experiments,
achieving an accuracy of 75% against P3 with a threshold of
20. When deploying a 4 X 4 mask on the images, the accu-
racy is approximately 70%, and it drops to 50% when masking
with 8 x 8 resolution. On the AT&T [90] dataset, the proposed
method achieved a remarkable accuracy of 97% against P3 with
a threshold of 20, over 95% against various mask sizes, and
57% against face blurring. On the FaceScrub [91] dataset, they
achieved an accuracy of 57% against masking the face with a
16 x 16 window and 40% against P3 with a threshold of 20.

In more recent work [92], the authors utilize a GAN, trained
on a public dataset, to recover missing sensitive regions in im-
ages; this is termed the Generative Model-Inversion (GMI) at-
tack, as shown in Figure 6. A diversity loss is proposed to en-
courage diversity in the images synthesized by the generator
when projected into the target network’s feature space. This is
essential during the training of the GAN on the public dataset
because the adversary aims for the generated images to be dis-
tinct in the feature space of the target model. If different im-
ages map to the same feature space, the adversary cannot dis-
cern which generated image corresponds to the private data’s
features, thus failing to reveal the private information.

Discriminator

3 =
e e
Recovered Imag;\A
%o o ldentlty loss

|dent|t

° Z %y Target Network

l Generator

Aucxiliary
knowledge

Prior loss

3:]

Blurring Center Mask Target Iabels

Figure 6: Overview of the GMI attack method. [92]

The authors assume that the adversary has access to the well-
trained target model, which serves as a discriminator, as well
as to the target label of the input corrupted image. Initially,
the generator is used to create an image, which is then fed into
two separate discriminators to calculate the prior loss and iden-
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tity loss. In subsequent rounds, these two losses, along with the
corrupted image, are used as inputs for the generator to produce
the next iteration of the reconstructed image. Upon completing
the training of the GAN, the adversary, during the reveal phase,
only needs to continue optimizing the generator’s inputs so that
the generated images are sufficiently realistic while also maxi-
mizing likelihood in the target model.

The datasets employed for evaluation are MNIST [57],
ChestX-ray8 [93], and CelebA [94]. The experimental results
indicate that without using the corrupted image as an input
for the generator, the attack’s success rate is approximately
28%, 44%, and 46% on target networks VGG-16 [95], ResNet-
152 [96], and face.evoLVe [97], respectively. However, when
the corrupted image is incorporated, the accuracy increases to
43%, 50%, and 51% for blurred input images; 78%, 80%, and
82% for center-masked images; and 58%, 63%, and 64% for
face T-masked images. Consequently, the inclusion of cor-
rupted images as auxiliary information has a significant impact
on the attack’s accuracy.

5.2. Gradient-Based Data Leakage

Concerning gradient-based data leakage, this refers to tech-
niques that exploit gradients from the target model to ex-
pose privacy-sensitive information. DL models are trained on
datasets, and parameter updates occur through alignment with
the feature space. This establishes an inherent relationship be-
tween the weights or gradients and the dataset. Consequently,
numerous studies aim to reveal private information by lever-
aging these gradients. The effectiveness and success rates of
gradient-based approaches have consistently surpassed those of
non-gradient-based methods. Unlike non-gradient-based leak-
age, gradient-based data leakage can occur even in models that
have not yet converged.

5.2.1. Partial Recovery

Hitaj et al. [98] proposed a data recovery method that uti-
lizes a trained victim model and a target label. The method
aims to generate new data closely resembling the distribution
of the training dataset. This attack is formulated as a generative
process using a GAN. In a FL system, an attacker can pose as
a participant to reveal private data from the victim by modeling
the feature space. Suppose the attacker masquerades as a ma-
licious participant with a portion of training samples that have
correct labels, along with a portion of samples generated via
GAN with incorrect labels. The attacker’s goal is to produce a
dataset that shares the same feature distribution as the other par-
ticipants, leveraging GAN and the global gradients downloaded
from the parameter server.

In Algorithm 2, the victim trains its local model on its own
dataset for several iterations until it achieves an accuracy be-
yond a preset threshold. Subsequently, the malicious actor uses
the updated local model as the discriminator. The weights in
the discriminator are fixed, and a generator is trained to maxi-
mize the confidence of a specific class. This is an indirect data
recovery method, sensitive to the variance in the victim’s train-
ing data [99]. Although the generated images are consistent
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with the data distribution, they do not correspond to the actual
training dataset. In other words, the generated images cannot
be mapped back to the training data.

Another related work by Generative Gradient Leakage
(GGL) [100] also employs a GAN to generate fake data. In
this approach, the weights of the GAN are pretrained and fixed,
while the trainable parameters in GGL are the input sequences
to the GAN. The label inference part is adapted from Improved
DLG (iDLG) [101], requiring a batch size of 1. Unlike other
methods, GGL uses Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) and Bayesian Optimization (BO) as opti-
mizers to reduce the variability in the generated data. Although
the data generated by GGL is not identical to true data, it is suf-
ficiently similar (see Table 6), providing GGL with robustness
against various defense strategies like gradient noising, clip-
ping, or compression. The generated images are influenced by
two factors: 1) the inferred ground-truth label, which specifies
the image classification, and 2) fine-tuning based on gradient
information to make the image as similar as possible to the true
image.

Algorithm 2 The proposed work from [98]
Assume: two participants V and M who have common learn-
ing goals.
Require: V’s local dataset D, with label L, and L.
M'’s local dataset D,, with label L, and L..

a. Parameter Server

1: build model and initialize weights.
2: send the initial weights to the clients.
3: local training on victim and malicious clients.
4: receive the trained local weights and generate the global
model.
5: repeat Step 2 and 3 until the model converges.
b. Victim Client
1: download the global weights from parameter server.
2: train the local model on its local dataset D,,.
3: upload the local model to the parameter server.
c. Malicious Client
1: download the global weights from parameter server.
2: train a GAN model to generate fake data of class L,.
3: generate many fake data using GAN and relabel them with
L. to update the local dataset D,,.
4: train the local model on the updated local dataset D,,,.
5: upload the local model to the parameter server.

5.2.2. Full Recovery (Discriminative)

Zhu et al. [103] introduced Deep Leakage from Gradients
(DLG), framing the image recovery task as a regression prob-
lem. Initially, the shared local gradient is derived from a vic-
tim participant, and a batch of “dummy” images and labels
is randomly initialized. These are then used to calculate the
“dummy” gradient through standard forward-backward prop-
agation, employing the L-BFGS optimizer [104]. This pro-
cess leverages regression techniques to decipher intricate pat-
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Table 6: Typical experimental results performed on GGL are shown below. The backbone network is ResNet-18 and the dataset is ILSVRC2012 with a resolution

of 256 * 256. [102]
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terns within the gradient, thereby reconstructing the private im-
age data. The approach provides a powerful framework for
M2D attacks. Importantly, it is the input “dummy” data that is
updated—not the model parameters—by minimizing the Mean
Square Error (MSE) between the “dummy” gradient and the
shared local gradient. This strategy prioritizes the fidelity of
the reconstructed image, ensuring preservation of essential fea-
tures and details. Among existing leakage methods, DLG is
unique in achieving precise pixel-wise data revelation without
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Generated Images

requiring additional information. The technique is innovative
and deploys unique algorithms to achieve an unparalleled level
of precision. Some results from DLG of batch data are provided
in Figure 7. It marks a significant advancement in the field of
gradient leakage, opening new avenues for research and appli-
cation. Although DLG can perform attacks on multiple images
simultaneously, the accuracy in label inference remains subop-
timal. This limitation is an active area of research, with ongo-
ing efforts to improve label inference accuracy without com-
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promising image recovery fidelity. In conclusion, DLG offers
a novel approach to image recovery, utilizing groundbreaking
algorithms to attain high precision. Its potential applications
extend far beyond existing methods, positioning it at the fore-
front of technological advancements in the field.

Zhao et al. [101] introduced a novel method known as iDLG,
which focuses on the identification of labels in a more accurate
manner. This technique involves calculating the derivative of
the cross-entropy loss with respect to one-hot labels for each
class in the classification task. The crux of this approach lies
in the distinct ranges of the derivative values that correspond
to different labels. The authors discovered that the derivative
value for the ground-truth label uniquely falls within the range
of [-1, 0], while the derivatives corresponding to incorrect labels
lie within the range of [0, 1]. This separation of value ranges
provides a solid basis for identifying the correct label. By sim-
ply examining the derivative value, the system can distinguish
the correct label from incorrect ones. However, this method
has a limitation concerning the batch size: the batch size must
not exceed 1 during the process. While this constraint may af-
fect efficiency in large-scale applications, the iDLG method’s
unique approach to label identification through derivative anal-
ysis represents a significant contribution to the field of gradient
leakage. It opens avenues for future research to potentially re-
fine this technique and mitigate its limitations.

In addition to the low accuracy of label inference, DLG of-
ten fails to recover the image from the gradient when the data
variance is large, see Figure 8. This is particularly common
for datasets with a large number of classes. Inverting Gradi-
ent (IG) [105] improved the stability of DLG and iDLG by
introducing a magnitude-invariant cosine similarity metric for
the loss function, termed Cosine Distance (CD). This ap-
proach aims to find images that yield similar prediction changes
in the classification model, rather than images that produce
closely matching values with a shared gradient. The method
demonstrates promising results in recovering high-resolution
images (i.e., 224 x 224) when trained with large batch sizes
(i.e., #Batch = 100); however, the Peak Signal-to-Noise Ra-
tio (PSNR) remains unacceptably low.

Similar to [105], Jeon et al. [106] argued that relying solely
on gradient information is insufficient for revealing private
training data. They introduced GIAS, which employs a pre-
trained model for data revelation. Yin et al. [107] reported that
in image classification tasks, the ground-truth label can be eas-
ily inferred from the gradient of the last fully-connected layer.
Additionally, Batch Normalization (BN) statistics can signifi-
cantly improve the efficacy of gradient leakage attacks and fa-
cilitate the revelation of high-resolution private training images.

Another approach to gradient leakage attacks is based on
generative models. Wang et al. [108] trained a GAN with a
multi-task discriminator, named mGAN-AI, to generate private
information based on gradients.

5.2.3. Full Recovery (Generative)

In the work [109], the Generative Regression Neural Net-
work (GRNN) was proposed as a method for reconstructing pri-
vate training data along with its associated labels. The model
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is capable of handling large batch sizes and high-resolution im-
ages. Some examples are provided in Figure 9 Inspired by both
GAN and DLG methods, GRNN introduces a gradient-driven
approach for image creation that effectively addresses the chal-
lenges of stability and data quality commonly associated with
DLG methodologies.

The novel GRNN, which serves as an innovative data leakage
attack technique, is capable of retrieving private training images
with resolutions up to 256 X 256 and batch sizes of 256. This
makes it particularly well-suited for FL applications, as both
the local gradient g and the global model 7 (e) are easily acces-
sible within the system’s configuration. The GRNN algorithm
employs a dual-branch structure to generate fake training data X
and corresponding labels 3. It is trained to estimate a fake gra-
dient g, computed from the generated data % and labels J, such
that it closely matches the true gradient g associated with the
global model. The divergence D between the true and fake gra-
dients is evaluated using a combination of MSE, Wasserstein
Distance (WD), and Total Variation Loss (TVLoss) metrics.

Through empirical testing on various image classification
challenges, the GRNN approach has been rigorously compared
to cutting-edge alternatives, showing significantly better results
across multiple metrics. The trial findings confirm that the pro-
posed method is notably more stable and capable of generat-
ing images of superior quality, especially when applied to large
batch sizes and high resolutions.

Compared to the most latest work [103, 101, 105], GRNN
takes a generative approach, which shows high stability for re-
covering high-resolution images (i.e. up to 256 x 256) with a
large batch size (i.e. #Batch = 256). Table 7 presents the key
differences between DLG, iDLG IG and GRNN.

Algorithm 3 GRNN: Data Leakage Attack [109]

1: g — 0LF (< x,y>,0))/06;
local client.

2: v « Sampling from N (0, 1);

inputs.

3: for each iteration i € [1,2,...,1] do

(X)) GOP;);  #Generate fake images and labels.

5. & <« OL(F(< 1,3 >,0))/00;

#Produce true gradient on

#Initialize random vector

#Get fake gradient on
global model.
6 Di— L(g gi %) #Loss between true and fake
gradient.
7 By — 6 — n(0D;/06)); #Update GRNN model.
8: end for

9: return (X7, 9,); #Return generated fake images and labels.

5.3. Defense Against M2D Attacks

The issue of M2D attack methods has garnered significant
attention in the world of ML and DL. This issue has sparked
concern as it can lead to the unintended exposure of infor-
mation. In response, numerous methods and techniques have
been proposed to understand, mitigate, and control this leak-
age, e.g., gradient perturbation [103, 110, 111, 112, 109], data
obfuscation or sanitization [113, 114, 115, 116, 117], and other
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Figure 7: Although the sequence might differ and additional artifact pixels are present, deep leakage in batched data still generates images that closely resemble the

original versions. [101]

Table 7: Comparison of different related works on gradient leakage. [109]

Method Recovery #Batch Resolution Loss Function
Mode
DLG[103] Discriminative Small, up to 8 Low 64 x 64 MSE
iDLG[101] Discriminative Small, only 1 Low 64 x 64 MSE
IG[105] Discriminative Medium, up to 100 High 224 x 224 CD & TVLoss
GGL[100] Generative Small, only 1 High 224 x 224 CMA-ES & BO
GRNN[109] Generative Large, up to 256 High 256 x 256 MSE & WD & TVLoss

Figure 8: Reconstructed image using its gradient features. On the left is the
ground true image taken from the validation dataset. The center image is recon-
structed using a trained ResNet-18 model that has been trained on ILSVRC2012
dataset. On the right is the image rebuilt using a trained ResNet-152 model.
[105]

methods [118, 36, 119, 120, 121, 102]. These methods aim
to limit the extent of information that can be exposed, ensur-
ing that models operate with the requisite confidentiality and
integrity. Defense against M2D attacks has emerged as a com-
pelling and dynamic research area within the field. M2D attacks
involve malicious attempts to extract or manipulate sensitive in-
formation directly from the data used in training models. This
field of research explores various strategies and mechanisms to
shield against these attacks, preserving the privacy of the data
and maintaining the robustness of the models.

Numerous measures have been undertaken to safeguard per-
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sonal data against the M2D attack. Techniques such as gradient
perturbation, data obfuscation or sanitization, Differential Pri-
vacy (DP), Homomorphic Encryption (HE), and Secure Multi-
Party Computation (MPC) are among the most prominent meth-
ods for ensuring the privacy of both the private training data
and the publicly shared gradient exchanged between the client
and server. Experiments conducted by Zhu et al. [103] fo-
cused on two specific noise types: Gaussian and Laplacian.
Their findings revealed that the key factor affecting the outcome
was the magnitude of the distribution variance, rather than the
type of noise itself. When the variance exceeds 1072, the leak-
age attack fails; concurrently, there is a significant decline in
the model’s performance at this variance level. Chamikara et
al. [117] introduced a technique for perturbing data, affirming
that this approach maintains model performance without com-
promising the confidentiality of the training data. In this con-
text, the dataset is treated as a data matrix, and a multidimen-
sional transformation is applied to project it into a new feature
space. Various degrees of transformation are used to perturb the
input data, guaranteeing an adequate level of alteration. A cen-
tral server is responsible for creating global perturbation param-
eters in this technique. Notably, a potential drawback is that the
perturbation process could distort the architectural structure of
image-related data. Wei et al. [121] employed DP to introduce
noise into the training datasets of each client and formulated
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Figure 9: Examples of data leakage attack using the GRNN on the global
model. [109]

a per-example-based DP method known as Fed-CDP. They de-
veloped a dynamic decay noise injection strategy to improve
both inference performance and the level of gradient leakage
defense. Nevertheless, experimental findings indicate that, de-
spite successfully hindering the reconstruction of training data
from the gradient, this method leads to a considerable decline
in inference accuracy. Additionally, since DP is applied to ev-
ery training instance, the computational overhead becomes sub-
stantial.

When computing the gradient, Privacy Enhancing Module
(PRECODE) [122] aims to prevent the input information from
propagating through the model. PRECODE introduces a mod-
ule before the output layer to transform the latent representation
of features using a probabilistic encoder-decoder. This encoder-
decoder is comprised of two fully-connected layers. The first
layer encodes the input features into a sequence and then nor-
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malizes this sequence based on calculated mean and standard
deviation values. The mean is computed from the first half of
the sequence, while the standard deviation is derived from the
remaining half. Finally, the decoder translates the normalized
sequence back into a latent representation, which then serves
as input to the output layer. This normalization step between
the encoder and decoder prevents the input information from
affecting the gradient, thereby allowing PRECODE to resist the
leakage of input information through the gradient. However,
the insertion of two fully-connected layers in front of the out-
put layer results in a significant computational cost. This is why
only three very shallow neural networks were used for experi-
ments in their paper.

Recent studies have uncovered that shared gradients can re-
sult in the potential exposure of sensitive data, leading to pri-
vacy violations. The work in [102] presents an exhaustive ex-
amination and offers a fresh perspective on the issue of gradient
leakage. These theoretical endeavors have culminated in the
development of an innovative gradient leakage defense strategy
that fortifies any model architecture by implementing a private
key-lock mechanism. The only gradient communicated to the
parameter server for global model aggregation is the one that
has been secured with this lock. The newly formulated learning
approach, termed FedKL, is designed to withstand attacks that
attempt to exploit gradient leakage.

The key-lock component has been meticulously designed and
trained to ensure that without access to the private details of
the key-lock system: a) the task of reconstructing private train-
ing data from the shared gradient becomes unattainable, and b)
there is a considerable deterioration in the global model’s abil-
ity to make inferences. The underlying theoretical reasons for
gradients potentially leaking confidential information are ex-
plored, and a theoretical proof confirming the efficacy of our
method is provided.

The method’s robustness has been verified through exten-
sive empirical testing across a variety of models on numerous
widely-used benchmarks, showcasing its effectiveness in both
maintaining model performance and protecting against gradi-
ent leakage.

In the study [102], a theoretical foundation is laid to demon-
strate that the feature maps extracted from the fully-connected
layer, convolutional layer, and BN layer contain confidential de-
tails of the input data. These details are not only encompassed
within the feature maps but also coexist within the gradient dur-
ing the process of backward propagation. Furthermore, it is
posited that gradient leakage attacks can only succeed if there
is adequate alignment between the gradient spaces of the global
and local models.

As a solution, they proposed FedKL, a specialized key-lock
module that excels at differentiating, misaligning, and safe-
guarding the gradient spaces using a private key. This is accom-
plished while preserving federated aggregation comparable to
conventional FL schemes. Specifically, the operations of scal-
ing and shifting in the normalization layer are restructured. A
private key, generated randomly, is fed into two fully-connected
layers. The resulting outputs function as exclusive coefficients
for the scaling and shifting procedures. Both theoretical anal-
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ysis and experimental results affirm that the proposed key-lock
module is efficient and effective in protecting against gradient
leakage attacks. This is achieved by masking the uniformity of
confidential data in the gradient, thus making it challenging for
a malicious attacker to perform forward-backward propagation
in the absence of the private key and the lock layer’s gradient.
Consequently, the task of approximating the shared gradient in
the FL framework to reconstruct local training data becomes
unachievable.

6. Composite Attacks

Table 8: Characteristics of Composite Attacks

Name of Attack Distinctive Feature

Direct Boosting [123] boosting malicious updates

Separated Boosting [123] regularized update boosting

Model Replacement [124]  replace converging global model

PGD [125] bounded update projection

Edge case + PGD [47] PGD on minority samples

median cheating with

Median Interval [64] normalized updates

DBA[126] distributed backdoor trigger

TrojanDBA [127] distributed and learnable trigger

tampering insignificant

Neurotoxin [128] model weights

searching Neurotoxin

RL Neurotoxin [129] parameters with RL

sign-flipping on

F3BA [130] insignificant weights
Rare Word [131] tampering stale
Embedding word embeddings

Future Update estimating future updates
N [132] . .
Approximation from malicious clients

estimating potent

Sudden Collapse [133] malicious gradients

We define composite attacks as threat models that corrupt
multiple aspects of FL. The attacker can combine D2M and
M2M attacks to launch backdoor attacks. The attacker surrepti-
tiously adds trigger patterns to local training data, then poisons
model updates such that the global model learns how to react to
triggers. Backdoored models behave normally when fed with
clean data. In the presence of trigger data, these models are
trained to give predictions designated by the attacker.

Trigger patterns vary from one attack to the other. We sum-
marize existing triggers in Figure 10. Generic samples of a
class or samples with shared patterns are commonly used in
label-flipping attacks, these attacks can be further enhanced by
incorporating M2M attacks. Triggers based on certain natural
patterns are also known as semantic triggers [124] . Handpicked
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logos or icons are common trigger patterns for backdoor injec-
tion. Edge samples, namely samples at the tail of the data dis-
tribution, are used in attacks targeting underrepresented data,
which can significantly damage the fairness for the minority
group. Lastly, learnable triggers is a relatively new strategy ap-
pears in recent studies.

Compared to D2M or M2M attacks, now that the attacker
also has control over client model updates, composite attacks
tend to be stealthier and more destructive. A high-level view of
such attacks is illustrated in Figure 11. We group recent com-
posite attacks based on their most notable features. These at-
tacks may also use techniques proposed in other groups. We
show the characteristics of composite attacks in Table 8.

6.1. Composite Threat Models

6.1.1. Update Boosting

To boost the effectiveness of model updates derived from poi-
soned data, scaling up malicious updates is a common strategy
in early studies on composite attacks [123, 124]. Given poi-
soned data with their labels being flipped, authors of [123] pro-
pose two types of threat models. The explicit approach is to
train client models with the poisoned data, then boost model
updates by scaling it up with a predefined coefficient. Although
this approach is easy to implement, the boosted updates are sta-
tistically different from benign updates, suggesting that secure
aggregation rules can easily identify boosted malicious updates.
As for the stealthy approach in [123], the attacker instead trains
client models on both the clean and poisoned data. Updates
from the poisoned data are boosted as the explicit approach
while a regularization term is used to ensure that the differences
between current malicious updates and last round’s average be-
nign updates are bounded. Instead of boosting only the mali-
cious updates, the model replacement attack proposed in [124]
seeks to entirely replace the global model with the backdoored
model. As the training goes on, benign updates from converg-
ing client models tend to cancel each other out. By solving the
linear aggregation equation, the attacker can find the solution to
scale up malicious updates such that the global model is equal to
the model trained with poisoned data, namely the global model
is replaced with the one with backdoors.

6.1.2. Bounded Updates

Boosting model updates is an effective way to inject back-
doors. However, these updates have distinctive norms com-
pared to benign updates. As mentioned above, boosted updates
can be easily filtered out by norm-based aggregation rules. Pro-
jected Gradient Descent (PGD) proposed in [125] aims at by-
passing norm-based aggregation by projecting boosted updates
onto a small ball around the norm of global model weights.
PGD can be also seen in later studies [47]. On top of the
edge case D2M attack in [47], the attacker can further cover up
their intention by projecting model updates derived from edge
case data. Another threat model proposed in [47] combines
PGD with model replacement [124] in which the boosted ma-
licious updates is bounded through projection before replacing
the global model. Another way to generate bounded updates is
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Figure 11: A High-level View of Injecting Backdoors with a Composite Attack. The attacker chooses a preferable trigger and tampers local data with the trigger.
Local model is also trained on clean data to avoid detection. Most attacks aim at poisoning the global model with only a few clients.

proposed in [64]. In stead of projecting malicious updates, they
are normalized by the maximum deviation range discussed in
the M2M attack section.

6.1.3. Distributed Triggers

One common trait of the above composite attacks is that their
backdoor triggers are stand-alone, namely the trigger patterns
are identical across all clients and tampered samples. Even
though there are experiments on concurrently employing multi-
ple triggers [125], these triggers are still independent from each
other and they lack the ability to collude. The Distributed Back-
door Attack (DBA) [126] instead assigns local triggers to mul-
tiple clients. Local triggers can be assembled to form a stronger
global trigger. The triggers used in DBA is similar to the ones
used in BadNets [134], which are colored rectangles placed
around the corners of images. Malicious updates of DBA are
scaled up by a coefficient similar to [123]. Another attack with
distributed triggers is proposed in [127]. Unlike DBA whose
triggers are predefined, triggers in [127] are based on [135] with
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learn-able parameters that generate local trigger patterns. In the
trigger generation stage of [127], the attacker first determines
the target class. By feeding various samples of the target class
to the received global model, the attacker finds the internal neu-
ron that is most sensitive to the target class. This is achieved
by comparing the sum of connected weights and the number of
activation. The attacker then optimizes trigger pattern param-
eters such that they maximize the activated value of the most
sensitive neuron. In the distributed training stage of [127], each
malicious client only trains from the most sensitive neuron’s
layer to the final output layer.

6.1.4. Insidious Tampering

More recent composite attacks focus on making mali-
cious updates more insidious and persistent, which is usu-
ally achieved by tampering with weights that are unimportant
to the clean data. For instance, Neurotoxin [128] only up-
dates insignificant parameters to prevent backdoors from be-
ing erased by benign updates. Neurotoxin considers parameters
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with largest gradients to be most used by benign clients, there-
fore parameters with with smaller gradients are less accessed
by benign clients. The attacker can only optimize less impor-
tant parameters to achieve their backdoor objectives. Neuro-
toxin is recently enhanced by authors of [129] who employ RL
to find better hyperparameters for the attack. Rare word em-
bedding attack proposed in [131] shares a similar idea with
Neurotoxin in the sense that it manipulates word embeddings
of rare words as they are not likely to be updated by benign
clients. The effectiveness of the rare word embedding attack
can be further amplified by the gradient ensembling method
[131]. The attacker intentionally stores the global models from
multiple rounds, then gradients of backdoor word embeddings
are computed for all these models. The exponential moving
average of these gradients is used to update backdoor embed-
dings in the current round. Focused Flip Federated Backdoor
Attack (F3BA) is a recent threat model that falls into the cate-
gory of insidious tampering. Intuitively, F3BA tries to flip the
signs of lease important weights such that they are most sen-
sitive to trigger patterns. The importance of a weight is mea-
sured by the product of its gradient and weight value. F3BA
only modifies least important weights found by this metric, and
empirically 1% of weights are enough to degrade model perfor-
mance. Sign-flipping of F3BA is conducted between consecu-
tive layers. In the first layer, the attacker reshapes the trigger
patterns such that it aligns with the convolution kernel. Signs
of least important weights of this kernel are flipped if they are
different from the signs of the aligned trigger pixels. In sub-
sequent layers, the attacker respectively feeds the model with
clean and poisoned data, records their activation differences,
and flips signs of the chosen weights such that the activation
differences are maximized. When sign-flipping is completed,
the model is fine-tuned to associate flipped weights with the la-
bels of poisoned data. The model’s local updates will also be
more similar to benign updates after fine-tuning. Like [127],
trigger patterns is also learn-able. F3BA learns the trigger pat-
tern’s pixel values by maximizing the clean-poisoned activation
difference of the first layer.

6.1.5. Update Approximation

Composite attacks introduced so far directly optimize model
weights on the backdoor classification task. There are also at-
tacks seeking to optimize niche objectives. These objectives
are often intractable (e.g. estimating future updates of other
clients), thus the attacker needs to find proper approximations to
implement practical solutions. If an omniscient attacker knows
all future updates of a FL system, the optimal way of inject-
ing backdoors is differentiating through the computation graph
of all future updates w.r.¢ the weights of the attacker’s model.
This is the intuition behind [132] and the authors propose a
method to approximate updates in the near future. The attack in
[132] requires the attacker to control a subset of client models.
The attacker uses these models to simulate future updates by
running FedAvg. Throughout the simulation, only clean data
sampled from the malicious client is used. In the first round
of the simulation, all models are fed with data. The malicious
models are left out in the following rounds, which is simulat-
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ing the scenario in which the malicious client is not chosen by
the central server. Once future updates are approximated, client
model weights are optimized through the classification losses
on both clean and poisoned data similar to [123]. Accumula-
tive Poisoning Attack (APA) [133] is another method that indi-
rectly optimizes model weights for the backdoor task. The ob-
jective of APA is to clandestinely poison model weights while
maintaining a good test performance. As soon as the model is
fed with trigger data, its performance drastically drops, leav-
ing the system administrator with minimum time to respond to
the attack. APA learns two functions: an accumulative function
and a poisoning function. The accumulative function is used
to manipulate model updates such that the model is more sen-
sitive to trigger gradients. The poisoning function is used to
transform benign gradients from validation data into malicious
gradients, leading to performance degradation. Intuitively, de-
grading model performance can be viewed as maximizing the
validation loss. By taking the first order Taylor polynomial of
the validation loss, the maximization problem is transformed
into minimizing the first order gradient w.r.t the accumulative
and poisoning functions. The authors of APA further simplify
the minimization problem with its first order approximation.
The final optimization objective then becomes simultaneously
aligning the directions of poisoned gradients with benign gradi-
ents as well as the second order gradients of the validation loss.
All gradients from APA are all projected through PGD [125] to
enhance stealth. While it is not mandatory to use trigger pat-
terns with APA, the authors demonstrate that explicit triggers
makes APA more potent.

6.2. Defense Against Composite Attack

In this section, we introduce defenses that are specifically
designed to counter D2M+M?2M composite attacks. Since this
type of attack also manipulates model weights or updates, de-
fenses against M2M attacks such as Krum [61] or Bulyan [65]
are also evaluated in many existing studies on defense against
composite attacks. Depending on the subjects being processed
by the defense strategy, we divide defenses again composite at-
tacks into update cleansing and model cleansing.

6.2.1. Update Cleansing

Defenses based on update cleansing filter out uploads or mit-
igate influence from malicious clients by examining model up-
dates. Robust-LLR [136] is an update cleansing defense built on
the heuristics that directions of malicious updates are different
from benign ones. The authors of Robust-LR take a majority
voting over model updates. The voting computes the sum of
signs of model updates on each dimension. If the sum is below
a pre-defined threshold, meaning that malicious clients partic-
ipate in the current round of update, the learning rate on that
dimension is multiplied by —1 to apply gradient ascent to sus-
picious updates.

Training models with DP has been mathematically proven
as an effective way of defending against backdoor injections
[137, 125]. This approach is first introduced to FL by authors
of DP-FedAvg [138]. Compared to the vanilla FedAvg shown
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in Algorithm 1, DP-FedAvg requires the central server to bound
client updates first. Client updates are clipped by comparing its
L2-norm against a given parameter, which could be an over-
all parameter for all model weights or a set of layer-wise clip-
ping parameter. When the global model is updated by taking
in bounded client updates, noise from a zero-mean Gaussian is
also added.

6.2.2. Model Cleansing

A pruning based method is proposed in [139]. This approach
asks clients to rank the average activation values of the last layer
of their models. The central server prunes neurons in the de-
scending order based on the aggregated rankings of neurons.
Knowledge distillation is also considered as a defense against
composite backdoor attacks [140, 130]. By aligning the atten-
tion maps of the teacher model and the student model, Neural
Attention Distillation (NAD) [140] manages to erase backdoors
injected in the model. The distillation process of [140] assumes
that clean data is available to the defender. This requirement is
also inherited by FedRAD [141], a knowledge distillation based
defense for FL. FedRAD needs to prepare synthetic data [142]
on the central server for model evaluation. Client models are
fed with the synthesized data for evaluation, then the central
server counts how many times a client’s logit obtains the me-
dian value for its corresponding class. The median frequencies
of client models are normalized and used as global model ag-
gregation coefficients. The distillation process of FedRAD is
built on FedDF [143]. The central server distills knowledge
from client models by minimizing the KL divergence between
the global model’s predictions and the average prediction of
client models.

Some research considers certified robustness [144] as the
way to defend against composite backdoor attacks. A ML
model is said to have certified robustness if its predictions are
still stable even if the input is perturbed. CRFL [145] is a de-
fense designed to counter the model replacement attack. By
controlling how the global model parameters update during
training, CRFL grants the global model certified robustness un-
der the condition that the backdoor trigger is bounded. Specif-
ically, when the conventional global model aggregation com-
pletes, parameters of the global model are first clipped, then
Gaussian noise is added to these parameters. At test time, a set
of Gaussian noise is sampled from the previous noise distribu-
tion and added to the aggregated global model, resulting in a set
of noisy global models. A majority voting is conducted among
these noisy models to decide the classification results of test
samples. Another defense with certified robustness is proposed
in [146]. This method achieves certified robustness through
the majority voting among a number of concurrently trained
global models. Given n clients, the defense in [146] trains (Z)
global models, where k is the number clients chosen without
replacement for each model. Although the authors of [146] ap-
plies Monte Carlo approximation to speed up the defense, it still
needs to train hundreds of global models, making this method
more computationally expensive than other defenses.

The idea of majority voting is not exclusive to defenses with
certified robustness. Authors of BaFFLe [147] rely on diver-
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sified client data to validate and provide feedback to the global
model. BaFFLe adds an extra stage to conventional FL pipeline.
When the global model for current global training round is ag-
gregated, it is sent to randomly selected clients to validate if
the global model is poisoned. A set of recently accepted global
models are also sent to selected clients as reference. The vali-
dation process s of BaFFLe requires these clients to test global
models with their local data. In particular, each client com-
putes the misclassification rate for samples of a specific class,
the client also computes the rate of other classes’ samples be-
ing misclassified as the examined class. For benign models, the
gap between these two rates are relatively stable during train-
ing. However, drastic changes can happen for backdoored mod-
els. If the misclassification gap of the newly aggregated global
model deviates too much from the average gap of past models,
the client votes the global model as malicious. Finally, based
on the result of the majority voting, the central server decides
whether to discard the newly obtained global model.

6.2.3. Composite Cleansing

Like composite attacks that manipulate multiple aspects of
FL to enhance their capability, recent defenses also exam-
ine both model updates and weights to systematically mitigate
composite attacks.

Authors of DeepSight [148] propose various metrics to eval-
uate if the upload from a client is malicious. The central
server first computes the pairwise cosine similarities between
received updates. Two other metrics, clients’ Division Differ-
ences (DDif) and NormalizEd UPdate Energy (NEUP), are also
computed. DDif measures the prediction differences between
the global and client models. This is achieved by feeding mod-
els with random input on the server. Backdoored models are
prone to produce larger activation for the trigger class even if
the input is merely random noise [149], which is a telltale sign
for DDif to identify compromised models. NEUP measures
the update magnitude for neurons in the output layer. Local
data with similar distributions results in models with similar
NEUP patterns. Based on the above metrics, DeepSight clusters
received client models on the central server with HDBSCAN
[150]. The server also needs to maintain a classifier based on
NEUP to label client models as either benign or malicious. De-
pending on the number of models being labeled as malicious,
the server determines whether to accept or reject a client model
cluster. Models from accepted clusters are deemed as safe for
aggregation.

FLAME [151] is another example of composite defense. Au-
thors of FLAME summarize the pipeline of their approach as
clustering, clipping and noising. In the clustering stage, the cen-
tral server computes CDs between model updates. HDBSCAN
is subsequently used to filter out malicious models based on the
angular differences derived from CDs. In the clipping stage, the
median of remaining models’ updates is chosen as the bound to
clip model updates. In the final noising stage, Gaussian noise
is added to the global model weights to further erase injected
back doors.
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Table 9: Summarization of defense techniques toward different types of attacks

Defense Method Defense Strategy Type of Attack Attack Strategy
Fung et al.[43] (FoolsGold) Dynamic learning rate
Tolpegin et al.[44] Cluster for PCA DM Label Attack
Cao et al.[49] (Sniper) Clique from Euclidean distance Sample Attack
Ma et al.[53] Rewards based aggregation
Chen et al.[72] (GeoMed) Geometric median
Pillutla et al.[73] (RFA) Weiszfeld-smoothed geometric median
Xie et al.[62] (MarMed) Dimension-wise median
Xie et al.[62] (MeaMed) Mean-around median
Yin et al.[70] (TrimMean) Dimension-wise trimmed mean
Blanchard et al.[61] (Krum) Euclidean distance MOM Priori Attack
El Mhamdi et al.[65] (Bulyan) Euclidean distance Posteriori Attack
Wang et al.[74] (ELITE) Gradient information gain
Tekgul et al.[79] (WAFFLE) The server embeds watermarks
Li et al.[80] (FedIPR) Generate secret watermarks on client
Lin et al.[76] Auto-encoder
Zong et al.[82] (DAGMM) Gaussian mixture network
Zhu et al.[103] Adding noise to gradients
Chamikara et al.[117] Perturbing data Attribute Inference
Wei et al.[121] DP on data M2D Membership Identification
Scheliga et al.[122] (PRECODE) Transform feature representation Image Recovery
Ren et al.[102] (FedKL) Hide the input from gradient
Ozdayi et al.[136] (Robust-LR) Update cleansing
McMahan et al.[138] (DP-FedAvg) DP
Wu et al.[139] Model pruning
Sturluson et al.[141] (FedRAD) Knowledge distillation Updates Attack
Xie et al.[145] (CRFL) Certified robustness from updates Composite Distributed Triggers
Cao et al.[146] Certified robustness Insidious Tampering
Andreina et al.[147] (BaFFLe) Validation on diversified client data
Rieger et al.[148] (DeepSight) Various metrics
Nguyen et al.[151] (FLAME) Clustering, clipping and noising

7. Conclusion and Future Directions

7.1. Conclusion

In recent years, FL. has become a transformative paradigm
for training ML models, especially in decentralized envi-
ronments where data privacy and security are critical. Our
comprehensive review categorized known FL attacks according
to attack origin and target. It provides a clear structure for un-
derstanding the scope and depth of FL inherent vulnerabilities:

D2M Attacks: These attacks (e.g., label-flipping) manipulate
data to corrupt the global model. Since FL often relies on
data from numerous potentially untrusted sources, it is highly
vulnerable to such threats.

M2M Attacks: This type of attack tampers with model
updates, thereby disrupting the learning process. For example,
Byzantine attacks involve sending malformed or misleading
model updates, indicating that one or more malicious clients
have the potential to degrade the performance of the global
model. Such attacks emphasize the importance of a robust
aggregation approach in a federated environment.
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M2D Attacks: Focus on exploiting vulnerabilities that arise
when models interact with data, such as gradient leakage,
where an attacker can infer private data from gradient updates.
Gradient leakage is a prime example where malicious entities
exploit the shared model updates to infer sensitive information
about the training data, emphasizing on the need for defense
strategies that mask or generalize gradients.

Composite Attacks: These attacks are more sophisticated in
nature and often combine multiple attack methods or vectors to
enhance their impact. Backdoor injection is a classic example,
where an attacker subtly introduces a backdoor during training
and then exploits it during reasoning.

A summarization of defense techniques toward different
types of attacks is provided in Table 9

7.2. Future Directions

As FL continues to evolve, the sophistication of potential
attacks will continue to increase. By reviewing the recent
advancements in this domain, we identify several promising
research directions that include:
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Robust Aggregation Mechanisms: The aggregation process
in FL is a key link where local model updates from different
participants are combined to update the global model. Given its
central role, the aggregation step becomes a vulnerable point,
especially to malicious interference. For example, a single
participant with malicious intentions may submit misleading
updates with the intention of degrading the performance
of the global model. This adverse activity is of particular
concern in M2M attacks, of which the Byzantine attack is a
prime example. In a Byzantine attack, an adversary sends
arbitrary or strategically designed updates to a server with
the intent of disrupting the aggregated model. Addressing
these vulnerabilities requires re-evaluating and redesigning the
traditional aggregation mechanisms used in FL. By delving
into the development of more resilient aggregation strategies,
methods can can be designed to identify, isolate, or reduce the
impact of these malicious updates. These advanced aggregation
techniques, based on robust statistical measures, consensus
algorithms and even outlier detection methods, can ensure that
the integrity of the global model remains intact in the presence
of hostile participants.

Gradient Sparse Attack: In terms of M2D attack methods,
it is worth noting that the gradients exchanged between the
server and the client often contain a large amount of redundant
details [107], and this redundancy may play a negative role
in the effectiveness of the attack. If an attacker can filter out
valuable gradients, the efficiency of the attack can be dramati-
cally improved, especially in large-scale model training. This
gradient sparse process eliminates irrelevant and noisy data,
thus potentially improving the accuracy of the attack.

Automatic Attack Detection: As the complexity and scale
of FL environments continues to grow, automated safety
measures become critical. Meta-learning [152, 153, 154, 155],
often referred to as “learning to learn”, offers a promising
avenue to address this challenge. By employing meta-learning
techniques, systems can be trained to leverage prior knowledge
about different types of attacks to quickly adapt to new,
unforeseen threats. In addition, anomaly detection algorithms
help identify outliers or unusual patterns in traditional datasets
that can be fine-tuned for federated environments. These
algorithms can monitor incoming model updates from different
clients or nodes and flag any updates that deviate from the
expected pattern to indicate potential malicious activity. Such
an automated system not only identifies threats, but also
combines with defense mechanisms to immediately counteract
or eliminate suspicious activity, ensuring a smoother and safer
FL process.

Holistic Defense Strategies: In the rapidly evolving FL
environment, the need for holistic defense strategies is be-
coming increasingly prominent. These strategies advocate the
development and implementation of defense mechanisms that
are inherently versatile and capable of responding to multiple
attack vectors simultaneously. A holistic approach would inte-
grate various protection measures to create a more resilient and
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adaptive security framework, rather than a solo approach that
develops defenses against specific threats. This multi-pronged
defense system not only ensures broader security coverage,
but also minimizes potential vulnerabilities and overlaps. As
adversarial tactics become increasingly complex, utilizing an
integrated solution that anticipates and responds to a wide
range of threats will be key to protecting the FL ecosystem.

Domain-specific Attacks and Defenses Although we have
witnessed nascent studies on exploiting the vulnerabilities
in Federated Recommendation System and Federated RL,
few defenses are proposed to defend against such threats.
Furthermore, a majority of the current research tends to focus
on image classification as the principal learning task for both
attacks and defenses. This observation underscores a pressing
need and opportunity to delve deeper into domain-specific
threat models and tailored defense strategies for federated
learning. Investigating this avenue not only holds promise for
enhancing security but also ensures the more comprehensive
protection of diverse applications within FL.

Interdisciplinary Approaches: Harnessing the wealth of in-
sights from different fields is particularly instructive for enhanc-
ing FL systems. For example, frameworks and theories from
disciplines such as game theory and behavioral science can help
to understand the motivations and behaviors of participants in a
FL environment. By understanding these motivations, tailored
incentive structures or deterrence mechanisms can be designed
to encourage positive contributions and discourage malicious
or negligent behaviors in FL ecosystems. In addition, the fields
of cryptography and cyber-security are constantly evolving, of-
fering a plethora of innovative techniques and protocols. By
integrating these advances into FL, we can strengthen systems
against identified vulnerabilities and ensure not only the privacy
and integrity of data, but also the trustworthiness of the learning
process. As the stakes for FL grow, especially in critical areas
of application, the convergence of these areas is critical to cre-
ating a robust, secure and collaborative learning environment.
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